code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import torch from torch import nn class lowercase__ ( nn.Module ): def __init__( self : Any ,lowerCamelCase__ : Any ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : str ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Tuple=1 ,lowerCamelCase__ : List[str]=False ): '''simple docstring''' super().__init__() _UpperCamelCase : Tuple = n_token _UpperCamelCase : str = d_embed _UpperCamelCase : List[Any] = d_proj _UpperCamelCase : Dict = cutoffs + [n_token] _UpperCamelCase : str = [0] + self.cutoffs _UpperCamelCase : List[Any] = div_val _UpperCamelCase : List[Any] = self.cutoffs[0] _UpperCamelCase : List[Any] = len(self.cutoffs ) - 1 _UpperCamelCase : Tuple = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _UpperCamelCase : Any = nn.Parameter(torch.zeros(self.n_clusters ,self.d_embed ) ) _UpperCamelCase : Union[str, Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) _UpperCamelCase : str = nn.ModuleList() _UpperCamelCase : Tuple = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCamelCase__ ,lowerCamelCase__ ) ) ) else: self.out_projs.append(lowerCamelCase__ ) self.out_layers.append(nn.Linear(lowerCamelCase__ ,lowerCamelCase__ ) ) else: for i in range(len(self.cutoffs ) ): _UpperCamelCase , _UpperCamelCase : int = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCamelCase : Union[str, Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCamelCase__ ,lowerCamelCase__ ) ) ) self.out_layers.append(nn.Linear(lowerCamelCase__ ,r_idx - l_idx ) ) _UpperCamelCase : Optional[int] = keep_order def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' if proj is None: _UpperCamelCase : Optional[Any] = nn.functional.linear(lowerCamelCase__ ,lowerCamelCase__ ,bias=lowerCamelCase__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _UpperCamelCase : Dict = nn.functional.linear(lowerCamelCase__ ,proj.t().contiguous() ) _UpperCamelCase : Dict = nn.functional.linear(lowerCamelCase__ ,lowerCamelCase__ ,bias=lowerCamelCase__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : List[Any]=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n _UpperCamelCase : Tuple = hidden[..., :-1, :].contiguous() _UpperCamelCase : int = labels[..., 1:].contiguous() _UpperCamelCase : Dict = hidden.view(-1 ,hidden.size(-1 ) ) _UpperCamelCase : Optional[Any] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: _UpperCamelCase : List[Any] = hidden.view(-1 ,hidden.size(-1 ) ) if self.n_clusters == 0: _UpperCamelCase : int = self._compute_logit(lowerCamelCase__ ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) if labels is not None: _UpperCamelCase : Dict = labels != -100 _UpperCamelCase : Optional[Any] = torch.zeros_like(lowerCamelCase__ ,dtype=hidden.dtype ,device=hidden.device ) _UpperCamelCase : int = ( -nn.functional.log_softmax(lowerCamelCase__ ,dim=-1 )[mask].gather(1 ,labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _UpperCamelCase : Any = nn.functional.log_softmax(lowerCamelCase__ ,dim=-1 ) else: # construct weights and biases _UpperCamelCase , _UpperCamelCase : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _UpperCamelCase , _UpperCamelCase : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCamelCase : Optional[int] = self.out_layers[0].weight[l_idx:r_idx] _UpperCamelCase : Optional[int] = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCamelCase : Tuple = self.out_layers[i].weight _UpperCamelCase : int = self.out_layers[i].bias if i == 0: _UpperCamelCase : Optional[int] = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) _UpperCamelCase : Any = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(lowerCamelCase__ ) biases.append(lowerCamelCase__ ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = weights[0], biases[0], self.out_projs[0] _UpperCamelCase : List[Any] = self._compute_logit(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : int = nn.functional.log_softmax(lowerCamelCase__ ,dim=1 ) if labels is None: _UpperCamelCase : Optional[int] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _UpperCamelCase : Any = torch.zeros_like(lowerCamelCase__ ,dtype=hidden.dtype ,device=hidden.device ) _UpperCamelCase : Tuple = 0 _UpperCamelCase : Optional[Any] = [0] + self.cutoffs for i in range(len(lowerCamelCase__ ) - 1 ): _UpperCamelCase , _UpperCamelCase : List[str] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _UpperCamelCase : Any = (labels >= l_idx) & (labels < r_idx) _UpperCamelCase : Union[str, Any] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _UpperCamelCase : Tuple = labels.index_select(0 ,lowerCamelCase__ ) - l_idx _UpperCamelCase : List[str] = head_logprob.index_select(0 ,lowerCamelCase__ ) _UpperCamelCase : Dict = hidden.index_select(0 ,lowerCamelCase__ ) else: _UpperCamelCase : List[Any] = hidden if i == 0: if labels is not None: _UpperCamelCase : str = head_logprob_i.gather(1 ,target_i[:, None] ).squeeze(1 ) else: _UpperCamelCase : Optional[int] = head_logprob[:, : self.cutoffs[0]] else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Tuple = weights[i], biases[i], self.out_projs[i] _UpperCamelCase : Optional[Any] = self._compute_logit(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Tuple = nn.functional.log_softmax(lowerCamelCase__ ,dim=1 ) _UpperCamelCase : List[str] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _UpperCamelCase : Optional[Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 ,target_i[:, None] ).squeeze(1 ) else: _UpperCamelCase : Optional[int] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _UpperCamelCase : Optional[int] = logprob_i if labels is not None: if (hasattr(self ,'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 ,lowerCamelCase__ ,-logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : str ): '''simple docstring''' if self.n_clusters == 0: _UpperCamelCase : List[str] = self._compute_logit(lowerCamelCase__ ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) return nn.functional.log_softmax(lowerCamelCase__ ,dim=-1 ) else: # construct weights and biases _UpperCamelCase , _UpperCamelCase : Optional[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _UpperCamelCase , _UpperCamelCase : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCamelCase : str = self.out_layers[0].weight[l_idx:r_idx] _UpperCamelCase : Dict = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCamelCase : Tuple = self.out_layers[i].weight _UpperCamelCase : Optional[Any] = self.out_layers[i].bias if i == 0: _UpperCamelCase : Dict = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) _UpperCamelCase : List[Any] = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(lowerCamelCase__ ) biases.append(lowerCamelCase__ ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Union[str, Any] = weights[0], biases[0], self.out_projs[0] _UpperCamelCase : List[str] = self._compute_logit(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Optional[int] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) _UpperCamelCase : Dict = nn.functional.log_softmax(lowerCamelCase__ ,dim=1 ) _UpperCamelCase : List[Any] = [0] + self.cutoffs for i in range(len(lowerCamelCase__ ) - 1 ): _UpperCamelCase , _UpperCamelCase : List[Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: _UpperCamelCase : Optional[Any] = head_logprob[:, : self.cutoffs[0]] else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = weights[i], biases[i], self.out_projs[i] _UpperCamelCase : str = self._compute_logit(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Optional[int] = nn.functional.log_softmax(lowerCamelCase__ ,dim=1 ) _UpperCamelCase : List[Any] = head_logprob[:, -i] + tail_logprob_i _UpperCamelCase : Tuple = logprob_i return out
195
'''simple docstring''' from math import ceil def A__ ( UpperCAmelCase_ = 1_0_0_1 ): _UpperCamelCase : int = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): _UpperCamelCase : Dict = 2 * i + 1 _UpperCamelCase : Tuple = 2 * i _UpperCamelCase : Any = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: snake_case_ : Tuple = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
195
1
"""simple docstring""" from typing import Any class _lowerCAmelCase : def __init__( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' snake_case : List[Any] = data snake_case : str = None class _lowerCAmelCase : def __init__( self ) -> Optional[int]: '''simple docstring''' snake_case : str = None def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Tuple = self.head while temp is not None: print(temp.data , end=" " ) snake_case : Optional[Any] = temp.next print() def lowerCamelCase ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' snake_case : Any = Node(UpperCamelCase__ ) snake_case : List[str] = self.head snake_case : Tuple = new_node def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' if node_data_a == node_data_a: return else: snake_case : Any = self.head while node_a is not None and node_a.data != node_data_a: snake_case : Optional[Any] = node_a.next snake_case : Optional[Any] = self.head while node_a is not None and node_a.data != node_data_a: snake_case : int = node_a.next if node_a is None or node_a is None: return snake_case ,snake_case : Dict = node_a.data, node_a.data if __name__ == "__main__": __snake_case = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
117
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""", """google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""", """google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Optional[Any] = '''big_bird''' def __init__( self , UpperCamelCase__=5_0358 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu_new" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=4096 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=True , UpperCamelCase__=0 , UpperCamelCase__=1 , UpperCamelCase__=2 , UpperCamelCase__=66 , UpperCamelCase__="block_sparse" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=64 , UpperCamelCase__=3 , UpperCamelCase__=None , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , sep_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) snake_case : Union[str, Any] = vocab_size snake_case : List[Any] = max_position_embeddings snake_case : int = hidden_size snake_case : str = num_hidden_layers snake_case : Any = num_attention_heads snake_case : int = intermediate_size snake_case : Union[str, Any] = hidden_act snake_case : Optional[Any] = hidden_dropout_prob snake_case : List[Any] = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : List[str] = type_vocab_size snake_case : Optional[Any] = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : List[Any] = rescale_embeddings snake_case : Any = attention_type snake_case : List[Any] = use_bias snake_case : int = block_size snake_case : int = num_random_blocks snake_case : Optional[int] = classifier_dropout class _lowerCAmelCase ( snake_case_ ): @property def lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case : int = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
117
1
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class lowerCAmelCase__ ( yaml.SafeLoader ): '''simple docstring''' def _lowerCAmelCase ( self : List[Any] , _SCREAMING_SNAKE_CASE : Dict ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE : Optional[Any] = [tuple(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else key for key in keys] SCREAMING_SNAKE_CASE : Any = Counter(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"""Got duplicate yaml keys: {duplicate_keys}""" ) def _lowerCAmelCase ( self : Dict , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Dict=False ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : int = super().construct_mapping(_SCREAMING_SNAKE_CASE , deep=_SCREAMING_SNAKE_CASE ) self._check_no_duplicates_on_constructed_node(_SCREAMING_SNAKE_CASE ) return mapping def __snake_case ( __A : str ) -> Tuple[Optional[str], str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE : Any = full_content[1:].index('---' ) + 1 SCREAMING_SNAKE_CASE : List[str] = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__A ) class lowerCAmelCase__ ( _lowerCamelCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : str = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def _lowerCAmelCase ( cls : Dict , _SCREAMING_SNAKE_CASE : Path ) -> "DatasetMetadata": """simple docstring""" with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as readme_file: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_SCREAMING_SNAKE_CASE ) else: return cls() def _lowerCAmelCase ( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Path ) -> Optional[Any]: """simple docstring""" if path.exists(): with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as readme_file: SCREAMING_SNAKE_CASE : Dict = readme_file.read() else: SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Tuple = self._to_readme(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as readme_file: readme_file.write(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[str] = None ) -> str: """simple docstring""" if readme_content is not None: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = _split_yaml_from_readme(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = '---\n' + self.to_yaml_string() + '---\n' + content else: SCREAMING_SNAKE_CASE : Optional[int] = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def _lowerCAmelCase ( cls : int , _SCREAMING_SNAKE_CASE : str ) -> "DatasetMetadata": """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = yaml.load(_SCREAMING_SNAKE_CASE , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE : Union[str, Any] = { (key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" return yaml.safe_dump( { (key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=_SCREAMING_SNAKE_CASE , allow_unicode=_SCREAMING_SNAKE_CASE , encoding='utf-8' , ).decode('utf-8' ) A_ : List[Any] = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser A_ : Dict = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') A_ : Optional[Any] = ap.parse_args() A_ : int = Path(args.readme_filepath) A_ : List[str] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
265
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
265
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _SCREAMING_SNAKE_CASE ( self: int) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = 1 __lowerCAmelCase : Union[str, Any] = 3 __lowerCAmelCase : int = (32, 32) __lowerCAmelCase : Any = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(_SCREAMING_SNAKE_CASE) return image @property def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Any: """simple docstring""" torch.manual_seed(0) __lowerCAmelCase : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Optional[int]: """simple docstring""" torch.manual_seed(0) __lowerCAmelCase : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> int: """simple docstring""" torch.manual_seed(0) __lowerCAmelCase : Optional[Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(_SCREAMING_SNAKE_CASE) @property def _SCREAMING_SNAKE_CASE ( self: int) -> Dict: """simple docstring""" def extract(*_SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: str): class A__ : '''simple docstring''' def __init__( self: Dict) -> Tuple: """simple docstring""" __lowerCAmelCase : Any = torch.ones([0]) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: List[Any]) -> Optional[int]: """simple docstring""" self.pixel_values.to(_SCREAMING_SNAKE_CASE) return self return Out() return extract def _SCREAMING_SNAKE_CASE ( self: str) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase : Tuple = self.dummy_cond_unet __lowerCAmelCase : List[Any] = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = self.dummy_vae __lowerCAmelCase : Dict = self.dummy_text_encoder __lowerCAmelCase : Tuple = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") __lowerCAmelCase : List[str] = 77 __lowerCAmelCase : List[Any] = self.dummy_image.to(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk __lowerCAmelCase : Optional[Any] = AltDiffusionImgaImgPipeline( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __lowerCAmelCase : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = alt_pipe.to(_SCREAMING_SNAKE_CASE) alt_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = "A painting of a squirrel eating a burger" __lowerCAmelCase : Optional[int] = torch.Generator(device=_SCREAMING_SNAKE_CASE).manual_seed(0) __lowerCAmelCase : str = alt_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : int = output.images __lowerCAmelCase : Optional[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE).manual_seed(0) __lowerCAmelCase : int = alt_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] __lowerCAmelCase : Any = image[0, -3:, -3:, -1] __lowerCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : Optional[int] = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU") def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = self.dummy_cond_unet __lowerCAmelCase : Optional[Any] = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = self.dummy_vae __lowerCAmelCase : List[Any] = self.dummy_text_encoder __lowerCAmelCase : List[str] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") __lowerCAmelCase : int = 77 __lowerCAmelCase : List[Any] = self.dummy_image.to(_SCREAMING_SNAKE_CASE) # put models in fp16 __lowerCAmelCase : Union[str, Any] = unet.half() __lowerCAmelCase : List[Any] = vae.half() __lowerCAmelCase : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk __lowerCAmelCase : List[str] = AltDiffusionImgaImgPipeline( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __lowerCAmelCase : Any = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = alt_pipe.to(_SCREAMING_SNAKE_CASE) alt_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = "A painting of a squirrel eating a burger" __lowerCAmelCase : Tuple = torch.manual_seed(0) __lowerCAmelCase : Any = alt_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="np" , image=_SCREAMING_SNAKE_CASE , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU") def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> List[str]: """simple docstring""" __lowerCAmelCase : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg") # resize to resolution that is divisible by 8 but not 16 or 32 __lowerCAmelCase : Tuple = init_image.resize((760, 504)) __lowerCAmelCase : Union[str, Any] = "BAAI/AltDiffusion" __lowerCAmelCase : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( _SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , ) pipe.to(_SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) pipe.enable_attention_slicing() __lowerCAmelCase : Dict = "A fantasy landscape, trending on artstation" __lowerCAmelCase : List[str] = torch.manual_seed(0) __lowerCAmelCase : int = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , strength=0.75 , guidance_scale=7.5 , generator=_SCREAMING_SNAKE_CASE , output_type="np" , ) __lowerCAmelCase : Optional[Any] = output.images[0] __lowerCAmelCase : Tuple = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) __lowerCAmelCase : int = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Tuple) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Tuple: """simple docstring""" __lowerCAmelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg") __lowerCAmelCase : List[str] = init_image.resize((768, 512)) __lowerCAmelCase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy") __lowerCAmelCase : List[Any] = "BAAI/AltDiffusion" __lowerCAmelCase : Optional[int] = AltDiffusionImgaImgPipeline.from_pretrained( _SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , ) pipe.to(_SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) pipe.enable_attention_slicing() __lowerCAmelCase : Optional[int] = "A fantasy landscape, trending on artstation" __lowerCAmelCase : int = torch.manual_seed(0) __lowerCAmelCase : Optional[Any] = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , strength=0.75 , guidance_scale=7.5 , generator=_SCREAMING_SNAKE_CASE , output_type="np" , ) __lowerCAmelCase : List[Any] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image).max() < 1e-2
615
"""simple docstring""" import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def _lowercase ( __snake_case ) -> int: if hor == 128: __lowerCAmelCase : str = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") __lowerCAmelCase : int = (32, 128, 256) __lowerCAmelCase : Optional[Any] = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: __lowerCAmelCase : List[str] = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") __lowerCAmelCase : Optional[Any] = (32, 64, 128, 256) __lowerCAmelCase : Any = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") __lowerCAmelCase : Union[str, Any] = torch.load(F"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) __lowerCAmelCase : List[Any] = model.state_dict() __lowerCAmelCase : Optional[Any] = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 65_536, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } __lowerCAmelCase : Dict = UNetaDModel(**__snake_case ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) __lowerCAmelCase : Dict = dict(zip(model.state_dict().keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __lowerCAmelCase : int = state_dict.pop(__snake_case ) hf_value_function.load_state_dict(__snake_case ) torch.save(hf_value_function.state_dict() ,F"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(F"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" ,"w" ) as f: json.dump(__snake_case ,__snake_case ) def _lowercase ( ) -> List[str]: __lowerCAmelCase : Union[str, Any] = { "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 128, 256), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 65_536, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } __lowerCAmelCase : int = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) __lowerCAmelCase : Any = model __lowerCAmelCase : Optional[int] = UNetaDModel(**__snake_case ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) __lowerCAmelCase : Any = dict(zip(state_dict.keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __lowerCAmelCase : Union[str, Any] = state_dict.pop(__snake_case ) hf_value_function.load_state_dict(__snake_case ) torch.save(hf_value_function.state_dict() ,"hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json" ,"w" ) as f: json.dump(__snake_case ,__snake_case ) if __name__ == "__main__": unet(32) # unet(128) value_function()
615
1
import os def lowerCamelCase ( ) -> str: with open(os.path.dirname(a_ ) + '/grid.txt' ) as f: lowerCAmelCase_ = [] # noqa: E741 for _ in range(20 ): l.append([int(a_ ) for x in f.readline().split()] ) lowerCAmelCase_ = 0 # right for i in range(20 ): for j in range(17 ): lowerCAmelCase_ = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowerCAmelCase_ = temp # down for i in range(17 ): for j in range(20 ): lowerCAmelCase_ = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowerCAmelCase_ = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowerCAmelCase_ = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowerCAmelCase_ = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowerCAmelCase_ = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowerCAmelCase_ = temp return maximum if __name__ == "__main__": print(solution())
318
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase_ = 1_6 lowerCamelCase_ = 3_2 def lowerCamelCase ( a_ , a_ = 16 ) -> Tuple: lowerCAmelCase_ = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCAmelCase_ = load_dataset('glue' , 'mrpc' ) def tokenize_function(a_ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=a_ , max_length=a_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase_ = datasets.map( a_ , batched=a_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(a_ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase_ = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase_ = 8 else: lowerCAmelCase_ = None return tokenizer.pad( a_ , padding='longest' , max_length=a_ , pad_to_multiple_of=a_ , return_tensors='pt' , ) # Instantiate dataloaders. lowerCAmelCase_ = DataLoader( tokenized_datasets['train'] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) lowerCAmelCase_ = DataLoader( tokenized_datasets['validation'] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase_ = mocked_dataloaders # noqa: F811 def lowerCamelCase ( a_ , a_ ) -> Dict: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , a_ ) == "1": lowerCAmelCase_ = 2 # Initialize accelerator lowerCAmelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ = config['lr'] lowerCAmelCase_ = int(config['num_epochs'] ) lowerCAmelCase_ = int(config['seed'] ) lowerCAmelCase_ = int(config['batch_size'] ) lowerCAmelCase_ = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=a_ ) def inner_training_loop(a_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(a_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=a_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase_ = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase_ = AdamW(params=model.parameters() , lr=a_ ) lowerCAmelCase_ , lowerCAmelCase_ = get_dataloaders(a_ , a_ ) # Instantiate scheduler lowerCAmelCase_ = get_linear_schedule_with_warmup( optimizer=a_ , num_warmup_steps=100 , num_training_steps=(len(a_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare( a_ , a_ , a_ , a_ , a_ ) # Now we train the model for epoch in range(a_ ): model.train() for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase_ = model(**a_ ) lowerCAmelCase_ = outputs.loss accelerator.backward(a_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ = model(**a_ ) lowerCAmelCase_ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase_ , lowerCAmelCase_ = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=a_ , references=a_ , ) lowerCAmelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , a_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def lowerCamelCase ( ) -> Tuple: lowerCAmelCase_ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=a_ , default=a_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(a_ , a_ ) if __name__ == "__main__": main()
318
1
import math def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 0.1 ) -> int: lowerCamelCase__ : Tuple = 3 lowerCamelCase__ : Optional[int] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_UpperCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
705
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """donut-swin""" UpperCAmelCase__ = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Tuple , UpperCAmelCase : List[str]=224 , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=96 , UpperCAmelCase : int=[2, 2, 6, 2] , UpperCAmelCase : Dict=[3, 6, 12, 24] , UpperCAmelCase : Any=7 , UpperCAmelCase : Optional[int]=4.0 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Any=0.0 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : int=0.1 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : List[str]=False , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : str=1e-5 , **UpperCAmelCase : Tuple , ) -> int: super().__init__(**UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = image_size lowerCamelCase__ : Optional[int] = patch_size lowerCamelCase__ : int = num_channels lowerCamelCase__ : int = embed_dim lowerCamelCase__ : Optional[Any] = depths lowerCamelCase__ : Optional[int] = len(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = num_heads lowerCamelCase__ : Tuple = window_size lowerCamelCase__ : Dict = mlp_ratio lowerCamelCase__ : str = qkv_bias lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : str = drop_path_rate lowerCamelCase__ : int = hidden_act lowerCamelCase__ : str = use_absolute_embeddings lowerCamelCase__ : List[Any] = layer_norm_eps lowerCamelCase__ : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ : Optional[int] = int(embed_dim * 2 ** (len(UpperCAmelCase ) - 1) )
188
0
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
605
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters snake_case : Tuple = (7_20, 12_80) # Height, Width snake_case : List[Any] = (0.4, 0.6) # if height or width lower than this scale, drop it. snake_case : str = 1 / 1_00 snake_case : List[Any] = '' snake_case : Union[str, Any] = '' snake_case : Tuple = '' snake_case : List[str] = 2_50 def SCREAMING_SNAKE_CASE ( ): """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = get_dataset(UpperCAmelCase__ ,UpperCAmelCase__ ) for index in range(UpperCAmelCase__ ): _SCREAMING_SNAKE_CASE = random.sample(range(len(UpperCAmelCase__ ) ) ,4 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = update_image_and_anno( UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,filter_scale=UpperCAmelCase__ ,) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _SCREAMING_SNAKE_CASE = random_chars(32 ) _SCREAMING_SNAKE_CASE = path.split(os.sep )[-1].rsplit('.' ,1 )[0] _SCREAMING_SNAKE_CASE = f'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(f'''{file_root}.jpg''' ,UpperCAmelCase__ ,[cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) _SCREAMING_SNAKE_CASE = [] for anno in new_annos: _SCREAMING_SNAKE_CASE = anno[3] - anno[1] _SCREAMING_SNAKE_CASE = anno[4] - anno[2] _SCREAMING_SNAKE_CASE = anno[1] + width / 2 _SCREAMING_SNAKE_CASE = anno[2] + height / 2 _SCREAMING_SNAKE_CASE = f'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(UpperCAmelCase__ ) with open(f'''{file_root}.txt''' ,'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ,UpperCAmelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for label_file in glob.glob(os.path.join(UpperCAmelCase__ ,'*.txt' ) ): _SCREAMING_SNAKE_CASE = label_file.split(os.sep )[-1].rsplit('.' ,1 )[0] with open(UpperCAmelCase__ ) as in_file: _SCREAMING_SNAKE_CASE = in_file.readlines() _SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ ,f'''{label_name}.jpg''' ) _SCREAMING_SNAKE_CASE = [] for obj_list in obj_lists: _SCREAMING_SNAKE_CASE = obj_list.rstrip('\n' ).split(' ' ) _SCREAMING_SNAKE_CASE = float(obj[1] ) - float(obj[3] ) / 2 _SCREAMING_SNAKE_CASE = float(obj[2] ) - float(obj[4] ) / 2 _SCREAMING_SNAKE_CASE = float(obj[1] ) + float(obj[3] ) / 2 _SCREAMING_SNAKE_CASE = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(UpperCAmelCase__ ) labels.append(UpperCAmelCase__ ) return img_paths, labels def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ = 0.0 ,): """simple docstring""" _SCREAMING_SNAKE_CASE = np.zeros([output_size[0], output_size[1], 3] ,dtype=np.uinta ) _SCREAMING_SNAKE_CASE = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _SCREAMING_SNAKE_CASE = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _SCREAMING_SNAKE_CASE = int(scale_x * output_size[1] ) _SCREAMING_SNAKE_CASE = int(scale_y * output_size[0] ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for i, index in enumerate(UpperCAmelCase__ ): _SCREAMING_SNAKE_CASE = all_img_list[index] path_list.append(UpperCAmelCase__ ) _SCREAMING_SNAKE_CASE = all_annos[index] _SCREAMING_SNAKE_CASE = cva.imread(UpperCAmelCase__ ) if i == 0: # top-left _SCREAMING_SNAKE_CASE = cva.resize(UpperCAmelCase__ ,(divid_point_x, divid_point_y) ) _SCREAMING_SNAKE_CASE = img for bbox in img_annos: _SCREAMING_SNAKE_CASE = bbox[1] * scale_x _SCREAMING_SNAKE_CASE = bbox[2] * scale_y _SCREAMING_SNAKE_CASE = bbox[3] * scale_x _SCREAMING_SNAKE_CASE = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _SCREAMING_SNAKE_CASE = cva.resize(UpperCAmelCase__ ,(output_size[1] - divid_point_x, divid_point_y) ) _SCREAMING_SNAKE_CASE = img for bbox in img_annos: _SCREAMING_SNAKE_CASE = scale_x + bbox[1] * (1 - scale_x) _SCREAMING_SNAKE_CASE = bbox[2] * scale_y _SCREAMING_SNAKE_CASE = scale_x + bbox[3] * (1 - scale_x) _SCREAMING_SNAKE_CASE = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _SCREAMING_SNAKE_CASE = cva.resize(UpperCAmelCase__ ,(divid_point_x, output_size[0] - divid_point_y) ) _SCREAMING_SNAKE_CASE = img for bbox in img_annos: _SCREAMING_SNAKE_CASE = bbox[1] * scale_x _SCREAMING_SNAKE_CASE = scale_y + bbox[2] * (1 - scale_y) _SCREAMING_SNAKE_CASE = bbox[3] * scale_x _SCREAMING_SNAKE_CASE = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _SCREAMING_SNAKE_CASE = cva.resize( UpperCAmelCase__ ,(output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _SCREAMING_SNAKE_CASE = img for bbox in img_annos: _SCREAMING_SNAKE_CASE = scale_x + bbox[1] * (1 - scale_x) _SCREAMING_SNAKE_CASE = scale_y + bbox[2] * (1 - scale_y) _SCREAMING_SNAKE_CASE = scale_x + bbox[3] * (1 - scale_x) _SCREAMING_SNAKE_CASE = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _SCREAMING_SNAKE_CASE = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _SCREAMING_SNAKE_CASE = ascii_lowercase + digits return "".join(random.choice(UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ ) ) if __name__ == "__main__": main() print('DONE ✅')
605
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : int = Dict[str, Any] _lowerCamelCase : int = List[Prediction] @add_end_docstrings(__snake_case ) class lowerCamelCase__ ( __snake_case ): def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: """simple docstring""" super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def _UpperCamelCase ( self , **lowerCAmelCase__ ) -> Tuple: """simple docstring""" _UpperCamelCase :Optional[int] ={} if "threshold" in kwargs: _UpperCamelCase :Optional[Any] =kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[Predictions, List[Prediction]]: """simple docstring""" return super().__call__(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self , lowerCAmelCase__ ) -> List[str]: """simple docstring""" _UpperCamelCase :List[Any] =load_image(lowerCAmelCase__ ) _UpperCamelCase :Any =torch.IntTensor([[image.height, image.width]] ) _UpperCamelCase :int =self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: _UpperCamelCase :Optional[Any] =self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) _UpperCamelCase :int =target_size return inputs def _UpperCamelCase ( self , lowerCAmelCase__ ) -> str: """simple docstring""" _UpperCamelCase :int =model_inputs.pop("""target_size""" ) _UpperCamelCase :Tuple =self.model(**lowerCAmelCase__ ) _UpperCamelCase :int =outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: _UpperCamelCase :List[str] =model_inputs["""bbox"""] return model_outputs def _UpperCamelCase ( self , lowerCAmelCase__ , lowerCAmelCase__=0.9 ) -> Any: """simple docstring""" _UpperCamelCase :Optional[int] =model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _UpperCamelCase , _UpperCamelCase :Optional[Any] =target_size[0].tolist() def unnormalize(lowerCAmelCase__ ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_000), (height * bbox[1] / 1_000), (width * bbox[2] / 1_000), (height * bbox[3] / 1_000), ] ) ) _UpperCamelCase , _UpperCamelCase :List[Any] =model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) _UpperCamelCase :Dict =[self.model.config.idalabel[prediction] for prediction in classes.tolist()] _UpperCamelCase :List[Any] =[unnormalize(lowerCAmelCase__ ) for bbox in model_outputs["""bbox"""].squeeze(0 )] _UpperCamelCase :List[Any] =["""score""", """label""", """box"""] _UpperCamelCase :str =[dict(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) for vals in zip(scores.tolist() , lowerCAmelCase__ , lowerCAmelCase__ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _UpperCamelCase :Optional[int] =self.image_processor.post_process_object_detection(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase :Tuple =raw_annotations[0] _UpperCamelCase :int =raw_annotation["""scores"""] _UpperCamelCase :Optional[Any] =raw_annotation["""labels"""] _UpperCamelCase :Any =raw_annotation["""boxes"""] _UpperCamelCase :Dict =scores.tolist() _UpperCamelCase :Tuple =[self.model.config.idalabel[label.item()] for label in labels] _UpperCamelCase :Tuple =[self._get_bounding_box(lowerCAmelCase__ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _UpperCamelCase :int =["""score""", """label""", """box"""] _UpperCamelCase :Any =[ dict(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def _UpperCamelCase ( self , lowerCAmelCase__ ) -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase :Optional[Any] =box.int().tolist() _UpperCamelCase :List[str] ={ """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
512
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=30 , lowerCAmelCase__=400 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=0.9 , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase :List[str] =size if size is not None else {"""shortest_edge""": 30} _UpperCamelCase :str =crop_size if crop_size is not None else {"""height""": 30, """width""": 30} _UpperCamelCase :Tuple =parent _UpperCamelCase :Optional[int] =batch_size _UpperCamelCase :Tuple =num_channels _UpperCamelCase :int =min_resolution _UpperCamelCase :Union[str, Any] =max_resolution _UpperCamelCase :Tuple =do_resize_and_center_crop _UpperCamelCase :Union[str, Any] =size _UpperCamelCase :Union[str, Any] =crop_pct _UpperCamelCase :Tuple =crop_size _UpperCamelCase :List[str] =do_normalize _UpperCamelCase :Any =image_mean _UpperCamelCase :Optional[Any] =image_std def _UpperCamelCase ( self ) -> Any: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( __snake_case , unittest.TestCase ): __UpperCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" _UpperCamelCase :Dict =PoolFormerImageProcessingTester(self ) @property def _UpperCamelCase ( self ) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase :Union[str, Any] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """crop_pct""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" _UpperCamelCase :Dict =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) _UpperCamelCase :Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" pass def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase :Any =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase :List[str] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCamelCase :int =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCamelCase :Optional[Any] =image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _UpperCamelCase ( self ) -> str: """simple docstring""" _UpperCamelCase :Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase :int =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input _UpperCamelCase :List[Any] =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCamelCase :Tuple =image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase :Union[str, Any] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase :Optional[int] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCamelCase :Dict =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCamelCase :Tuple =image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
512
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A_ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ = DiTPipeline lowerCAmelCase__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } lowerCAmelCase__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS lowerCAmelCase__ = False def _lowercase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : Any = TransformeraDModel( sample_size=16 ,num_layers=2 ,patch_size=4 ,attention_head_dim=8 ,num_attention_heads=2 ,in_channels=4 ,out_channels=8 ,attention_bias=__lowerCAmelCase ,activation_fn="gelu-approximate" ,num_embeds_ada_norm=1_000 ,norm_type="ada_norm_zero" ,norm_elementwise_affine=__lowerCAmelCase ,) _lowerCamelCase : List[str] = AutoencoderKL() _lowerCamelCase : Dict = DDIMScheduler() _lowerCamelCase : Optional[int] = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def _lowercase ( self: int ,__lowerCAmelCase: int ,__lowerCAmelCase: Any=0 ): '''simple docstring''' if str(__lowerCAmelCase ).startswith("mps" ): _lowerCamelCase : Optional[int] = torch.manual_seed(__lowerCAmelCase ) else: _lowerCamelCase : Union[str, Any] = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _lowerCamelCase : Tuple = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Tuple = '''cpu''' _lowerCamelCase : List[Any] = self.get_dummy_components() _lowerCamelCase : List[Any] = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Tuple = self.get_dummy_inputs(__lowerCAmelCase ) _lowerCamelCase : str = pipe(**__lowerCAmelCase ).images _lowerCamelCase : List[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 16, 16, 3) ) _lowerCamelCase : List[str] = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) _lowerCamelCase : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCAmelCase ,1e-3 ) def _lowercase ( self: Any ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=__lowerCAmelCase ,expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() ,reason="XFormers attention is only available with CUDA and `xformers` installed" ,) def _lowercase ( self: List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class A_ ( unittest.TestCase ): def _lowercase ( self: str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Optional[Any] = torch.manual_seed(0 ) _lowerCamelCase : List[Any] = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) _lowerCamelCase : str = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] _lowerCamelCase : Dict = pipe.get_label_ids(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = pipe(__lowerCAmelCase ,generator=__lowerCAmelCase ,num_inference_steps=40 ,output_type="np" ).images for word, image in zip(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Tuple = load_numpy( F"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) _lowerCamelCase : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) _lowerCamelCase : int = ['''vase''', '''umbrella'''] _lowerCamelCase : List[Any] = pipe.get_label_ids(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCamelCase : str = pipe(__lowerCAmelCase ,generator=__lowerCAmelCase ,num_inference_steps=25 ,output_type="np" ).images for word, image in zip(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
46
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) def _A ( snake_case__ : List[str] ): snake_case__ : str = DPTConfig() if "large" in checkpoint_url: snake_case__ : Any = 10_24 snake_case__ : Union[str, Any] = 40_96 snake_case__ : Optional[int] = 24 snake_case__ : int = 16 snake_case__ : Optional[int] = [5, 11, 17, 23] snake_case__ : Tuple = [2_56, 5_12, 10_24, 10_24] snake_case__ : List[Any] = (1, 3_84, 3_84) if "ade" in checkpoint_url: snake_case__ : Dict = True snake_case__ : Optional[int] = 1_50 snake_case__ : Dict = '''huggingface/label-files''' snake_case__ : Optional[Any] = '''ade20k-id2label.json''' snake_case__ : List[Any] = json.load(open(cached_download(hf_hub_url(snake_case__ , snake_case__ , repo_type='''dataset''' ) ) , '''r''' ) ) snake_case__ : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} snake_case__ : Optional[int] = idalabel snake_case__ : List[str] = {v: k for k, v in idalabel.items()} snake_case__ : List[str] = [1, 1_50, 4_80, 4_80] return config, expected_shape def _A ( snake_case__ : int ): snake_case__ : Optional[Any] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def _A ( snake_case__ : Union[str, Any] ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): snake_case__ : str = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: snake_case__ : List[Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: snake_case__ : Union[str, Any] = name.replace('''patch_embed''' , '''patch_embeddings''' ) if "pos_embed" in name: snake_case__ : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: snake_case__ : Dict = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: snake_case__ : Any = name.replace('''proj''' , '''projection''' ) if "blocks" in name: snake_case__ : int = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: snake_case__ : str = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: snake_case__ : int = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name: snake_case__ : Dict = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: snake_case__ : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: snake_case__ : List[str] = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: snake_case__ : Optional[Any] = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: snake_case__ : str = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: snake_case__ : Dict = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: snake_case__ : Optional[Any] = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: snake_case__ : Optional[int] = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: snake_case__ : Any = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 snake_case__ : List[Any] = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: snake_case__ : str = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: snake_case__ : str = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: snake_case__ : List[Any] = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: snake_case__ : Union[str, Any] = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: snake_case__ : Optional[int] = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: snake_case__ : Optional[int] = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: snake_case__ : Tuple = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: snake_case__ : List[str] = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: snake_case__ : Tuple = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: snake_case__ : str = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: snake_case__ : Tuple = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: snake_case__ : Union[str, Any] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: snake_case__ : Optional[Any] = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: snake_case__ : List[Any] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: snake_case__ : int = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: snake_case__ : Any = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: snake_case__ : List[Any] = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: snake_case__ : Union[str, Any] = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: snake_case__ : Optional[Any] = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: snake_case__ : int = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: snake_case__ : Any = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) return name def _A ( snake_case__ : Dict , snake_case__ : List[Any] ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Any = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) snake_case__ : Any = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Union[str, Any] = in_proj_weight[: config.hidden_size, :] snake_case__ : Dict = in_proj_bias[: config.hidden_size] snake_case__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : Tuple = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Optional[int] = in_proj_bias[-config.hidden_size :] def _A ( ): snake_case__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ : Dict = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def _A ( snake_case__ : Dict , snake_case__ : Any , snake_case__ : str , snake_case__ : Any ): snake_case__ ,snake_case__ : Optional[Any] = get_dpt_config(snake_case__ ) # load original state_dict from URL snake_case__ : Any = torch.hub.load_state_dict_from_url(snake_case__ , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(snake_case__ ) # rename keys for key in state_dict.copy().keys(): snake_case__ : Optional[Any] = state_dict.pop(snake_case__ ) snake_case__ : Union[str, Any] = val # read in qkv matrices read_in_q_k_v(snake_case__ , snake_case__ ) # load HuggingFace model snake_case__ : Tuple = DPTForSemanticSegmentation(snake_case__ ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # Check outputs on an image snake_case__ : List[Any] = 4_80 if '''ade''' in checkpoint_url else 3_84 snake_case__ : int = DPTImageProcessor(size=snake_case__ ) snake_case__ : List[Any] = prepare_img() snake_case__ : str = image_processor(snake_case__ , return_tensors='''pt''' ) # forward pass snake_case__ : Optional[int] = model(**snake_case__ ).logits if '''ade''' in checkpoint_url else model(**snake_case__ ).predicted_depth # Assert logits snake_case__ : Dict = torch.tensor([[6.31_99, 6.36_29, 6.41_48], [6.38_50, 6.36_15, 6.41_66], [6.35_19, 6.31_76, 6.35_75]] ) if "ade" in checkpoint_url: snake_case__ : List[Any] = torch.tensor([[4.04_80, 4.24_20, 4.43_60], [4.31_24, 4.56_93, 4.82_61], [4.57_68, 4.89_65, 5.21_63]] ) assert outputs.shape == torch.Size(snake_case__ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , snake_case__ , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , snake_case__ ) ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=snake_case__ , ) image_processor.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=snake_case__ , ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) _lowerCAmelCase : Tuple = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
261
0
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowercase ( unittest.TestCase , _UpperCAmelCase ): def _snake_case ( self ) -> List[str]: lowerCAmelCase = load_tool("""text-to-speech""" ) self.tool.setup() def _snake_case ( self ) -> str: # SpeechT5 isn't deterministic torch.manual_seed(0 ) lowerCAmelCase = self.tool("""hey""" ) lowerCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) ) def _snake_case ( self ) -> List[Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) lowerCAmelCase = self.tool("""hey""" ) lowerCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
393
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'ibert' def __init__( self , lowercase=30_522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3_072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1e-12 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase="absolute" , lowercase=False , lowercase="none" , **lowercase , ) -> str: super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = quant_mode lowerCAmelCase = force_dequant class lowercase ( _UpperCAmelCase ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
393
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[Any] = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __a : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
397
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __a : List[str] = random.Random() def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=1.0 ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=None ) -> Optional[int]: if rng is None: lowercase__ : Optional[Any] = global_rng lowercase__ : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class UpperCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=400 , lowerCamelCase=2000 , lowerCamelCase=1 , lowerCamelCase=0.0 , lowerCamelCase=16000 , lowerCamelCase=True , lowerCamelCase=80 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase="hann_window" , lowerCamelCase=80 , lowerCamelCase=7600 , lowerCamelCase=1E-10 , lowerCamelCase=True , ) -> int: """simple docstring""" lowercase__ : Optional[int] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Dict = min_seq_length lowercase__ : Optional[int] = max_seq_length lowercase__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase__ : List[Any] = feature_size lowercase__ : Union[str, Any] = padding_value lowercase__ : Dict = sampling_rate lowercase__ : int = do_normalize lowercase__ : Union[str, Any] = num_mel_bins lowercase__ : Optional[Any] = hop_length lowercase__ : Tuple = win_length lowercase__ : Any = win_function lowercase__ : Optional[Any] = fmin lowercase__ : str = fmax lowercase__ : Union[str, Any] = mel_floor lowercase__ : str = return_attention_mask def __a ( self ) -> Any: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __a ( self , lowerCamelCase=False , lowerCamelCase=False ) -> List[str]: """simple docstring""" def _flatten(lowerCamelCase ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: lowercase__ : Optional[int] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowercase__ : List[str] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase__ : Dict = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs def __a ( self , lowerCamelCase=False , lowerCamelCase=False ) -> Optional[int]: """simple docstring""" if equal_length: lowercase__ : Union[str, Any] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase__ : Tuple = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase__ : List[str] = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch class UpperCAmelCase( snake_case_ , unittest.TestCase ): """simple docstring""" a : List[Any] = SpeechTaFeatureExtractor def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Union[str, Any] = SpeechTaFeatureExtractionTester(self ) def __a ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" self.assertTrue(np.all(np.mean(lowerCamelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase , axis=0 ) - 1 ) < 1E-3 ) ) def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : str = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input lowercase__ : int = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values lowercase__ : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched lowercase__ : Optional[int] = feat_extract(lowerCamelCase , return_tensors="np" ).input_values lowercase__ : Union[str, Any] = feat_extract(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Any = ["longest", "max_length", "do_not_pad"] lowercase__ : List[Any] = [None, 1600, None] for max_length, padding in zip(lowerCamelCase , lowerCamelCase ): lowercase__ : Optional[int] = feat_extract(lowerCamelCase , padding=lowerCamelCase , max_length=lowerCamelCase , return_tensors="np" ) lowercase__ : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Dict = range(800 , 1400 , 200 ) lowercase__ : List[str] = [floats_list((1, x) )[0] for x in lengths] lowercase__ : Tuple = ["longest", "max_length", "do_not_pad"] lowercase__ : str = [None, 1600, None] for max_length, padding in zip(lowerCamelCase , lowerCamelCase ): lowercase__ : List[str] = feat_extract(lowerCamelCase , max_length=lowerCamelCase , padding=lowerCamelCase ) lowercase__ : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __a ( self ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Tuple = feat_extract( lowerCamelCase , truncation=lowerCamelCase , max_length=1000 , padding="max_length" , return_tensors="np" ) lowercase__ : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Tuple = feat_extract( lowerCamelCase , truncation=lowerCamelCase , max_length=1000 , padding="longest" , return_tensors="np" ) lowercase__ : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) lowercase__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Union[str, Any] = feat_extract( lowerCamelCase , truncation=lowerCamelCase , max_length=2000 , padding="longest" , return_tensors="np" ) lowercase__ : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Tuple = np.random.rand(100 ).astype(np.floataa ) lowercase__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase__ : Tuple = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowercase__ : Dict = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __a ( self ) -> str: """simple docstring""" lowercase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : List[str] = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test feature size lowercase__ : str = feature_extractor(audio_target=lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowercase__ : Union[str, Any] = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values lowercase__ : Optional[Any] = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched lowercase__ : Dict = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values lowercase__ : List[str] = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase__ : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase__ : Optional[Any] = np.asarray(lowerCamelCase ) lowercase__ : List[Any] = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values lowercase__ : List[str] = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def __a ( self ) -> str: """simple docstring""" lowercase__ : Dict = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Dict = feat_extract.model_input_names[0] lowercase__ : int = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCamelCase ) == len(lowerCamelCase ) for x, y in zip(lowerCamelCase , processed_features[input_name] ) ) ) lowercase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase ) lowercase__ : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) lowercase__ : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase__ : Tuple = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Dict = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase ) lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Optional[Any] = feat_extract.model_input_names[0] lowercase__ : Dict = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) lowercase__ : List[str] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase__ : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : Optional[Any] = feat_extract.model_input_names[0] lowercase__ : Optional[Any] = BatchFeature({input_name: speech_inputs} ) lowercase__ : Optional[int] = feat_extract.num_mel_bins # hack! lowercase__ : Optional[int] = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" )[input_name] lowercase__ : Optional[int] = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.feat_extract_dict lowercase__ : int = True lowercase__ : Optional[Any] = self.feature_extraction_class(**lowerCamelCase ) lowercase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : Union[str, Any] = [len(lowerCamelCase ) for x in speech_inputs] lowercase__ : Any = feat_extract.model_input_names[0] lowercase__ : Optional[int] = BatchFeature({input_name: speech_inputs} ) lowercase__ : int = feat_extract.num_mel_bins # hack! lowercase__ : int = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCamelCase ) def __a ( self ) -> Dict: """simple docstring""" lowercase__ : List[Any] = self.feat_extract_dict lowercase__ : Optional[int] = True lowercase__ : List[Any] = self.feature_extraction_class(**lowerCamelCase ) lowercase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : List[str] = [len(lowerCamelCase ) for x in speech_inputs] lowercase__ : Any = feat_extract.model_input_names[0] lowercase__ : Dict = BatchFeature({input_name: speech_inputs} ) lowercase__ : int = min(lowerCamelCase ) lowercase__ : List[str] = feat_extract.num_mel_bins # hack! lowercase__ : Dict = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , truncation=lowerCamelCase , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __a ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" from datasets import load_dataset lowercase__ : Any = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowercase__ : int = ds.sort("id" ).select(range(lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : List[str] = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on lowercase__ : List[Any] = self._load_datasamples(1 ) lowercase__ : int = SpeechTaFeatureExtractor() lowercase__ : Tuple = feature_extractor(lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] , lowerCamelCase , atol=1E-6 ) ) def __a ( self ) -> int: """simple docstring""" lowercase__ : Optional[int] = torch.tensor( [-2.68_70, -3.01_04, -3.13_56, -3.53_52, -3.00_44, -3.03_53, -3.47_19, -3.67_77, -3.15_20, -2.94_35, -2.65_53, -2.87_95, -2.99_44, -2.59_21, -3.02_79, -3.03_86, -3.08_64, -3.12_91, -3.23_53, -2.74_44, -2.68_31, -2.72_87, -3.17_61, -3.15_71, -3.27_26, -3.05_82, -3.10_07, -3.45_33, -3.46_95, -3.09_98] ) # fmt: on lowercase__ : Any = self._load_datasamples(1 ) lowercase__ : List[Any] = SpeechTaFeatureExtractor() lowercase__ : int = feature_extractor(audio_target=lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCamelCase , atol=1E-4 ) )
397
1
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def A ( _UpperCAmelCase : NDArray[floataa] ,_UpperCAmelCase : NDArray[floataa] ,_UpperCAmelCase : list[int] ,_UpperCAmelCase : int ,) -> Tuple: '''simple docstring''' __lowerCAmelCase : Any = coefficient_matrix.shape __lowerCAmelCase : Dict = constant_matrix.shape if rowsa != colsa: __lowerCAmelCase : List[str] = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(_UpperCAmelCase ) if colsa != 1: __lowerCAmelCase : Tuple = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(_UpperCAmelCase ) if rowsa != rowsa: __lowerCAmelCase : Any = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(_UpperCAmelCase ) if len(_UpperCAmelCase ) != rowsa: __lowerCAmelCase : Optional[Any] = ( '''Number of initial values must be equal to number of rows in coefficient ''' F"""matrix but received {len(_UpperCAmelCase )} and {rowsa}""" ) raise ValueError(_UpperCAmelCase ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) __lowerCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) ,axis=1 ) __lowerCAmelCase : Union[str, Any] = table.shape strictly_diagonally_dominant(_UpperCAmelCase ) # Iterates the whole matrix for given number of times for _ in range(_UpperCAmelCase ): __lowerCAmelCase : Union[str, Any] = [] for row in range(_UpperCAmelCase ): __lowerCAmelCase : Optional[int] = 0 for col in range(_UpperCAmelCase ): if col == row: __lowerCAmelCase : List[Any] = table[row][col] elif col == cols - 1: __lowerCAmelCase : List[Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __lowerCAmelCase : Optional[Any] = (temp + val) / denom new_val.append(_UpperCAmelCase ) __lowerCAmelCase : Dict = new_val return [float(_UpperCAmelCase ) for i in new_val] def A ( _UpperCAmelCase : NDArray[floataa] ) -> List[str]: '''simple docstring''' __lowerCAmelCase : Optional[int] = table.shape __lowerCAmelCase : Any = True for i in range(0 ,_UpperCAmelCase ): __lowerCAmelCase : Dict = 0 for j in range(0 ,cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' def A ( _UpperCAmelCase : int = 1_0 ,_UpperCAmelCase : int = 1_0_0_0 ,_UpperCAmelCase : bool = True ) -> int: '''simple docstring''' assert ( isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and isinstance(_UpperCAmelCase ,_UpperCAmelCase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' ) return min_val if option else max_val def A ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def A ( _UpperCAmelCase : int ,_UpperCAmelCase : int ,_UpperCAmelCase : int ) -> None: '''simple docstring''' assert ( isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and isinstance(_UpperCAmelCase ,_UpperCAmelCase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)' ) if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value' ) def answer(_UpperCAmelCase : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...' ) __lowerCAmelCase : Union[str, Any] = lower __lowerCAmelCase : List[Any] = higher __lowerCAmelCase : List[str] = [] while True: __lowerCAmelCase : Union[str, Any] = get_avg(_UpperCAmelCase ,_UpperCAmelCase ) last_numbers.append(_UpperCAmelCase ) if answer(_UpperCAmelCase ) == "low": __lowerCAmelCase : List[Any] = number elif answer(_UpperCAmelCase ) == "high": __lowerCAmelCase : Optional[Any] = number else: break print(F"""guess the number : {last_numbers[-1]}""" ) print(F"""details : {last_numbers!s}""" ) def A ( ) -> None: '''simple docstring''' __lowerCAmelCase : int = int(input('Enter lower value : ' ).strip() ) __lowerCAmelCase : Optional[Any] = int(input('Enter high value : ' ).strip() ) __lowerCAmelCase : int = int(input('Enter value to guess : ' ).strip() ) guess_the_number(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) if __name__ == "__main__": main()
123
0
def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> float: if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) __lowercase : str = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__lowerCAmelCase ) ) return round(__lowerCAmelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
509
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCAmelCase : Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __lowerCAmelCase : List[Any] = json.load(f) @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : List[str] , _snake_case : List[Any] ): return FSMTTokenizer.from_pretrained(_snake_case ) def snake_case_ ( self : Any , _snake_case : List[str] ): __lowercase : str = FSMTForConditionalGeneration.from_pretrained(_snake_case ).to(_snake_case ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 26.0], ['''ru-en''', 22.0], ['''en-de''', 22.0], ['''de-en''', 29.0], ] ) @slow def snake_case_ ( self : Tuple , _snake_case : int , _snake_case : Union[str, Any] ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality __lowercase : Tuple = F'facebook/wmt19-{pair}' __lowercase : Tuple = self.get_tokenizer(_snake_case ) __lowercase : Dict = self.get_model(_snake_case ) __lowercase : Dict = bleu_data[pair]['''src'''] __lowercase : Any = bleu_data[pair]['''tgt'''] __lowercase : Any = tokenizer(_snake_case , return_tensors='''pt''' , truncation=_snake_case , padding='''longest''' ).to(_snake_case ) __lowercase : Optional[int] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) __lowercase : Any = tokenizer.batch_decode( _snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) __lowercase : Tuple = calculate_bleu(_snake_case , _snake_case ) print(_snake_case ) self.assertGreaterEqual(scores['''bleu'''] , _snake_case )
509
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __snake_case : def __init__( self, A, A=13, A=7, A=True, A=True, A=True, A=True, A=99, A=32, A=2, A=4, A=37, A="gelu", A=0.1, A=0.1, A=512, A=16, A=2, A=0.02, A=3, A=4, A=None, A=0, ): """simple docstring""" lowerCamelCase : Optional[Any] = parent lowerCamelCase : Any = batch_size lowerCamelCase : Optional[Any] = seq_length lowerCamelCase : List[str] = is_training lowerCamelCase : Optional[int] = use_input_mask lowerCamelCase : int = use_token_type_ids lowerCamelCase : List[Any] = use_labels lowerCamelCase : List[str] = vocab_size lowerCamelCase : List[Any] = hidden_size lowerCamelCase : Dict = num_hidden_layers lowerCamelCase : List[str] = num_attention_heads lowerCamelCase : Union[str, Any] = intermediate_size lowerCamelCase : int = hidden_act lowerCamelCase : str = hidden_dropout_prob lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase : str = max_position_embeddings lowerCamelCase : int = type_vocab_size lowerCamelCase : List[Any] = type_sequence_label_size lowerCamelCase : int = initializer_range lowerCamelCase : Any = num_labels lowerCamelCase : Tuple = num_choices lowerCamelCase : Dict = scope lowerCamelCase : List[Any] = projection_dim def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase : Tuple = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCamelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase : Union[str, Any] = None if self.use_token_type_ids: lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase : Dict = None lowerCamelCase : Any = None lowerCamelCase : Optional[Any] = None if self.use_labels: lowerCamelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase : Dict = ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase : int = BertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=A, initializer_range=self.initializer_range, ) lowerCamelCase : Dict = DPRConfig(projection_dim=self.projection_dim, **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self, A, A, A, A, A, A, A ): """simple docstring""" lowerCamelCase : Dict = TFDPRContextEncoder(config=A ) lowerCamelCase : Optional[Any] = model(A, attention_mask=A, token_type_ids=A ) lowerCamelCase : int = model(A, token_type_ids=A ) lowerCamelCase : int = model(A ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCAmelCase_ ( self, A, A, A, A, A, A, A ): """simple docstring""" lowerCamelCase : Union[str, Any] = TFDPRQuestionEncoder(config=A ) lowerCamelCase : Optional[int] = model(A, attention_mask=A, token_type_ids=A ) lowerCamelCase : Union[str, Any] = model(A, token_type_ids=A ) lowerCamelCase : List[Any] = model(A ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCAmelCase_ ( self, A, A, A, A, A, A, A ): """simple docstring""" lowerCamelCase : Dict = TFDPRReader(config=A ) lowerCamelCase : Dict = model(A, attention_mask=A ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape, (self.batch_size,) ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : int = self.prepare_config_and_inputs() ( lowerCamelCase ) : Dict = config_and_inputs lowerCamelCase : Optional[int] = {'input_ids': input_ids} return config, inputs_dict @require_tf class __snake_case ( a__ , a__ , unittest.TestCase): _lowerCAmelCase = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _lowerCAmelCase = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {} _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Dict = TFDPRModelTester(self ) lowerCamelCase : Union[str, Any] = ConfigTester(self, config_class=A, hidden_size=37 ) def UpperCAmelCase_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*A ) @slow def UpperCAmelCase_ ( self ): """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Any = TFDPRContextEncoder.from_pretrained(A ) self.assertIsNotNone(A ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Union[str, Any] = TFDPRContextEncoder.from_pretrained(A ) self.assertIsNotNone(A ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : str = TFDPRQuestionEncoder.from_pretrained(A ) self.assertIsNotNone(A ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Union[str, Any] = TFDPRReader.from_pretrained(A ) self.assertIsNotNone(A ) @require_tf class __snake_case ( unittest.TestCase): @slow def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Tuple = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) lowerCamelCase : Optional[int] = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] lowerCamelCase : Optional[Any] = model(A )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCamelCase : List[Any] = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy(), expected_slice.numpy(), atol=1e-4 ) )
701
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case ( a__): _lowerCAmelCase = (DPMSolverSinglestepScheduler,) _lowerCAmelCase = (('''num_inference_steps''', 25),) def UpperCAmelCase_ ( self, **A ): """simple docstring""" lowerCamelCase : List[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**A ) return config def UpperCAmelCase_ ( self, A=0, **A ): """simple docstring""" lowerCamelCase : List[str] = dict(self.forward_default_kwargs ) lowerCamelCase : Optional[Any] = kwargs.pop('num_inference_steps', A ) lowerCamelCase : Union[str, Any] = self.dummy_sample lowerCamelCase : Dict = 0.1 * sample lowerCamelCase : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCamelCase : Optional[Any] = self.get_scheduler_config(**A ) lowerCamelCase : Dict = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals lowerCamelCase : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) lowerCamelCase : List[Any] = scheduler_class.from_pretrained(A ) new_scheduler.set_timesteps(A ) # copy over dummy past residuals lowerCamelCase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCamelCase , lowerCamelCase : Optional[int] = sample, sample for t in range(A, time_step + scheduler.config.solver_order + 1 ): lowerCamelCase : Dict = scheduler.step(A, A, A, **A ).prev_sample lowerCamelCase : Optional[int] = new_scheduler.step(A, A, A, **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self ): """simple docstring""" pass def UpperCAmelCase_ ( self, A=0, **A ): """simple docstring""" lowerCamelCase : List[str] = dict(self.forward_default_kwargs ) lowerCamelCase : str = kwargs.pop('num_inference_steps', A ) lowerCamelCase : Union[str, Any] = self.dummy_sample lowerCamelCase : List[str] = 0.1 * sample lowerCamelCase : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCamelCase : Tuple = self.get_scheduler_config() lowerCamelCase : Optional[Any] = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals (must be after setting timesteps) lowerCamelCase : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) lowerCamelCase : Tuple = scheduler_class.from_pretrained(A ) # copy over dummy past residuals new_scheduler.set_timesteps(A ) # copy over dummy past residual (must be after setting timesteps) lowerCamelCase : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCamelCase : int = scheduler.step(A, A, A, **A ).prev_sample lowerCamelCase : Dict = new_scheduler.step(A, A, A, **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self, A=None, **A ): """simple docstring""" if scheduler is None: lowerCamelCase : Any = self.scheduler_classes[0] lowerCamelCase : Optional[Any] = self.get_scheduler_config(**A ) lowerCamelCase : Optional[int] = scheduler_class(**A ) lowerCamelCase : List[Any] = self.scheduler_classes[0] lowerCamelCase : Optional[Any] = self.get_scheduler_config(**A ) lowerCamelCase : Optional[int] = scheduler_class(**A ) lowerCamelCase : Any = 10 lowerCamelCase : Dict = self.dummy_model() lowerCamelCase : Any = self.dummy_sample_deter scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase : Dict = model(A, A ) lowerCamelCase : List[str] = scheduler.step(A, A, A ).prev_sample return sample def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Dict = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowerCamelCase : Dict = 50 lowerCamelCase : Tuple = self.dummy_model() lowerCamelCase : Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(A ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): lowerCamelCase : Any = model(A, A ) lowerCamelCase : Optional[int] = scheduler.step(A, A, A ).prev_sample lowerCamelCase : Any = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2574 ) < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Dict = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowerCamelCase : str = self.full_loop(scheduler=A ) lowerCamelCase : Optional[int] = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 lowerCamelCase : Dict = DEISMultistepScheduler.from_config(scheduler.config ) lowerCamelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCamelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCamelCase : Optional[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCamelCase : str = self.full_loop(scheduler=A ) lowerCamelCase : Optional[int] = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" self.check_over_configs(thresholding=A ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=A, prediction_type=A, sample_max_value=A, algorithm_type='dpmsolver++', solver_order=A, solver_type=A, ) def UpperCAmelCase_ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def UpperCAmelCase_ ( self ): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=A, solver_type=A, prediction_type=A, algorithm_type=A, ) lowerCamelCase : Optional[Any] = self.full_loop( solver_order=A, solver_type=A, prediction_type=A, algorithm_type=A, ) assert not torch.isnan(A ).any(), "Samples have nan numbers" def UpperCAmelCase_ ( self ): """simple docstring""" self.check_over_configs(lower_order_final=A ) self.check_over_configs(lower_order_final=A ) def UpperCAmelCase_ ( self ): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase_ ( self ): """simple docstring""" self.check_over_configs(variance_type=A ) self.check_over_configs(variance_type='learned_range' ) def UpperCAmelCase_ ( self ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=A, time_step=0 ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.full_loop() lowerCamelCase : str = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.full_loop(use_karras_sigmas=A ) lowerCamelCase : Tuple = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2248 ) < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.full_loop(prediction_type='v_prediction' ) lowerCamelCase : Dict = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.1453 ) < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.full_loop(prediction_type='v_prediction', use_karras_sigmas=A ) lowerCamelCase : Optional[Any] = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.0649 ) < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = self.scheduler_classes[0] lowerCamelCase : Dict = self.get_scheduler_config(thresholding=A, dynamic_thresholding_ratio=0 ) lowerCamelCase : str = scheduler_class(**A ) lowerCamelCase : List[Any] = 10 lowerCamelCase : List[str] = self.dummy_model() lowerCamelCase : int = self.dummy_sample_deter.half() scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase : str = model(A, A ) lowerCamelCase : Tuple = scheduler.step(A, A, A ).prev_sample assert sample.dtype == torch.floataa
449
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __lowerCAmelCase ( _a ): lowerCamelCase_ : Dict = '''cvt''' def __init__(self , __magic_name__=3 , __magic_name__=[7, 3, 3] , __magic_name__=[4, 2, 2] , __magic_name__=[2, 1, 1] , __magic_name__=[64, 192, 384] , __magic_name__=[1, 3, 6] , __magic_name__=[1, 2, 10] , __magic_name__=[4.0, 4.0, 4.0] , __magic_name__=[0.0, 0.0, 0.0] , __magic_name__=[0.0, 0.0, 0.0] , __magic_name__=[0.0, 0.0, 0.1] , __magic_name__=[True, True, True] , __magic_name__=[False, False, True] , __magic_name__=["dw_bn", "dw_bn", "dw_bn"] , __magic_name__=[3, 3, 3] , __magic_name__=[1, 1, 1] , __magic_name__=[2, 2, 2] , __magic_name__=[1, 1, 1] , __magic_name__=[1, 1, 1] , __magic_name__=0.02 , __magic_name__=1e-12 , **__magic_name__ , ) -> List[str]: '''simple docstring''' super().__init__(**__magic_name__ ) snake_case_ : int = num_channels snake_case_ : str = patch_sizes snake_case_ : Dict = patch_stride snake_case_ : str = patch_padding snake_case_ : List[str] = embed_dim snake_case_ : int = num_heads snake_case_ : Union[str, Any] = depth snake_case_ : Union[str, Any] = mlp_ratio snake_case_ : List[str] = attention_drop_rate snake_case_ : Tuple = drop_rate snake_case_ : Any = drop_path_rate snake_case_ : Optional[int] = qkv_bias snake_case_ : Tuple = cls_token snake_case_ : Dict = qkv_projection_method snake_case_ : Dict = kernel_qkv snake_case_ : List[Any] = padding_kv snake_case_ : Dict = stride_kv snake_case_ : List[str] = padding_q snake_case_ : List[Any] = stride_q snake_case_ : Dict = initializer_range snake_case_ : Dict = layer_norm_eps
60
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class __lowerCAmelCase : lowerCamelCase_ : Any = None def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ : List[Any] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , __magic_name__ ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : Optional[int] = os.path.join(__magic_name__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(__magic_name__ ) snake_case_ : str = self.feature_extraction_class.from_json_file(__magic_name__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : str = feat_extract_first.save_pretrained(__magic_name__ )[0] check_json_file_has_correct_format(__magic_name__ ) snake_case_ : Dict = self.feature_extraction_class.from_pretrained(__magic_name__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.feature_extraction_class() self.assertIsNotNone(__magic_name__ )
60
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A =logging.get_logger(__name__) __A ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} __A ={ 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } __A ={ 'allenai/longformer-base-4096': 40_96, 'allenai/longformer-large-4096': 40_96, 'allenai/longformer-large-4096-finetuned-triviaqa': 40_96, 'allenai/longformer-base-4096-extra.pos.embd.only': 40_96, 'allenai/longformer-large-4096-extra.pos.embd.only': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ): UpperCAmelCase__ : Any = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCAmelCase__ : Optional[Any] = bs[:] UpperCAmelCase__ : int = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 UpperCAmelCase__ : List[Any] = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Optional[int] = set() UpperCAmelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : List[Any] = char return pairs class _snake_case ( a__ ): lowerCAmelCase :int = VOCAB_FILES_NAMES lowerCAmelCase :Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase :Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase :int = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , **_lowerCamelCase , ): UpperCAmelCase__ : Dict = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase) if isinstance(_lowerCamelCase , _lowerCamelCase) else bos_token UpperCAmelCase__ : int = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase) if isinstance(_lowerCamelCase , _lowerCamelCase) else eos_token UpperCAmelCase__ : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase) if isinstance(_lowerCamelCase , _lowerCamelCase) else sep_token UpperCAmelCase__ : Union[str, Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase) if isinstance(_lowerCamelCase , _lowerCamelCase) else cls_token UpperCAmelCase__ : Union[str, Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase) if isinstance(_lowerCamelCase , _lowerCamelCase) else unk_token UpperCAmelCase__ : Any = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase) if isinstance(_lowerCamelCase , _lowerCamelCase) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase) if isinstance(_lowerCamelCase , _lowerCamelCase) else mask_token super().__init__( errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding="""utf-8""") as vocab_handle: UpperCAmelCase__ : Optional[Any] = json.load(_lowerCamelCase) UpperCAmelCase__ : Any = {v: k for k, v in self.encoder.items()} UpperCAmelCase__ : List[str] = errors # how to handle errors in decoding UpperCAmelCase__ : Optional[Any] = bytes_to_unicode() UpperCAmelCase__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCamelCase , encoding="""utf-8""") as merges_handle: UpperCAmelCase__ : Optional[int] = merges_handle.read().split("""\n""")[1:-1] UpperCAmelCase__ : Union[str, Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCAmelCase__ : str = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase)))) UpperCAmelCase__ : Dict = {} UpperCAmelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase__ : Optional[int] = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") @property def snake_case__ ( self): return len(self.encoder) def snake_case__ ( self): return dict(self.encoder , **self.added_tokens_encoder) def snake_case__ ( self , _lowerCamelCase): if token in self.cache: return self.cache[token] UpperCAmelCase__ : List[Any] = tuple(_lowerCamelCase) UpperCAmelCase__ : str = get_pairs(_lowerCamelCase) if not pairs: return token while True: UpperCAmelCase__ : Dict = min(_lowerCamelCase , key=lambda _lowerCamelCase: self.bpe_ranks.get(_lowerCamelCase , float("""inf"""))) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram UpperCAmelCase__ : str = [] UpperCAmelCase__ : int = 0 while i < len(_lowerCamelCase): try: UpperCAmelCase__ : List[str] = word.index(_lowerCamelCase , _lowerCamelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCAmelCase__ : Any = j if word[i] == first and i < len(_lowerCamelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCAmelCase__ : List[Any] = tuple(_lowerCamelCase) UpperCAmelCase__ : Any = new_word if len(_lowerCamelCase) == 1: break else: UpperCAmelCase__ : str = get_pairs(_lowerCamelCase) UpperCAmelCase__ : Optional[int] = """ """.join(_lowerCamelCase) UpperCAmelCase__ : List[Any] = word return word def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : Dict = [] for token in re.findall(self.pat , _lowerCamelCase): UpperCAmelCase__ : Dict = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCamelCase).split(""" """)) return bpe_tokens def snake_case__ ( self , _lowerCamelCase): return self.encoder.get(_lowerCamelCase , self.encoder.get(self.unk_token)) def snake_case__ ( self , _lowerCamelCase): return self.decoder.get(_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : Tuple = """""".join(_lowerCamelCase) UpperCAmelCase__ : str = bytearray([self.byte_decoder[c] for c in text]).decode("""utf-8""" , errors=self.errors) return text def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None): if not os.path.isdir(_lowerCamelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return UpperCAmelCase__ : Dict = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) UpperCAmelCase__ : int = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""]) with open(_lowerCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase) + """\n""") UpperCAmelCase__ : Optional[Any] = 0 with open(_lowerCamelCase , """w""" , encoding="""utf-8""") as writer: writer.write("""#version: 0.2\n""") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCamelCase: kv[1]): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""") UpperCAmelCase__ : Tuple = token_index writer.write(""" """.join(_lowerCamelCase) + """\n""") index += 1 return vocab_file, merge_file def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : Optional[int] = [self.cls_token_id] UpperCAmelCase__ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase)) + [1] return [1] + ([0] * len(_lowerCamelCase)) + [1, 1] + ([0] * len(_lowerCamelCase)) + [1] def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None): UpperCAmelCase__ : Union[str, Any] = [self.sep_token_id] UpperCAmelCase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=False , **_lowerCamelCase): UpperCAmelCase__ : Optional[Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(_lowerCamelCase) > 0 and not text[0].isspace()): UpperCAmelCase__ : Tuple = """ """ + text return (text, kwargs)
113
'''simple docstring''' from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _snake_case ( a__ , a__ , unittest.TestCase ): lowerCAmelCase :Optional[int] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase :Union[str, Any] = ( { '''feature-extraction''': TFMobileBertModel, '''fill-mask''': TFMobileBertForMaskedLM, '''question-answering''': TFMobileBertForQuestionAnswering, '''text-classification''': TFMobileBertForSequenceClassification, '''token-classification''': TFMobileBertForTokenClassification, '''zero-shot''': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase :Optional[Any] = False lowerCAmelCase :Dict = False def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False): UpperCAmelCase__ : int = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase) if return_labels: if model_class in get_values(_lowerCamelCase): UpperCAmelCase__ : Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa) return inputs_dict class _snake_case ( a__ ): def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=32 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ): UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : Any = seq_length UpperCAmelCase__ : Dict = is_training UpperCAmelCase__ : str = use_input_mask UpperCAmelCase__ : int = use_token_type_ids UpperCAmelCase__ : Optional[Any] = use_labels UpperCAmelCase__ : Any = vocab_size UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : Optional[int] = num_hidden_layers UpperCAmelCase__ : List[Any] = num_attention_heads UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : int = hidden_dropout_prob UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase__ : Optional[int] = max_position_embeddings UpperCAmelCase__ : Union[str, Any] = type_vocab_size UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : Union[str, Any] = num_labels UpperCAmelCase__ : List[str] = num_choices UpperCAmelCase__ : str = scope UpperCAmelCase__ : Optional[int] = embedding_size def snake_case__ ( self): UpperCAmelCase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase__ : Optional[Any] = None if self.use_input_mask: UpperCAmelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase__ : Union[str, Any] = None if self.use_token_type_ids: UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCAmelCase__ : int = None UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices) UpperCAmelCase__ : str = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : str = TFMobileBertModel(config=_lowerCamelCase) UpperCAmelCase__ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : int = model(_lowerCamelCase) UpperCAmelCase__ : Dict = [input_ids, input_mask] UpperCAmelCase__ : List[Any] = model(_lowerCamelCase) UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : List[str] = TFMobileBertForMaskedLM(config=_lowerCamelCase) UpperCAmelCase__ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : Dict = model(_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = TFMobileBertForNextSentencePrediction(config=_lowerCamelCase) UpperCAmelCase__ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : List[str] = model(_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : List[str] = TFMobileBertForPreTraining(config=_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : Any = model(_lowerCamelCase) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Any = self.num_labels UpperCAmelCase__ : Optional[Any] = TFMobileBertForSequenceClassification(config=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : Tuple = model(_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Tuple = self.num_choices UpperCAmelCase__ : Dict = TFMobileBertForMultipleChoice(config=_lowerCamelCase) UpperCAmelCase__ : int = tf.tile(tf.expand_dims(_lowerCamelCase , 1) , (1, self.num_choices, 1)) UpperCAmelCase__ : str = tf.tile(tf.expand_dims(_lowerCamelCase , 1) , (1, self.num_choices, 1)) UpperCAmelCase__ : Optional[Any] = tf.tile(tf.expand_dims(_lowerCamelCase , 1) , (1, self.num_choices, 1)) UpperCAmelCase__ : Optional[int] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCAmelCase__ : List[str] = model(_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : List[Any] = self.num_labels UpperCAmelCase__ : Optional[Any] = TFMobileBertForTokenClassification(config=_lowerCamelCase) UpperCAmelCase__ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : List[Any] = model(_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Any = TFMobileBertForQuestionAnswering(config=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase__ : List[str] = model(_lowerCamelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def snake_case__ ( self): UpperCAmelCase__ : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Any = config_and_inputs UpperCAmelCase__ : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def snake_case__ ( self): UpperCAmelCase__ : str = TFMobileBertModelTest.TFMobileBertModelTester(self) UpperCAmelCase__ : List[Any] = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37) def snake_case__ ( self): self.config_tester.run_common_tests() def snake_case__ ( self): UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCamelCase) @slow def snake_case__ ( self): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: UpperCAmelCase__ : Optional[Any] = TFMobileBertModel.from_pretrained(_lowerCamelCase) self.assertIsNotNone(_lowerCamelCase) @require_tf class _snake_case ( unittest.TestCase ): @slow def snake_case__ ( self): UpperCAmelCase__ : Any = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""") UpperCAmelCase__ : str = tf.constant([[0, 1, 2, 3, 4, 5]]) UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase)[0] UpperCAmelCase__ : List[str] = [1, 6, 3_0522] self.assertEqual(output.shape , _lowerCamelCase) UpperCAmelCase__ : List[Any] = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _lowerCamelCase , atol=1e-4)
113
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( __snake_case , __snake_case , unittest.TestCase ): _lowerCAmelCase = CycleDiffusionPipeline _lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } _lowerCAmelCase = PipelineTesterMixin.required_optional_params - {"latents"} _lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) _lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS _lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase__(self ): '''simple docstring''' torch.manual_seed(0 ) __a : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __a : Any = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , num_train_timesteps=1000 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) __a : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __a : Tuple = CLIPTextModel(_lowercase ) __a : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __a : List[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase__(self , _lowercase , _lowercase=0 ): '''simple docstring''' __a : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) __a : List[str] = image / 2 + 0.5 if str(_lowercase ).startswith("""mps""" ): __a : str = torch.manual_seed(_lowercase ) else: __a : Optional[Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __a : Dict = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator __a : Tuple = self.get_dummy_components() __a : Optional[int] = CycleDiffusionPipeline(**_lowercase ) __a : Dict = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __a : Union[str, Any] = self.get_dummy_inputs(_lowercase ) __a : Optional[Any] = pipe(**_lowercase ) __a : Optional[Any] = output.images __a : Any = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __a : Dict = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Dict = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowercase , """half""" ): __a : Optional[int] = module.half() __a : List[Any] = CycleDiffusionPipeline(**_lowercase ) __a : Tuple = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __a : List[str] = self.get_dummy_inputs(_lowercase ) __a : Optional[Any] = pipe(**_lowercase ) __a : str = output.images __a : int = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __a : Tuple = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCAmelCase__(self ): '''simple docstring''' return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def lowerCAmelCase__(self ): '''simple docstring''' return super().test_inference_batch_single_identical() @skip_mps def lowerCAmelCase__(self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCAmelCase__(self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def lowerCAmelCase__(self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def lowerCAmelCase__(self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__(self ): '''simple docstring''' __a : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) __a : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) __a : str = init_image.resize((512, 512) ) __a : str = """CompVis/stable-diffusion-v1-4""" __a : Tuple = DDIMScheduler.from_pretrained(_lowercase , subfolder="""scheduler""" ) __a : str = CycleDiffusionPipeline.from_pretrained( _lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __a : List[str] = """A black colored car""" __a : List[str] = """A blue colored car""" __a : Tuple = torch.manual_seed(0 ) __a : Any = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type="""np""" , ) __a : Tuple = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) __a : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) __a : Optional[int] = init_image.resize((512, 512) ) __a : Union[str, Any] = """CompVis/stable-diffusion-v1-4""" __a : Optional[Any] = DDIMScheduler.from_pretrained(_lowercase , subfolder="""scheduler""" ) __a : Optional[Any] = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __a : Optional[Any] = """A black colored car""" __a : int = """A blue colored car""" __a : Union[str, Any] = torch.manual_seed(0 ) __a : Dict = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type="""np""" , ) __a : Any = output.images assert np.abs(image - expected_image ).max() < 2e-2
581
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowercase__ = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
581
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self : int ): '''simple docstring''' __a = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) __a = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house __a = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim __a = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __a = model(SCREAMING_SNAKE_CASE__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) ) @slow def __a ( self : int ): '''simple docstring''' __a = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) __a = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house __a = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim __a = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __a = model(SCREAMING_SNAKE_CASE__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) )
708
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=1_3 , SCREAMING_SNAKE_CASE__ : int=3_0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : str=3_2 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : Dict=3_7 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : str=0.0_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=2 , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = is_training __a = use_labels __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = type_sequence_label_size __a = initializer_range __a = scope __a = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __a = (image_size // patch_size) ** 2 __a = num_patches + 1 def __a ( self : Any ): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = self.get_config() return config, pixel_values, labels def __a ( self : Optional[int] ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __a ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' __a = ViTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a = ViTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __a = 1 __a = ViTForMaskedImageModeling(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __a ( self : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' __a = self.type_sequence_label_size __a = ViTForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __a = 1 __a = ViTForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : str ): '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" a_ :str =( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) a_ :Tuple =( {"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification} if is_torch_available() else {} ) a_ :List[str] =True a_ :str =False a_ :Optional[int] =False a_ :Tuple =False def __a ( self : str ): '''simple docstring''' __a = ViTModelTester(self ) __a = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=3_7 ) def __a ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def __a ( self : List[Any] ): '''simple docstring''' pass def __a ( self : int ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) ) def __a ( self : int ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(SCREAMING_SNAKE_CASE__ ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def __a ( self : List[str] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def __a ( self : Union[str, Any] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE__ ) def __a ( self : Optional[Any] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def __a ( self : List[str] ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = ViTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def __lowercase ( ) -> int: """simple docstring""" __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self : str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def __a ( self : Dict ): '''simple docstring''' __a = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(SCREAMING_SNAKE_CASE__ ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): __a = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits __a = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) __a = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @slow def __a ( self : int ): '''simple docstring''' __a = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(SCREAMING_SNAKE_CASE__ ) __a = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=4_8_0 ) __a = prepare_img() __a = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) __a = inputs.pixel_values.to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): __a = model(SCREAMING_SNAKE_CASE__ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE__ ) # verify the logits __a = torch.Size((1, 3_6_0_1, 3_8_4) ) self.assertEqual(outputs.last_hidden_state.shape , SCREAMING_SNAKE_CASE__ ) __a = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def __a ( self : Optional[Any] ): '''simple docstring''' __a = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) __a = inputs.pixel_values.to(SCREAMING_SNAKE_CASE__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __a = model(SCREAMING_SNAKE_CASE__ )
201
0
import torch from transformers import AutoModel class lowercase__ (torch.nn.Module ): """simple docstring""" def __init__( self : List[str] , __a : int="sayef/fsner-bert-base-uncased" ): super(__a , self ).__init__() snake_case__ : str = AutoModel.from_pretrained(__a , return_dict=__a ) snake_case__ : Dict = torch.nn.CosineSimilarity(3 , 1e-08 ) snake_case__ : Any = torch.nn.Softmax(dim=1 ) def lowercase ( self : str , **__a : Optional[int] ): return self.bert(**__a ).last_hidden_state def lowercase ( self : int , __a : Any ): return token_embeddings.sum(2 , keepdim=__a ) def lowercase ( self : Tuple , __a : Optional[Any] , __a : str , __a : int=1 ): return self.softmax(T * self.cos(__a , __a ) ) def lowercase ( self : List[str] , __a : List[str] , __a : List[str] ): snake_case__ : Union[str, Any] = W_supports["""sizes"""].tolist() snake_case__ : int = W_supports["""start_token_id"""].item() snake_case__ : Union[str, Any] = W_supports["""end_token_id"""].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] snake_case__ : Tuple = self.BERT(**__a ) snake_case__ : Tuple = self.BERT(**__a ) snake_case__ : List[str] = None snake_case__ : List[Any] = None snake_case__ : Tuple = W_supports["""input_ids"""] == start_token_id snake_case__ : Dict = W_supports["""input_ids"""] == end_token_id for i, size in enumerate(__a ): if i == 0: snake_case__ : Any = 0 else: snake_case__ : Tuple = support_sizes[i - 1] snake_case__ : Optional[Any] = S[s : s + size][start_token_masks[s : s + size]] snake_case__ : List[Any] = S[s : s + size][end_token_masks[s : s + size]] snake_case__ : str = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) snake_case__ : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: snake_case__ : Optional[int] = torch.vstack((p_starts, p_start) ) snake_case__ : List[str] = torch.vstack((p_ends, p_end) ) else: snake_case__ : Optional[int] = p_start snake_case__ : List[Any] = p_end return p_starts, p_ends
648
from __future__ import annotations from math import pi def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" if (inductance, frequency, reactance).count(0) != 1: raise ValueError("""One and only one argument must be 0""") if inductance < 0: raise ValueError("""Inductance cannot be negative""") if frequency < 0: raise ValueError("""Frequency cannot be negative""") if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""") if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""") if __name__ == "__main__": import doctest doctest.testmod()
648
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Any: __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __SCREAMING_SNAKE_CASE = { "do_resize": True, "size": {"height": 2_24, "width": 2_24}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.4814_5466, 0.457_8275, 0.4082_1073], "image_std": [0.2686_2954, 0.2613_0258, 0.2757_7711], "do_convert_rgb": True, } __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname, A_ ) with open(self.image_processor_file, "w", encoding="utf-8" ) as fp: json.dump(A_, A_ ) def __lowerCAmelCase ( self, **_a ) -> List[Any]: return BertTokenizer.from_pretrained(self.tmpdirname, **A_ ) def __lowerCAmelCase ( self, **_a ) -> List[Any]: return BertTokenizerFast.from_pretrained(self.tmpdirname, **A_ ) def __lowerCAmelCase ( self, **_a ) -> List[str]: return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname, **A_ ) def __lowerCAmelCase ( self ) -> str: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self ) -> int: __SCREAMING_SNAKE_CASE = [np.random.randint(2_55, size=(3, 30, 4_00), dtype=np.uinta )] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(A_, 0, -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self ) -> Optional[int]: __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=A_, image_processor=A_ ) processor_slow.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor.from_pretrained(self.tmpdirname, use_fast=A_ ) __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=A_, image_processor=A_ ) processor_fast.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, A_ ) self.assertIsInstance(processor_fast.tokenizer, A_ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, A_ ) self.assertIsInstance(processor_fast.image_processor, A_ ) def __lowerCAmelCase ( self ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.get_tokenizer(cls_token="(CLS)", sep_token="(SEP)" ) __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=A_ ) __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor.from_pretrained( self.tmpdirname, cls_token="(CLS)", sep_token="(SEP)", do_normalize=A_ ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, A_ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, A_ ) def __lowerCAmelCase ( self ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=A_, image_processor=A_ ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(A_, return_tensors="np" ) __SCREAMING_SNAKE_CASE = processor(images=A_, return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) def __lowerCAmelCase ( self ) -> List[str]: __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=A_, image_processor=A_ ) __SCREAMING_SNAKE_CASE = "Alexandra,T-shirt的价格是15便士。" __SCREAMING_SNAKE_CASE = processor(text=A_ ) __SCREAMING_SNAKE_CASE = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def __lowerCAmelCase ( self ) -> Dict: __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=A_, image_processor=A_ ) __SCREAMING_SNAKE_CASE = "Alexandra,T-shirt的价格是15便士。" __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=A_, images=A_ ) self.assertListEqual(list(inputs.keys() ), ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __lowerCAmelCase ( self ) -> Tuple: __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=A_, image_processor=A_ ) __SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE = processor.batch_decode(A_ ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(A_ ) self.assertListEqual(A_, A_ ) def __lowerCAmelCase ( self ) -> str: __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = ChineseCLIPProcessor(tokenizer=A_, image_processor=A_ ) __SCREAMING_SNAKE_CASE = "Alexandra,T-shirt的价格是15便士。" __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=A_, images=A_ ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
716
def _A ( __snake_case :list[int] ) -> float: """simple docstring""" if not nums: # Makes sure that the list is not empty raise ValueError("List is empty" ) __SCREAMING_SNAKE_CASE = sum(__snake_case ) / len(__snake_case ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
214
0
"""simple docstring""" import warnings from functools import wraps from typing import Callable def __UpperCamelCase ( snake_case__ ): @wraps(snake_case__ ) def _inner_fn(*snake_case__ , **snake_case__ ): warnings.warn( (F"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , snake_case__ , ) return fn(*snake_case__ , **snake_case__ ) return _inner_fn
180
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def __UpperCamelCase ( snake_case__ ): return 1.0 / (1.0 + np.exp(-_outputs )) def __UpperCamelCase ( snake_case__ ): A_ : Union[str, Any] = np.max(_outputs , axis=-1 , keepdims=snake_case__ ) A_ : str = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=snake_case__ ) class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _A : Any = """sigmoid""" _A : Any = """softmax""" _A : Union[str, Any] = """none""" @add_end_docstrings( _SCREAMING_SNAKE_CASE , R""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _A : Optional[int] = False _A : Dict = ClassificationFunction.NONE def __init__(self , **lowerCAmelCase_ ): super().__init__(**lowerCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def lowerCamelCase(self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_="" , **lowerCAmelCase_ ): # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" A_ : Union[str, Any] = tokenizer_kwargs A_ : List[str] = {} if hasattr(self.model.config , """return_all_scores""" ) and return_all_scores is None: A_ : Optional[int] = self.model.config.return_all_scores if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or top_k is None: A_ : Dict = top_k A_ : Any = False elif return_all_scores is not None: warnings.warn( """`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of""" """ `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.""" , lowerCAmelCase_ , ) if return_all_scores: A_ : List[Any] = None else: A_ : List[str] = 1 if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A_ : str = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: A_ : List[str] = function_to_apply return preprocess_params, {}, postprocess_params def __call__(self , *lowerCAmelCase_ , **lowerCAmelCase_ ): A_ : List[str] = super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. A_ : Union[str, Any] = """top_k""" not in kwargs if isinstance(args[0] , lowerCAmelCase_ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def lowerCamelCase(self , lowerCAmelCase_ , **lowerCAmelCase_ ): A_ : Union[str, Any] = self.framework if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return self.tokenizer(**lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) == 1 and isinstance(inputs[0] , lowerCAmelCase_ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( """The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a""" """ dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.""" ) return self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase(self , lowerCAmelCase_ ): return self.model(**lowerCAmelCase_ ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=1 , lowerCAmelCase_=True ): # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: A_ : Optional[Any] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: A_ : Tuple = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , """function_to_apply""" ) and function_to_apply is None: A_ : Any = self.model.config.function_to_apply else: A_ : Dict = ClassificationFunction.NONE A_ : Optional[Any] = model_outputs["""logits"""][0] A_ : Tuple = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: A_ : str = sigmoid(lowerCAmelCase_ ) elif function_to_apply == ClassificationFunction.SOFTMAX: A_ : Dict = softmax(lowerCAmelCase_ ) elif function_to_apply == ClassificationFunction.NONE: A_ : Optional[int] = outputs else: raise ValueError(f"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} A_ : Optional[Any] = [ {"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(lowerCAmelCase_ ) ] if not _legacy: dict_scores.sort(key=lambda lowerCAmelCase_ : x["score"] , reverse=lowerCAmelCase_ ) if top_k is not None: A_ : str = dict_scores[:top_k] return dict_scores
180
1
'''simple docstring''' def _lowerCamelCase ( lowercase : int , lowercase : float , lowercase : float ) -> float: '''simple docstring''' return round(float(moles / volume ) * nfactor ) def _lowerCamelCase ( lowercase : float , lowercase : float , lowercase : float ) -> float: '''simple docstring''' return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def _lowerCamelCase ( lowercase : float , lowercase : float , lowercase : float ) -> float: '''simple docstring''' return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def _lowerCamelCase ( lowercase : float , lowercase : float , lowercase : float ) -> float: '''simple docstring''' return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' def _lowerCamelCase ( lowercase : int , lowercase : int ) -> int: return 1 if input_a == input_a else 0 def _lowerCamelCase ( ) -> None: assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
521
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCamelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCamelCase : Optional[Any] = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def _lowerCAmelCase ( __magic_name__ :Tuple , __magic_name__ :Tuple , __magic_name__ :Union[str, Any]=8 ): UpperCAmelCase_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class snake_case__ ( __snake_case ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : DDPMScheduler , lowerCAmelCase_ : VQModel , ) -> Tuple: super().__init__() self.register_modules( unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , movq=lowerCAmelCase_ , ) UpperCAmelCase_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: if latents is None: UpperCAmelCase_ = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) UpperCAmelCase_ = latents.to(lowerCAmelCase_ ) UpperCAmelCase_ = latents * scheduler.init_noise_sigma return latents def UpperCamelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any]=0 ) -> List[str]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCAmelCase_ = torch.device(F'''cuda:{gpu_id}''' ) UpperCAmelCase_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCamelCase ( self : Tuple , lowerCAmelCase_ : Dict=0 ) -> int: if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) UpperCAmelCase_ = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowerCAmelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_, UpperCAmelCase_ = cpu_offload_with_hook(lowerCAmelCase_ , lowerCAmelCase_ , prev_module_hook=lowerCAmelCase_ ) # We'll offload the last model manually. UpperCAmelCase_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase ( self : List[Any] ) -> int: if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase_ ) def __call__( self : Tuple , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : int = 5_12 , lowerCAmelCase_ : int = 5_12 , lowerCAmelCase_ : int = 1_00 , lowerCAmelCase_ : float = 4.0 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : Optional[torch.FloatTensor] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ) -> Union[str, Any]: UpperCAmelCase_ = self._execution_device UpperCAmelCase_ = guidance_scale > 1.0 if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ = torch.cat(lowerCAmelCase_ , dim=0 ) UpperCAmelCase_ = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ = torch.cat(lowerCAmelCase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ = image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0 ) UpperCAmelCase_ = negative_image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0 ) UpperCAmelCase_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCAmelCase_ ) self.scheduler.set_timesteps(lowerCAmelCase_ , device=lowerCAmelCase_ ) UpperCAmelCase_ = self.scheduler.timesteps UpperCAmelCase_ = self.unet.config.in_channels UpperCAmelCase_, UpperCAmelCase_ = downscale_height_and_width(lowerCAmelCase_ , lowerCAmelCase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ = {'''image_embeds''': image_embeds} UpperCAmelCase_ = self.unet( sample=lowerCAmelCase_ , timestep=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , added_cond_kwargs=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_, UpperCAmelCase_ = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_, UpperCAmelCase_ = noise_pred.chunk(2 ) UpperCAmelCase_, UpperCAmelCase_ = variance_pred.chunk(2 ) UpperCAmelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_, UpperCAmelCase_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ = self.scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ , )[0] # post-processing UpperCAmelCase_ = self.movq.decode(lowerCAmelCase_ , force_not_quantize=lowerCAmelCase_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: UpperCAmelCase_ = image * 0.5 + 0.5 UpperCAmelCase_ = image.clamp(0 , 1 ) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
121
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _lowerCAmelCase ( __magic_name__ :Optional[Any] ): UpperCAmelCase_ = os.path.join(args.tf_model_dir , '''parameters.json''' ) UpperCAmelCase_ = json.loads(open(__magic_name__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('''.pt''' ): UpperCAmelCase_ = args.output + '''.pt''' UpperCAmelCase_ = OrderedDict() with tf.device('''/CPU:0''' ): UpperCAmelCase_ = tf.train.load_checkpoint(args.tf_model_dir ) UpperCAmelCase_ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): UpperCAmelCase_ = reader.get_tensor(__magic_name__ ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): UpperCAmelCase_ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): UpperCAmelCase_ = 8 UpperCAmelCase_ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = torch.tensor(__magic_name__ ) elif key_name.startswith('''model/moe''' ): UpperCAmelCase_ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): UpperCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = torch.tensor(__magic_name__ ) elif key_name.endswith('''/softmlp/kernel''' ): UpperCAmelCase_ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = torch.tensor(__magic_name__ ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): UpperCAmelCase_ = key_name[-9:-7] for i in range(1_6 ): UpperCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) UpperCAmelCase_ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided UpperCAmelCase_ = torch.tensor(__magic_name__ ) elif key_name.startswith('''model/mlp''' ): UpperCAmelCase_ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): UpperCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = torch.tensor(__magic_name__ ) elif key_name.endswith('''/p1/bias''' ): UpperCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player UpperCAmelCase_ = vnp.copy() # same because it is one dimensional UpperCAmelCase_ = torch.tensor(__magic_name__ ) elif key_name.endswith('''/p2/kernel''' ): UpperCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = torch.tensor(__magic_name__ ) elif key_name.endswith('''/p2/bias''' ): UpperCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player UpperCAmelCase_ = vnp.copy() # same because it is one dimensional UpperCAmelCase_ = torch.tensor(__magic_name__ ) elif key_name.startswith('''model/ln''' ): UpperCAmelCase_ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): UpperCAmelCase_ = '''model.blocks.%d.feed_forward.norm.bias''' % player UpperCAmelCase_ = vnp.copy() # same because it is one dimensional UpperCAmelCase_ = torch.tensor(__magic_name__ ) elif key_name.endswith('''/g''' ): UpperCAmelCase_ = '''model.blocks.%d.feed_forward.norm.weight''' % player UpperCAmelCase_ = vnp.copy() # same because it is one dimensional UpperCAmelCase_ = torch.tensor(__magic_name__ ) elif key_name.startswith('''model/att''' ): UpperCAmelCase_ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): UpperCAmelCase_ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum UpperCAmelCase_ = state[:, 0, :, :] UpperCAmelCase_ = state[:, 1, :, :] UpperCAmelCase_ = state[:, 2, :, :] UpperCAmelCase_ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player UpperCAmelCase_ = torch.tensor(__magic_name__ ) UpperCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player UpperCAmelCase_ = torch.tensor(__magic_name__ ) UpperCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player UpperCAmelCase_ = torch.tensor(__magic_name__ ) elif key_name.endswith('''/o/kernel''' ): UpperCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player UpperCAmelCase_ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = torch.tensor(__magic_name__ ) elif key_name.startswith('''model/an''' ): UpperCAmelCase_ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): UpperCAmelCase_ = '''model.blocks.%d.self_attn.norm.bias''' % player UpperCAmelCase_ = vnp.copy() # same because it is one dimensional UpperCAmelCase_ = torch.tensor(__magic_name__ ) elif key_name.endswith('''/g''' ): UpperCAmelCase_ = '''model.blocks.%d.self_attn.norm.weight''' % player UpperCAmelCase_ = vnp.copy() # same because it is one dimensional UpperCAmelCase_ = torch.tensor(__magic_name__ ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): UpperCAmelCase_ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] UpperCAmelCase_ = '''model.%s.weight''' % nlayer UpperCAmelCase_ = vnp.copy() # same in embedded UpperCAmelCase_ = torch.tensor(__magic_name__ ) if key_name.startswith('''model/wte''' ): UpperCAmelCase_ = '''lm_head.weight''' UpperCAmelCase_ = vnp.copy() # same in embedded UpperCAmelCase_ = torch.tensor(__magic_name__ ) elif key_name.startswith('''model/wob''' ): UpperCAmelCase_ = '''final_logits_bias''' UpperCAmelCase_ = vnp.copy() # same in embedded UpperCAmelCase_ = state.reshape((1, -1) ) UpperCAmelCase_ = torch.tensor(__magic_name__ ) elif key_name == "model/dense/kernel": UpperCAmelCase_ = '''model.last_project.weight''' UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = torch.tensor(__magic_name__ ) elif key_name == "model/dense_1/bias": UpperCAmelCase_ = '''model.last_project.bias''' UpperCAmelCase_ = vnp.copy() # same because it is one dimensional UpperCAmelCase_ = torch.tensor(__magic_name__ ) torch.save(__magic_name__ , args.output ) if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') _lowerCamelCase : Optional[Any] = parser.parse_args() convert_tf_gptsan_to_pt(args)
121
1
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__(self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ): '''simple docstring''' __a : Dict = parent __a : Optional[int] = batch_size __a : Any = seq_length __a : Union[str, Any] = is_training __a : Dict = use_attention_mask __a : Union[str, Any] = use_token_type_ids __a : str = use_labels __a : Tuple = vocab_size __a : Optional[Any] = hidden_size __a : int = num_hidden_layers __a : str = num_attention_heads __a : Optional[int] = intermediate_size __a : Optional[Any] = hidden_act __a : Optional[int] = hidden_dropout_prob __a : int = attention_probs_dropout_prob __a : str = max_position_embeddings __a : List[Any] = type_vocab_size __a : Optional[int] = type_sequence_label_size __a : Any = initializer_range __a : Optional[Any] = num_choices def lowerCAmelCase__(self ): '''simple docstring''' __a : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Optional[int] = None if self.use_attention_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[int] = None if self.use_token_type_ids: __a : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Tuple = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__(self ): '''simple docstring''' __a : Dict = self.prepare_config_and_inputs() __a , __a , __a , __a : List[Any] = config_and_inputs __a : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[Any] = self.prepare_config_and_inputs() __a , __a , __a , __a : Tuple = config_and_inputs __a : Any = True __a : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class SCREAMING_SNAKE_CASE__ ( __snake_case , unittest.TestCase ): _lowerCAmelCase = True _lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[int] = FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__(self ): '''simple docstring''' for model_class_name in self.all_model_classes: __a : Optional[int] = model_class_name.from_pretrained("""roberta-base""" , from_pt=_lowercase ) __a : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase )
63
"""simple docstring""" def __magic_name__ ( _lowerCamelCase : list[int] ): if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) __a : Any = sum(_lowerCamelCase ) / len(_lowerCamelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
63
1
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker A__ : List[str] = '''CompVis/stable-diffusion-v1-1''' A__ : Any = '''CompVis/stable-diffusion-v1-2''' A__ : Optional[int] = '''CompVis/stable-diffusion-v1-3''' A__ : Dict = '''CompVis/stable-diffusion-v1-4''' class snake_case__ ( _UpperCAmelCase ): def __init__( self : Tuple , __a : List[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[int] , __a : int , __a : Tuple , __a : Any , __a : Any = True , ) -> Optional[Any]: '''simple docstring''' super()._init_() __snake_case : Optional[Any] = StableDiffusionPipeline.from_pretrained(lowercase__ ) __snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained(lowercase__ ) __snake_case : Optional[Any] = StableDiffusionPipeline.from_pretrained(lowercase__ ) __snake_case : Dict = StableDiffusionPipeline( vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , unet=lowercase__ , scheduler=lowercase__ , safety_checker=lowercase__ , feature_extractor=lowercase__ , requires_safety_checker=lowercase__ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def A_ ( self : Dict ) -> Optional[int]: '''simple docstring''' return {k: getattr(self , lowercase__ ) for k in self.config.keys() if not k.startswith('_' )} def A_ ( self : Union[str, Any] , __a : Dict = "auto" ) -> str: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __snake_case : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase__ ) def A_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' self.enable_attention_slicing(lowercase__ ) @torch.no_grad() def A_ ( self : List[str] , __a : List[Any] , __a : Optional[Any] = 512 , __a : List[Any] = 512 , __a : List[str] = 50 , __a : int = 7.5 , __a : Dict = None , __a : List[str] = 1 , __a : List[Any] = 0.0 , __a : Optional[Any] = None , __a : Optional[int] = None , __a : int = "pil" , __a : Any = True , __a : List[str] = None , __a : Any = 1 , **__a : int , ) -> Tuple: '''simple docstring''' return self.pipea( prompt=lowercase__ , height=lowercase__ , width=lowercase__ , num_inference_steps=lowercase__ , guidance_scale=lowercase__ , negative_prompt=lowercase__ , num_images_per_prompt=lowercase__ , eta=lowercase__ , generator=lowercase__ , latents=lowercase__ , output_type=lowercase__ , return_dict=lowercase__ , callback=lowercase__ , callback_steps=lowercase__ , **lowercase__ , ) @torch.no_grad() def A_ ( self : Optional[Any] , __a : Dict , __a : int = 512 , __a : Optional[Any] = 512 , __a : List[str] = 50 , __a : Optional[Any] = 7.5 , __a : List[Any] = None , __a : Dict = 1 , __a : int = 0.0 , __a : Union[str, Any] = None , __a : Optional[int] = None , __a : Optional[int] = "pil" , __a : Dict = True , __a : int = None , __a : Union[str, Any] = 1 , **__a : List[Any] , ) -> Optional[int]: '''simple docstring''' return self.pipea( prompt=lowercase__ , height=lowercase__ , width=lowercase__ , num_inference_steps=lowercase__ , guidance_scale=lowercase__ , negative_prompt=lowercase__ , num_images_per_prompt=lowercase__ , eta=lowercase__ , generator=lowercase__ , latents=lowercase__ , output_type=lowercase__ , return_dict=lowercase__ , callback=lowercase__ , callback_steps=lowercase__ , **lowercase__ , ) @torch.no_grad() def A_ ( self : Optional[Any] , __a : Union[str, Any] , __a : str = 512 , __a : Dict = 512 , __a : Dict = 50 , __a : Union[str, Any] = 7.5 , __a : List[Any] = None , __a : List[str] = 1 , __a : Optional[Any] = 0.0 , __a : Any = None , __a : str = None , __a : Tuple = "pil" , __a : Optional[int] = True , __a : int = None , __a : Any = 1 , **__a : str , ) -> Dict: '''simple docstring''' return self.pipea( prompt=lowercase__ , height=lowercase__ , width=lowercase__ , num_inference_steps=lowercase__ , guidance_scale=lowercase__ , negative_prompt=lowercase__ , num_images_per_prompt=lowercase__ , eta=lowercase__ , generator=lowercase__ , latents=lowercase__ , output_type=lowercase__ , return_dict=lowercase__ , callback=lowercase__ , callback_steps=lowercase__ , **lowercase__ , ) @torch.no_grad() def A_ ( self : Any , __a : Any , __a : int = 512 , __a : Any = 512 , __a : Tuple = 50 , __a : Optional[Any] = 7.5 , __a : List[str] = None , __a : Optional[int] = 1 , __a : List[str] = 0.0 , __a : Optional[int] = None , __a : Tuple = None , __a : Optional[Any] = "pil" , __a : Union[str, Any] = True , __a : List[str] = None , __a : int = 1 , **__a : Union[str, Any] , ) -> str: '''simple docstring''' return self.pipea( prompt=lowercase__ , height=lowercase__ , width=lowercase__ , num_inference_steps=lowercase__ , guidance_scale=lowercase__ , negative_prompt=lowercase__ , num_images_per_prompt=lowercase__ , eta=lowercase__ , generator=lowercase__ , latents=lowercase__ , output_type=lowercase__ , return_dict=lowercase__ , callback=lowercase__ , callback_steps=lowercase__ , **lowercase__ , ) @torch.no_grad() def A_ ( self : int , __a : Union[str, Any] , __a : Any = 512 , __a : Any = 512 , __a : Optional[int] = 50 , __a : Dict = 7.5 , __a : Optional[int] = None , __a : str = 1 , __a : str = 0.0 , __a : Optional[Any] = None , __a : Optional[int] = None , __a : Optional[int] = "pil" , __a : Tuple = True , __a : Tuple = None , __a : List[Any] = 1 , **__a : str , ) -> Any: '''simple docstring''' __snake_case : Optional[int] = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(lowercase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 __snake_case : List[Any] = self.textaimg_sda_a( prompt=lowercase__ , height=lowercase__ , width=lowercase__ , num_inference_steps=lowercase__ , guidance_scale=lowercase__ , negative_prompt=lowercase__ , num_images_per_prompt=lowercase__ , eta=lowercase__ , generator=lowercase__ , latents=lowercase__ , output_type=lowercase__ , return_dict=lowercase__ , callback=lowercase__ , callback_steps=lowercase__ , **lowercase__ , ) # Get first result from Stable Diffusion Checkpoint v1.2 __snake_case : int = self.textaimg_sda_a( prompt=lowercase__ , height=lowercase__ , width=lowercase__ , num_inference_steps=lowercase__ , guidance_scale=lowercase__ , negative_prompt=lowercase__ , num_images_per_prompt=lowercase__ , eta=lowercase__ , generator=lowercase__ , latents=lowercase__ , output_type=lowercase__ , return_dict=lowercase__ , callback=lowercase__ , callback_steps=lowercase__ , **lowercase__ , ) # Get first result from Stable Diffusion Checkpoint v1.3 __snake_case : Any = self.textaimg_sda_a( prompt=lowercase__ , height=lowercase__ , width=lowercase__ , num_inference_steps=lowercase__ , guidance_scale=lowercase__ , negative_prompt=lowercase__ , num_images_per_prompt=lowercase__ , eta=lowercase__ , generator=lowercase__ , latents=lowercase__ , output_type=lowercase__ , return_dict=lowercase__ , callback=lowercase__ , callback_steps=lowercase__ , **lowercase__ , ) # Get first result from Stable Diffusion Checkpoint v1.4 __snake_case : Tuple = self.textaimg_sda_a( prompt=lowercase__ , height=lowercase__ , width=lowercase__ , num_inference_steps=lowercase__ , guidance_scale=lowercase__ , negative_prompt=lowercase__ , num_images_per_prompt=lowercase__ , eta=lowercase__ , generator=lowercase__ , latents=lowercase__ , output_type=lowercase__ , return_dict=lowercase__ , callback=lowercase__ , callback_steps=lowercase__ , **lowercase__ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
286
"""simple docstring""" from __future__ import annotations from dataclasses import dataclass @dataclass class __lowercase : """simple docstring""" _A : float _A : TreeNode | None = None _A : TreeNode | None = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TreeNode | None ): """simple docstring""" def is_valid_tree(SCREAMING_SNAKE_CASE__ : TreeNode | None ) -> bool: if node is None: return True if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(SCREAMING_SNAKE_CASE__ ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( SCREAMING_SNAKE_CASE__ : TreeNode | None , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , SCREAMING_SNAKE_CASE__ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , SCREAMING_SNAKE_CASE__ ) ) return is_binary_search_tree_recursive_check(SCREAMING_SNAKE_CASE__ , -float("""inf""" ) , float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
480
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def a(lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , ): '''simple docstring''' if attention_mask is None: snake_case_ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: snake_case_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: snake_case_ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=99 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=4 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=0.02 , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = eos_token_id snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = initializer_range def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) snake_case_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) snake_case_ = shift_tokens_right(_lowerCamelCase , 1 , 2 ) snake_case_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCamelCase , ) snake_case_ = prepare_blenderbot_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, inputs_dict def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.prepare_config_and_inputs() return config, inputs_dict def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = 20 snake_case_ = model_class_name(_lowerCamelCase ) snake_case_ = model.encode(inputs_dict['input_ids'] ) snake_case_ , snake_case_ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) snake_case_ = model.init_cache(decoder_input_ids.shape[0] , _lowerCamelCase , _lowerCamelCase ) snake_case_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) snake_case_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) snake_case_ = model.decode( decoder_input_ids[:, :-1] , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , decoder_position_ids=_lowerCamelCase , ) snake_case_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) snake_case_ = model.decode( decoder_input_ids[:, -1:] , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCamelCase , ) snake_case_ = model.decode(_lowerCamelCase , _lowerCamelCase ) snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = 20 snake_case_ = model_class_name(_lowerCamelCase ) snake_case_ = model.encode(inputs_dict['input_ids'] ) snake_case_ , snake_case_ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) snake_case_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) snake_case_ = model.init_cache(decoder_input_ids.shape[0] , _lowerCamelCase , _lowerCamelCase ) snake_case_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) snake_case_ = model.decode( decoder_input_ids[:, :-1] , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , decoder_position_ids=_lowerCamelCase , ) snake_case_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) snake_case_ = model.decode( decoder_input_ids[:, -1:] , _lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCamelCase , decoder_position_ids=_lowerCamelCase , ) snake_case_ = model.decode(_lowerCamelCase , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase ) snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" __A = 9_9 def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) snake_case_ = input_ids.shape[0] snake_case_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ , snake_case_ = self._get_config_and_data() snake_case_ = FlaxBlenderbotForConditionalGeneration(_lowerCamelCase ) snake_case_ = lm_model(input_ids=_lowerCamelCase ) snake_case_ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) snake_case_ = FlaxBlenderbotForConditionalGeneration(_lowerCamelCase ) snake_case_ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) snake_case_ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) snake_case_ = lm_model(input_ids=_lowerCamelCase , decoder_input_ids=_lowerCamelCase ) snake_case_ = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) snake_case_ = shift_tokens_right(_lowerCamelCase , 1 , 2 ) snake_case_ = np.equal(_lowerCamelCase , 1 ).astype(np.floataa ).sum() snake_case_ = np.equal(_lowerCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class SCREAMING_SNAKE_CASE ( __UpperCAmelCase , unittest.TestCase , __UpperCAmelCase ): """simple docstring""" __A = True __A = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __A = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = FlaxBlenderbotModelTester(self ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case_ = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) snake_case_ = model_class(_lowerCamelCase ) @jax.jit def encode_jitted(__UpperCamelCase , __UpperCamelCase=None , **__UpperCamelCase ): return model.encode(input_ids=_lowerCamelCase , attention_mask=_lowerCamelCase ) with self.subTest('JIT Enabled' ): snake_case_ = encode_jitted(**_lowerCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): snake_case_ = encode_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case_ = model_class(_lowerCamelCase ) snake_case_ = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) snake_case_ = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): return model.decode( decoder_input_ids=_lowerCamelCase , decoder_attention_mask=_lowerCamelCase , encoder_outputs=_lowerCamelCase , ) with self.subTest('JIT Enabled' ): snake_case_ = decode_jitted(**_lowerCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): snake_case_ = decode_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __lowerCAmelCase ( self ): """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids snake_case_ = np.ones((1, 1) ) * model.config.eos_token_id snake_case_ = model(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} snake_case_ = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} snake_case_ = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=_lowerCamelCase ) snake_case_ = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) snake_case_ = ['Sam'] snake_case_ = tokenizer(_lowerCamelCase , return_tensors='jax' ) snake_case_ = model.generate(**_lowerCamelCase , **_lowerCamelCase ) snake_case_ = 'Sam is a great name. It means "sun" in Gaelic.' snake_case_ = tokenizer.batch_decode(_lowerCamelCase , **_lowerCamelCase ) assert generated_txt[0].strip() == tgt_text
700
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file snake_case_ = TapasConfig.from_json_file(lowercase__ ) # set absolute/relative position embeddings parameter snake_case_ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": snake_case_ = TapasForQuestionAnswering(config=lowercase__ ) elif task == "WTQ": # run_task_main.py hparams snake_case_ = 4 snake_case_ = True # hparam_utils.py hparams snake_case_ = 0.66_4694 snake_case_ = 0.20_7951 snake_case_ = 0.12_1194 snake_case_ = True snake_case_ = True snake_case_ = False snake_case_ = 0.035_2513 snake_case_ = TapasForQuestionAnswering(config=lowercase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams snake_case_ = 4 snake_case_ = False # hparam_utils.py hparams snake_case_ = 36.4519 snake_case_ = 0.90_3421 snake_case_ = 222.088 snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = 0.76_3141 snake_case_ = TapasForQuestionAnswering(config=lowercase__ ) elif task == "TABFACT": snake_case_ = TapasForSequenceClassification(config=lowercase__ ) elif task == "MLM": snake_case_ = TapasForMaskedLM(config=lowercase__ ) elif task == "INTERMEDIATE_PRETRAINING": snake_case_ = TapasModel(config=lowercase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowercase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) snake_case_ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(lowercase__ ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
46
0
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : str=13 , __UpperCamelCase : Optional[int]=7 , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Any=True , __UpperCamelCase : List[Any]=True , __UpperCamelCase : List[str]=99 , __UpperCamelCase : Optional[int]=32 , __UpperCamelCase : List[Any]=5 , __UpperCamelCase : int=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : Optional[Any]=0.1 , __UpperCamelCase : int=512 , __UpperCamelCase : Union[str, Any]=16 , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : List[Any]=0.0_2 , __UpperCamelCase : int=4 , ) -> Union[str, Any]: A = parent A = batch_size A = seq_length A = is_training A = use_attention_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_choices def __UpperCamelCase ( self : List[str] ) -> Optional[int]: A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = None if self.use_attention_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: A = self.prepare_config_and_inputs() A , A , A , A = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def __UpperCamelCase ( self : Any ) -> Tuple: A = self.prepare_config_and_inputs() A , A , A , A = config_and_inputs A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): A_ : Tuple = True A_ : Union[str, Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCamelCase ( self : List[str] ) -> List[str]: A = FlaxRobertaPreLayerNormModelTester(self ) @slow def __UpperCamelCase ( self : Any ) -> Optional[Any]: for model_class_name in self.all_model_classes: A = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=__UpperCamelCase ) A = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCamelCase ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: A = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=__UpperCamelCase ) A = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) A = model(__UpperCamelCase )[0] A = [1, 11, 50_265] self.assertEqual(list(output.shape ) , __UpperCamelCase ) # compare the actual values for a slice. A = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 ) ) @slow def __UpperCamelCase ( self : Dict ) -> List[str]: A = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=__UpperCamelCase ) A = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) A = model(__UpperCamelCase )[0] # compare the actual values for a slice. A = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 ) )
106
import math import sys def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> str: '''simple docstring''' A = '' try: with open(lowerCAmelCase__ , 'rb' ) as binary_file: A = binary_file.read() for dat in data: A = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> str: '''simple docstring''' A = {'0': '0', '1': '1'} A , A = '', '' A = len(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue A = lexicon[curr_string] result += last_match_id A = last_match_id + '0' if math.loga(lowerCAmelCase__ ).is_integer(): A = {} for curr_key in list(lowerCAmelCase__ ): A = lexicon.pop(lowerCAmelCase__ ) A = new_lex A = last_match_id + '1' index += 1 A = '' return result def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> None: '''simple docstring''' A = 8 try: with open(lowerCAmelCase__ , 'wb' ) as opened_file: A = [ to_write[i : i + byte_length] for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(lowerCAmelCase__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> str: '''simple docstring''' A = 0 for letter in data_bits: if letter == "1": break counter += 1 A = data_bits[counter:] A = data_bits[counter + 1 :] return data_bits def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> None: '''simple docstring''' A = read_file_binary(lowerCAmelCase__ ) A = remove_prefix(lowerCAmelCase__ ) A = decompress_data(lowerCAmelCase__ ) write_file_binary(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
106
1
from __future__ import annotations def _lowerCamelCase ( a_ : list[int] , a_ : int): lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = len(a_) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowerCamelCase :Optional[Any] = i + 1 else: lowerCamelCase :Any = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 11, 15], 9) = }')
721
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : str , __snake_case : List[str]=50265 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Any=3072 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Dict=2 , __snake_case : int=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : Dict=0 , __snake_case : Optional[int]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :Tuple = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :str = attention_probs_dropout_prob lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Union[str, Any] = layer_norm_eps lowerCamelCase :Dict = position_embedding_type lowerCamelCase :List[Any] = use_cache lowerCamelCase :Optional[int] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
"""simple docstring""" # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
617
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase ={ "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase =[ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
617
1
import copy import re class __A : '''simple docstring''' lowerCAmelCase_ = """hp""" lowerCAmelCase_ = {} lowerCAmelCase_ = None @classmethod def __lowerCamelCase ( cls , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = prefix lowerCamelCase__ = defaults cls.build_naming_info() @staticmethod def __lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' if len(__lowerCAmelCase ) == 0: return "" lowerCamelCase__ = None if any(char.isdigit() for char in word ): raise Exception(F'Parameters should not contain numbers: \'{word}\' contains a number' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(__lowerCAmelCase ) + 1 ): lowerCamelCase__ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: lowerCamelCase__ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__lowerCAmelCase ): lowerCamelCase__ = '''''' while integer != 0: lowerCamelCase__ = chr(ord('''A''' ) + integer % 1_0 ) + s integer //= 1_0 return s lowerCamelCase__ = 0 while True: lowerCamelCase__ = word + '''#''' + int_to_alphabetic(__lowerCAmelCase ) if sword in info["reverse_short_word"]: continue else: lowerCamelCase__ = sword break lowerCamelCase__ = short_word lowerCamelCase__ = word return short_word @staticmethod def __lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = param_name.split('''_''' ) lowerCamelCase__ = [TrialShortNamer.shortname_for_word(__lowerCAmelCase , __lowerCAmelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name lowerCamelCase__ = ['''''', '''_'''] for separator in separators: lowerCamelCase__ = separator.join(__lowerCAmelCase ) if shortname not in info["reverse_short_param"]: lowerCamelCase__ = shortname lowerCamelCase__ = param_name return shortname return param_name @staticmethod def __lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = TrialShortNamer.shortname_for_key(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = short_name lowerCamelCase__ = param_name @classmethod def __lowerCamelCase ( cls ): '''simple docstring''' if cls.NAMING_INFO is not None: return lowerCamelCase__ = { '''short_word''': {}, '''reverse_short_word''': {}, '''short_param''': {}, '''reverse_short_param''': {}, } lowerCamelCase__ = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = info @classmethod def __lowerCamelCase ( cls , __lowerCAmelCase ): '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None lowerCamelCase__ = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F'You should provide a default value for the param name {k} with value {v}' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue lowerCamelCase__ = cls.NAMING_INFO['''short_param'''][k] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = 1 if v else 0 lowerCamelCase__ = '''''' if isinstance(__lowerCAmelCase , (int, float) ) else '''-''' lowerCamelCase__ = F'{key}{sep}{v}' name.append(__lowerCAmelCase ) return "_".join(__lowerCAmelCase ) @classmethod def __lowerCamelCase ( cls , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = repr[len(cls.PREFIX ) + 1 :] if repr == "": lowerCamelCase__ = [] else: lowerCamelCase__ = repr.split('''_''' ) lowerCamelCase__ = {} for value in values: if "-" in value: lowerCamelCase__ , lowerCamelCase__ = value.split('''-''' ) else: lowerCamelCase__ = re.sub('''[0-9.]''' , '''''' , __lowerCAmelCase ) lowerCamelCase__ = float(re.sub('''[^0-9.]''' , '''''' , __lowerCAmelCase ) ) lowerCamelCase__ = cls.NAMING_INFO['''reverse_short_param'''][p_k] lowerCamelCase__ = p_v for k in cls.DEFAULTS: if k not in parameters: lowerCamelCase__ = cls.DEFAULTS[k] return parameters
29
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """ClapFeatureExtractor""" lowerCAmelCase_ = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' super().__init__(__lowerCAmelCase , __lowerCAmelCase ) def __call__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = kwargs.pop('''sampling_rate''' , __lowerCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: lowerCamelCase__ = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if audios is not None: lowerCamelCase__ = self.feature_extractor( __lowerCAmelCase , sampling_rate=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None and audios is not None: lowerCamelCase__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.tokenizer.model_input_names lowerCamelCase__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
29
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __a ( A__ : List[str] , A__ : str=0.9_9_9 , A__ : Tuple="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(A__ : Optional[int] ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A__ : Tuple ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) SCREAMING_SNAKE_CASE = [] for i in range(A__ ): SCREAMING_SNAKE_CASE = i / num_diffusion_timesteps SCREAMING_SNAKE_CASE = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A__ ) / alpha_bar_fn(A__ ) , A__ ) ) return torch.tensor(A__ , dtype=torch.floataa ) class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = [e.name for e in KarrasDiffusionSchedulers] lowerCamelCase__ = 2 @register_to_config def __init__( self : Tuple , __lowerCamelCase : int = 1000 , __lowerCamelCase : float = 0.00_085 , __lowerCamelCase : float = 0.012 , __lowerCamelCase : str = "linear" , __lowerCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __lowerCamelCase : str = "epsilon" , __lowerCamelCase : str = "linspace" , __lowerCamelCase : int = 0 , ): if trained_betas is not None: SCREAMING_SNAKE_CASE = torch.tensor(__lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": SCREAMING_SNAKE_CASE = torch.linspace(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. SCREAMING_SNAKE_CASE = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __lowerCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule SCREAMING_SNAKE_CASE = betas_for_alpha_bar(__lowerCamelCase ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) SCREAMING_SNAKE_CASE = 1.0 - self.betas SCREAMING_SNAKE_CASE = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : str , __lowerCamelCase : List[str]=None ): if schedule_timesteps is None: SCREAMING_SNAKE_CASE = self.timesteps SCREAMING_SNAKE_CASE = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: SCREAMING_SNAKE_CASE = 1 if len(__lowerCamelCase ) > 1 else 0 else: SCREAMING_SNAKE_CASE = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep SCREAMING_SNAKE_CASE = self._index_counter[timestep_int] return indices[pos].item() @property def _snake_case ( self : str ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _snake_case ( self : List[Any] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : Union[float, torch.FloatTensor] , ): SCREAMING_SNAKE_CASE = self.index_for_timestep(__lowerCamelCase ) if self.state_in_first_order: SCREAMING_SNAKE_CASE = self.sigmas[step_index] else: SCREAMING_SNAKE_CASE = self.sigmas_interpol[step_index] SCREAMING_SNAKE_CASE = sample / ((sigma**2 + 1) ** 0.5) return sample def _snake_case ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : Union[str, torch.device] = None , __lowerCamelCase : Optional[int] = None , ): SCREAMING_SNAKE_CASE = num_inference_steps SCREAMING_SNAKE_CASE = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": SCREAMING_SNAKE_CASE = np.linspace(0 , num_train_timesteps - 1 , __lowerCamelCase , dtype=__lowerCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": SCREAMING_SNAKE_CASE = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE = (np.arange(0 , __lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(__lowerCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": SCREAMING_SNAKE_CASE = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE = (np.arange(__lowerCamelCase , 0 , -step_ratio )).round().copy().astype(__lowerCamelCase ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) SCREAMING_SNAKE_CASE = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) SCREAMING_SNAKE_CASE = torch.from_numpy(np.log(__lowerCamelCase ) ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = np.interp(__lowerCamelCase , np.arange(0 , len(__lowerCamelCase ) ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) SCREAMING_SNAKE_CASE = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase ) # interpolate sigmas SCREAMING_SNAKE_CASE = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() SCREAMING_SNAKE_CASE = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) SCREAMING_SNAKE_CASE = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__lowerCamelCase ).startswith("mps" ): # mps does not support float64 SCREAMING_SNAKE_CASE = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase , dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase ) # interpolate timesteps SCREAMING_SNAKE_CASE = self.sigma_to_t(__lowerCamelCase ).to(__lowerCamelCase , dtype=timesteps.dtype ) SCREAMING_SNAKE_CASE = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() SCREAMING_SNAKE_CASE = torch.cat([timesteps[:1], interleaved_timesteps] ) SCREAMING_SNAKE_CASE = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter SCREAMING_SNAKE_CASE = defaultdict(__lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : List[str] ): # get log sigma SCREAMING_SNAKE_CASE = sigma.log() # get distribution SCREAMING_SNAKE_CASE = log_sigma - self.log_sigmas[:, None] # get sigmas range SCREAMING_SNAKE_CASE = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) SCREAMING_SNAKE_CASE = low_idx + 1 SCREAMING_SNAKE_CASE = self.log_sigmas[low_idx] SCREAMING_SNAKE_CASE = self.log_sigmas[high_idx] # interpolate sigmas SCREAMING_SNAKE_CASE = (low - log_sigma) / (low - high) SCREAMING_SNAKE_CASE = w.clamp(0 , 1 ) # transform interpolation to time range SCREAMING_SNAKE_CASE = (1 - w) * low_idx + w * high_idx SCREAMING_SNAKE_CASE = t.view(sigma.shape ) return t @property def _snake_case ( self : str ): return self.sample is None def _snake_case ( self : str , __lowerCamelCase : Union[torch.FloatTensor, np.ndarray] , __lowerCamelCase : Union[float, torch.FloatTensor] , __lowerCamelCase : Union[torch.FloatTensor, np.ndarray] , __lowerCamelCase : bool = True , ): SCREAMING_SNAKE_CASE = self.index_for_timestep(__lowerCamelCase ) # advance index counter by 1 SCREAMING_SNAKE_CASE = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: SCREAMING_SNAKE_CASE = self.sigmas[step_index] SCREAMING_SNAKE_CASE = self.sigmas_interpol[step_index + 1] SCREAMING_SNAKE_CASE = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method SCREAMING_SNAKE_CASE = self.sigmas[step_index - 1] SCREAMING_SNAKE_CASE = self.sigmas_interpol[step_index] SCREAMING_SNAKE_CASE = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE = sigma_hat if self.state_in_first_order else sigma_interpol SCREAMING_SNAKE_CASE = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE = sigma_hat if self.state_in_first_order else sigma_interpol SCREAMING_SNAKE_CASE = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order SCREAMING_SNAKE_CASE = (sample - pred_original_sample) / sigma_hat # 3. delta timestep SCREAMING_SNAKE_CASE = sigma_interpol - sigma_hat # store for 2nd order step SCREAMING_SNAKE_CASE = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order SCREAMING_SNAKE_CASE = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep SCREAMING_SNAKE_CASE = sigma_next - sigma_hat SCREAMING_SNAKE_CASE = self.sample SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCamelCase ) def _snake_case ( self : List[str] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples SCREAMING_SNAKE_CASE = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__lowerCamelCase ): # mps does not support float64 SCREAMING_SNAKE_CASE = self.timesteps.to(original_samples.device , dtype=torch.floataa ) SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device , dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE = self.timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE = [self.index_for_timestep(__lowerCamelCase , __lowerCamelCase ) for t in timesteps] SCREAMING_SNAKE_CASE = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): SCREAMING_SNAKE_CASE = sigma.unsqueeze(-1 ) SCREAMING_SNAKE_CASE = original_samples + noise * sigma return noisy_samples def __len__( self : Optional[Any] ): return self.config.num_train_timesteps
16
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def UpperCamelCase ( __lowercase : int ,__lowercase : List[str] ,__lowercase : str ,__lowercase : Optional[Any] ,__lowercase : Any ): '''simple docstring''' for attribute in key.split('.' ): A_ : Dict = getattr(__lowercase ,__lowercase ) if weight_type is not None: A_ : Any = getattr(__lowercase ,__lowercase ).shape else: A_ : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A_ : int = value elif weight_type == "weight_g": A_ : Tuple = value elif weight_type == "weight_v": A_ : Union[str, Any] = value elif weight_type == "bias": A_ : Any = value else: A_ : str = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def UpperCamelCase ( __lowercase : str ,__lowercase : Dict ,__lowercase : Tuple ): '''simple docstring''' A_ : Optional[Any] = [] A_ : Tuple = fairseq_model.state_dict() A_ : Any = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): A_ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __lowercase ,__lowercase ,__lowercase ,__lowercase ,hf_model.config.feat_extract_norm == 'group' ,) A_ : List[str] = True else: for key, mapped_key in MAPPING.items(): A_ : str = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: A_ : int = True if "*" in mapped_key: A_ : str = name.split(__lowercase )[0].split('.' )[-2] A_ : Optional[Any] = mapped_key.replace('*' ,__lowercase ) if "weight_g" in name: A_ : Dict = 'weight_g' elif "weight_v" in name: A_ : Tuple = 'weight_v' elif "weight" in name: A_ : Union[str, Any] = 'weight' elif "bias" in name: A_ : Optional[Any] = 'bias' else: A_ : Union[str, Any] = None set_recursively(__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Union[str, Any] ,__lowercase : Any ,__lowercase : List[Any] ,__lowercase : Union[str, Any] ): '''simple docstring''' A_ : Optional[int] = full_name.split('conv_layers.' )[-1] A_ : Any = name.split('.' ) A_ : Dict = int(items[0] ) A_ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A_ : Optional[int] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A_ : Union[str, Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) A_ : Any = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A_ : Tuple = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowercase ) def UpperCamelCase ( __lowercase : List[str] ,__lowercase : str ): '''simple docstring''' A_ : Union[str, Any] = SEWConfig() if is_finetuned: A_ : Any = model.wav_encoder.wav_model.cfg else: A_ : int = model.cfg A_ : Any = fs_config.conv_bias A_ : Dict = eval(fs_config.conv_feature_layers ) A_ : List[Any] = [x[0] for x in conv_layers] A_ : Optional[Any] = [x[1] for x in conv_layers] A_ : List[Any] = [x[2] for x in conv_layers] A_ : Optional[int] = 'gelu' A_ : Union[str, Any] = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' A_ : Tuple = 0.0 A_ : Dict = fs_config.activation_fn.name A_ : List[Any] = fs_config.encoder_embed_dim A_ : int = 0.02 A_ : List[str] = fs_config.encoder_ffn_embed_dim A_ : Any = 1e-5 A_ : Optional[Any] = fs_config.encoder_layerdrop A_ : Optional[int] = fs_config.encoder_attention_heads A_ : Any = fs_config.conv_pos_groups A_ : int = fs_config.conv_pos A_ : Tuple = len(__lowercase ) A_ : List[Any] = fs_config.encoder_layers A_ : Any = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: A_ : Union[str, Any] = model.cfg A_ : str = fs_config.final_dropout A_ : Any = fs_config.layerdrop A_ : str = fs_config.activation_dropout A_ : Any = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 A_ : str = fs_config.attention_dropout A_ : Any = fs_config.dropout_input A_ : Dict = fs_config.dropout A_ : Optional[Any] = fs_config.mask_channel_length A_ : List[str] = fs_config.mask_channel_prob A_ : Tuple = fs_config.mask_length A_ : Dict = fs_config.mask_prob A_ : Any = 'Wav2Vec2FeatureExtractor' A_ : Union[str, Any] = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def UpperCamelCase ( __lowercase : List[Any] ,__lowercase : int ,__lowercase : Optional[int]=None ,__lowercase : Optional[Any]=None ,__lowercase : str=True ): '''simple docstring''' if is_finetuned: A_ , A_ , A_ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: A_ , A_ , A_ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: A_ : Union[str, Any] = SEWConfig.from_pretrained(__lowercase ) else: A_ : Dict = convert_config(model[0] ,__lowercase ) A_ : Union[str, Any] = model[0].eval() A_ : Optional[int] = True if config.feat_extract_norm == 'layer' else False A_ : List[Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=1_60_00 ,padding_value=0 ,do_normalize=__lowercase ,return_attention_mask=__lowercase ,) if is_finetuned: if dict_path: A_ : Optional[int] = Dictionary.load(__lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A_ : int = target_dict.pad_index A_ : List[Any] = target_dict.bos_index A_ : Optional[Any] = target_dict.pad_index A_ : str = target_dict.bos_index A_ : str = target_dict.eos_index A_ : str = len(target_dict.symbols ) A_ : Union[str, Any] = os.path.join(__lowercase ,'vocab.json' ) if not os.path.isdir(__lowercase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__lowercase ) ) return os.makedirs(__lowercase ,exist_ok=__lowercase ) with open(__lowercase ,'w' ,encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices ,__lowercase ) A_ : Any = WavaVecaCTCTokenizer( __lowercase ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='|' ,do_lower_case=__lowercase ,) A_ : Tuple = WavaVecaProcessor(feature_extractor=__lowercase ,tokenizer=__lowercase ) processor.save_pretrained(__lowercase ) A_ : Dict = SEWForCTC(__lowercase ) else: A_ : Tuple = SEWModel(__lowercase ) feature_extractor.save_pretrained(__lowercase ) recursively_load_weights(__lowercase ,__lowercase ,__lowercase ) hf_model.save_pretrained(__lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _UpperCAmelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
558
0
def A_ ( snake_case : int = 100 ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"{solution() = }")
718
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): lowercase__ : int = True from torch.cuda.amp import autocast lowercase__ : Dict = logging.getLogger(__name__) def A_ ( snake_case : List[str]=None , snake_case : int=None ) -> List[str]: '''simple docstring''' return field(default_factory=lambda: default , metadata=snake_case ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" _snake_case = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) _snake_case = field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) _snake_case = field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) _snake_case = field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) _snake_case = field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) _snake_case = field( default=0.05 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) _snake_case = field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _snake_case = field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) _snake_case = list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" _snake_case = 42 _snake_case = True _snake_case = None _snake_case = None _snake_case = None _snake_case = None def __call__( self , SCREAMING_SNAKE_CASE_ )-> Dict[str, torch.Tensor]: '''simple docstring''' __UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] __UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] __UpperCamelCase = self.processor.pad( SCREAMING_SNAKE_CASE_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) __UpperCamelCase = self.processor.pad( labels=SCREAMING_SNAKE_CASE_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly __UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) __UpperCamelCase = labels return batch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> torch.Tensor: '''simple docstring''' model.train() __UpperCamelCase = self._prepare_inputs(SCREAMING_SNAKE_CASE_ ) if self.use_amp: with autocast(): __UpperCamelCase = self.compute_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: __UpperCamelCase = self.compute_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']" ) if self.args.gradient_accumulation_steps > 1: __UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(SCREAMING_SNAKE_CASE_ ).backward() elif self.use_apex: with amp.scale_loss(SCREAMING_SNAKE_CASE_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(SCREAMING_SNAKE_CASE_ ) else: loss.backward() return loss.detach() def A_ ( ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __UpperCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) __UpperCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer __UpperCamelCase = f"[{''.join(data_args.chars_to_ignore )}]" def remove_special_characters(snake_case : Tuple ): __UpperCamelCase = re.sub(snake_case , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch __UpperCamelCase = train_dataset.map(snake_case , remove_columns=['''sentence'''] ) __UpperCamelCase = eval_dataset.map(snake_case , remove_columns=['''sentence'''] ) def extract_all_chars(snake_case : Dict ): __UpperCamelCase = ''' '''.join(batch['''text'''] ) __UpperCamelCase = list(set(snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} __UpperCamelCase = train_dataset.map( snake_case , batched=snake_case , batch_size=-1 , keep_in_memory=snake_case , remove_columns=train_dataset.column_names , ) __UpperCamelCase = train_dataset.map( snake_case , batched=snake_case , batch_size=-1 , keep_in_memory=snake_case , remove_columns=eval_dataset.column_names , ) __UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) __UpperCamelCase = {v: k for k, v in enumerate(snake_case )} __UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] __UpperCamelCase = len(snake_case ) __UpperCamelCase = len(snake_case ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(snake_case , snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=snake_case , return_attention_mask=snake_case ) __UpperCamelCase = WavaVecaProcessor(feature_extractor=snake_case , tokenizer=snake_case ) __UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: __UpperCamelCase = min(len(snake_case ) , data_args.max_train_samples ) __UpperCamelCase = train_dataset.select(range(snake_case ) ) if data_args.max_val_samples is not None: __UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) __UpperCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(snake_case : str ): __UpperCamelCase , __UpperCamelCase = torchaudio.load(batch['''path'''] ) __UpperCamelCase = resampler(snake_case ).squeeze().numpy() __UpperCamelCase = 16000 __UpperCamelCase = batch['''text'''] return batch __UpperCamelCase = train_dataset.map( snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) __UpperCamelCase = eval_dataset.map( snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(snake_case : Optional[int] ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." __UpperCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(snake_case ) return batch __UpperCamelCase = train_dataset.map( snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=snake_case , num_proc=data_args.preprocessing_num_workers , ) __UpperCamelCase = eval_dataset.map( snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric __UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(snake_case : int ): __UpperCamelCase = pred.predictions __UpperCamelCase = np.argmax(snake_case , axis=-1 ) __UpperCamelCase = processor.tokenizer.pad_token_id __UpperCamelCase = processor.batch_decode(snake_case ) # we do not want to group tokens when computing the metrics __UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=snake_case ) __UpperCamelCase = wer_metric.compute(predictions=snake_case , references=snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __UpperCamelCase = DataCollatorCTCWithPadding(processor=snake_case , padding=snake_case ) # Initialize our Trainer __UpperCamelCase = CTCTrainer( model=snake_case , data_collator=snake_case , args=snake_case , compute_metrics=snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: __UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __UpperCamelCase = model_args.model_name_or_path else: __UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __UpperCamelCase = trainer.train(resume_from_checkpoint=snake_case ) trainer.save_model() __UpperCamelCase = train_result.metrics __UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(snake_case ) ) __UpperCamelCase = min(snake_case , len(snake_case ) ) trainer.log_metrics('''train''' , snake_case ) trainer.save_metrics('''train''' , snake_case ) trainer.save_state() # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(snake_case ) __UpperCamelCase = min(snake_case , len(snake_case ) ) trainer.log_metrics('''eval''' , snake_case ) trainer.save_metrics('''eval''' , snake_case ) return results if __name__ == "__main__": main()
451
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "timm_backbone" def __init__(self : int , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Optional[int] , ) ->Union[str, Any]: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: int =backbone lowerCamelCase__: Optional[int] =num_channels lowerCamelCase__: Any =features_only lowerCamelCase__: Union[str, Any] =use_pretrained_backbone lowerCamelCase__: str =True lowerCamelCase__: Dict =out_indices if out_indices is not None else (-1,)
59
from __future__ import annotations from math import pi def lowerCAmelCase_ ( __a , __a , __a ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
59
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = None, UpperCAmelCase = None, UpperCAmelCase = None, ) ->Tuple: """simple docstring""" if config_name_or_path is None: __magic_name__ : Dict = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: __magic_name__ : int = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __magic_name__ : Union[str, Any] = question_encoder_name_or_path __magic_name__ : Dict = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. __magic_name__ : str = RagConfig.from_pretrained(UpperCAmelCase ) __magic_name__ : Dict = AutoConfig.from_pretrained(UpperCAmelCase ) __magic_name__ : str = AutoConfig.from_pretrained(UpperCAmelCase ) __magic_name__ : Tuple = gen_config __magic_name__ : str = question_encoder_config __magic_name__ : str = model_class.from_pretrained_question_encoder_generator( UpperCAmelCase, UpperCAmelCase, config=UpperCAmelCase ) rag_model.save_pretrained(UpperCAmelCase ) # Sanity check. model_class.from_pretrained(UpperCAmelCase ) # Save tokenizers. __magic_name__ : Any = AutoTokenizer.from_pretrained(UpperCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) __magic_name__ : List[str] = AutoTokenizer.from_pretrained(UpperCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) lowercase_ = parser.parse_args() lowercase_ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
336
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run lowercase_ = True except (ImportError, AttributeError): lowercase_ = object def lowerCAmelCase ( *UpperCAmelCase, **UpperCAmelCase ) ->Any: """simple docstring""" pass lowercase_ = False lowercase_ = logging.get_logger('''transformers-cli/serving''') def lowerCAmelCase ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" __magic_name__ : Optional[int] = pipeline( task=args.task, model=args.model if args.model else None, config=args.config, tokenizer=args.tokenizer, device=args.device, ) return ServeCommand(UpperCAmelCase, args.host, args.port, args.workers ) class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : dict class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : List[str] lowerCamelCase__ : Optional[List[int]] class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : str class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Any class A__ ( __SCREAMING_SNAKE_CASE ): @staticmethod def lowercase ( lowerCamelCase ) -> Dict: """simple docstring""" __magic_name__ : int = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=lowerCamelCase , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=lowerCamelCase , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=lowerCamelCase , default=8888 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=lowerCamelCase , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=lowerCamelCase , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=lowerCamelCase , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=lowerCamelCase , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=lowerCamelCase , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=lowerCamelCase ) def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: """simple docstring""" __magic_name__ : List[str] = pipeline __magic_name__ : Union[str, Any] = host __magic_name__ : int = port __magic_name__ : Optional[int] = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F'''Serving model over {host}:{port}''' ) __magic_name__ : int = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=lowerCamelCase , response_class=lowerCamelCase , methods=['''POST'''] , ), ] , timeout=600 , ) def lowercase ( self ) -> Dict: """simple docstring""" run(self._app , host=self.host , port=self.port , workers=self.workers ) def lowercase ( self ) -> str: """simple docstring""" return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def lowercase ( self , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) ) -> Any: """simple docstring""" try: __magic_name__ : List[str] = self._pipeline.tokenizer.tokenize(lowerCamelCase ) if return_ids: __magic_name__ : int = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCamelCase ) return ServeTokenizeResult(tokens=lowerCamelCase , tokens_ids=lowerCamelCase ) else: return ServeTokenizeResult(tokens=lowerCamelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(lowerCamelCase )} ) def lowercase ( self , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , lowerCamelCase = Body(lowerCamelCase , embed=lowerCamelCase ) , ) -> Any: """simple docstring""" try: __magic_name__ : Any = self._pipeline.tokenizer.decode(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return ServeDeTokenizeResult(model='''''' , text=lowerCamelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(lowerCamelCase )} ) async def lowercase ( self , lowerCamelCase=Body(lowerCamelCase , embed=lowerCamelCase ) ) -> Optional[int]: """simple docstring""" if len(lowerCamelCase ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __magic_name__ : Optional[int] = self._pipeline(lowerCamelCase ) return ServeForwardResult(output=lowerCamelCase ) except Exception as e: raise HTTPException(500 , {'''error''': str(lowerCamelCase )} )
336
1
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py _A = """.""" if __name__ == "__main__": _A = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") _A = [] _A = [] with open(doctest_file_path) as fp: for line in fp: _A = line.strip() _A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: _A = """\n""".join(non_existent_paths) raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
258
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _SCREAMING_SNAKE_CASE: def __init__( self : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=13 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : int=True , UpperCamelCase_ : List[Any]=99 , UpperCamelCase_ : List[str]=64 , UpperCamelCase_ : List[str]=32 , UpperCamelCase_ : Union[str, Any]=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : List[str]=37 , UpperCamelCase_ : str="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Optional[Any]=5_12 , UpperCamelCase_ : Union[str, Any]=16 , UpperCamelCase_ : Union[str, Any]=2 , UpperCamelCase_ : Optional[int]=0.02 , UpperCamelCase_ : Optional[Any]=3 , UpperCamelCase_ : Any=4 , UpperCamelCase_ : int=None , ) -> Optional[int]: SCREAMING_SNAKE_CASE__ :Optional[int] = parent SCREAMING_SNAKE_CASE__ :Any = batch_size SCREAMING_SNAKE_CASE__ :Tuple = seq_length SCREAMING_SNAKE_CASE__ :Any = is_training SCREAMING_SNAKE_CASE__ :int = use_input_mask SCREAMING_SNAKE_CASE__ :Dict = use_token_type_ids SCREAMING_SNAKE_CASE__ :str = use_labels SCREAMING_SNAKE_CASE__ :str = vocab_size SCREAMING_SNAKE_CASE__ :Optional[Any] = hidden_size SCREAMING_SNAKE_CASE__ :List[Any] = embedding_size SCREAMING_SNAKE_CASE__ :int = num_hidden_layers SCREAMING_SNAKE_CASE__ :int = num_attention_heads SCREAMING_SNAKE_CASE__ :Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE__ :str = hidden_act SCREAMING_SNAKE_CASE__ :Any = hidden_dropout_prob SCREAMING_SNAKE_CASE__ :Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ :Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ :Optional[int] = type_vocab_size SCREAMING_SNAKE_CASE__ :Tuple = type_sequence_label_size SCREAMING_SNAKE_CASE__ :Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ :int = num_labels SCREAMING_SNAKE_CASE__ :Optional[Any] = num_choices SCREAMING_SNAKE_CASE__ :List[Any] = scope def __lowerCamelCase ( self : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ :List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ :str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ :Any = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ :List[str] = None SCREAMING_SNAKE_CASE__ :int = None SCREAMING_SNAKE_CASE__ :Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE__ :Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ :Any = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ :str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self : List[str] ) -> Any: return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : int ) -> int: SCREAMING_SNAKE_CASE__ :Optional[int] = MegatronBertModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ :int = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[str] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ :str = MegatronBertForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ :Optional[int] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> Dict: SCREAMING_SNAKE_CASE__ :Optional[int] = MegatronBertForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ :List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self : List[str] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ :Optional[int] = MegatronBertForNextSentencePrediction(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ :List[str] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE__ :Tuple = MegatronBertForPreTraining(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ :Union[str, Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , next_sentence_label=UpperCamelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ :int = MegatronBertForQuestionAnswering(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ :Tuple = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any ) -> Dict: SCREAMING_SNAKE_CASE__ :List[Any] = self.num_labels SCREAMING_SNAKE_CASE__ :Optional[int] = MegatronBertForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ :int = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ :Dict = self.num_labels SCREAMING_SNAKE_CASE__ :Any = MegatronBertForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ :Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self : str , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ :Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE__ :Tuple = MegatronBertForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ :Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ :List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ :Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ :Union[str, Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ :Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) :Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE__ :Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ : List[Any] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) A_ : List[Any] = ( { 'feature-extraction': MegatronBertModel, 'fill-mask': MegatronBertForMaskedLM, 'question-answering': MegatronBertForQuestionAnswering, 'text-classification': MegatronBertForSequenceClassification, 'text-generation': MegatronBertForCausalLM, 'token-classification': MegatronBertForTokenClassification, 'zero-shot': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) A_ : int = True # test_resize_embeddings = False A_ : Dict = False def __lowerCamelCase ( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[Any]: SCREAMING_SNAKE_CASE__ :Optional[Any] = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) if return_labels: if model_class in get_values(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ :str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ ) return inputs_dict def __lowerCamelCase ( self : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE__ :Dict = MegatronBertModelTester(self ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def __lowerCamelCase ( self : List[str] ) -> Optional[int]: self.config_tester.run_common_tests() def __lowerCamelCase ( self : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*UpperCamelCase_ ) def __lowerCamelCase ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*UpperCamelCase_ ) def __lowerCamelCase ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*UpperCamelCase_ ) def __lowerCamelCase ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*UpperCamelCase_ ) def __lowerCamelCase ( self : int ) -> Any: SCREAMING_SNAKE_CASE__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*UpperCamelCase_ ) def __lowerCamelCase ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*UpperCamelCase_ ) def __lowerCamelCase ( self : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*UpperCamelCase_ ) def __lowerCamelCase ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*UpperCamelCase_ ) def lowerCamelCase ( UpperCAmelCase__ : Dict ) -> Any: '''simple docstring''' return torch.tensor( UpperCAmelCase__ , dtype=torch.long , device=UpperCAmelCase__ , ) UpperCamelCase_ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @slow @unittest.skip('Model is not available.' ) def __lowerCamelCase ( self : str ) -> int: SCREAMING_SNAKE_CASE__ :Tuple = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: SCREAMING_SNAKE_CASE__ :Dict = os.path.join(os.environ['MYDIR'] , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = MegatronBertModel.from_pretrained(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.half() SCREAMING_SNAKE_CASE__ :Optional[int] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ :str = model(UpperCamelCase_ )[0] SCREAMING_SNAKE_CASE__ :Dict = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Tuple = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): SCREAMING_SNAKE_CASE__ :List[Any] = output[0, ii, jj] SCREAMING_SNAKE_CASE__ :List[str] = expected[3 * ii + jj] SCREAMING_SNAKE_CASE__ :List[Any] = 'ii={} jj={} a={} b={}'.format(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.assertTrue(math.isclose(UpperCamelCase_ , UpperCamelCase_ , rel_tol=UpperCamelCase_ , abs_tol=UpperCamelCase_ ) , msg=UpperCamelCase_ )
209
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer UpperCAmelCase_ : str = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast UpperCAmelCase_ : Optional[int] = TaTokenizerFast UpperCAmelCase_ : Tuple = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys UpperCAmelCase_ : Tuple = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
424
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def UpperCAmelCase_ ( A , A ): '''simple docstring''' _a : List[str] = Mock() _a : str = conn, Mock() _a : Union[str, Any] = iter([1, None] ) _a : List[str] = lambda A : next(A ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=A ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
424
1
"""simple docstring""" import argparse import datetime def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : int = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } __lowercase : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(__UpperCamelCase ) < 11: raise ValueError('''Must be 10 characters long''' ) # Get month __lowercase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('''Month must be between 1 - 12''' ) __lowercase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day __lowercase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator __lowercase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year __lowercase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 85_00: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation __lowercase : List[Any] = datetime.date(int(__UpperCamelCase ) , int(__UpperCamelCase ) , int(__UpperCamelCase ) ) # Start math if m <= 2: __lowercase : Tuple = y - 1 __lowercase : Tuple = m + 12 # maths var __lowercase : int = int(str(__UpperCamelCase )[:2] ) __lowercase : int = int(str(__UpperCamelCase )[2:] ) __lowercase : int = int(2.6 * m - 5.39 ) __lowercase : int = int(c / 4 ) __lowercase : int = int(k / 4 ) __lowercase : int = int(d + k ) __lowercase : int = int(t + u + v + x ) __lowercase : int = int(z - (2 * c) ) __lowercase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response __lowercase : str = f"""Your date {date_input}, is a {days[str(__UpperCamelCase )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() a_ = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) a_ = parser.parse_args() zeller(args.date_input)
76
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __snake_case = 16 __snake_case = 32 def _lowercase ( SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : int = 16 ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCamelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(SCREAMING_SNAKE_CASE_ : str ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(SCREAMING_SNAKE_CASE_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( SCREAMING_SNAKE_CASE_ , padding="""longest""" , max_length=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __snake_case = mocked_dataloaders # noqa: F811 def _lowercase ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , SCREAMING_SNAKE_CASE_ ) == "1": UpperCamelCase = 2 # New Code # UpperCamelCase = int(args.gradient_accumulation_steps ) UpperCamelCase = int(args.local_sgd_steps ) # Initialize accelerator UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=SCREAMING_SNAKE_CASE_ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config["""lr"""] UpperCamelCase = int(config["""num_epochs"""] ) UpperCamelCase = int(config["""seed"""] ) UpperCamelCase = int(config["""batch_size"""] ) UpperCamelCase = evaluate.load("""glue""" , """mrpc""" ) set_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=SCREAMING_SNAKE_CASE_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE_ ): model.train() with LocalSGD( accelerator=SCREAMING_SNAKE_CASE_ , model=SCREAMING_SNAKE_CASE_ , local_sgd_steps=SCREAMING_SNAKE_CASE_ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase = output.loss accelerator.backward(SCREAMING_SNAKE_CASE_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , SCREAMING_SNAKE_CASE_ ) def _lowercase ( ): """simple docstring""" UpperCamelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=SCREAMING_SNAKE_CASE_ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=SCREAMING_SNAKE_CASE_ , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) UpperCamelCase = parser.parse_args() UpperCamelCase = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
386
0
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def lowercase__ ( snake_case_ :str ): def decorator(snake_case_ :Any ): __UpperCAmelCase = getattr(snake_case_ , '''handle_key''' , [] ) handle += [key] setattr(snake_case_ , '''handle_key''' , snake_case_ ) return func return decorator def lowercase__ ( *snake_case_ :List[str] ): def decorator(snake_case_ :List[Any] ): __UpperCAmelCase = getattr(snake_case_ , '''handle_key''' , [] ) handle += keys setattr(snake_case_ , '''handle_key''' , snake_case_ ) return func return decorator class _UpperCAmelCase ( _lowerCAmelCase ): def __new__( cls : Optional[int] , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] ): __UpperCAmelCase = super().__new__(cls , _lowercase , _lowercase , _lowercase ) if not hasattr(_lowercase , '''key_handler''' ): setattr(_lowercase , '''key_handler''' , {} ) setattr(_lowercase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): __UpperCAmelCase = getattr(_lowercase , '''handle_key''' , [] ) for key in handled_keys: __UpperCAmelCase = value return new_cls @staticmethod def a ( cls : Dict ): __UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: __UpperCAmelCase = ord(_lowercase ) __UpperCAmelCase = cls.key_handler.get(_lowercase ) if handler: __UpperCAmelCase = char return handler(cls ) else: return None def lowercase__ ( cls :List[Any] ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
397
"""simple docstring""" # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : List[Any] = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
397
1
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class _UpperCAmelCase ( _A ): """simple docstring""" def __lt__( self , _lowerCAmelCase ): '''simple docstring''' return self[-1] < other[-1] def __eq__( self , _lowerCAmelCase ): '''simple docstring''' return self[-1] == other[-1] def snake_case__ ( UpperCAmelCase : list ): lowerCAmelCase__ :list[Stack] = [] # sort into stacks for element in collection: lowerCAmelCase__ :int = Stack([element] ) lowerCAmelCase__ :Tuple = bisect_left(UpperCAmelCase , UpperCAmelCase ) if i != len(UpperCAmelCase ): stacks[i].append(UpperCAmelCase ) else: stacks.append(UpperCAmelCase ) # use a heap-based merge to merge stack efficiently lowerCAmelCase__ :List[str] = merge(*(reversed(UpperCAmelCase ) for stack in stacks) ) return collection if __name__ == "__main__": _a : List[str] = input("""Enter numbers separated by a comma:\n""").strip() _a : int = [int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
145
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _a : Optional[int] = 16 _a : List[Any] = 32 def snake_case__ ( UpperCAmelCase : Accelerator , UpperCAmelCase : int = 1_6 ): lowerCAmelCase__ :Optional[int] = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCAmelCase__ :Dict = load_dataset("glue" , "mrpc" ) def tokenize_function(UpperCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=UpperCAmelCase , max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ :Dict = datasets.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ :str = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ :Dict = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ :int = 1_6 elif accelerator.mixed_precision != "no": lowerCAmelCase__ :List[str] = 8 else: lowerCAmelCase__ :Dict = None return tokenizer.pad( UpperCAmelCase , padding="longest" , max_length=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. lowerCAmelCase__ :int = DataLoader( tokenized_datasets["train"] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) lowerCAmelCase__ :List[Any] = DataLoader( tokenized_datasets["validation"] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _a : List[str] = mocked_dataloaders # noqa: F811 def snake_case__ ( UpperCAmelCase : str , UpperCAmelCase : Dict ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , UpperCAmelCase ) == "1": lowerCAmelCase__ :Union[str, Any] = 2 # New Code # lowerCAmelCase__ :List[str] = int(args.gradient_accumulation_steps ) # Initialize accelerator lowerCAmelCase__ :List[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=UpperCAmelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ :Union[str, Any] = config["lr"] lowerCAmelCase__ :Dict = int(config["num_epochs"] ) lowerCAmelCase__ :str = int(config["seed"] ) lowerCAmelCase__ :int = int(config["batch_size"] ) lowerCAmelCase__ :Any = evaluate.load("glue" , "mrpc" ) set_seed(UpperCAmelCase ) lowerCAmelCase__ ,lowerCAmelCase__ :Dict = get_dataloaders(UpperCAmelCase , UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ :Any = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ :str = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ :Tuple = AdamW(params=model.parameters() , lr=UpperCAmelCase ) # Instantiate scheduler lowerCAmelCase__ :Optional[int] = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ :List[Any] = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Now we train the model for epoch in range(UpperCAmelCase ): model.train() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(UpperCAmelCase ): lowerCAmelCase__ :Optional[int] = model(**UpperCAmelCase ) lowerCAmelCase__ :Any = output.loss accelerator.backward(UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ :Optional[int] = model(**UpperCAmelCase ) lowerCAmelCase__ :int = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ ,lowerCAmelCase__ :Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=UpperCAmelCase , references=UpperCAmelCase , ) lowerCAmelCase__ :List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase ) def snake_case__ ( ): lowerCAmelCase__ :str = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=UpperCAmelCase , default=UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=UpperCAmelCase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) lowerCAmelCase__ :int = parser.parse_args() lowerCAmelCase__ :Union[str, Any] = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": main()
145
1
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase = "cpu" , __UpperCamelCase = None ): '''simple docstring''' UpperCAmelCase__ : int = torch.load(__UpperCamelCase , map_location=__UpperCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__UpperCamelCase , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) UpperCAmelCase__ : Tuple = v.half() if save_path is None: # overwrite src_path UpperCAmelCase__ : List[Any] = src_path torch.save(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": fire.Fire(convert)
194
"""simple docstring""" from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=8 ): '''simple docstring''' UpperCAmelCase__ : Tuple = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 UpperCAmelCase__ : Any = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class __lowercase ( __lowerCamelCase ): def __init__( self : str ,A : MultilingualCLIP ,A : XLMRobertaTokenizer ,A : UNetaDConditionModel ,A : Union[DDIMScheduler, DDPMScheduler] ,A : VQModel ,): '''simple docstring''' super().__init__() self.register_modules( text_encoder=A ,tokenizer=A ,unet=A ,scheduler=A ,movq=A ,) UpperCAmelCase__ : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowercase ( self : Dict ,A : Any ,A : Tuple ,A : Dict ,A : int ,A : str ,A : List[str] ): '''simple docstring''' if latents is None: UpperCAmelCase__ : Any = randn_tensor(A ,generator=A ,device=A ,dtype=A ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase__ : int = latents.to(A ) UpperCAmelCase__ : Any = latents * scheduler.init_noise_sigma return latents def __lowercase ( self : Optional[int] ,A : List[Any] ,A : Optional[Any] ,A : str ,A : Optional[Any] ,A : str=None ,): '''simple docstring''' UpperCAmelCase__ : List[Any] = len(A ) if isinstance(A ,A ) else 1 # get prompt text embeddings UpperCAmelCase__ : List[Any] = self.tokenizer( A ,padding="""max_length""" ,truncation=A ,max_length=77 ,return_attention_mask=A ,add_special_tokens=A ,return_tensors="""pt""" ,) UpperCAmelCase__ : List[str] = text_inputs.input_ids UpperCAmelCase__ : Any = self.tokenizer(A ,padding="""longest""" ,return_tensors="""pt""" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(A ,A ): UpperCAmelCase__ : List[str] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) UpperCAmelCase__ : str = text_input_ids.to(A ) UpperCAmelCase__ : Optional[Any] = text_inputs.attention_mask.to(A ) UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.text_encoder( input_ids=A ,attention_mask=A ) UpperCAmelCase__ : Optional[int] = prompt_embeds.repeat_interleave(A ,dim=0 ) UpperCAmelCase__ : Optional[int] = text_encoder_hidden_states.repeat_interleave(A ,dim=0 ) UpperCAmelCase__ : List[str] = text_mask.repeat_interleave(A ,dim=0 ) if do_classifier_free_guidance: UpperCAmelCase__ : List[str] if negative_prompt is None: UpperCAmelCase__ : List[Any] = [""""""] * batch_size elif type(A ) is not type(A ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(A )} !=" f" {type(A )}." ) elif isinstance(A ,A ): UpperCAmelCase__ : Any = [negative_prompt] elif batch_size != len(A ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(A )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" """ the batch size of `prompt`.""" ) else: UpperCAmelCase__ : List[Any] = negative_prompt UpperCAmelCase__ : Any = self.tokenizer( A ,padding="""max_length""" ,max_length=77 ,truncation=A ,return_attention_mask=A ,add_special_tokens=A ,return_tensors="""pt""" ,) UpperCAmelCase__ : Optional[int] = uncond_input.input_ids.to(A ) UpperCAmelCase__ : str = uncond_input.attention_mask.to(A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.text_encoder( input_ids=A ,attention_mask=A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase__ : Any = negative_prompt_embeds.shape[1] UpperCAmelCase__ : Any = negative_prompt_embeds.repeat(1 ,A ) UpperCAmelCase__ : str = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,A ) UpperCAmelCase__ : Dict = uncond_text_encoder_hidden_states.shape[1] UpperCAmelCase__ : Any = uncond_text_encoder_hidden_states.repeat(1 ,A ,1 ) UpperCAmelCase__ : Any = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt ,A ,-1 ) UpperCAmelCase__ : List[Any] = uncond_text_mask.repeat_interleave(A ,dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase__ : Any = torch.cat([negative_prompt_embeds, prompt_embeds] ) UpperCAmelCase__ : int = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) UpperCAmelCase__ : str = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def __lowercase ( self : Tuple ,A : Dict=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCAmelCase__ : str = torch.device(f"cuda:{gpu_id}" ) UpperCAmelCase__ : Tuple = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A ,A ) def __lowercase ( self : int ,A : Optional[Any]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" ,"""0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) UpperCAmelCase__ : List[str] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" ,silence_dtype_warnings=A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase__ : List[str] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = cpu_offload_with_hook(A ,A ,prev_module_hook=A ) if self.safety_checker is not None: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = cpu_offload_with_hook(self.safety_checker ,A ,prev_module_hook=A ) # We'll offload the last model manually. UpperCAmelCase__ : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowercase ( self : List[Any] ): '''simple docstring''' if not hasattr(self.unet ,"""_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(A ,"""_hf_hook""" ) and hasattr(module._hf_hook ,"""execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A ) def __call__( self : Union[str, Any] ,A : Union[str, List[str]] ,A : Union[torch.FloatTensor, List[torch.FloatTensor]] ,A : Union[torch.FloatTensor, List[torch.FloatTensor]] ,A : Optional[Union[str, List[str]]] = None ,A : int = 512 ,A : int = 512 ,A : int = 100 ,A : float = 4.0 ,A : int = 1 ,A : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A : Optional[torch.FloatTensor] = None ,A : Optional[str] = "pil" ,A : bool = True ,): '''simple docstring''' if isinstance(A ,A ): UpperCAmelCase__ : str = 1 elif isinstance(A ,A ): UpperCAmelCase__ : Tuple = len(A ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(A )}" ) UpperCAmelCase__ : Optional[int] = self._execution_device UpperCAmelCase__ : Dict = batch_size * num_images_per_prompt UpperCAmelCase__ : Union[str, Any] = guidance_scale > 1.0 UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self._encode_prompt( A ,A ,A ,A ,A ) if isinstance(A ,A ): UpperCAmelCase__ : Dict = torch.cat(A ,dim=0 ) if isinstance(A ,A ): UpperCAmelCase__ : Dict = torch.cat(A ,dim=0 ) if do_classifier_free_guidance: UpperCAmelCase__ : Optional[int] = image_embeds.repeat_interleave(A ,dim=0 ) UpperCAmelCase__ : Tuple = negative_image_embeds.repeat_interleave(A ,dim=0 ) UpperCAmelCase__ : List[str] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to( dtype=prompt_embeds.dtype ,device=A ) self.scheduler.set_timesteps(A ,device=A ) UpperCAmelCase__ : int = self.scheduler.timesteps UpperCAmelCase__ : Union[str, Any] = self.unet.config.in_channels UpperCAmelCase__ , UpperCAmelCase__ : Dict = get_new_h_w(A ,A ,self.movq_scale_factor ) # create initial latent UpperCAmelCase__ : Dict = self.prepare_latents( (batch_size, num_channels_latents, height, width) ,text_encoder_hidden_states.dtype ,A ,A ,A ,self.scheduler ,) for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase__ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase__ : Optional[Any] = {"""text_embeds""": prompt_embeds, """image_embeds""": image_embeds} UpperCAmelCase__ : Any = self.unet( sample=A ,timestep=A ,encoder_hidden_states=A ,added_cond_kwargs=A ,return_dict=A ,)[0] if do_classifier_free_guidance: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = noise_pred.split(latents.shape[1] ,dim=1 ) UpperCAmelCase__ , UpperCAmelCase__ : Any = noise_pred.chunk(2 ) UpperCAmelCase__ , UpperCAmelCase__ : str = variance_pred.chunk(2 ) UpperCAmelCase__ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase__ : List[Any] = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"""variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase__ : Optional[Any] = self.scheduler.step( A ,A ,A ,generator=A ,).prev_sample # post-processing UpperCAmelCase__ : List[Any] = self.movq.decode(A ,force_not_quantize=A )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCAmelCase__ : Union[str, Any] = image * 0.5 + 0.5 UpperCAmelCase__ : Optional[Any] = image.clamp(0 ,1 ) UpperCAmelCase__ : Dict = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": UpperCAmelCase__ : List[str] = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
194
1
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCamelCase ( snake_case__ : str , snake_case__ : str , **snake_case__ : Optional[Any] ) -> List[Any]: UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(snake_case__ , **snake_case__ ) UpperCamelCase : int = AutoModelForSeqaSeqLM.from_config(snake_case__ ) model.save_pretrained(snake_case__ ) AutoTokenizer.from_pretrained(snake_case__ ).save_pretrained(snake_case__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
40
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''▁''' __UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} __UpperCAmelCase = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } __UpperCAmelCase = { '''facebook/xglm-564M''': 2_048, } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> None: UpperCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCamelCase : Any = 7 UpperCamelCase : Optional[int] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] UpperCamelCase : Dict = kwargs.get('additional_special_tokens', [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, sp_model_kwargs=self.sp_model_kwargs, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase : Dict = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} UpperCamelCase : Optional[int] = len(self.sp_model ) UpperCamelCase : Any = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: UpperCamelCase : int = self.__dict__.copy() UpperCamelCase : Union[str, Any] = None UpperCamelCase : int = self.sp_model.serialized_model_proto() return state def __setstate__( self, SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase : Any = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): UpperCamelCase : Any = {} UpperCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCamelCase : Optional[int] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_, token_ids_a=SCREAMING_SNAKE_CASE_, already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : str = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def snake_case_ ( self ) -> int: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def snake_case_ ( self ) -> int: UpperCamelCase : List[str] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_, out_type=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase : Union[str, Any] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : Dict = ''.join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_, ' ' ).strip() return out_string def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_, 'wb' ) as fi: UpperCamelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
40
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json' # See all FNet models at https://huggingface.co/models?filter=fnet } class __a( _a ): """simple docstring""" lowerCAmelCase = '''fnet''' def __init__( self ,_SCREAMING_SNAKE_CASE=32_000 ,_SCREAMING_SNAKE_CASE=768 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=3_072 ,_SCREAMING_SNAKE_CASE="gelu_new" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=1e-12 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE=2 ,**_SCREAMING_SNAKE_CASE ,) -> Union[str, Any]: super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE ,bos_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : int = type_vocab_size UpperCAmelCase_ : str = layer_norm_eps UpperCAmelCase_ : Optional[int] = use_tpu_fourier_optimizations UpperCAmelCase_ : Any = tpu_short_seq_length
300
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCamelCase__ ( _lowercase ): '''simple docstring''' return (data["data"], data["target"]) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[str] = XGBClassifier() classifier.fit(_lowercase , _lowercase ) return classifier def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = load_iris() UpperCAmelCase_, UpperCAmelCase_ : Any = data_handling(_lowercase ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = train_test_split( _lowercase , _lowercase , test_size=0.25 ) UpperCAmelCase_ : Dict = iris['''target_names'''] # Create an XGBoost Classifier from the training data UpperCAmelCase_ : int = xgboost(_lowercase , _lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _lowercase , _lowercase , _lowercase , display_labels=_lowercase , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
300
1
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch UpperCAmelCase_ : List[str] = random.Random() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=1.0 , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[Any]=None ): """simple docstring""" if rng is None: _lowerCamelCase : List[Any] = global_rng _lowerCamelCase : Dict = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Dict,__A : List[Any],__A : Any=7,__A : Dict=4_0_0,__A : Union[str, Any]=2_0_0_0,__A : Any=1_0,__A : Dict=1_6_0,__A : List[Any]=8,__A : Optional[int]=0.0,__A : int=4_0_0_0,__A : Dict=False,__A : List[Any]=True,): _lowerCamelCase : int = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : List[Any] = min_seq_length _lowerCamelCase : Optional[Any] = max_seq_length _lowerCamelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCamelCase : Optional[int] = padding_value _lowerCamelCase : str = sampling_rate _lowerCamelCase : int = return_attention_mask _lowerCamelCase : List[Any] = do_normalize _lowerCamelCase : str = feature_size _lowerCamelCase : Tuple = chunk_length _lowerCamelCase : List[Any] = hop_length def lowerCamelCase_ ( self : str ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase_ ( self : int,__A : str=False,__A : Union[str, Any]=False ): def _flatten(__A : Tuple ): return list(itertools.chain(*__A ) ) if equal_length: _lowerCamelCase : Optional[int] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _lowerCamelCase : Optional[int] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length,self.max_seq_length,self.seq_length_diff ) ] if numpify: _lowerCamelCase : Dict = [np.asarray(__A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = WhisperFeatureExtractor if is_speech_available() else None def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Tuple = WhisperFeatureExtractionTester(self ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Optional[int] = feat_extract_first.save_pretrained(__A )[0] check_json_file_has_correct_format(__A ) _lowerCamelCase : Union[str, Any] = self.feature_extraction_class.from_pretrained(__A ) _lowerCamelCase : Optional[int] = feat_extract_first.to_dict() _lowerCamelCase : Dict = feat_extract_second.to_dict() _lowerCamelCase : str = feat_extract_first.mel_filters _lowerCamelCase : str = feat_extract_second.mel_filters self.assertTrue(np.allclose(__A,__A ) ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Any = os.path.join(__A,"feat_extract.json" ) feat_extract_first.to_json_file(__A ) _lowerCamelCase : int = self.feature_extraction_class.from_json_file(__A ) _lowerCamelCase : Tuple = feat_extract_first.to_dict() _lowerCamelCase : Any = feat_extract_second.to_dict() _lowerCamelCase : Dict = feat_extract_first.mel_filters _lowerCamelCase : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(__A,__A ) ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus _lowerCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_0_0,1_4_0_0,2_0_0 )] _lowerCamelCase : Union[str, Any] = [np.asarray(__A ) for speech_input in speech_inputs] # Test feature size _lowerCamelCase : Optional[Any] = feature_extractor(__A,padding="max_length",return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _lowerCamelCase : Union[str, Any] = feature_extractor(speech_inputs[0],return_tensors="np" ).input_features _lowerCamelCase : Dict = feature_extractor(np_speech_inputs[0],return_tensors="np" ).input_features self.assertTrue(np.allclose(__A,__A,atol=1e-3 ) ) # Test batched _lowerCamelCase : str = feature_extractor(__A,return_tensors="np" ).input_features _lowerCamelCase : List[Any] = feature_extractor(__A,return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__A,__A ): self.assertTrue(np.allclose(__A,__A,atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _lowerCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _lowerCamelCase : Dict = np.asarray(__A ) _lowerCamelCase : int = feature_extractor(__A,return_tensors="np" ).input_features _lowerCamelCase : Any = feature_extractor(__A,return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__A,__A ): self.assertTrue(np.allclose(__A,__A,atol=1e-3 ) ) # Test truncation required _lowerCamelCase : str = [floats_list((1, x) )[0] for x in range(2_0_0,(feature_extractor.n_samples + 5_0_0),2_0_0 )] _lowerCamelCase : Dict = [np.asarray(__A ) for speech_input in speech_inputs] _lowerCamelCase : Union[str, Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] _lowerCamelCase : Union[str, Any] = [np.asarray(__A ) for speech_input in speech_inputs_truncated] _lowerCamelCase : Tuple = feature_extractor(__A,return_tensors="np" ).input_features _lowerCamelCase : str = feature_extractor(__A,return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__A,__A ): self.assertTrue(np.allclose(__A,__A,atol=1e-3 ) ) def lowerCamelCase_ ( self : Any ): import torch _lowerCamelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : str = np.random.rand(1_0_0,3_2 ).astype(np.floataa ) _lowerCamelCase : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCamelCase : List[Any] = feature_extractor.pad([{"input_features": inputs}],return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _lowerCamelCase : List[str] = feature_extractor.pad([{"input_features": inputs}],return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase_ ( self : Dict,__A : Optional[Any] ): _lowerCamelCase : List[Any] = load_dataset("hf-internal-testing/librispeech_asr_dummy","clean",split="validation" ) # automatic decoding with librispeech _lowerCamelCase : Dict = ds.sort("id" ).select(range(__A ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowerCamelCase_ ( self : Any ): # fmt: off _lowerCamelCase : Optional[int] = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _lowerCamelCase : Optional[Any] = self._load_datasamples(1 ) _lowerCamelCase : Union[str, Any] = WhisperFeatureExtractor() _lowerCamelCase : str = feature_extractor(__A,return_tensors="pt" ).input_features self.assertEqual(input_features.shape,(1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0],__A,atol=1e-4 ) ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : List[Any] = self._load_datasamples(1 )[0] _lowerCamelCase : List[str] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue _lowerCamelCase : Any = feat_extract.zero_mean_unit_var_norm([audio],attention_mask=__A )[0] self.assertTrue(np.all(np.mean(__A ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__A ) - 1 ) < 1e-3 ) )
44
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): lowercase_ = StableDiffusionInstructPixaPixPipeline lowercase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} lowercase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowercase( self : str )-> int: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE__ : List[str] = PNDMScheduler(skip_prk_steps=a_ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE__ : int = CLIPTextModel(a_ ) SCREAMING_SNAKE_CASE__ : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE__ : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowercase( self : List[Any] , a_ : Tuple , a_ : Optional[Any]=0 )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) SCREAMING_SNAKE_CASE__ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ : List[Any] = Image.fromarray(np.uinta(a_ ) ).convert('RGB' ) if str(a_ ).startswith('mps' ): SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(a_ ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.Generator(device=a_ ).manual_seed(a_ ) SCREAMING_SNAKE_CASE__ : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def __lowercase( self : str )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : List[str] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = self.get_dummy_inputs(a_ ) SCREAMING_SNAKE_CASE__ : int = sd_pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ : Dict = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowercase( self : Optional[Any] )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_inputs(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = 'french fries' SCREAMING_SNAKE_CASE__ : Optional[Any] = sd_pipe(**a_ , negative_prompt=a_ ) SCREAMING_SNAKE_CASE__ : Dict = output.images SCREAMING_SNAKE_CASE__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ : List[str] = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowercase( self : List[Any] )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_inputs(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [inputs['prompt']] * 2 SCREAMING_SNAKE_CASE__ : List[str] = np.array(inputs['image'] ).astype(np.floataa ) / 255.0 SCREAMING_SNAKE_CASE__ : Tuple = torch.from_numpy(a_ ).unsqueeze(0 ).to(a_ ) SCREAMING_SNAKE_CASE__ : Dict = image / 2 + 0.5 SCREAMING_SNAKE_CASE__ : Tuple = image.permute(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE__ : int = image.repeat(2 , 1 , 1 , 1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = sd_pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : Any = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) SCREAMING_SNAKE_CASE__ : int = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowercase( self : List[Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : str = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Optional[Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' ) SCREAMING_SNAKE_CASE__ : List[Any] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : Dict = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_dummy_inputs(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = sd_pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Any = [round(a_ , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(a_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ : List[Any] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowercase( self : Union[str, Any] )-> Any: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __lowercase( self : List[Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : List[str] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : int = VaeImageProcessor(do_resize=a_ , do_normalize=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : Any = pipe(**self.get_dummy_inputs_by_type(a_ , input_image_type='pt' ) )[0] SCREAMING_SNAKE_CASE__ : Optional[int] = components['vae'] SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_inputs_by_type(a_ , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = vae.encode(inputs[image_param] ).latent_dist.mode() SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe(**a_ )[0] SCREAMING_SNAKE_CASE__ : List[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(a_ , 1e-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def __lowercase( self : Tuple )-> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase( self : List[Any] , a_ : Dict=0 )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = torch.manual_seed(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) SCREAMING_SNAKE_CASE__ : Tuple = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def __lowercase( self : int )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : str = self.get_inputs() SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __lowercase( self : Dict )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ ) SCREAMING_SNAKE_CASE__ : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : Tuple = self.get_inputs() SCREAMING_SNAKE_CASE__ : Dict = pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ : List[Any] = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __lowercase( self : Optional[int] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ ) SCREAMING_SNAKE_CASE__ : Dict = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : str = self.get_inputs() SCREAMING_SNAKE_CASE__ : Tuple = pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ : List[str] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __lowercase( self : int )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = 0 def callback_fn(a_ : int , a_ : int , a_ : torch.FloatTensor ) -> None: SCREAMING_SNAKE_CASE__ : Tuple = True nonlocal number_of_steps number_of_steps += 1 if step == 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE__ : List[Any] = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Optional[int] = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: SCREAMING_SNAKE_CASE__ : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE__ : Tuple = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Dict = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Tuple = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : Tuple = self.get_inputs() pipe(**a_ , callback=a_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __lowercase( self : int )-> Any: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Tuple = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ : Tuple = self.get_inputs() SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe(**a_ ) SCREAMING_SNAKE_CASE__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __lowercase( self : Tuple )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE__ : Dict = inputs['image'].resize((504, 504) ) SCREAMING_SNAKE_CASE__ : List[Any] = 'timbrooks/instruct-pix2pix' SCREAMING_SNAKE_CASE__ : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( a_ , safety_checker=a_ , ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : Any = pipe(**a_ ) SCREAMING_SNAKE_CASE__ : List[str] = output.images[0] SCREAMING_SNAKE_CASE__ : Any = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) SCREAMING_SNAKE_CASE__ : str = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
85
0
'''simple docstring''' import re def lowerCamelCase_ ( A_ ): __lowerCamelCase = re.compile( R'''^(?:0|94|\+94|0{2}94)''' R'''7(0|1|2|4|5|6|7|8)''' R'''(-| |)''' R'''\d{7}$''' ) return bool(re.search(A_ , A_ ) ) if __name__ == "__main__": _UpperCamelCase : Tuple ="0094702343221" print(is_sri_lankan_phone_number(phone))
575
'''simple docstring''' from statistics import mean import numpy as np def lowerCamelCase_ ( A_ , A_ , A_ , A_ ): __lowerCamelCase = 0 # Number of processes finished __lowerCamelCase = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __lowerCamelCase = [0] * no_of_process # List to include calculation results __lowerCamelCase = [0] * no_of_process # Sort by arrival time. __lowerCamelCase = [burst_time[i] for i in np.argsort(A_ )] __lowerCamelCase = [process_name[i] for i in np.argsort(A_ )] arrival_time.sort() while no_of_process > finished_process_count: __lowerCamelCase = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __lowerCamelCase = arrival_time[i] __lowerCamelCase = 0 # Index showing the location of the process being performed __lowerCamelCase = 0 # Saves the current response ratio. __lowerCamelCase = 0 for i in range(0 , A_ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __lowerCamelCase = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __lowerCamelCase = temp __lowerCamelCase = i # Calculate the turn around time __lowerCamelCase = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __lowerCamelCase = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowerCamelCase_ ( A_ , A_ , A_ , A_ ): __lowerCamelCase = [0] * no_of_process for i in range(0 , A_ ): __lowerCamelCase = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _UpperCamelCase : List[Any] =5 _UpperCamelCase : str =["A", "B", "C", "D", "E"] _UpperCamelCase : int =[1, 2, 3, 4, 5] _UpperCamelCase : Tuple =[1, 2, 3, 4, 5] _UpperCamelCase : int =calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _UpperCamelCase : Tuple =calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( f'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' f'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(f'''average waiting time : {mean(waiting_time):.5f}''') print(f'''average turn around time : {mean(turn_around_time):.5f}''')
575
1
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants UpperCamelCase = Mapping[str, np.ndarray] UpperCamelCase = Mapping[str, Any] # Is a nested dict. UpperCamelCase = 0.01 @dataclasses.dataclass(frozen=lowercase ) class lowerCAmelCase_ : """simple docstring""" _snake_case : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. _snake_case : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. _snake_case : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. _snake_case : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. _snake_case : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions _snake_case : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files _snake_case : Optional[str] = None # Templates used to generate this protein (prediction-only) _snake_case : Optional[Sequence[str]] = None # Chain corresponding to each parent _snake_case : Optional[Sequence[int]] = None def A ( lowercase__ : str ) -> Protein: UpperCamelCase__ :Union[str, Any] = r"""(\[[A-Z]+\]\n)""" UpperCamelCase__ :List[str] = [tag.strip() for tag in re.split(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0] UpperCamelCase__ :Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("""\n""" ) for l in tags[1::2]] ) UpperCamelCase__ :List[str] = ["N", "CA", "C"] UpperCamelCase__ :Optional[int] = None UpperCamelCase__ :Optional[int] = None UpperCamelCase__ :List[str] = None for g in groups: if "[PRIMARY]" == g[0]: UpperCamelCase__ :List[Any] = g[1][0].strip() for i in range(len(lowercase__ ) ): if seq[i] not in residue_constants.restypes: UpperCamelCase__ :List[str] = """X""" # FIXME: strings are immutable UpperCamelCase__ :List[Any] = np.array( [residue_constants.restype_order.get(lowercase__ , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: UpperCamelCase__ :List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(lowercase__ , g[1][axis].split() ) ) ) UpperCamelCase__ :Tuple = np.array(lowercase__ ) UpperCamelCase__ :Tuple = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(lowercase__ ): UpperCamelCase__ :Optional[int] = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: UpperCamelCase__ :Dict = np.array(list(map({"""-""": 0, """+""": 1}.get , g[1][0].strip() ) ) ) UpperCamelCase__ :Any = np.zeros( ( len(lowercase__ ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(lowercase__ ): UpperCamelCase__ :List[Any] = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=lowercase__ , atom_mask=lowercase__ , aatype=lowercase__ , residue_index=np.arange(len(lowercase__ ) ) , b_factors=lowercase__ , ) def A ( lowercase__ : Protein , lowercase__ : int = 0 ) -> List[str]: UpperCamelCase__ :List[str] = [] UpperCamelCase__ :Optional[Any] = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) UpperCamelCase__ :List[Any] = prot.parents UpperCamelCase__ :List[Any] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: UpperCamelCase__ :List[Any] = [p for i, p in zip(lowercase__ , lowercase__ ) if i == chain_id] if parents is None or len(lowercase__ ) == 0: UpperCamelCase__ :str = ["""N/A"""] pdb_headers.append(f"""PARENT {" ".join(lowercase__ )}""" ) return pdb_headers def A ( lowercase__ : Protein , lowercase__ : str ) -> str: UpperCamelCase__ :List[str] = [] UpperCamelCase__ :Optional[int] = pdb_str.split("""\n""" ) UpperCamelCase__ :Tuple = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) UpperCamelCase__ :List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: UpperCamelCase__ :Any = [] if prot.parents_chain_index is not None: UpperCamelCase__ :Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(lowercase__ ) , [] ) parent_dict[str(lowercase__ )].append(lowercase__ ) UpperCamelCase__ :Optional[Any] = max([int(lowercase__ ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): UpperCamelCase__ :Union[str, Any] = parent_dict.get(str(lowercase__ ) , ["""N/A"""] ) parents_per_chain.append(lowercase__ ) else: parents_per_chain.append(list(prot.parents ) ) else: UpperCamelCase__ :Union[str, Any] = [["""N/A"""]] def make_parent_line(lowercase__ : Sequence[str] ) -> str: return f"""PARENT {" ".join(lowercase__ )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) UpperCamelCase__ :Optional[int] = 0 for i, l in enumerate(lowercase__ ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(lowercase__ ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(lowercase__ ): UpperCamelCase__ :Optional[int] = parents_per_chain[chain_counter] else: UpperCamelCase__ :str = ["""N/A"""] out_pdb_lines.append(make_parent_line(lowercase__ ) ) return "\n".join(lowercase__ ) def A ( lowercase__ : Protein ) -> str: UpperCamelCase__ :Optional[int] = residue_constants.restypes + ["""X"""] def res_atoa(lowercase__ : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , """UNK""" ) UpperCamelCase__ :Optional[Any] = residue_constants.atom_types UpperCamelCase__ :List[str] = [] UpperCamelCase__ :Dict = prot.atom_mask UpperCamelCase__ :Dict = prot.aatype UpperCamelCase__ :List[str] = prot.atom_positions UpperCamelCase__ :Dict = prot.residue_index.astype(np.intaa ) UpperCamelCase__ :Optional[int] = prot.b_factors UpperCamelCase__ :Dict = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("""Invalid aatypes.""" ) UpperCamelCase__ :Any = get_pdb_headers(lowercase__ ) if len(lowercase__ ) > 0: pdb_lines.extend(lowercase__ ) UpperCamelCase__ :Union[str, Any] = aatype.shape[0] UpperCamelCase__ :Union[str, Any] = 1 UpperCamelCase__ :Tuple = 0 UpperCamelCase__ :Union[str, Any] = string.ascii_uppercase UpperCamelCase__ :Tuple = None # Add all atom sites. for i in range(lowercase__ ): UpperCamelCase__ :str = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(lowercase__ , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue UpperCamelCase__ :Optional[int] = """ATOM""" UpperCamelCase__ :Union[str, Any] = atom_name if len(lowercase__ ) == 4 else f""" {atom_name}""" UpperCamelCase__ :Union[str, Any] = """""" UpperCamelCase__ :Dict = """""" UpperCamelCase__ :List[Any] = 1.00 UpperCamelCase__ :Any = atom_name[0] # Protein supports only C, N, O, S, this works. UpperCamelCase__ :int = """""" UpperCamelCase__ :Union[str, Any] = """A""" if chain_index is not None: UpperCamelCase__ :List[Any] = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! UpperCamelCase__ :int = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(lowercase__ ) atom_index += 1 UpperCamelCase__ :Dict = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: UpperCamelCase__ :List[str] = True UpperCamelCase__ :int = chain_index[i + 1] if should_terminate: # Close the chain. UpperCamelCase__ :Tuple = """TER""" UpperCamelCase__ :Any = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(lowercase__ ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(lowercase__ , lowercase__ ) ) pdb_lines.append("""END""" ) pdb_lines.append("""""" ) return "\n".join(lowercase__ ) def A ( lowercase__ : Protein ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def A ( lowercase__ : FeatureDict , lowercase__ : ModelOutput , lowercase__ : Optional[np.ndarray] = None , lowercase__ : Optional[np.ndarray] = None , lowercase__ : Optional[str] = None , lowercase__ : Optional[Sequence[str]] = None , lowercase__ : Optional[Sequence[int]] = None , ) -> Protein: return Protein( aatype=features["""aatype"""] , atom_positions=result["""final_atom_positions"""] , atom_mask=result["""final_atom_mask"""] , residue_index=features["""residue_index"""] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["""final_atom_mask"""] ) , chain_index=lowercase__ , remark=lowercase__ , parents=lowercase__ , parents_chain_index=lowercase__ , )
45
import random def A ( lowercase__ : Dict , lowercase__ : str , lowercase__ : Optional[Any] ) -> int: UpperCamelCase__ :List[Any] = a[left_index] UpperCamelCase__ :Dict = left_index + 1 for j in range(left_index + 1 , lowercase__ ): if a[j] < pivot: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = a[i], a[j] i += 1 UpperCamelCase__ , UpperCamelCase__ :Tuple = a[i - 1], a[left_index] return i - 1 def A ( lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Any ) -> Optional[int]: if left < right: UpperCamelCase__ :List[Any] = random.randint(lowercase__ , right - 1 ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCamelCase__ :int = partition(lowercase__ , lowercase__ , lowercase__ ) quick_sort_random( lowercase__ , lowercase__ , lowercase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowercase__ , pivot_index + 1 , lowercase__ ) # recursive quicksort to the right of the pivot point def A ( ) -> List[Any]: UpperCamelCase__ :str = input("""Enter numbers separated by a comma:\n""" ).strip() UpperCamelCase__ :int = [int(lowercase__ ) for item in user_input.split(""",""" )] quick_sort_random(lowercase__ , 0 , len(lowercase__ ) ) print(lowercase__ ) if __name__ == "__main__": main()
45
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
'''simple docstring''' lowercase_ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
1
"""simple docstring""" import os from pathlib import Path def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowercase_ = F'''{src_lang}-{tgt_lang}''' lowercase_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(lowercase__ , exist_ok=lowercase__ ) lowercase_ = os.path.join(lowercase__ , """README.md""" ) print(F'''Generating {path}''' ) with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f: f.write(lowercase__ ) # make sure we are under the root of the project UpperCAmelCase : List[Any] = Path(__file__).resolve().parent.parent.parent UpperCAmelCase : Optional[int] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = model_name.split("-") UpperCAmelCase : Dict = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
567
'''simple docstring''' import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class UpperCAmelCase_ ( A ): '''simple docstring''' lowercase_ : int = ["input_values", "attention_mask"] def __init__( self : Any , snake_case__ : int = 1 , snake_case__ : int = 1_60_00 , snake_case__ : float = 0.0 , snake_case__ : bool = False , snake_case__ : int = 80 , snake_case__ : int = 16 , snake_case__ : int = 64 , snake_case__ : str = "hann_window" , snake_case__ : float = 1.0 , snake_case__ : float = 80 , snake_case__ : float = 76_00 , snake_case__ : float = 1e-10 , snake_case__ : int = 2 , snake_case__ : bool = True , **snake_case__ : List[Any] , ): '''simple docstring''' super().__init__(feature_size=snake_case__ , sampling_rate=snake_case__ , padding_value=snake_case__ , **snake_case__ ) UpperCAmelCase__ : int = do_normalize UpperCAmelCase__ : Tuple = return_attention_mask UpperCAmelCase__ : Union[str, Any] = num_mel_bins UpperCAmelCase__ : List[str] = hop_length UpperCAmelCase__ : List[str] = win_length UpperCAmelCase__ : Union[str, Any] = win_function UpperCAmelCase__ : str = frame_signal_scale UpperCAmelCase__ : int = fmin UpperCAmelCase__ : Union[str, Any] = fmax UpperCAmelCase__ : Optional[Any] = mel_floor UpperCAmelCase__ : List[str] = reduction_factor UpperCAmelCase__ : str = win_length * sampling_rate // 10_00 UpperCAmelCase__ : Union[str, Any] = hop_length * sampling_rate // 10_00 UpperCAmelCase__ : Optional[Any] = optimal_fft_length(self.sample_size ) UpperCAmelCase__ : str = (self.n_fft // 2) + 1 UpperCAmelCase__ : Dict = window_function(window_length=self.sample_size , name=self.win_function , periodic=snake_case__ ) UpperCAmelCase__ : List[str] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="slaney" , mel_scale="slaney" , ) if frame_signal_scale != 1.0: warnings.warn( "The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers" , snake_case__ , ) if reduction_factor != 2.0: warnings.warn( "The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers" , snake_case__ , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCamelCase ( snake_case__ : List[np.ndarray] , snake_case__ : List[np.ndarray] , snake_case__ : float = 0.0 ): '''simple docstring''' if attention_mask is not None: UpperCAmelCase__ : Tuple = np.array(snake_case__ , np.intaa ) UpperCAmelCase__ : Tuple = [] for vector, length in zip(snake_case__ , attention_mask.sum(-1 ) ): UpperCAmelCase__ : List[str] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCAmelCase__ : Optional[int] = padding_value normed_input_values.append(snake_case__ ) else: UpperCAmelCase__ : Optional[int] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def UpperCamelCase ( self : Tuple , snake_case__ : np.ndarray , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = spectrogram( snake_case__ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="log10" , ) return log_mel_spec.T def __call__( self : List[Any] , snake_case__ : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , snake_case__ : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , snake_case__ : Union[bool, str, PaddingStrategy] = False , snake_case__ : Optional[int] = None , snake_case__ : bool = False , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Optional[int] = None , **snake_case__ : List[Any] , ): '''simple docstring''' if audio is None and audio_target is None: raise ValueError("You must provide either `audio` or `audio_target` values." ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if audio is not None: UpperCAmelCase__ : Union[str, Any] = self._process_audio( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ , ) else: UpperCAmelCase__ : str = None if audio_target is not None: UpperCAmelCase__ : str = self._process_audio( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ , ) if inputs is None: return inputs_target else: UpperCAmelCase__ : Union[str, Any] = inputs_target["input_values"] UpperCAmelCase__ : Any = inputs_target.get("attention_mask" ) if decoder_attention_mask is not None: UpperCAmelCase__ : Dict = decoder_attention_mask return inputs def UpperCamelCase ( self : List[Any] , snake_case__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case__ : bool = False , snake_case__ : Union[bool, str, PaddingStrategy] = False , snake_case__ : Optional[int] = None , snake_case__ : bool = False , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[Union[str, TensorType]] = None , **snake_case__ : int , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = isinstance(snake_case__ , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) UpperCAmelCase__ : Union[str, Any] = is_batched_numpy or ( isinstance(snake_case__ , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase__ : List[Any] = [np.asarray(snake_case__ , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(snake_case__ , np.ndarray ): UpperCAmelCase__ : int = np.asarray(snake_case__ , dtype=np.floataa ) elif isinstance(snake_case__ , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): UpperCAmelCase__ : List[Any] = speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase__ : str = [speech] # needed to make pad() work on spectrogram inputs UpperCAmelCase__ : str = self.feature_size # convert into correct format for padding if is_target: UpperCAmelCase__ : List[Any] = [self._extract_mel_features(snake_case__ ) for waveform in speech] UpperCAmelCase__ : List[Any] = BatchFeature({"input_values": features} ) UpperCAmelCase__ : List[str] = self.num_mel_bins else: UpperCAmelCase__ : List[str] = BatchFeature({"input_values": speech} ) UpperCAmelCase__ : Optional[Any] = self.pad( snake_case__ , padding=snake_case__ , max_length=snake_case__ , truncation=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , **snake_case__ , ) UpperCAmelCase__ : List[str] = feature_size_hack # convert input values to correct format UpperCAmelCase__ : Tuple = padded_inputs["input_values"] if not isinstance(input_values[0] , np.ndarray ): UpperCAmelCase__ : List[Any] = [np.asarray(snake_case__ , dtype=np.floataa ) for array in input_values] elif ( not isinstance(snake_case__ , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): UpperCAmelCase__ : str = [array.astype(np.floataa ) for array in input_values] elif isinstance(snake_case__ , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): UpperCAmelCase__ : str = input_values.astype(np.floataa ) # convert attention_mask to correct format UpperCAmelCase__ : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: UpperCAmelCase__ : int = [np.asarray(snake_case__ , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: UpperCAmelCase__ : Any = ( attention_mask if self._get_padding_strategies(snake_case__ , max_length=snake_case__ ) is not PaddingStrategy.DO_NOT_PAD else None ) UpperCAmelCase__ : int = self.zero_mean_unit_var_norm( padded_inputs["input_values"] , attention_mask=snake_case__ , padding_value=self.padding_value ) if return_tensors is not None: UpperCAmelCase__ : Union[str, Any] = padded_inputs.convert_to_tensors(snake_case__ ) return padded_inputs def UpperCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = super().to_dict() # Don't serialize these as they are derived from the other properties. UpperCAmelCase__ : Dict = ["window", "mel_filters", "sample_size", "sample_stride", "n_fft", "n_freqs"] for name in names: if name in output: del output[name] return output
199
0
"""simple docstring""" import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : Any = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = AlbertTokenizer __a = AlbertTokenizerFast __a = True __a = True __a = True def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : Dict = AlbertTokenizer(UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Dict ): '''simple docstring''' __UpperCAmelCase : str = """this is a test""" __UpperCAmelCase : Optional[int] = """this is a test""" return input_text, output_text def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = """<pad>""" __UpperCAmelCase : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(UpperCamelCase ) , 30_000 ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' if not self.test_rust_tokenizer: return __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : Dict = self.get_rust_tokenizer() __UpperCAmelCase : Dict = """I was born in 92000, and this is falsé.""" __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(UpperCamelCase ) __UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : str = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) __UpperCAmelCase : str = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Dict = self.get_rust_tokenizer() __UpperCAmelCase : int = tokenizer.encode(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = AlbertTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [48, 25, 21, 1_289] ) __UpperCAmelCase : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) __UpperCAmelCase : Dict = tokenizer.convert_tokens_to_ids(UpperCamelCase ) self.assertListEqual(UpperCamelCase , [31, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] ) __UpperCAmelCase : int = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual( UpperCamelCase , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : str = AlbertTokenizer(UpperCamelCase ) __UpperCAmelCase : Optional[int] = tokenizer.encode("""sequence builders""" ) __UpperCAmelCase : Dict = tokenizer.encode("""multi-sequence build""" ) __UpperCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) __UpperCAmelCase : int = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : List[Any] = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 21_970, 13, 5, 6_092, 167, 28, 7_103, 2_153, 673, 8, 7_028, 12_051, 18, 17, 7_103, 2_153, 673, 8, 3_515, 18_684, 8, 4_461, 6, 1_927, 297, 8, 12_060, 2_607, 18, 13, 5, 4_461, 15, 10_538, 38, 8, 135, 15, 822, 58, 15, 993, 10_363, 15, 1_460, 8_005, 4_461, 15, 993, 255, 2_328, 9, 9, 9, 6, 26, 1_112, 816, 3_260, 13, 5, 103, 2_377, 6, 17, 1_112, 816, 2_782, 13, 5, 103, 10_641, 6, 29, 84, 2_512, 2_430, 782, 18_684, 2_761, 19, 808, 2_430, 2_556, 17, 855, 1_480, 9_477, 4_091, 128, 11_712, 15, 7_103, 2_153, 673, 17, 24_883, 9_990, 9, 3], [2, 11_502, 25, 1_006, 20, 782, 8, 11_809, 855, 1_732, 19_393, 18_667, 37, 367, 21_018, 69, 1_854, 34, 11_860, 19_124, 27, 156, 225, 17, 193, 4_141, 19, 65, 9_124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2_231, 886, 2_385, 17_659, 84, 14, 16_792, 1_952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
299
"""simple docstring""" from __future__ import annotations import queue class lowerCamelCase__ : """simple docstring""" def __init__( self : str , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = data __UpperCAmelCase : List[str] = None __UpperCAmelCase : Any = None def lowerCamelCase ( ) -> TreeNode: '''simple docstring''' print("""\n********Press N to stop entering at any point of time********\n""" ) __UpperCAmelCase : Optional[int] = input("""Enter the value of the root node: """ ).strip().lower() __UpperCAmelCase : queue.Queue = queue.Queue() __UpperCAmelCase : int = TreeNode(int(_UpperCamelCase ) ) q.put(_UpperCamelCase ) while not q.empty(): __UpperCAmelCase : List[str] = q.get() __UpperCAmelCase : List[str] = f'''Enter the left node of {node_found.data}: ''' __UpperCAmelCase : Tuple = input(_UpperCamelCase ).strip().lower() or """n""" if check == "n": return tree_node __UpperCAmelCase : str = TreeNode(int(_UpperCamelCase ) ) __UpperCAmelCase : List[Any] = left_node q.put(_UpperCamelCase ) __UpperCAmelCase : List[str] = f'''Enter the right node of {node_found.data}: ''' __UpperCAmelCase : Tuple = input(_UpperCamelCase ).strip().lower() or """n""" if check == "n": return tree_node __UpperCAmelCase : List[str] = TreeNode(int(_UpperCamelCase ) ) __UpperCAmelCase : Tuple = right_node q.put(_UpperCamelCase ) raise def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return __UpperCAmelCase : queue.Queue = queue.Queue() q.put(_UpperCamelCase ) while not q.empty(): __UpperCAmelCase : str = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return __UpperCAmelCase : queue.Queue = queue.Queue() q.put(_UpperCamelCase ) while not q.empty(): __UpperCAmelCase : Union[str, Any] = [] while not q.empty(): __UpperCAmelCase : Optional[int] = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return __UpperCAmelCase : list[TreeNode] = [] __UpperCAmelCase : Optional[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(_UpperCamelCase ) __UpperCAmelCase : Dict = n.left # end of while means current node doesn't have left child __UpperCAmelCase : List[str] = stack.pop() # start to traverse its right child __UpperCAmelCase : List[str] = n.right def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return __UpperCAmelCase : list[TreeNode] = [] __UpperCAmelCase : Dict = node while n or stack: while n: stack.append(_UpperCamelCase ) __UpperCAmelCase : Tuple = n.left __UpperCAmelCase : Any = stack.pop() print(n.data , end=""",""" ) __UpperCAmelCase : List[Any] = n.right def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return __UpperCAmelCase ,__UpperCAmelCase : Optional[int] = [], [] __UpperCAmelCase : Optional[Any] = node stacka.append(_UpperCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 __UpperCAmelCase : Tuple = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_UpperCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def lowerCamelCase ( _UpperCamelCase : str = "" , _UpperCamelCase : int=5_0 , _UpperCamelCase : Tuple="*" ) -> str: '''simple docstring''' if not s: return "\n" + width * char __UpperCAmelCase ,__UpperCAmelCase : Tuple = divmod(width - len(_UpperCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) UpperCAmelCase : TreeNode = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
299
1
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> str: """simple docstring""" __UpperCAmelCase : Any = "" for word_or_phrase in separated: if not isinstance(UpperCamelCase , UpperCamelCase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(UpperCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
77
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _a : """simple docstring""" A_ = MBartConfig A_ = {} A_ = """gelu""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ) -> Union[str, Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_ = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = TFMBartModel(config=_UpperCAmelCase ).get_decoder() UpperCamelCase_ = inputs_dict['input_ids'] UpperCamelCase_ = input_ids[:1, :] UpperCamelCase_ = inputs_dict['attention_mask'][:1, :] UpperCamelCase_ = inputs_dict['head_mask'] UpperCamelCase_ = 1 # first forward pass UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple() UpperCamelCase_ = past_key_values[1] def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ): if attention_mask is None: UpperCamelCase_ = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: UpperCamelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A_ = (TFMBartForConditionalGeneration,) if is_tf_available() else () A_ = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A_ = True A_ = False A_ = False def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = TFMBartModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class _a ( unittest.TestCase ): """simple docstring""" A_ = [ """ UN Chief Says There Is No Military Solution in Syria""", ] A_ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] A_ = """facebook/mbart-large-en-ro""" @cached_property def _UpperCAmelCase ( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> int: UpperCamelCase_ = self.translate_src_text(**_UpperCAmelCase ) self.assertListEqual(self.expected_text , _UpperCAmelCase ) def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> List[str]: UpperCamelCase_ = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='tf' ) UpperCamelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCamelCase_ = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def _UpperCAmelCase ( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
23
0
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ : def __init__( self : Any , UpperCAmelCase__ : str = None , UpperCAmelCase__ : uuid.UUID = None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=None ) -> Optional[Any]: if not conversation_id: lowerCAmelCase = uuid.uuida() if past_user_inputs is None: lowerCAmelCase = [] if generated_responses is None: lowerCAmelCase = [] lowerCAmelCase = conversation_id lowerCAmelCase = past_user_inputs lowerCAmelCase = generated_responses lowerCAmelCase = text def __eq__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> Union[str, Any]: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : bool = False ) -> Union[str, Any]: if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) lowerCAmelCase = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: lowerCAmelCase = text def __UpperCAmelCase ( self : Dict ) -> Any: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowerCAmelCase = None def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : str ) -> Any: self.generated_responses.append(UpperCAmelCase__ ) def __UpperCAmelCase ( self : int ) -> Optional[int]: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Optional[Any] ) -> Optional[Any]: lowerCAmelCase = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): lowerCAmelCase = """user""" if is_user else """bot""" output += F'''{name} >> {text} \n''' return output @add_end_docstrings( UpperCAmelCase__ , r'''\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ''' , ) class UpperCAmelCase_ ( UpperCAmelCase__ ): def __init__( self : Tuple , *UpperCAmelCase__ : str , **UpperCAmelCase__ : str ) -> Any: super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) if self.tokenizer.pad_token_id is None: lowerCAmelCase = self.tokenizer.eos_token def __UpperCAmelCase ( self : int , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Any=None , **UpperCAmelCase__ : Dict ) -> Tuple: lowerCAmelCase = {} lowerCAmelCase = {} lowerCAmelCase = {} if min_length_for_response is not None: lowerCAmelCase = min_length_for_response if minimum_tokens is not None: lowerCAmelCase = minimum_tokens if "max_length" in generate_kwargs: lowerCAmelCase = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowerCAmelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(UpperCAmelCase__ ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , UpperCAmelCase__ : Union[Conversation, List[Conversation]] , UpperCAmelCase__ : Any=0 , **UpperCAmelCase__ : Optional[int] ) -> Optional[int]: lowerCAmelCase = super().__call__(UpperCAmelCase__ , num_workers=UpperCAmelCase__ , **UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and len(UpperCAmelCase__ ) == 1: return outputs[0] return outputs def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : Conversation , UpperCAmelCase__ : List[str]=3_2 ) -> Dict[str, Any]: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): lowerCAmelCase = self.tokenizer._build_conversation_input_ids(UpperCAmelCase__ ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowerCAmelCase = self._legacy_parse_and_tokenize(UpperCAmelCase__ ) if self.framework == "pt": lowerCAmelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowerCAmelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : str=1_0 , **UpperCAmelCase__ : int ) -> Union[str, Any]: lowerCAmelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) lowerCAmelCase = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) lowerCAmelCase = max_length - minimum_tokens lowerCAmelCase = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: lowerCAmelCase = model_inputs["""attention_mask"""][:, -trim:] lowerCAmelCase = model_inputs.pop('conversation' ) lowerCAmelCase = max_length lowerCAmelCase = self.model.generate(**UpperCAmelCase__ , **UpperCAmelCase__ ) if self.model.config.is_encoder_decoder: lowerCAmelCase = 1 else: lowerCAmelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any]=True ) -> List[Any]: lowerCAmelCase = model_outputs["""output_ids"""] lowerCAmelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ , ) lowerCAmelCase = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(UpperCAmelCase__ ) return conversation def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : Conversation ) -> Dict: lowerCAmelCase = self.tokenizer.eos_token_id lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) ) if len(UpperCAmelCase__ ) > self.tokenizer.model_max_length: lowerCAmelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
714
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case =logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class UpperCAmelCase_ : lowerCamelCase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) lowerCamelCase : Optional[str] = field( default=__lowercase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCamelCase : Optional[str] = field( default=__lowercase , metadata={'''help''': '''The column name of the images in the files.'''} ) lowerCamelCase : Optional[str] = field(default=__lowercase , metadata={'''help''': '''A folder containing the training data.'''} ) lowerCamelCase : Optional[str] = field(default=__lowercase , metadata={'''help''': '''A folder containing the validation data.'''} ) lowerCamelCase : Optional[float] = field( default=0.1_5 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def __UpperCAmelCase ( self : List[str] ) -> int: lowerCAmelCase = {} if self.train_dir is not None: lowerCAmelCase = self.train_dir if self.validation_dir is not None: lowerCAmelCase = self.validation_dir lowerCAmelCase = data_files if data_files else None @dataclass class UpperCAmelCase_ : lowerCamelCase : str = field( default=__lowercase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) lowerCamelCase : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) lowerCamelCase : Optional[str] = field( default=__lowercase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) lowerCamelCase : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) lowerCamelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCamelCase : str = field(default=__lowercase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) lowerCamelCase : bool = field( default=__lowercase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) lowerCamelCase : float = field( default=0.7_5 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) lowerCamelCase : bool = field( default=__lowercase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : float = field( default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def a_ ( lowerCamelCase : Optional[int] ): lowerCAmelCase = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCAmelCase = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCamelCase ) and data_args.train_val_split > 0.0: lowerCAmelCase = ds['train'].train_test_split(data_args.train_val_split ) lowerCAmelCase = split['train'] lowerCAmelCase = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: lowerCAmelCase = ViTMAEConfig.from_pretrained(model_args.config_name , **lowerCamelCase ) elif model_args.model_name_or_path: lowerCAmelCase = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowerCamelCase ) else: lowerCAmelCase = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowerCAmelCase = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowerCamelCase ) elif model_args.model_name_or_path: lowerCAmelCase = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowerCamelCase ) else: lowerCAmelCase = ViTImageProcessor() # create model if model_args.model_name_or_path: lowerCAmelCase = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) lowerCAmelCase = ViTMAEForPreTraining(lowerCamelCase ) if training_args.do_train: lowerCAmelCase = ds['train'].column_names else: lowerCAmelCase = ds['validation'].column_names if data_args.image_column_name is not None: lowerCAmelCase = data_args.image_column_name elif "image" in column_names: lowerCAmelCase = 'image' elif "img" in column_names: lowerCAmelCase = 'img' else: lowerCAmelCase = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowerCAmelCase = image_processor.size['shortest_edge'] else: lowerCAmelCase = (image_processor.size['height'], image_processor.size['width']) lowerCAmelCase = Compose( [ Lambda(lambda lowerCamelCase : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(lowerCamelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowerCamelCase : Union[str, Any] ): lowerCAmelCase = [transforms(lowerCamelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: lowerCAmelCase = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowerCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: lowerCAmelCase = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowerCamelCase ) # Compute absolute learning rate lowerCAmelCase = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowerCAmelCase = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer lowerCAmelCase = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , ) # Training if training_args.do_train: lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase = last_checkpoint lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCAmelCase = trainer.evaluate() trainer.log_metrics('eval' , lowerCamelCase ) trainer.save_metrics('eval' , lowerCamelCase ) # Write model card and (optionally) push to hub lowerCAmelCase = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def a_ ( lowerCamelCase : Optional[Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
513
0
a_ : Optional[int] = 9.80_665 def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = g): if fluid_density <= 0: raise ValueError('Impossible fluid density') if volume < 0: raise ValueError('Impossible Object volume') if gravity <= 0: raise ValueError('Impossible Gravity') return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
73
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class _UpperCAmelCase ( lowerCAmelCase__): def _snake_case ( self : int , lowercase_ : Optional[Any]=None , lowercase_ : List[str]=None , lowercase_ : Optional[Any]=None , **lowercase_ : Any ): if tokenize_kwargs is None: snake_case_ : str = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) snake_case_ : int = truncation snake_case_ : Union[str, Any] = tokenize_kwargs snake_case_ : int = {} if return_tensors is not None: snake_case_ : str = return_tensors return preprocess_params, {}, postprocess_params def _snake_case ( self : List[Any] , lowercase_ : Optional[int] , **lowercase_ : int ): snake_case_ : Union[str, Any] = self.framework snake_case_ : List[Any] = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) return model_inputs def _snake_case ( self : Union[str, Any] , lowercase_ : Tuple ): snake_case_ : Union[str, Any] = self.model(**lowercase_ ) return model_outputs def _snake_case ( self : str , lowercase_ : str , lowercase_ : List[str]=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[str] , *lowercase_ : int , **lowercase_ : Dict ): return super().__call__(*lowercase_ , **lowercase_ )
123
0
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance __snake_case = 6378137.0 __snake_case = 6356752.314245 __snake_case = 6378137 def a ( __a , __a , __a , __a ) -> Dict: '''simple docstring''' UpperCamelCase__ :Optional[int] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude UpperCamelCase__ :Union[str, Any] = atan((1 - flattening) * tan(radians(lowerCamelCase__ ) ) ) UpperCamelCase__ :Optional[int] = atan((1 - flattening) * tan(radians(lowerCamelCase__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius UpperCamelCase__ :str = haversine_distance(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values UpperCamelCase__ :Optional[Any] = (b_lata + b_lata) / 2 UpperCamelCase__ :List[Any] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) UpperCamelCase__ :str = (sin(lowerCamelCase__ ) ** 2) * (cos(lowerCamelCase__ ) ** 2) UpperCamelCase__ :List[Any] = cos(sigma / 2 ) ** 2 UpperCamelCase__ :Dict = (sigma - sin(lowerCamelCase__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) UpperCamelCase__ :Tuple = (cos(lowerCamelCase__ ) ** 2) * (sin(lowerCamelCase__ ) ** 2) UpperCamelCase__ :Union[str, Any] = sin(sigma / 2 ) ** 2 UpperCamelCase__ :Any = (sigma + sin(lowerCamelCase__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
715
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class lowercase ( A__ ): """simple docstring""" _a = 'transfo-xl' _a = ['mems'] _a = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , UpperCamelCase_=267735 , UpperCamelCase_=[20000, 40000, 200000] , UpperCamelCase_=1024 , UpperCamelCase_=1024 , UpperCamelCase_=16 , UpperCamelCase_=64 , UpperCamelCase_=4096 , UpperCamelCase_=4 , UpperCamelCase_=False , UpperCamelCase_=18 , UpperCamelCase_=1600 , UpperCamelCase_=1000 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=0 , UpperCamelCase_=-1 , UpperCamelCase_=True , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="normal" , UpperCamelCase_=0.01 , UpperCamelCase_=0.01 , UpperCamelCase_=0.02 , UpperCamelCase_=1e-5 , UpperCamelCase_=0 , **UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :Dict = vocab_size UpperCamelCase__ :Optional[int] = [] self.cutoffs.extend(UpperCamelCase_ ) if proj_share_all_but_first: UpperCamelCase__ :Any = [False] + [True] * len(self.cutoffs ) else: UpperCamelCase__ :Dict = [False] + [False] * len(self.cutoffs ) UpperCamelCase__ :Union[str, Any] = d_model UpperCamelCase__ :List[Any] = d_embed UpperCamelCase__ :Any = d_head UpperCamelCase__ :Tuple = d_inner UpperCamelCase__ :int = div_val UpperCamelCase__ :int = pre_lnorm UpperCamelCase__ :Any = n_layer UpperCamelCase__ :int = n_head UpperCamelCase__ :Tuple = mem_len UpperCamelCase__ :List[str] = same_length UpperCamelCase__ :Any = attn_type UpperCamelCase__ :List[str] = clamp_len UpperCamelCase__ :Union[str, Any] = sample_softmax UpperCamelCase__ :List[Any] = adaptive UpperCamelCase__ :List[Any] = dropout UpperCamelCase__ :Optional[Any] = dropatt UpperCamelCase__ :str = untie_r UpperCamelCase__ :List[Any] = init UpperCamelCase__ :Optional[Any] = init_range UpperCamelCase__ :int = proj_init_std UpperCamelCase__ :List[str] = init_std UpperCamelCase__ :Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
280
0
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py snake_case = '''src/transformers''' snake_case = '''docs/source/en''' snake_case = '''.''' def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: with open(lowerCAmelCase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _snake_case = f.readlines() # Find the start prompt. _snake_case = 0 while not lines[start_index].startswith(lowerCAmelCase_ ): start_index += 1 start_index += 1 _snake_case = start_index while not lines[end_index].startswith(lowerCAmelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | snake_case = '''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. snake_case = re.compile(r'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') snake_case = re.compile(r'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. snake_case = re.compile(r'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # This is to make sure the transformers module imported is the one in the repo. snake_case = direct_transformers_import(TRANSFORMERS_PATH) def snake_case ( lowerCAmelCase_ ) -> str: _snake_case = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , lowerCAmelCase_ ) return [m.group(0 ) for m in matches] def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _snake_case = 2 if text == '''✅''' or text == '''❌''' else len(lowerCAmelCase_ ) _snake_case = (width - text_length) // 2 _snake_case = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def snake_case ( ) -> List[Any]: _snake_case = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _snake_case = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _snake_case = {name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _snake_case = collections.defaultdict(lowerCAmelCase_ ) _snake_case = collections.defaultdict(lowerCAmelCase_ ) _snake_case = collections.defaultdict(lowerCAmelCase_ ) _snake_case = collections.defaultdict(lowerCAmelCase_ ) _snake_case = collections.defaultdict(lowerCAmelCase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCAmelCase_ ): _snake_case = None if attr_name.endswith('''Tokenizer''' ): _snake_case = slow_tokenizers _snake_case = attr_name[:-9] elif attr_name.endswith('''TokenizerFast''' ): _snake_case = fast_tokenizers _snake_case = attr_name[:-13] elif _re_tf_models.match(lowerCAmelCase_ ) is not None: _snake_case = tf_models _snake_case = _re_tf_models.match(lowerCAmelCase_ ).groups()[0] elif _re_flax_models.match(lowerCAmelCase_ ) is not None: _snake_case = flax_models _snake_case = _re_flax_models.match(lowerCAmelCase_ ).groups()[0] elif _re_pt_models.match(lowerCAmelCase_ ) is not None: _snake_case = pt_models _snake_case = _re_pt_models.match(lowerCAmelCase_ ).groups()[0] if lookup_dict is not None: while len(lowerCAmelCase_ ) > 0: if attr_name in model_name_to_prefix.values(): _snake_case = True break # Try again after removing the last word in the name _snake_case = ''''''.join(camel_case_split(lowerCAmelCase_ )[:-1] ) # Let's build that table! _snake_case = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _snake_case = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _snake_case = [len(lowerCAmelCase_ ) + 2 for c in columns] _snake_case = max([len(lowerCAmelCase_ ) for name in model_names] ) + 2 # Build the table per se _snake_case = '''|''' + '''|'''.join([_center_text(lowerCAmelCase_ , lowerCAmelCase_ ) for c, w in zip(lowerCAmelCase_ , lowerCAmelCase_ )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n" _snake_case = {True: '''✅''', False: '''❌'''} for name in model_names: _snake_case = model_name_to_prefix[name] _snake_case = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCAmelCase_ , lowerCAmelCase_ ) for l, w in zip(lowerCAmelCase_ , lowerCAmelCase_ )] ) + "|\n" return table def snake_case ( lowerCAmelCase_=False ) -> Union[str, Any]: _snake_case , _snake_case , _snake_case , _snake_case = _find_text_in_file( filename=os.path.join(lowerCAmelCase_ , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , ) _snake_case = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCAmelCase_ , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( '''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') snake_case = parser.parse_args() check_model_table(args.fix_and_overwrite)
103
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """bigcode/gpt_bigcode-santacoder""": """https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json""", } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Optional[Any] = '''gpt_bigcode''' lowerCamelCase : Any = ['''past_key_values'''] lowerCamelCase : List[Any] = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : List[str] , UpperCAmelCase__ : List[str]=5_0_2_5_7 , UpperCAmelCase__ : List[str]=1_0_2_4 , UpperCAmelCase__ : Optional[Any]=7_6_8 , UpperCAmelCase__ : int=1_2 , UpperCAmelCase__ : List[str]=1_2 , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]="gelu_pytorch_tanh" , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : List[str]=1E-5 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Dict=5_0_2_5_6 , UpperCAmelCase__ : Any=5_0_2_5_6 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : int , ) -> List[str]: lowerCAmelCase = vocab_size lowerCAmelCase = n_positions lowerCAmelCase = n_embd lowerCAmelCase = n_layer lowerCAmelCase = n_head lowerCAmelCase = n_inner lowerCAmelCase = activation_function lowerCAmelCase = resid_pdrop lowerCAmelCase = embd_pdrop lowerCAmelCase = attn_pdrop lowerCAmelCase = layer_norm_epsilon lowerCAmelCase = initializer_range lowerCAmelCase = scale_attn_weights lowerCAmelCase = use_cache lowerCAmelCase = attention_softmax_in_fpaa lowerCAmelCase = scale_attention_softmax_in_fpaa lowerCAmelCase = multi_query lowerCAmelCase = bos_token_id lowerCAmelCase = eos_token_id super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ )
133
0
'''simple docstring''' class UpperCAmelCase : # Public class to implement a graph '''simple docstring''' def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) -> None: """simple docstring""" a_ =row a_ =col a_ =graph def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) -> None: """simple docstring""" a_ =[-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order a_ =[-1, 0, 1, -1, 1, -1, 0, 1] a_ =True # Make those cells visited for k in range(8): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , lowerCAmelCase_): self.diffs(i + row_nbr[k] , j + col_nbr[k] , lowerCAmelCase_) def lowercase_ ( self) -> int: # And finally, count all islands. """simple docstring""" a_ =[[False for j in range(self.COL)] for i in range(self.ROW)] a_ =0 for i in range(self.ROW): for j in range(self.COL): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) count += 1 return count
41
'''simple docstring''' import os from math import logaa def UpperCAmelCase_ ( lowercase__ = "base_exp.txt" ): '''simple docstring''' a_ =0 a_ =0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowercase__ ) , lowercase__ ) ) ): a_ , a_ =list(map(lowercase__ , line.split("," ) ) ) if x * logaa(lowercase__ ) > largest: a_ =x * logaa(lowercase__ ) a_ =i + 1 return result if __name__ == "__main__": print(solution())
41
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''bert''' def __init__( self , snake_case=30522 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=2 , snake_case=0.02 , snake_case=1E-12 , snake_case=0 , snake_case="absolute" , snake_case=True , snake_case=None , **snake_case , ) -> List[Any]: super().__init__(pad_token_id=snake_case , **snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = classifier_dropout class lowercase__ ( A ): '''simple docstring''' @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
573
"""simple docstring""" from __future__ import annotations class lowercase__ : '''simple docstring''' def __init__( self , snake_case ) -> None: _UpperCAmelCase = order # a_{0} ... a_{k} _UpperCAmelCase = [1.0] + [0.0] * order # b_{0} ... b_{k} _UpperCAmelCase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _UpperCAmelCase = [0.0] * self.order # y[n-1] ... y[n-k] _UpperCAmelCase = [0.0] * self.order def lowerCamelCase_ ( self , snake_case , snake_case ) -> None: if len(snake_case ) < self.order: _UpperCAmelCase = [1.0, *a_coeffs] if len(snake_case ) != self.order + 1: _UpperCAmelCase = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) if len(snake_case ) != self.order + 1: _UpperCAmelCase = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) _UpperCAmelCase = a_coeffs _UpperCAmelCase = b_coeffs def lowerCamelCase_ ( self , snake_case ) -> float: _UpperCAmelCase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _UpperCAmelCase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _UpperCAmelCase = self.input_history[:-1] _UpperCAmelCase = self.output_history[:-1] _UpperCAmelCase = sample _UpperCAmelCase = result return result
573
1
import pytest UpperCAmelCase_ = "__dummy_dataset1__" UpperCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def __magic_name__ ( ) -> Optional[Any]: """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __magic_name__ ( ) -> Optional[int]: """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __magic_name__ ( lowercase , lowercase , lowercase ) -> Dict: """simple docstring""" lowercase_ : Optional[Any] = dataset_loading_script_name lowercase_ : Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) lowercase_ : List[Any] = script_dir / f"""{script_name}.py""" with open(__snake_case , """w""" ) as f: f.write(__snake_case ) return str(__snake_case )
713
import math import flax.linen as nn import jax.numpy as jnp def __magic_name__ ( lowercase , lowercase , lowercase = 1 , lowercase = 1 , lowercase = 1.0E4 , lowercase = False , lowercase = 1.0 , ) -> jnp.ndarray: """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f"""Embedding dimension {embedding_dim} should be even""" lowercase_ : List[Any] = float(embedding_dim // 2 ) lowercase_ : Any = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowercase_ : Union[str, Any] = min_timescale * jnp.exp(jnp.arange(lowercase , dtype=jnp.floataa ) * -log_timescale_increment ) lowercase_ : List[str] = jnp.expand_dims(lowercase , 1 ) * jnp.expand_dims(lowercase , 0 ) # scale embeddings lowercase_ : int = scale * emb if flip_sin_to_cos: lowercase_ : List[str] = jnp.concatenate([jnp.cos(lowercase ), jnp.sin(lowercase )] , axis=1 ) else: lowercase_ : List[str] = jnp.concatenate([jnp.sin(lowercase ), jnp.cos(lowercase )] , axis=1 ) lowercase_ : str = jnp.reshape(lowercase , [jnp.shape(lowercase )[0], embedding_dim] ) return signal class UpperCamelCase__ ( nn.Module ): '''simple docstring''' __a : int = 32 __a : jnp.dtype = jnp.floataa @nn.compact def __call__( self, snake_case__ ) -> Union[str, Any]: """simple docstring""" lowercase_ : List[str] = nn.Dense(self.time_embed_dim, dtype=self.dtype, name="""linear_1""" )(snake_case__ ) lowercase_ : List[Any] = nn.silu(snake_case__ ) lowercase_ : List[str] = nn.Dense(self.time_embed_dim, dtype=self.dtype, name="""linear_2""" )(snake_case__ ) return temb class UpperCamelCase__ ( nn.Module ): '''simple docstring''' __a : int = 32 __a : bool = False __a : float = 1 @nn.compact def __call__( self, snake_case__ ) -> Optional[Any]: """simple docstring""" return get_sinusoidal_embeddings( snake_case__, embedding_dim=self.dim, flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.freq_shift )
436
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class _A ( UpperCamelCase ): """simple docstring""" lowerCamelCase : Tuple = 'ctrl' lowerCamelCase : Any = ['past_key_values'] lowerCamelCase : Optional[int] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=246534 , __SCREAMING_SNAKE_CASE : int=256 , __SCREAMING_SNAKE_CASE : Optional[Any]=1280 , __SCREAMING_SNAKE_CASE : Optional[Any]=8192 , __SCREAMING_SNAKE_CASE : int=48 , __SCREAMING_SNAKE_CASE : Union[str, Any]=16 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=1e-6 , __SCREAMING_SNAKE_CASE : List[str]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , **__SCREAMING_SNAKE_CASE : int , ) -> Any: __UpperCAmelCase =vocab_size __UpperCAmelCase =n_positions __UpperCAmelCase =n_embd __UpperCAmelCase =n_layer __UpperCAmelCase =n_head __UpperCAmelCase =dff __UpperCAmelCase =resid_pdrop __UpperCAmelCase =embd_pdrop __UpperCAmelCase =layer_norm_epsilon __UpperCAmelCase =initializer_range __UpperCAmelCase =use_cache super().__init__(**__SCREAMING_SNAKE_CASE )
68
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : Optional[Any] = CTRLTokenizer _A : Dict = False _A : Any = False def __UpperCamelCase (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ : Tuple = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] snake_case_ : int = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : List[str] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] snake_case_ : Tuple = {"""unk_token""": """<unk>"""} snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase__ ) ) def __UpperCamelCase (self , **lowercase__ ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = """adapt react readapt apt""" snake_case_ : Tuple = """adapt react readapt apt""" return input_text, output_text def __UpperCamelCase (self ): snake_case_ : int = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case_ : Tuple = """adapt react readapt apt""" snake_case_ : List[str] = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() snake_case_ : List[str] = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = tokens + [tokenizer.unk_token] snake_case_ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ )
480
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """roformer""" def __init__( self : List[Any] ,_a : Tuple=50000 ,_a : List[str]=None ,_a : int=768 ,_a : List[str]=12 ,_a : Optional[Any]=12 ,_a : Union[str, Any]=3072 ,_a : Optional[int]="gelu" ,_a : Dict=0.1 ,_a : List[str]=0.1 ,_a : Any=1536 ,_a : Optional[Any]=2 ,_a : List[Any]=0.02 ,_a : Dict=1e-12 ,_a : Union[str, Any]=0 ,_a : List[str]=False ,_a : str=True ,**_a : Optional[Any] ,): '''simple docstring''' super().__init__(pad_token_id=_a ,**_a ) A_ : Optional[int] = vocab_size A_ : str = hidden_size if embedding_size is None else embedding_size A_ : int = hidden_size A_ : Any = num_hidden_layers A_ : Tuple = num_attention_heads A_ : List[str] = hidden_act A_ : str = intermediate_size A_ : Union[str, Any] = hidden_dropout_prob A_ : Any = attention_probs_dropout_prob A_ : Union[str, Any] = max_position_embeddings A_ : List[str] = type_vocab_size A_ : List[str] = initializer_range A_ : List[str] = layer_norm_eps A_ : Optional[Any] = rotary_value A_ : Union[str, Any] = use_cache class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : Any ): '''simple docstring''' if self.task == "multiple-choice": A_ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : int = {0: """batch""", 1: """sequence"""} A_ : Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
27
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """deberta-v2""" def __init__( self : Optional[Any] ,_a : Union[str, Any]=128100 ,_a : Optional[int]=1536 ,_a : Dict=24 ,_a : int=24 ,_a : Tuple=6144 ,_a : Union[str, Any]="gelu" ,_a : List[Any]=0.1 ,_a : Dict=0.1 ,_a : int=512 ,_a : int=0 ,_a : int=0.02 ,_a : int=1e-7 ,_a : List[str]=False ,_a : Union[str, Any]=-1 ,_a : List[Any]=0 ,_a : Optional[Any]=True ,_a : Tuple=None ,_a : Any=0 ,_a : int="gelu" ,**_a : Any ,): '''simple docstring''' super().__init__(**_a ) A_ : Union[str, Any] = hidden_size A_ : Dict = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : List[Any] = intermediate_size A_ : List[Any] = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : int = max_position_embeddings A_ : Any = type_vocab_size A_ : List[Any] = initializer_range A_ : int = relative_attention A_ : Tuple = max_relative_positions A_ : int = pad_token_id A_ : Tuple = position_biased_input # Backwards compatibility if type(_a ) == str: A_ : str = [x.strip() for x in pos_att_type.lower().split("""|""" )] A_ : Any = pos_att_type A_ : Optional[int] = vocab_size A_ : Tuple = layer_norm_eps A_ : Any = kwargs.get("""pooler_hidden_size""" ,_a ) A_ : Union[str, Any] = pooler_dropout A_ : List[Any] = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : Any ): '''simple docstring''' if self.task == "multiple-choice": A_ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : Any = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def _a ( self : Optional[int] ): '''simple docstring''' return 12 def _a ( self : int ,_a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,_a : int = -1 ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional["TensorType"] = None ,_a : int = 3 ,_a : int = 40 ,_a : int = 40 ,_a : "PreTrainedTokenizerBase" = None ,): '''simple docstring''' A_ : Any = super().generate_dummy_inputs(preprocessor=_a ,framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
27
1
from __future__ import annotations from collections.abc import Callable __SCREAMING_SNAKE_CASE =list[list[float | int]] def a (_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(size + 1 )] for _ in range(_lowerCAmelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for row in range(_lowerCAmelCase ): for col in range(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = matrix[row][col] SCREAMING_SNAKE_CASE_ = vector[row][0] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCAmelCase , _lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE_ = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCAmelCase ): for row in range(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = augmented[row][col] / augmented[col][col] for cola in range(_lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 1_0 )] for row in range(_lowerCAmelCase ) ] def a (_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(_lowerCAmelCase )] for _ in range(_lowerCAmelCase )] SCREAMING_SNAKE_CASE_ = [[0] for _ in range(_lowerCAmelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for x_val, y_val in enumerate(_lowerCAmelCase ): for col in range(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE_ = y_val SCREAMING_SNAKE_CASE_ = solve(_lowerCAmelCase , _lowerCAmelCase ) def interpolated_func(_lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCAmelCase ) ) return interpolated_func def a (_lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**1_0 ) def a (_lowerCAmelCase = question_function , _lowerCAmelCase = 1_0 ): SCREAMING_SNAKE_CASE_ = [func(_lowerCAmelCase ) for x_val in range(1 , order + 1 )] SCREAMING_SNAKE_CASE_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for poly in polynomials: SCREAMING_SNAKE_CASE_ = 1 while func(_lowerCAmelCase ) == poly(_lowerCAmelCase ): x_val += 1 ret += poly(_lowerCAmelCase ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
234
from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=__UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ["flax"] def __init__( self: Dict , *_lowerCamelCase: Tuple , **_lowerCamelCase: List[str] ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls: Dict , *_lowerCamelCase: Optional[Any] , **_lowerCamelCase: List[Any] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls: Tuple , *_lowerCamelCase: Tuple , **_lowerCamelCase: Optional[int] ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=__UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ["flax"] def __init__( self: Union[str, Any] , *_lowerCamelCase: Any , **_lowerCamelCase: Dict ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls: Union[str, Any] , *_lowerCamelCase: Any , **_lowerCamelCase: Tuple ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls: int , *_lowerCamelCase: List[Any] , **_lowerCamelCase: Optional[int] ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=__UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = ["flax"] def __init__( self: int , *_lowerCamelCase: Tuple , **_lowerCamelCase: List[Any] ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls: Optional[Any] , *_lowerCamelCase: Optional[Any] , **_lowerCamelCase: List[str] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls: Optional[int] , *_lowerCamelCase: str , **_lowerCamelCase: int ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=__UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["flax"] def __init__( self: int , *_lowerCamelCase: Dict , **_lowerCamelCase: Dict ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls: Optional[int] , *_lowerCamelCase: Any , **_lowerCamelCase: Optional[int] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls: Any , *_lowerCamelCase: Optional[int] , **_lowerCamelCase: Union[str, Any] ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=__UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = ["flax"] def __init__( self: Tuple , *_lowerCamelCase: List[str] , **_lowerCamelCase: Union[str, Any] ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls: str , *_lowerCamelCase: Optional[Any] , **_lowerCamelCase: Optional[Any] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls: Any , *_lowerCamelCase: str , **_lowerCamelCase: List[Any] ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=__UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ["flax"] def __init__( self: Dict , *_lowerCamelCase: str , **_lowerCamelCase: List[Any] ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls: Tuple , *_lowerCamelCase: List[Any] , **_lowerCamelCase: Optional[Any] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls: Union[str, Any] , *_lowerCamelCase: Union[str, Any] , **_lowerCamelCase: Any ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=__UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = ["flax"] def __init__( self: str , *_lowerCamelCase: List[str] , **_lowerCamelCase: List[Any] ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls: List[Any] , *_lowerCamelCase: Dict , **_lowerCamelCase: Optional[int] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls: int , *_lowerCamelCase: Dict , **_lowerCamelCase: List[str] ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=__UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ["flax"] def __init__( self: Dict , *_lowerCamelCase: Tuple , **_lowerCamelCase: int ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls: List[Any] , *_lowerCamelCase: Dict , **_lowerCamelCase: Tuple ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls: Optional[int] , *_lowerCamelCase: Union[str, Any] , **_lowerCamelCase: Optional[Any] ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=__UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ["flax"] def __init__( self: int , *_lowerCamelCase: List[Any] , **_lowerCamelCase: Optional[int] ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls: Union[str, Any] , *_lowerCamelCase: Optional[Any] , **_lowerCamelCase: Optional[int] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls: Optional[Any] , *_lowerCamelCase: Any , **_lowerCamelCase: int ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=__UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ["flax"] def __init__( self: Optional[Any] , *_lowerCamelCase: Union[str, Any] , **_lowerCamelCase: Any ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls: Optional[Any] , *_lowerCamelCase: Union[str, Any] , **_lowerCamelCase: Tuple ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls: Union[str, Any] , *_lowerCamelCase: Tuple , **_lowerCamelCase: str ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=__UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["flax"] def __init__( self: str , *_lowerCamelCase: Any , **_lowerCamelCase: int ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls: List[Any] , *_lowerCamelCase: Optional[int] , **_lowerCamelCase: Tuple ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls: Dict , *_lowerCamelCase: str , **_lowerCamelCase: int ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=__UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = ["flax"] def __init__( self: Any , *_lowerCamelCase: Union[str, Any] , **_lowerCamelCase: Any ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls: Tuple , *_lowerCamelCase: Union[str, Any] , **_lowerCamelCase: Union[str, Any] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls: Dict , *_lowerCamelCase: List[Any] , **_lowerCamelCase: Optional[Any] ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=__UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ["flax"] def __init__( self: Tuple , *_lowerCamelCase: List[Any] , **_lowerCamelCase: Optional[Any] ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls: Any , *_lowerCamelCase: List[str] , **_lowerCamelCase: Optional[int] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls: int , *_lowerCamelCase: Tuple , **_lowerCamelCase: Optional[int] ): requires_backends(cls , ['''flax'''] )
234
1
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __lowerCamelCase ( __a :ndarray ) -> float: """simple docstring""" return np.dot(__a , __a ) class A : '''simple docstring''' def __init__( self : Union[str, Any] , *, __lowerCAmelCase : float = np.inf , __lowerCAmelCase : str = "linear" , __lowerCAmelCase : float = 0.0 , ) -> None: """simple docstring""" A__ = regularization A__ = gamma if kernel == "linear": A__ = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("""rbf kernel requires gamma""" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("""gamma must be float or int""" ) if not self.gamma > 0: raise ValueError("""gamma must be > 0""" ) A__ = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: A__ = f'Unknown kernel: {kernel}' raise ValueError(__lowerCAmelCase ) def a_ ( self : Tuple , __lowerCAmelCase : ndarray , __lowerCAmelCase : ndarray ) -> float: """simple docstring""" return np.dot(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : str , __lowerCAmelCase : ndarray , __lowerCAmelCase : ndarray ) -> float: """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def a_ ( self : Union[str, Any] , __lowerCAmelCase : list[ndarray] , __lowerCAmelCase : ndarray ) -> None: """simple docstring""" A__ = observations A__ = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((A__) , ) = np.shape(__lowerCAmelCase ) def to_minimize(__lowerCAmelCase : ndarray ) -> float: A__ = 0 ((A__) , ) = np.shape(__lowerCAmelCase ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(__lowerCAmelCase ) A__ = LinearConstraint(__lowerCAmelCase , 0 , 0 ) A__ = Bounds(0 , self.regularization ) A__ = minimize( __lowerCAmelCase , np.ones(__lowerCAmelCase ) , bounds=__lowerCAmelCase , constraints=[ly_contraint] ).x A__ = l_star # calculating mean offset of separation plane to points A__ = 0 for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) A__ = s / n def a_ ( self : Tuple , __lowerCAmelCase : ndarray ) -> int: """simple docstring""" A__ = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , __lowerCAmelCase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
247
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py A : int = '''src/diffusers''' # Matches is_xxx_available() A : Dict = re.compile(R'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla A : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') A : str = ''' {0} = None ''' A : str = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' A : Tuple = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def __lowerCamelCase ( __a :str ) -> Any: """simple docstring""" A__ = _re_backend.findall(__a ) if len(__a ) == 0: return None return "_and_".join(__a ) def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" with open(os.path.join(__a , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A__ = f.readlines() # Get to the point we do the actual imports for type checking A__ = 0 A__ = {} # Go through the end of the file while line_index < len(__a ): # If the line contains is_backend_available, we grab all objects associated with the `else` block A__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 A__ = [] # Until we unindent, add backend objects to the list while line_index < len(__a ) and len(lines[line_index] ) > 1: A__ = lines[line_index] A__ = _re_single_line_import.search(__a ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__a ) > 0: A__ = objects else: line_index += 1 return backend_specific_objects def __lowerCamelCase ( __a :Any , __a :List[str] ) -> int: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(__a ) elif name.islower(): return DUMMY_FUNCTION.format(__a , __a ) else: return DUMMY_CLASS.format(__a , __a ) def __lowerCamelCase ( __a :Optional[Any]=None ) -> Tuple: """simple docstring""" if backend_specific_objects is None: A__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename A__ = {} for backend, objects in backend_specific_objects.items(): A__ = """[""" + """, """.join(F'"{b}"' for b in backend.split("""_and_""" ) ) + """]""" A__ = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__a , __a ) for o in objects] ) A__ = dummy_file return dummy_files def __lowerCamelCase ( __a :Union[str, Any]=False ) -> Optional[int]: """simple docstring""" A__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py A__ = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. A__ = os.path.join(__a , """utils""" ) A__ = { backend: os.path.join(__a , F'dummy_{short_names.get(__a , __a )}_objects.py' ) for backend in dummy_files.keys() } A__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__a ): with open(__a , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A__ = f.read() else: A__ = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(__a , __a )}_objects.py as the main ' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ F'diffusers.utils.dummy_{short_names.get(__a , __a )}_objects.py. Run `make fix-copies` ' """to fix this.""" ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A : int = parser.parse_args() check_dummies(args.fix_and_overwrite)
247
1
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __snake_case ( ) -> List[str]: lowercase : List[Any] = HfArgumentParser(__A ) lowercase : int = parser.parse_args_into_dataclasses()[0] lowercase : Union[str, Any] = TensorFlowBenchmark(args=__A ) try: lowercase : str = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase : Union[str, Any] = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" lowercase : Tuple = """ """.join(str(__A ).split(""" """ )[:-1] ) lowercase : Tuple = """""" lowercase : Optional[int] = eval(str(__A ).split(""" """ )[-1] ) lowercase : Union[str, Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__A ) if len(__A ) > 0: lowercase : Any = full_error_msg + begin_error_msg + str(__A ) raise ValueError(__A ) benchmark.run() if __name__ == "__main__": main()
607
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __snake_case ( __A ) -> Any: lowercase : List[str] = os.path.join(args.tf_model_dir ,"""parameters.json""" ) lowercase : Any = json.loads(open(__A ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith(""".pt""" ): lowercase : List[str] = args.output + """.pt""" lowercase : Dict = OrderedDict() with tf.device("""/CPU:0""" ): lowercase : Any = tf.train.load_checkpoint(args.tf_model_dir ) lowercase : List[Any] = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase : Optional[Any] = reader.get_tensor(__A ).astype(np.floataa ) if key_name.endswith("""/adam_m""" ) or key_name.endswith("""/adam_v""" ): continue if key_name.startswith("""pasts/""" ): if key_name.startswith("""pasts/mlp""" ): lowercase : str = int(key_name[9] ) elif key_name.startswith("""pasts/out""" ): lowercase : List[Any] = 8 lowercase : Optional[int] = """model.sqout.%d.weight""" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase : int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : int = torch.tensor(__A ) elif key_name.startswith("""model/moe""" ): lowercase : Optional[int] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/switch_gating/kernel""" ): lowercase : Any = """model.blocks.%d.feed_forward.mlp.router.classifier.weight""" % player lowercase : List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : Tuple = torch.tensor(__A ) elif key_name.endswith("""/softmlp/kernel""" ): lowercase : str = """model.blocks.%d.feed_forward.soft_bypass_mlp.weight""" % player lowercase : Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : Optional[int] = torch.tensor(__A ) elif key_name.endswith("""/wo/kernel""" ) or key_name.endswith("""/wi/kernel""" ): lowercase : Union[str, Any] = key_name[-9:-7] for i in range(16 ): lowercase : int = """model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight""" % (player, i, nlayer) lowercase : str = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase : List[Any] = torch.tensor(__A ) elif key_name.startswith("""model/mlp""" ): lowercase : Any = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/p1/kernel""" ): lowercase : Dict = """model.blocks.%d.feed_forward.mlp.wi.weight""" % player lowercase : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : int = torch.tensor(__A ) elif key_name.endswith("""/p1/bias""" ): lowercase : Tuple = """model.blocks.%d.feed_forward.mlp.wi.bias""" % player lowercase : Tuple = vnp.copy() # same because it is one dimensional lowercase : Tuple = torch.tensor(__A ) elif key_name.endswith("""/p2/kernel""" ): lowercase : int = """model.blocks.%d.feed_forward.mlp.wo.weight""" % player lowercase : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : Optional[Any] = torch.tensor(__A ) elif key_name.endswith("""/p2/bias""" ): lowercase : Any = """model.blocks.%d.feed_forward.mlp.wo.bias""" % player lowercase : str = vnp.copy() # same because it is one dimensional lowercase : str = torch.tensor(__A ) elif key_name.startswith("""model/ln""" ): lowercase : Union[str, Any] = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): lowercase : Any = """model.blocks.%d.feed_forward.norm.bias""" % player lowercase : List[str] = vnp.copy() # same because it is one dimensional lowercase : Any = torch.tensor(__A ) elif key_name.endswith("""/g""" ): lowercase : int = """model.blocks.%d.feed_forward.norm.weight""" % player lowercase : Union[str, Any] = vnp.copy() # same because it is one dimensional lowercase : Optional[Any] = torch.tensor(__A ) elif key_name.startswith("""model/att""" ): lowercase : Optional[int] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/qkv/kernel""" ): lowercase : Optional[int] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase : Any = state[:, 0, :, :] lowercase : List[Any] = state[:, 1, :, :] lowercase : Optional[Any] = state[:, 2, :, :] lowercase : Dict = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase : List[str] = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase : Optional[Any] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase : str = """model.blocks.%d.self_attn.self_attn.q_proj.weight""" % player lowercase : Optional[int] = torch.tensor(__A ) lowercase : int = """model.blocks.%d.self_attn.self_attn.k_proj.weight""" % player lowercase : Optional[Any] = torch.tensor(__A ) lowercase : Tuple = """model.blocks.%d.self_attn.self_attn.v_proj.weight""" % player lowercase : List[str] = torch.tensor(__A ) elif key_name.endswith("""/o/kernel""" ): lowercase : Any = """model.blocks.%d.self_attn.self_attn.out_proj.weight""" % player lowercase : List[Any] = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase : Optional[int] = torch.tensor(__A ) elif key_name.startswith("""model/an""" ): lowercase : Tuple = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): lowercase : List[str] = """model.blocks.%d.self_attn.norm.bias""" % player lowercase : List[str] = vnp.copy() # same because it is one dimensional lowercase : int = torch.tensor(__A ) elif key_name.endswith("""/g""" ): lowercase : Any = """model.blocks.%d.self_attn.norm.weight""" % player lowercase : Union[str, Any] = vnp.copy() # same because it is one dimensional lowercase : int = torch.tensor(__A ) elif ( key_name.startswith("""model/wte""" ) or key_name.startswith("""model/wpe""" ) or key_name.startswith("""model/ete""" ) ): lowercase : Any = {"""wte""": """embed_tokens""", """wpe""": """position_embeddings""", """ete""": """extra_position_embeddings"""}[ key_name[-3:] ] lowercase : Optional[int] = """model.%s.weight""" % nlayer lowercase : Any = vnp.copy() # same in embedded lowercase : Dict = torch.tensor(__A ) if key_name.startswith("""model/wte""" ): lowercase : Optional[Any] = """lm_head.weight""" lowercase : int = vnp.copy() # same in embedded lowercase : str = torch.tensor(__A ) elif key_name.startswith("""model/wob""" ): lowercase : str = """final_logits_bias""" lowercase : List[str] = vnp.copy() # same in embedded lowercase : str = state.reshape((1, -1) ) lowercase : Tuple = torch.tensor(__A ) elif key_name == "model/dense/kernel": lowercase : Dict = """model.last_project.weight""" lowercase : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : int = torch.tensor(__A ) elif key_name == "model/dense_1/bias": lowercase : List[str] = """model.last_project.bias""" lowercase : Dict = vnp.copy() # same because it is one dimensional lowercase : List[str] = torch.tensor(__A ) torch.save(__A ,args.output ) if __name__ == "__main__": lowerCAmelCase: Tuple =argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") lowerCAmelCase: Tuple =parser.parse_args() convert_tf_gptsan_to_pt(args)
607
1
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version a_ = get_logger(__name__) class lowercase__ : a_ ='dummy_data' a_ ='datasets' a_ =False def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , )-> str: '''simple docstring''' lowerCAmelCase__ = 0 lowerCAmelCase__ = dataset_name lowerCAmelCase__ = cache_dir lowerCAmelCase__ = use_local_dummy_data lowerCAmelCase__ = config # download_callbacks take a single url as input lowerCAmelCase__ = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowerCAmelCase__ = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowerCAmelCase__ = str(A_ ) # to be downloaded lowerCAmelCase__ = None lowerCAmelCase__ = None @property def UpperCAmelCase ( self )-> Any: '''simple docstring''' if self._dummy_file is None: lowerCAmelCase__ = self.download_dummy_data() return self._dummy_file @property def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowerCAmelCase__ = cached_path( A_ , cache_dir=self.cache_dir , extract_compressed_file=A_ , force_extract=A_ ) return os.path.join(A_ , self.dummy_file_name ) @property def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def UpperCAmelCase ( self )-> int: '''simple docstring''' if self._bucket_url is None: lowerCAmelCase__ = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def UpperCAmelCase ( self )-> int: '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def UpperCAmelCase ( self , __UpperCAmelCase , *__UpperCAmelCase )-> List[str]: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested lowerCAmelCase__ = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowerCAmelCase__ = self.dummy_file_name # special case when data_url is a dict if isinstance(A_ , A_ ): return self.create_dummy_data_dict(A_ , A_ ) elif isinstance(A_ , (list, tuple) ): return self.create_dummy_data_list(A_ , A_ ) else: return self.create_dummy_data_single(A_ , A_ ) def UpperCAmelCase ( self , __UpperCAmelCase , *__UpperCAmelCase )-> Dict: '''simple docstring''' return self.download_and_extract(A_ ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> List[str]: '''simple docstring''' return self.download_and_extract(A_ ) def UpperCAmelCase ( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase )-> List[Any]: '''simple docstring''' return path def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' return {} def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(A_ , A_ ): for single_url in single_urls: download_callback(A_ ) else: lowerCAmelCase__ = single_urls download_callback(A_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(A_ , A_ ): lowerCAmelCase__ = [os.path.join(A_ , urllib.parse.quote_plus(Path(A_ ).name ) ) for x in single_urls] else: lowerCAmelCase__ = single_urls lowerCAmelCase__ = os.path.join(A_ , urllib.parse.quote_plus(Path(A_ ).name ) ) lowerCAmelCase__ = value # make sure that values are unique if all(isinstance(A_ , A_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowerCAmelCase__ = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowerCAmelCase__ = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , A_ ) ) for url in data_url ) lowerCAmelCase__ = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowerCAmelCase__ = [data_url[0]] * len(A_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(A_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase__ = os.path.join(A_ , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(A_ ) return dummy_data_list def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(A_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase__ = os.path.join(A_ , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(A_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCAmelCase ( self )-> Any: '''simple docstring''' pass def UpperCAmelCase ( self )-> Any: '''simple docstring''' pass def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple: '''simple docstring''' def _iter_archive_members(__UpperCAmelCase ): # this preserves the order of the members inside the ZIP archive lowerCAmelCase__ = Path(self.dummy_file ).parent lowerCAmelCase__ = path.relative_to(A_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowerCAmelCase__ = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(A_ ) lowerCAmelCase__ = Path(A_ ) lowerCAmelCase__ = _iter_archive_members(A_ ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(A_ ).as_posix(), file_path.open("rb" ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' if not isinstance(A_ , A_ ): lowerCAmelCase__ = [paths] for path in paths: if os.path.isfile(A_ ): if os.path.basename(A_ ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(A_ ): if os.path.basename(A_ ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(A_ ): if filename.startswith((".", "__") ): continue yield os.path.join(A_ , A_ )
716
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class lowercase__ ( _UpperCAmelCase ): def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_attention_heads" ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_encoder_blocks" ) ) class lowercase__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=[2, 2, 2, 2] , __UpperCAmelCase=[8, 4, 2, 1] , __UpperCAmelCase=[16, 32, 64, 128] , __UpperCAmelCase=[1, 4, 8, 16] , __UpperCAmelCase=[1, 2, 4, 8] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=None , )-> str: '''simple docstring''' lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = num_encoder_blocks lowerCAmelCase__ = sr_ratios lowerCAmelCase__ = depths lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = downsampling_rates lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_labels lowerCAmelCase__ = scope def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = SegformerModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ = model(__UpperCAmelCase ) lowerCAmelCase__ = lowerCAmelCase__ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = SegformerForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) lowerCAmelCase__ = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = 1 lowerCAmelCase__ = SegformerForSemanticSegmentation(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(__UpperCAmelCase ) lowerCAmelCase__ = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase ): a_ =( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) a_ =( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) a_ =True a_ =False a_ =False a_ =False def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = SegformerModelTester(self ) lowerCAmelCase__ = SegformerConfigTester(self , config_class=__UpperCAmelCase ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*__UpperCAmelCase ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*__UpperCAmelCase ) @unittest.skip("SegFormer does not use inputs_embeds" ) def UpperCAmelCase ( self )-> Dict: '''simple docstring''' pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods" ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' pass def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(__UpperCAmelCase ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = True for model_class in self.all_model_classes: lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ = outputs.attentions lowerCAmelCase__ = sum(self.model_tester.depths ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ = True lowerCAmelCase__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # verify the first attentions (first block, first layer) lowerCAmelCase__ = (self.model_tester.image_size // 4) ** 2 lowerCAmelCase__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) lowerCAmelCase__ = (self.model_tester.image_size // 32) ** 2 lowerCAmelCase__ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) lowerCAmelCase__ = len(__UpperCAmelCase ) # Check attention is always last and order is fine lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(out_len + 1 , len(__UpperCAmelCase ) ) lowerCAmelCase__ = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # verify the first attentions (first block, first layer) lowerCAmelCase__ = (self.model_tester.image_size // 4) ** 2 lowerCAmelCase__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ = outputs.hidden_states lowerCAmelCase__ = self.model_tester.num_encoder_blocks self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = True for model_class in self.all_model_classes: if model_class in get_values(__UpperCAmelCase ): continue lowerCAmelCase__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() lowerCAmelCase__ = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) lowerCAmelCase__ = model(**__UpperCAmelCase ).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' pass @slow def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = SegformerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" lowerCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class lowercase__ ( unittest.TestCase ): @slow def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__UpperCAmelCase , align=__UpperCAmelCase , do_random_crop=__UpperCAmelCase ) lowerCAmelCase__ = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( __UpperCAmelCase ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=__UpperCAmelCase , return_tensors="pt" ) lowerCAmelCase__ = encoded_inputs.pixel_values.to(__UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ = model(__UpperCAmelCase ) lowerCAmelCase__ = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) lowerCAmelCase__ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__UpperCAmelCase , align=__UpperCAmelCase , do_random_crop=__UpperCAmelCase ) lowerCAmelCase__ = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(__UpperCAmelCase ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=__UpperCAmelCase , return_tensors="pt" ) lowerCAmelCase__ = encoded_inputs.pixel_values.to(__UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ = model(__UpperCAmelCase ) lowerCAmelCase__ = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) lowerCAmelCase__ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-1 ) ) @slow def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__UpperCAmelCase , align=__UpperCAmelCase , do_random_crop=__UpperCAmelCase ) lowerCAmelCase__ = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( __UpperCAmelCase ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=__UpperCAmelCase , return_tensors="pt" ) lowerCAmelCase__ = encoded_inputs.pixel_values.to(__UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ = model(__UpperCAmelCase ) lowerCAmelCase__ = outputs.logits.detach().cpu() lowerCAmelCase__ = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) lowerCAmelCase__ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) lowerCAmelCase__ = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) lowerCAmelCase__ = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
115
0
'''simple docstring''' def a_ ( __snake_case : Any , __snake_case : List[Any] , __snake_case : Optional[Any] ) -> float: """simple docstring""" if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(__lowercase , __lowercase ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate lowerCamelCase_ =rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowerCamelCase_ =years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
676
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase_ = logging.get_logger(__name__) # General docstring lowerCamelCase_ = '''RegNetConfig''' # Base docstring lowerCamelCase_ = '''facebook/regnet-y-040''' lowerCamelCase_ = [1, 10_88, 7, 7] # Image classification docstring lowerCamelCase_ = '''facebook/regnet-y-040''' lowerCamelCase_ = '''tabby, tabby cat''' lowerCamelCase_ = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : int , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : Optional[str] = "relu" , ): '''simple docstring''' super().__init__() _A = nn.Convad( __UpperCAmelCase , __UpperCAmelCase , kernel_size=__UpperCAmelCase , stride=__UpperCAmelCase , padding=kernel_size // 2 , groups=__UpperCAmelCase , bias=__UpperCAmelCase , ) _A = nn.BatchNormad(__UpperCAmelCase ) _A = ACTaFN[activation] if activation is not None else nn.Identity() def lowerCAmelCase ( self : str , __UpperCAmelCase : Union[str, Any] ): '''simple docstring''' _A = self.convolution(__UpperCAmelCase ) _A = self.normalization(__UpperCAmelCase ) _A = self.activation(__UpperCAmelCase ) return hidden_state class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : RegNetConfig ): '''simple docstring''' super().__init__() _A = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) _A = config.num_channels def lowerCAmelCase ( self : int , __UpperCAmelCase : str ): '''simple docstring''' _A = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) _A = self.embedder(__UpperCAmelCase ) return hidden_state class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int = 2 ): '''simple docstring''' super().__init__() _A = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 , stride=__UpperCAmelCase , bias=__UpperCAmelCase ) _A = nn.BatchNormad(__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Tensor ): '''simple docstring''' _A = self.convolution(__UpperCAmelCase ) _A = self.normalization(__UpperCAmelCase ) return hidden_state class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : int ): '''simple docstring''' super().__init__() _A = nn.AdaptiveAvgPoolad((1, 1) ) _A = nn.Sequential( nn.Convad(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , ) def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str ): '''simple docstring''' _A = self.pooler(__UpperCAmelCase ) _A = self.attention(__UpperCAmelCase ) _A = hidden_state * attention return hidden_state class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , __UpperCAmelCase : RegNetConfig , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int = 1 ): '''simple docstring''' super().__init__() _A = in_channels != out_channels or stride != 1 _A = max(1 , out_channels // config.groups_width ) _A = ( RegNetShortCut(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) _A = nn.Sequential( RegNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase , groups=__UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 , activation=__UpperCAmelCase ) , ) _A = ACTaFN[config.hidden_act] def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Any ): '''simple docstring''' _A = hidden_state _A = self.layer(__UpperCAmelCase ) _A = self.shortcut(__UpperCAmelCase ) hidden_state += residual _A = self.activation(__UpperCAmelCase ) return hidden_state class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCAmelCase : RegNetConfig , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int = 1 ): '''simple docstring''' super().__init__() _A = in_channels != out_channels or stride != 1 _A = max(1 , out_channels // config.groups_width ) _A = ( RegNetShortCut(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) _A = nn.Sequential( RegNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase , groups=__UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(__UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 , activation=__UpperCAmelCase ) , ) _A = ACTaFN[config.hidden_act] def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Any ): '''simple docstring''' _A = hidden_state _A = self.layer(__UpperCAmelCase ) _A = self.shortcut(__UpperCAmelCase ) hidden_state += residual _A = self.activation(__UpperCAmelCase ) return hidden_state class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , __UpperCAmelCase : RegNetConfig , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , ): '''simple docstring''' super().__init__() _A = RegNetXLayer if config.layer_type == "x" else RegNetYLayer _A = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase , ) , *[layer(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for _ in range(depth - 1 )] , ) def lowerCAmelCase ( self : int , __UpperCAmelCase : List[str] ): '''simple docstring''' _A = self.layers(__UpperCAmelCase ) return hidden_state class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCAmelCase : RegNetConfig ): '''simple docstring''' super().__init__() _A = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( __UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _A = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__UpperCAmelCase , config.depths[1:] ): self.stages.append(RegNetStage(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , depth=__UpperCAmelCase ) ) def lowerCAmelCase ( self : Any , __UpperCAmelCase : Tensor , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = True ): '''simple docstring''' _A = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _A = hidden_states + (hidden_state,) _A = stage_module(__UpperCAmelCase ) if output_hidden_states: _A = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__UpperCAmelCase , hidden_states=__UpperCAmelCase ) class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = RegNetConfig snake_case = '''regnet''' snake_case = '''pixel_values''' snake_case = True def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] ): '''simple docstring''' if isinstance(__UpperCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(__UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str]=False ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = value lowerCamelCase_ = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowerCamelCase_ = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , snake_case_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : int , __UpperCAmelCase : Dict ): '''simple docstring''' super().__init__(__UpperCAmelCase ) _A = config _A = RegNetEmbeddings(__UpperCAmelCase ) _A = RegNetEncoder(__UpperCAmelCase ) _A = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Tensor , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None ): '''simple docstring''' _A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _A = return_dict if return_dict is not None else self.config.use_return_dict _A = self.embedder(__UpperCAmelCase ) _A = self.encoder( __UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase ) _A = encoder_outputs[0] _A = self.pooler(__UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__UpperCAmelCase , pooler_output=__UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , snake_case_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : Optional[int] ): '''simple docstring''' super().__init__(__UpperCAmelCase ) _A = config.num_labels _A = RegNetModel(__UpperCAmelCase ) # classification head _A = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase ( self : str , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[torch.LongTensor] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None , ): '''simple docstring''' _A = return_dict if return_dict is not None else self.config.use_return_dict _A = self.regnet(__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase ) _A = outputs.pooler_output if return_dict else outputs[1] _A = self.classifier(__UpperCAmelCase ) _A = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _A = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _A = "single_label_classification" else: _A = "multi_label_classification" if self.config.problem_type == "regression": _A = MSELoss() if self.num_labels == 1: _A = loss_fct(logits.squeeze() , labels.squeeze() ) else: _A = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": _A = CrossEntropyLoss() _A = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _A = BCEWithLogitsLoss() _A = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) if not return_dict: _A = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__UpperCAmelCase , logits=__UpperCAmelCase , hidden_states=outputs.hidden_states )
330
0
def __UpperCAmelCase ( a_): snake_case_ = [int(a_) for i in ip_va_address.split('.') if i.isdigit()] return len(a_) == 4 and all(0 <= int(a_) <= 2_54 for octet in octets) if __name__ == "__main__": lowercase = input().strip() lowercase = "valid" if is_ip_va_address_valid(ip) else "invalid" print(f'{ip} is a {valid_or_invalid} IP v4 address.')
607
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> str: snake_case_ = tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(a , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('inf' )] snake_case_ = tf.cast( tf.where(tf.not_equal(a , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(a , a , rtol=1E-12 ) tf.debugging.assert_equal(a , a ) @require_tf class UpperCamelCase_ ( unittest.TestCase , snake_case_ ): '''simple docstring''' if is_tf_available(): lowerCAmelCase = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def _UpperCamelCase ( self ) -> Optional[int]: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) snake_case_ = 2 snake_case_ = 2 class UpperCamelCase_ ( tf.Module ): '''simple docstring''' def __init__( self , a ) -> Any: super(a , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ), ) , jit_compile=a , ) def _UpperCamelCase ( self , a , a ) -> Optional[Any]: snake_case_ = self.model.generate( input_ids=a , attention_mask=a , max_new_tokens=a , return_dict_in_generate=a , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_02, 1_03]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=a ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a , a , signatures={'serving_default': dummy_model.serving} ) snake_case_ = tf.saved_model.load(a ).signatures['serving_default'] for batch_size in range(1 , len(a ) + 1 ): snake_case_ = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**a )['sequences'] snake_case_ = test_model.generate(**a , max_new_tokens=a ) tf.debugging.assert_equal(a , a ) @slow def _UpperCamelCase ( self ) -> Dict: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) snake_case_ = 1 snake_case_ = 2 class UpperCamelCase_ ( tf.Module ): '''simple docstring''' def __init__( self , a ) -> int: super(a , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ), ) , jit_compile=a , ) def _UpperCamelCase ( self , a , a ) -> Union[str, Any]: snake_case_ = self.model.generate( input_ids=a , attention_mask=a , max_new_tokens=a , return_dict_in_generate=a , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_02, 1_03]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=a ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a , a , signatures={'serving_default': dummy_model.serving} ) snake_case_ = tf.saved_model.load(a ).signatures['serving_default'] for input_row in range(len(a ) ): snake_case_ = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**a )['sequences'] snake_case_ = test_model.generate(**a , max_new_tokens=a ) tf.debugging.assert_equal(a , a ) @slow @require_tensorflow_text def _UpperCamelCase ( self ) -> Any: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=a ) class UpperCamelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self ) -> Any: super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(a , 'spiece.model' ) , 'rb' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def _UpperCamelCase ( self , a , *a , **a ) -> int: snake_case_ = self.tokenizer.tokenize(a ) snake_case_ , snake_case_ = text.pad_model_inputs( a , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=a , attention_mask=a ) return self.tokenizer.detokenize(a ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' ) snake_case_ = complete_model(a ) snake_case_ = tf.keras.Model(a , a ) keras_model.save(a ) def _UpperCamelCase ( self ) -> Union[str, Any]: # Has PT equivalent: this test relies on random sampling snake_case_ = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } snake_case_ = 14 snake_case_ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) snake_case_ = 'Hello, my dog is cute and' snake_case_ = tokenizer(a , return_tensors='tf' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) snake_case_ = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**a , eos_token_id=a , **a ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_38, 1_98] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**a , eos_token_id=a , **a ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def _UpperCamelCase ( self ) -> Any: # Has PT equivalent: ample use of framework-specific code snake_case_ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) snake_case_ = 'Hugging Face is a technology company based in New York and Paris.' snake_case_ = bart_tokenizer(a , return_tensors='tf' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) snake_case_ = bart_model.generate(a ).numpy() class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def _UpperCamelCase ( self , a , a=None , **a ) -> List[str]: return super().call(a , **a ) snake_case_ = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) snake_case_ = bart_model.generate(a , foo='bar' ).numpy() self.assertTrue(np.array_equal(a , a ) ) class UpperCamelCase_ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def _UpperCamelCase ( self , a , **a ) -> List[Any]: return super().call(a , **a ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(a ).numpy() with self.assertRaises(a ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(a , foo='bar' )
607
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.size SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 SCREAMING_SNAKE_CASE_ = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) SCREAMING_SNAKE_CASE_ = np.array(__UpperCamelCase ).astype(np.floataa ) / 2_5_5.0 SCREAMING_SNAKE_CASE_ = image[None].transpose(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE_ = torch.from_numpy(__UpperCamelCase ) return 2.0 * image - 1.0 class lowerCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : str , _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] , ): super().__init__() self.register_modules(vqvae=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self : Union[str, Any] , _lowerCAmelCase : Optional[Any] = None , _lowerCAmelCase : Dict = 1 , _lowerCAmelCase : List[str] = 100 , _lowerCAmelCase : Optional[Any] = 0.0 , _lowerCAmelCase : Optional[Any] = None , _lowerCAmelCase : Union[str, Any] = "pil" , _lowerCAmelCase : Optional[Any] = True , ): if isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ): SCREAMING_SNAKE_CASE_ = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): SCREAMING_SNAKE_CASE_ = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(SCREAMING_SNAKE_CASE_ )}" ) if isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ): SCREAMING_SNAKE_CASE_ = preprocess(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image SCREAMING_SNAKE_CASE_ = (batch_size, self.unet.config.in_channels // 2, height, width) SCREAMING_SNAKE_CASE_ = next(self.unet.parameters() ).dtype SCREAMING_SNAKE_CASE_ = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = image.to(device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=self.device ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler SCREAMING_SNAKE_CASE_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] SCREAMING_SNAKE_CASE_ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) SCREAMING_SNAKE_CASE_ = {} if accepts_eta: SCREAMING_SNAKE_CASE_ = eta for t in self.progress_bar(SCREAMING_SNAKE_CASE_ ): # concat latents and low resolution image in the channel dimension. SCREAMING_SNAKE_CASE_ = torch.cat([latents, image] , dim=1 ) SCREAMING_SNAKE_CASE_ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual SCREAMING_SNAKE_CASE_ = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # decode the image latents with the VQVAE SCREAMING_SNAKE_CASE_ = self.vqvae.decode(SCREAMING_SNAKE_CASE_ ).sample SCREAMING_SNAKE_CASE_ = torch.clamp(SCREAMING_SNAKE_CASE_ , -1.0 , 1.0 ) SCREAMING_SNAKE_CASE_ = image / 2 + 0.5 SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
31
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = GPTSanJapaneseTokenizer SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = {'do_clean_text': False, 'add_prefix_space': False} def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' super().setUp() # fmt: off lowerCamelCase_ = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on lowerCamelCase_ = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 lowerCamelCase_ = {'unk_token': '<unk>'} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = 'こんにちは、世界。 \nこんばんは、㔺界。😀' lowerCamelCase_ = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.get_input_output_texts(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) return text, ids def UpperCamelCase( self ) -> Tuple: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。 こんばんは、㔺界。' lowerCamelCase_ = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] lowerCamelCase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids without special tokens lowerCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids with special tokens lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() # Testing tokenization lowerCamelCase_ = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' lowerCamelCase_ = 'こんにちは、、、、世界。こんばんは、、、、世界。' lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。' lowerCamelCase_ = 'こんばんは、㔺界。😀' lowerCamelCase_ = 'こんにちは、世界。こんばんは、世界。😀' lowerCamelCase_ = tokenizer.encode(prefix_text + input_text ) lowerCamelCase_ = tokenizer.encode('' , prefix_text=prefix_text + input_text ) lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。' lowerCamelCase_ = 'こんばんは、㔺界。😀' lowerCamelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 lowerCamelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 lowerCamelCase_ = [1] + [0] * (len_prefix + len_text + 1) lowerCamelCase_ = [1] * (len_prefix + len_text + 1) + [0] lowerCamelCase_ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowerCamelCase_ = tokenizer(prefix_text + input_text ).token_type_ids lowerCamelCase_ = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ).token_type_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowerCamelCase_ = tokenizer.encode('あンいワ' ) lowerCamelCase_ = tokenizer.encode('' , prefix_text='あンいワ' ) lowerCamelCase_ = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowerCamelCase_ = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) # fmt: off lowerCamelCase_ = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] lowerCamelCase_ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowerCamelCase_ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.attention_mask , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.attention_mask , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Any: '''simple docstring''' pass def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass
42
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp _lowercase = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } _lowercase = { '''RUCAIBox/mvp''': 1024, } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] UpperCamelCase_ = MvpTokenizer def __init__( self : Any ,lowerCAmelCase__ : Dict=None ,lowerCAmelCase__ : int=None ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Union[str, Any]="replace" ,lowerCAmelCase__ : Union[str, Any]="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Optional[int]="</s>" ,lowerCAmelCase__ : List[Any]="<s>" ,lowerCAmelCase__ : Optional[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : Tuple="<mask>" ,lowerCAmelCase__ : Any=False ,lowerCAmelCase__ : Optional[Any]=True ,**lowerCAmelCase__ : Optional[Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,trim_offsets=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" ,lowerCAmelCase__ ) != add_prefix_space: lowerCAmelCase_ : List[str] = getattr(lowerCAmelCase__ ,pre_tok_state.pop("type" ) ) lowerCAmelCase_ : Tuple = add_prefix_space lowerCAmelCase_ : List[Any] = pre_tok_class(**lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCAmelCase_ : Optional[Any] = "post_processor" lowerCAmelCase_ : Union[str, Any] = getattr(self.backend_tokenizer ,lowerCAmelCase__ ,lowerCAmelCase__ ) if tokenizer_component_instance: lowerCAmelCase_ : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase_ : int = tuple(state["sep"] ) if "cls" in state: lowerCAmelCase_ : List[str] = tuple(state["cls"] ) lowerCAmelCase_ : List[Any] = False if state.get("add_prefix_space" ,lowerCAmelCase__ ) != add_prefix_space: lowerCAmelCase_ : Tuple = add_prefix_space lowerCAmelCase_ : Tuple = True if state.get("trim_offsets" ,lowerCAmelCase__ ) != trim_offsets: lowerCAmelCase_ : str = trim_offsets lowerCAmelCase_ : int = True if changes_to_apply: lowerCAmelCase_ : List[str] = getattr(lowerCAmelCase__ ,state.pop("type" ) ) lowerCAmelCase_ : Dict = component_class(**lowerCAmelCase__ ) setattr(self.backend_tokenizer ,lowerCAmelCase__ ,lowerCAmelCase__ ) @property def UpperCAmelCase_ ( self : Any ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else value lowerCAmelCase_ : Optional[int] = value def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : int ,**lowerCAmelCase__ : Optional[Any] ) -> BatchEncoding: '''simple docstring''' lowerCAmelCase_ : Dict = kwargs.get("is_split_into_words" ,lowerCAmelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,*lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Union[str, Any] ) -> BatchEncoding: '''simple docstring''' lowerCAmelCase_ : List[str] = kwargs.get("is_split_into_words" ,lowerCAmelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : str = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Dict=None ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : int = [self.sep_token_id] lowerCAmelCase_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
683
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = list(snake_case__) lowerCAmelCase_ : Tuple = list(snake_case__) lowerCAmelCase_ : List[str] = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count += 1 lowerCAmelCase_ : Dict = "_" if count > 1: return False else: return "".join(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] while True: lowerCAmelCase_ : Tuple = ["$"] * len(snake_case__) lowerCAmelCase_ : Tuple = [] for i in range(len(snake_case__)): for j in range(i + 1 , len(snake_case__)): lowerCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j]) if k is False: lowerCAmelCase_ : str = "*" lowerCAmelCase_ : Tuple = "*" temp.append("X") for i in range(len(snake_case__)): if checka[i] == "$": pi.append(binary[i]) if len(snake_case__) == 0: return pi lowerCAmelCase_ : List[Any] = list(set(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = [] for minterm in minterms: lowerCAmelCase_ : Dict = "" for _ in range(snake_case__): lowerCAmelCase_ : Dict = str(minterm % 2) + string minterm //= 2 temp.append(snake_case__) return temp def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = list(snake_case__) lowerCAmelCase_ : Dict = list(snake_case__) lowerCAmelCase_ : Dict = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = [0] * len(snake_case__) for i in range(len(chart[0])): lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : int = -1 for j in range(len(snake_case__)): if chart[j][i] == 1: count += 1 lowerCAmelCase_ : Optional[int] = j if count == 1: lowerCAmelCase_ : Union[str, Any] = 1 for i in range(len(snake_case__)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(snake_case__)): lowerCAmelCase_ : Tuple = 0 temp.append(prime_implicants[i]) while True: lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Dict = -1 lowerCAmelCase_ : Tuple = 0 for i in range(len(snake_case__)): lowerCAmelCase_ : Dict = chart[i].count(1) if count_n > max_n: lowerCAmelCase_ : Optional[int] = count_n lowerCAmelCase_ : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(snake_case__)): lowerCAmelCase_ : Any = 0 def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = [[0 for x in range(len(snake_case__))] for x in range(len(snake_case__))] for i in range(len(snake_case__)): lowerCAmelCase_ : Optional[Any] = prime_implicants[i].count("_") for j in range(len(snake_case__)): if is_for_table(prime_implicants[i] , binary[j] , snake_case__): lowerCAmelCase_ : Dict = 1 return chart def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = int(input("Enter the no. of variables\n")) lowerCAmelCase_ : Tuple = [ float(snake_case__) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n").split() ] lowerCAmelCase_ : Any = decimal_to_binary(snake_case__ , snake_case__) lowerCAmelCase_ : Dict = check(snake_case__) print("Prime Implicants are:") print(snake_case__) lowerCAmelCase_ : int = prime_implicant_chart(snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = selection(snake_case__ , snake_case__) print("Essential Prime Implicants are:") print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
267
'''simple docstring''' def lowerCamelCase ( _snake_case : int ,_snake_case : int ): '''simple docstring''' return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1 ,number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
267
1
'''simple docstring''' import functools def _a( UpperCamelCase__ : list[int], UpperCamelCase__ : list[int] ): '''simple docstring''' if not isinstance(UpperCamelCase__, UpperCamelCase__ ) or not all(isinstance(UpperCamelCase__, UpperCamelCase__ ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(UpperCamelCase__ ) != 3 or not all(isinstance(UpperCamelCase__, UpperCamelCase__ ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(UpperCamelCase__ ) == 0: return 0 if min(UpperCamelCase__ ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(UpperCamelCase__ ) >= 3_6_6: raise ValueError('''All days elements should be less than 366''' ) SCREAMING_SNAKE_CASE__ : Dict =set(UpperCamelCase__ ) @functools.cache def dynamic_programming(UpperCamelCase__ : int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 3_0 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
665
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = ShapEImgaImgPipeline snake_case_ = ["""image"""] snake_case_ = ["""image"""] snake_case_ = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] snake_case_ = False @property def __magic_name__ ( self : List[Any] ) -> List[Any]: return 32 @property def __magic_name__ ( self : List[str] ) -> Optional[int]: return 32 @property def __magic_name__ ( self : Optional[int] ) -> Optional[Any]: return self.time_input_dim * 4 @property def __magic_name__ ( self : Dict ) -> Union[str, Any]: return 8 @property def __magic_name__ ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) SCREAMING_SNAKE_CASE__ : str =CLIPVisionModel(__lowercase ) return model @property def __magic_name__ ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ : int =CLIPImageProcessor( crop_size=2_24 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , ) return image_processor @property def __magic_name__ ( self : List[str] ) -> Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : str ={ '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } SCREAMING_SNAKE_CASE__ : str =PriorTransformer(**__lowercase ) return model @property def __magic_name__ ( self : Tuple ) -> List[str]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] ={ '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE__ : str =ShapERenderer(**__lowercase ) return model def __magic_name__ ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : int =self.dummy_prior SCREAMING_SNAKE_CASE__ : Optional[Any] =self.dummy_image_encoder SCREAMING_SNAKE_CASE__ : Optional[Any] =self.dummy_image_processor SCREAMING_SNAKE_CASE__ : Tuple =self.dummy_renderer SCREAMING_SNAKE_CASE__ : int =HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=__lowercase , clip_sample=__lowercase , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE__ : Any ={ '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __magic_name__ ( self : Any , __lowercase : List[str] , __lowercase : Any=0 ) -> Any: SCREAMING_SNAKE_CASE__ : int =floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowercase ) ).to(__lowercase ) if str(__lowercase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ : List[str] =torch.manual_seed(__lowercase ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) SCREAMING_SNAKE_CASE__ : Any ={ '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __magic_name__ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ : int ='''cpu''' SCREAMING_SNAKE_CASE__ : Any =self.get_dummy_components() SCREAMING_SNAKE_CASE__ : str =self.pipeline_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Any =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =pipe(**self.get_dummy_inputs(__lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple =output.images[0] SCREAMING_SNAKE_CASE__ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE__ : List[Any] =np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self : List[Any] ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __magic_name__ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch_device == '''cpu''' SCREAMING_SNAKE_CASE__ : Optional[Any] =True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__lowercase , relax_max_difference=__lowercase , ) def __magic_name__ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ : Any =self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Dict =self.pipeline_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =1 SCREAMING_SNAKE_CASE__ : List[str] =2 SCREAMING_SNAKE_CASE__ : Dict =self.get_dummy_inputs(__lowercase ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE__ : Tuple =batch_size * [inputs[key]] SCREAMING_SNAKE_CASE__ : List[Any] =pipe(**__lowercase , num_images_per_prompt=__lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : Optional[Any] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : int ) -> Dict: SCREAMING_SNAKE_CASE__ : List[str] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) SCREAMING_SNAKE_CASE__ : Dict =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) SCREAMING_SNAKE_CASE__ : List[Any] =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) SCREAMING_SNAKE_CASE__ : Tuple =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =torch.Generator(device=__lowercase ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple =pipe( __lowercase , generator=__lowercase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__lowercase , __lowercase )
665
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCAmelCase_ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase_ : Tuple = ''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class __lowerCAmelCase ( __a ): snake_case : Union[PIL.Image.Image, np.ndarray] class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): super().__init__() self.register_modules( prior=lowerCAmelCase__ , image_encoder=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , renderer=lowerCAmelCase__ , ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if latents is None: _UpperCAmelCase : Tuple = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) _UpperCAmelCase : str = latents.to(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = latents * scheduler.init_noise_sigma return latents def snake_case_ (self , lowerCAmelCase__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _UpperCAmelCase : Tuple = torch.device(F"cuda:{gpu_id}" ) _UpperCAmelCase : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase__ , lowerCAmelCase__ ) @property def snake_case_ (self ): if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowerCAmelCase__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(image[0] , torch.Tensor ): _UpperCAmelCase : int = torch.cat(lowerCAmelCase__ , axis=0 ) if image[0].ndim == 4 else torch.stack(lowerCAmelCase__ , axis=0 ) if not isinstance(lowerCAmelCase__ , torch.Tensor ): _UpperCAmelCase : List[str] = self.image_processor(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) _UpperCAmelCase : Optional[int] = image.to(dtype=self.image_encoder.dtype , device=lowerCAmelCase__ ) _UpperCAmelCase : Dict = self.image_encoder(lowerCAmelCase__ )["""last_hidden_state"""] _UpperCAmelCase : Union[str, Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _UpperCAmelCase : List[str] = image_embeds.repeat_interleave(lowerCAmelCase__ , dim=0 ) if do_classifier_free_guidance: _UpperCAmelCase : Tuple = torch.zeros_like(lowerCAmelCase__ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase : List[str] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowerCAmelCase__ ) def __call__(self , lowerCAmelCase__ , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 2_5 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 4.0 , lowerCAmelCase__ = 6_4 , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ): if isinstance(lowerCAmelCase__ , PIL.Image.Image ): _UpperCAmelCase : List[Any] = 1 elif isinstance(lowerCAmelCase__ , torch.Tensor ): _UpperCAmelCase : Any = image.shape[0] elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _UpperCAmelCase : List[Any] = len(lowerCAmelCase__ ) else: raise ValueError( F"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowerCAmelCase__ )}" ) _UpperCAmelCase : List[str] = self._execution_device _UpperCAmelCase : Tuple = batch_size * num_images_per_prompt _UpperCAmelCase : Optional[int] = guidance_scale > 1.0 _UpperCAmelCase : List[str] = self._encode_image(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # prior self.scheduler.set_timesteps(lowerCAmelCase__ , device=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = self.scheduler.timesteps _UpperCAmelCase : Union[str, Any] = self.prior.config.num_embeddings _UpperCAmelCase : Optional[Any] = self.prior.config.embedding_dim _UpperCAmelCase : Any = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _UpperCAmelCase : Union[str, Any] = latents.reshape(latents.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) for i, t in enumerate(self.progress_bar(lowerCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase : List[str] = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = self.prior( lowerCAmelCase__ , timestep=lowerCAmelCase__ , proj_embedding=lowerCAmelCase__ , ).predicted_image_embedding # remove the variance _UpperCAmelCase , _UpperCAmelCase : int = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = noise_pred.chunk(2 ) _UpperCAmelCase : str = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _UpperCAmelCase : Dict = self.scheduler.step( lowerCAmelCase__ , timestep=lowerCAmelCase__ , sample=lowerCAmelCase__ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowerCAmelCase__ ) _UpperCAmelCase : str = [] for i, latent in enumerate(lowerCAmelCase__ ): print() _UpperCAmelCase : Any = self.renderer.decode( latent[None, :] , lowerCAmelCase__ , size=lowerCAmelCase__ , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = torch.stack(lowerCAmelCase__ ) if output_type not in ["np", "pil"]: raise ValueError(F"Only the output types `pil` and `np` are supported not output_type={output_type}" ) _UpperCAmelCase : Optional[int] = images.cpu().numpy() if output_type == "pil": _UpperCAmelCase : int = [self.numpy_to_pil(lowerCAmelCase__ ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowerCAmelCase__ )
414
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ ): super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Any = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) @torch.no_grad() def __call__(self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 5_0 , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , lowerCAmelCase__ ): _UpperCAmelCase : Tuple = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _UpperCAmelCase : Tuple = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(lowerCAmelCase__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) _UpperCAmelCase : List[str] = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _UpperCAmelCase : Any = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : Dict = self.scheduler.step( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , eta=lowerCAmelCase__ , use_clipped_model_output=lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample _UpperCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : int = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
414
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : List[Any] = SwinConfig( embed_dim=1_9_2 , depths=(2, 2, 1_8, 2) , num_heads=(6, 1_2, 2_4, 4_8) , window_size=1_2 , out_features=['stage2', 'stage3', 'stage4'] , ) _UpperCamelCase : Optional[int] = DetaConfig( backbone_config=UpperCAmelCase_ , num_queries=9_0_0 , encoder_ffn_dim=2_0_4_8 , decoder_ffn_dim=2_0_4_8 , num_feature_levels=5 , assign_first_stage=UpperCAmelCase_ , with_box_refine=UpperCAmelCase_ , two_stage=UpperCAmelCase_ , ) # set labels _UpperCamelCase : Union[str, Any] = 'huggingface/label-files' if "o365" in model_name: _UpperCamelCase : Tuple = 3_6_6 _UpperCamelCase : int = 'object365-id2label.json' else: _UpperCamelCase : int = 9_1 _UpperCamelCase : Tuple = 'coco-detection-id2label.json' _UpperCamelCase : int = num_labels _UpperCamelCase : Dict = json.load(open(cached_download(hf_hub_url(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) ) , 'r' ) ) _UpperCamelCase : Dict = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} _UpperCamelCase : Any = idalabel _UpperCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase : str = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.reduction.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.bias''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', F'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', F'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', F'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', F'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', F'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', F'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.weight''', F'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.weight''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.weight''', F'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.bias''', F'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : Optional[int] = dct.pop(UpperCAmelCase_ ) _UpperCamelCase : List[str] = val def lowerCamelCase_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ) -> str: '''simple docstring''' _UpperCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _UpperCamelCase : Union[str, Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _UpperCamelCase : Tuple = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _UpperCamelCase : Optional[Any] = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : List[str] = in_proj_weight[:dim, :] _UpperCamelCase : str = in_proj_bias[: dim] _UpperCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _UpperCamelCase : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] _UpperCamelCase : Any = in_proj_weight[ -dim :, : ] _UpperCamelCase : Tuple = in_proj_bias[-dim :] # fmt: on def lowerCamelCase_ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any ) -> int: '''simple docstring''' _UpperCamelCase : List[str] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _UpperCamelCase : Union[str, Any] = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _UpperCamelCase : Optional[Any] = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : Any = in_proj_weight[:hidden_size, :] _UpperCamelCase : str = in_proj_bias[:hidden_size] _UpperCamelCase : str = in_proj_weight[ hidden_size : hidden_size * 2, : ] _UpperCamelCase : List[str] = in_proj_bias[hidden_size : hidden_size * 2] _UpperCamelCase : str = in_proj_weight[-hidden_size:, :] _UpperCamelCase : Optional[int] = in_proj_bias[-hidden_size:] def lowerCamelCase_ ( ) -> str: '''simple docstring''' _UpperCamelCase : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCamelCase : str = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : int = get_deta_config(UpperCAmelCase_ ) # load original state dict if model_name == "deta-swin-large": _UpperCamelCase : int = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _UpperCamelCase : str = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(F'''Model name {model_name} not supported''' ) _UpperCamelCase : str = torch.load(UpperCAmelCase_ , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(UpperCAmelCase_ , param.shape ) # rename keys _UpperCamelCase : Union[str, Any] = create_rename_keys(UpperCAmelCase_ ) for src, dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) read_in_swin_q_k_v(UpperCAmelCase_ , config.backbone_config ) read_in_decoder_q_k_v(UpperCAmelCase_ , UpperCAmelCase_ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _UpperCamelCase : str = state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : List[str] = val if "input_proj" in key: _UpperCamelCase : int = state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : List[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _UpperCamelCase : Union[str, Any] = state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : Any = val # finally, create HuggingFace model and load state dict _UpperCamelCase : Any = DetaForObjectDetection(UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) model.eval() _UpperCamelCase : List[str] = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(UpperCAmelCase_ ) # load image processor _UpperCamelCase : Any = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _UpperCamelCase : int = prepare_img() _UpperCamelCase : List[str] = processor(images=UpperCAmelCase_ , return_tensors='pt' ) _UpperCamelCase : List[str] = encoding['pixel_values'] _UpperCamelCase : Optional[Any] = model(pixel_values.to(UpperCAmelCase_ ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _UpperCamelCase : Union[str, Any] = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _UpperCamelCase : Optional[Any] = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _UpperCamelCase : Dict = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _UpperCamelCase : Optional[int] = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(UpperCAmelCase_ ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(UpperCAmelCase_ ) , atol=1e-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(F'''jozhang97/{model_name}''' ) processor.push_to_hub(F'''jozhang97/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( """--model_name""", type=str, default="""deta-swin-large""", choices=["""deta-swin-large""", """deta-swin-large-o365"""], help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase__ = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
648
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
1
lowerCAmelCase__ = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase__ = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase__ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
321
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowerCAmelCase__ = 'true' def __lowercase ( _UpperCAmelCase , _UpperCAmelCase=82 , _UpperCAmelCase=16 ) -> int: '''simple docstring''' set_seed(42 ) __lowercase = RegressionModel() __lowercase = deepcopy(_UpperCAmelCase ) __lowercase = RegressionDataset(length=_UpperCAmelCase ) __lowercase = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase ) model.to(accelerator.device ) __lowercase , __lowercase = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) return model, ddp_model, dataloader def __lowercase ( _UpperCAmelCase , _UpperCAmelCase=False ) -> int: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) __lowercase = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(_UpperCAmelCase ): __lowercase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs with accelerator.main_process_first(): __lowercase = dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) __lowercase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): if use_longest: return tokenizer.pad(_UpperCAmelCase , padding="longest" , return_tensors="pt" ) return tokenizer.pad(_UpperCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=16 ) def __lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: '''simple docstring''' __lowercase = Accelerator(dispatch_batches=_UpperCAmelCase , split_batches=_UpperCAmelCase ) __lowercase = get_dataloader(_UpperCAmelCase , not dispatch_batches ) __lowercase = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=_UpperCAmelCase ) __lowercase , __lowercase = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: '''simple docstring''' __lowercase = [] for batch in dataloader: __lowercase , __lowercase = batch.values() with torch.no_grad(): __lowercase = model(_UpperCAmelCase ) __lowercase , __lowercase = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __lowercase , __lowercase = [], [] for logit, targ in logits_and_targets: logits.append(_UpperCAmelCase ) targs.append(_UpperCAmelCase ) __lowercase , __lowercase = torch.cat(_UpperCAmelCase ), torch.cat(_UpperCAmelCase ) return logits, targs def __lowercase ( _UpperCAmelCase , _UpperCAmelCase=82 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=16 ) -> Any: '''simple docstring''' __lowercase , __lowercase , __lowercase = get_basic_setup(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase , __lowercase = generate_predictions(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) assert ( len(_UpperCAmelCase ) == num_samples ), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_UpperCAmelCase )}''' def __lowercase ( _UpperCAmelCase = False , _UpperCAmelCase = False ) -> str: '''simple docstring''' __lowercase = evaluate.load("glue" , "mrpc" ) __lowercase , __lowercase = get_mrpc_setup(_UpperCAmelCase , _UpperCAmelCase ) # First do baseline __lowercase , __lowercase , __lowercase = setup["no"] model.to(_UpperCAmelCase ) model.eval() for batch in dataloader: batch.to(_UpperCAmelCase ) with torch.inference_mode(): __lowercase = model(**_UpperCAmelCase ) __lowercase = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_UpperCAmelCase , references=batch["labels"] ) __lowercase = metric.compute() # Then do distributed __lowercase , __lowercase , __lowercase = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): __lowercase = model(**_UpperCAmelCase ) __lowercase = outputs.logits.argmax(dim=-1 ) __lowercase = batch["labels"] __lowercase , __lowercase = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_UpperCAmelCase , references=_UpperCAmelCase ) __lowercase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def __lowercase ( ) -> Dict: '''simple docstring''' __lowercase = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(_UpperCAmelCase , _UpperCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowercase = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase ) if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(_UpperCAmelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) __lowercase = Accelerator() test_torch_metrics(_UpperCAmelCase , 512 ) accelerator.state._reset_state() def __lowercase ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' main() if __name__ == "__main__": main()
321
1
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) snake_case_ : Any = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') snake_case_ : Tuple = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) snake_case_ : str = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) snake_case_ : str = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(6_4, 6_4), batch_size=3_2, class_mode='binary' ) snake_case_ : Union[str, Any] = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(6_4, 6_4), batch_size=3_2, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions snake_case_ : List[str] = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(6_4, 6_4) ) snake_case_ : str = tf.keras.preprocessing.image.img_to_array(test_image) snake_case_ : Union[str, Any] = np.expand_dims(test_image, axis=0) snake_case_ : int = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: snake_case_ : Dict = 'Normal' if result[0][0] == 1: snake_case_ : Optional[int] = 'Abnormality detected'
166
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) snake_case_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case_ : Optional[int] = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : Optional[int]=8 ): '''simple docstring''' UpperCAmelCase: Any = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase: Dict = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __lowerCamelCase ( lowercase ): def __init__( self , __snake_case , __snake_case , __snake_case , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( unet=__snake_case , scheduler=__snake_case , movq=__snake_case , ) UpperCAmelCase: List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: """simple docstring""" if latents is None: UpperCAmelCase: Tuple = randn_tensor(__snake_case , generator=__snake_case , device=__snake_case , dtype=__snake_case ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) UpperCAmelCase: str = latents.to(__snake_case ) UpperCAmelCase: Tuple = latents * scheduler.init_noise_sigma return latents def A__ ( self , __snake_case=0 ) -> str: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase: Union[str, Any] = torch.device(F'cuda:{gpu_id}' ) UpperCAmelCase: Optional[int] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__snake_case , __snake_case ) def A__ ( self , __snake_case=0 ) -> List[Any]: """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase: Optional[Any] = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=__snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase: int = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase , UpperCAmelCase: str = cpu_offload_with_hook(__snake_case , __snake_case , prev_module_hook=__snake_case ) # We'll offload the last model manually. UpperCAmelCase: Union[str, Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A__ ( self ) -> Any: """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__snake_case , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__snake_case ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case = 5_1_2 , __snake_case = 5_1_2 , __snake_case = 1_0_0 , __snake_case = 4.0 , __snake_case = 1 , __snake_case = None , __snake_case = None , __snake_case = "pil" , __snake_case = True , ) -> Dict: """simple docstring""" UpperCAmelCase: Optional[int] = self._execution_device UpperCAmelCase: Optional[int] = guidance_scale > 1.0 if isinstance(__snake_case , __snake_case ): UpperCAmelCase: int = torch.cat(__snake_case , dim=0 ) if isinstance(__snake_case , __snake_case ): UpperCAmelCase: List[Any] = torch.cat(__snake_case , dim=0 ) if isinstance(__snake_case , __snake_case ): UpperCAmelCase: List[Any] = torch.cat(__snake_case , dim=0 ) UpperCAmelCase: Dict = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: UpperCAmelCase: Dict = image_embeds.repeat_interleave(__snake_case , dim=0 ) UpperCAmelCase: Dict = negative_image_embeds.repeat_interleave(__snake_case , dim=0 ) UpperCAmelCase: Tuple = hint.repeat_interleave(__snake_case , dim=0 ) UpperCAmelCase: Any = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__snake_case ) UpperCAmelCase: Any = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=__snake_case ) self.scheduler.set_timesteps(__snake_case , device=__snake_case ) UpperCAmelCase: Any = self.scheduler.timesteps UpperCAmelCase: List[str] = self.movq.config.latent_channels UpperCAmelCase , UpperCAmelCase: Union[str, Any] = downscale_height_and_width(__snake_case , __snake_case , self.movq_scale_factor ) # create initial latent UpperCAmelCase: Any = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __snake_case , __snake_case , __snake_case , self.scheduler , ) for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase: List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase: str = {"image_embeds": image_embeds, "hint": hint} UpperCAmelCase: Any = self.unet( sample=__snake_case , timestep=__snake_case , encoder_hidden_states=__snake_case , added_cond_kwargs=__snake_case , return_dict=__snake_case , )[0] if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase: Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase , UpperCAmelCase: str = noise_pred.chunk(2 ) UpperCAmelCase , UpperCAmelCase: Dict = variance_pred.chunk(2 ) UpperCAmelCase: List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase: Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase , UpperCAmelCase: Any = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase: int = self.scheduler.step( __snake_case , __snake_case , __snake_case , generator=__snake_case , )[0] # post-processing UpperCAmelCase: Optional[Any] = self.movq.decode(__snake_case , force_not_quantize=__snake_case )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: UpperCAmelCase: Optional[Any] = image * 0.5 + 0.5 UpperCAmelCase: Union[str, Any] = image.clamp(0 , 1 ) UpperCAmelCase: List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase: Dict = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
166
1
'''simple docstring''' import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( _A , _A , _A ): # Initialise PyTorch model a : Any = TaConfig.from_json_file(_A ) print(f"""Building PyTorch model from configuration: {config}""" ) a : Optional[int] = TaForConditionalGeneration(_A ) # Load weights from tf checkpoint load_tf_weights_in_ta(_A , _A , _A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_A ) if __name__ == "__main__": lowerCAmelCase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase: str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
526
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A: Dict = { "configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"], "feature_extraction_whisper": ["WhisperFeatureExtractor"], "processing_whisper": ["WhisperProcessor"], "tokenization_whisper": ["WhisperTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = ["WhisperTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: str = [ "WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "WhisperForConditionalGeneration", "WhisperModel", "WhisperPreTrainedModel", "WhisperForAudioClassification", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: str = [ "TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWhisperForConditionalGeneration", "TFWhisperModel", "TFWhisperPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: str = [ "FlaxWhisperForConditionalGeneration", "FlaxWhisperModel", "FlaxWhisperPreTrainedModel", "FlaxWhisperForAudioClassification", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys A: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
160
0
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup A : Union[str, Any] = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } def _lowerCamelCase ( _UpperCamelCase : Any = "dhaka" , _UpperCamelCase : List[Any] = 5 ): '''simple docstring''' __lowerCAmelCase = min(_UpperCamelCase , 50 ) # Prevent abuse! __lowerCAmelCase = { "q": query, "tbm": "isch", "hl": "en", "ijn": "0", } __lowerCAmelCase = requests.get("https://www.google.com/search" , params=_UpperCamelCase , headers=_UpperCamelCase ) __lowerCAmelCase = BeautifulSoup(html.text , "html.parser" ) __lowerCAmelCase = "".join( re.findall(R"AF_initDataCallback\(([^<]+)\);" , str(soup.select("script" ) ) ) ) __lowerCAmelCase = json.dumps(_UpperCamelCase ) __lowerCAmelCase = json.loads(_UpperCamelCase ) __lowerCAmelCase = re.findall( R"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," , _UpperCamelCase , ) if not matched_google_image_data: return 0 __lowerCAmelCase = re.sub( R"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" , "" , str(_UpperCamelCase ) , ) __lowerCAmelCase = re.findall( R"(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]" , _UpperCamelCase , ) for index, fixed_full_res_image in enumerate(_UpperCamelCase ): if index >= max_images: return index __lowerCAmelCase = bytes(_UpperCamelCase , "ascii" ).decode( "unicode-escape" ) __lowerCAmelCase = bytes(_UpperCamelCase , "ascii" ).decode( "unicode-escape" ) __lowerCAmelCase = urllib.request.build_opener() __lowerCAmelCase = [ ( "User-Agent", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582", ) ] urllib.request.install_opener(_UpperCamelCase ) __lowerCAmelCase = f"query_{query.replace(' ' , '_' )}" if not os.path.exists(_UpperCamelCase ): os.makedirs(_UpperCamelCase ) urllib.request.urlretrieve( # noqa: S310 _UpperCamelCase , f"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: A : Any = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print("Please provide a search term.") raise
701
"""simple docstring""" from itertools import product def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = sides_number __lowerCAmelCase = max_face_number * dice_number __lowerCAmelCase = [0] * (max_total + 1) __lowerCAmelCase = 1 __lowerCAmelCase = range(_UpperCamelCase , max_face_number + 1 ) for dice_numbers in product(_UpperCamelCase , repeat=_UpperCamelCase ): __lowerCAmelCase = sum(_UpperCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) __lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) __lowerCAmelCase = 0 __lowerCAmelCase = 9 __lowerCAmelCase = 4 * 9 __lowerCAmelCase = 6 for peter_total in range(_UpperCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __lowerCAmelCase = (4**9) * (6**6) __lowerCAmelCase = peter_wins_count / total_games_number __lowerCAmelCase = round(_UpperCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'''{solution() = }''')
282
0
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests A : Tuple = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user A : int = BASE_URL + '''/user''' # https://github.com/settings/tokens A : Tuple = os.environ.get('''USER_TOKEN''', '''''') def lowerCAmelCase__ ( lowerCamelCase : str ): _A : Optional[int] = { 'Authorization': F'token {auth_token}', 'Accept': 'application/vnd.github.v3+json', } return requests.get(lowerCamelCase ,headers=lowerCamelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"""{key}: {value}""") else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
128
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version A : List[str] = get_logger(__name__) class __lowerCamelCase : """simple docstring""" a = "dummy_data" a = "datasets" a = False def __init__( self : List[str] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Union[Version, str] , SCREAMING_SNAKE_CASE : Optional[str] = None , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Optional[List[Callable]] = None , ): _A : Dict = 0 _A : Dict = dataset_name _A : Any = cache_dir _A : List[str] = use_local_dummy_data _A : Optional[Any] = config # download_callbacks take a single url as input _A : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _A : int = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _A : Any = str(SCREAMING_SNAKE_CASE) # to be downloaded _A : Optional[Any] = None _A : List[str] = None @property def A ( self : str): if self._dummy_file is None: _A : Tuple = self.download_dummy_data() return self._dummy_file @property def A ( self : Optional[Any]): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name) # structure is dummy / version_name return os.path.join('dummy' , self.version_name) @property def A ( self : Tuple): return os.path.join(self.dummy_data_folder , 'dummy_data.zip') def A ( self : int): _A : Dict = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _A : Optional[int] = cached_path( SCREAMING_SNAKE_CASE , cache_dir=self.cache_dir , extract_compressed_file=SCREAMING_SNAKE_CASE , force_extract=SCREAMING_SNAKE_CASE) return os.path.join(SCREAMING_SNAKE_CASE , self.dummy_file_name) @property def A ( self : List[str]): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file) @property def A ( self : str): if self._bucket_url is None: _A : Tuple = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/')) return self._bucket_url @property def A ( self : str): # return full path if its a dir if os.path.isdir(self.dummy_file): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/').split('/')[:-1]) def A ( self : List[str] , SCREAMING_SNAKE_CASE : List[Any] , *SCREAMING_SNAKE_CASE : Optional[Any]): if self.load_existing_dummy_data: # dummy data is downloaded and tested _A : Any = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _A : Dict = self.dummy_file_name # special case when data_url is a dict if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): return self.create_dummy_data_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) elif isinstance(SCREAMING_SNAKE_CASE , (list, tuple)): return self.create_dummy_data_list(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) else: return self.create_dummy_data_single(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : str , *SCREAMING_SNAKE_CASE : str): return self.download_and_extract(SCREAMING_SNAKE_CASE) def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple): return self.download_and_extract(SCREAMING_SNAKE_CASE) def A ( self : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Any): return path def A ( self : str): return {} def A ( self : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any]): _A : List[str] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): for single_url in single_urls: download_callback(SCREAMING_SNAKE_CASE) else: _A : Optional[Any] = single_urls download_callback(SCREAMING_SNAKE_CASE) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): _A : List[Any] = [os.path.join(SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(SCREAMING_SNAKE_CASE).name)) for x in single_urls] else: _A : str = single_urls _A : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(SCREAMING_SNAKE_CASE).name)) _A : Tuple = value # make sure that values are unique if all(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) for i in dummy_data_dict.values()) and len(set(dummy_data_dict.values())) < len( dummy_data_dict.values()): # append key to value to make its name unique _A : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int): _A : List[str] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _A : Union[str, Any] = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , SCREAMING_SNAKE_CASE)) for url in data_url) _A : Optional[Any] = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed') for url in data_url) if data_url and (is_tf_records or is_pubmed_records): _A : Optional[Any] = [data_url[0]] * len(SCREAMING_SNAKE_CASE) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(SCREAMING_SNAKE_CASE) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _A : Any = os.path.join(SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(single_url.split('/')[-1])) dummy_data_list.append(SCREAMING_SNAKE_CASE) return dummy_data_list def A ( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any): for download_callback in self.download_callbacks: download_callback(SCREAMING_SNAKE_CASE) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _A : Tuple = os.path.join(SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(data_url.split('/')[-1])) if os.path.exists(SCREAMING_SNAKE_CASE) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def A ( self : str): pass def A ( self : str): pass def A ( self : Tuple , SCREAMING_SNAKE_CASE : Optional[Any]): def _iter_archive_members(SCREAMING_SNAKE_CASE : str): # this preserves the order of the members inside the ZIP archive _A : Dict = Path(self.dummy_file).parent _A : Union[str, Any] = path.relative_to(SCREAMING_SNAKE_CASE) with ZipFile(self.local_path_to_dummy_data) as zip_file: _A : Any = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix()): yield dummy_parent_path.joinpath(SCREAMING_SNAKE_CASE) _A : str = Path(SCREAMING_SNAKE_CASE) _A : Any = _iter_archive_members(SCREAMING_SNAKE_CASE) if self.use_local_dummy_data else path.rglob('*') for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__')): yield file_path.relative_to(SCREAMING_SNAKE_CASE).as_posix(), file_path.open('rb') def A ( self : int , SCREAMING_SNAKE_CASE : Tuple): if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): _A : Tuple = [paths] for path in paths: if os.path.isfile(SCREAMING_SNAKE_CASE): if os.path.basename(SCREAMING_SNAKE_CASE).startswith(('.', '__')): return yield path else: for dirpath, dirnames, filenames in os.walk(SCREAMING_SNAKE_CASE): if os.path.basename(SCREAMING_SNAKE_CASE).startswith(('.', '__')): continue dirnames.sort() for filename in sorted(SCREAMING_SNAKE_CASE): if filename.startswith(('.', '__')): continue yield os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
128
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase_ = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } UpperCamelCase_ = { 'gpt2': 10_24, 'gpt2-medium': 10_24, 'gpt2-large': 10_24, 'gpt2-xl': 10_24, 'distilgpt2': 10_24, } class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['input_ids', 'attention_mask'] __UpperCamelCase = GPTaTokenizer def __init__( self, A_=None, A_=None, A_=None, A_="<|endoftext|>", A_="<|endoftext|>", A_="<|endoftext|>", A_=False, **A_, ) -> Optional[Any]: super().__init__( A_, A_, tokenizer_file=A_, unk_token=A_, bos_token=A_, eos_token=A_, add_prefix_space=A_, **A_, ) UpperCAmelCase__ =kwargs.pop("add_bos_token", A_ ) UpperCAmelCase__ =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space", A_ ) != add_prefix_space: UpperCAmelCase__ =getattr(A_, pre_tok_state.pop("type" ) ) UpperCAmelCase__ =add_prefix_space UpperCAmelCase__ =pre_tok_class(**A_ ) UpperCAmelCase__ =add_prefix_space def __UpperCAmelCase ( self, *A_, **A_ ) -> BatchEncoding: UpperCAmelCase__ =kwargs.get("is_split_into_words", A_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A_, **A_ ) def __UpperCAmelCase ( self, *A_, **A_ ) -> BatchEncoding: UpperCAmelCase__ =kwargs.get("is_split_into_words", A_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*A_, **A_ ) def __UpperCAmelCase ( self, A_, A_ = None ) -> Tuple[str]: UpperCAmelCase__ =self._tokenizer.model.save(A_, name=A_ ) return tuple(A_ ) def __UpperCAmelCase ( self, A_ ) -> List[int]: UpperCAmelCase__ =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A_, add_special_tokens=A_ ) + [self.eos_token_id] ) if len(A_ ) > self.model_max_length: UpperCAmelCase__ =input_ids[-self.model_max_length :] return input_ids
510
# using dfs for finding eulerian path traversal def _UpperCAmelCase ( A , A , A , A=None ): '''simple docstring''' UpperCAmelCase__ =(path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: UpperCAmelCase__ , UpperCAmelCase__ =True, True UpperCAmelCase__ =dfs(A , A , A , A ) return path def _UpperCAmelCase ( A , A ): '''simple docstring''' UpperCAmelCase__ =0 UpperCAmelCase__ =-1 for i in range(A ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 UpperCAmelCase__ =i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _UpperCAmelCase ( A , A ): '''simple docstring''' UpperCAmelCase__ =[[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] UpperCAmelCase__ , UpperCAmelCase__ =check_circuit_or_path(A , A ) if check == 3: print("graph is not Eulerian" ) print("no path" ) return UpperCAmelCase__ =1 if check == 2: UpperCAmelCase__ =odd_node print("graph has a Euler path" ) if check == 1: print("graph has a Euler cycle" ) UpperCAmelCase__ =dfs(A , A , A ) print(A ) def _UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ ={1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} UpperCAmelCase__ ={1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} UpperCAmelCase__ ={1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} UpperCAmelCase__ ={1: [2, 3], 2: [1, 3], 3: [1, 2]} UpperCAmelCase__ ={ 1: [], 2: [] # all degree is zero } UpperCAmelCase__ =10 check_euler(A , A ) check_euler(A , A ) check_euler(A , A ) check_euler(A , A ) check_euler(A , A ) if __name__ == "__main__": main()
510
1
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5 ): """simple docstring""" assert masked_input.count("""<mask>""" ) == 1 snake_case_ : Tuple = torch.tensor(tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ).unsqueeze(0 ) # Batch size 1 snake_case_ : int = model(SCREAMING_SNAKE_CASE__ )[0] # The last hidden-state is the first element of the output tuple snake_case_ : Optional[int] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() snake_case_ : str = logits[0, masked_index, :] snake_case_ : Optional[int] = logits.softmax(dim=0 ) snake_case_ , snake_case_ : Tuple = prob.topk(k=SCREAMING_SNAKE_CASE__ , dim=0 ) snake_case_ : List[str] = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(SCREAMING_SNAKE_CASE__ ) )] ) snake_case_ : Optional[int] = tokenizer.mask_token snake_case_ : Optional[int] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ): snake_case_ : Optional[Any] = predicted_token_bpe.replace("""\u2581""" , """ """ ) if " {0}".format(SCREAMING_SNAKE_CASE__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs a_ = CamembertTokenizer.from_pretrained('''camembert-base''') a_ = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() a_ = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
480
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(SCREAMING_SNAKE_CASE__ ) ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[list[int]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if index == len(SCREAMING_SNAKE_CASE__ ): return True # Recursive Step for i in range(SCREAMING_SNAKE_CASE__ ): if valid_coloring(graph[index] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Color current vertex snake_case_ : Dict = i # Validate coloring if util_color(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ): return True # Backtrack snake_case_ : List[Any] = -1 return False def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[list[int]] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : int = [-1] * len(SCREAMING_SNAKE_CASE__ ) if util_color(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 0 ): return colored_vertices return []
480
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: _UpperCAmelCase = None _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = "▁" _UpperCAmelCase = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _UpperCAmelCase = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } _UpperCAmelCase = { "google/pegasus-xsum": 512, } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = PegasusTokenizer lowerCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowercase=None , lowercase=None , lowercase="<pad>" , lowercase="</s>" , lowercase="<unk>" , lowercase="<mask_2>" , lowercase="<mask_1>" , lowercase=None , lowercase=1_0_3 , **lowercase , ): """simple docstring""" A_ : Tuple = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError( F'''additional_special_tokens should be of type {type(UpperCAmelCase__ )}, but is''' F''' {type(UpperCAmelCase__ )}''' ) A_ : Optional[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(UpperCAmelCase__ ) , self.offset - 1 ) ] if len(set(UpperCAmelCase__ ) ) != len(UpperCAmelCase__ ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) A_ : Optional[int] = additional_special_tokens_extended else: A_ : Union[str, Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , mask_token_sent=UpperCAmelCase__ , offset=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) A_ : Union[str, Any] = vocab_file A_ : Optional[int] = False if not self.vocab_file else True def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Optional[int] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( 'There should be 3 special tokens: mask_token, pad_token, and eos_token +' F''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = False ): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase__ ) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCAmelCase_ ( self , lowercase , lowercase=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ : Optional[int] = os.path.join( UpperCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
721
import numpy as np _UpperCAmelCase = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class UpperCAmelCase : '''simple docstring''' def __init__( self ): """simple docstring""" A_ : Any = np.array(lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ , A_ : Optional[Any] = np.where(letter == self.SQUARE ) A_ : List[str] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" A_ : int = self.SQUARE[indexa - 1, indexa - 1] return letter def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : int = message.lower() A_ : Tuple = message.replace(' ' , '' ) A_ : int = message.replace('j' , 'i' ) A_ : Any = np.empty((2, len(lowercase )) ) for letter_index in range(len(lowercase ) ): A_ : Optional[int] = self.letter_to_numbers(message[letter_index] ) A_ : Union[str, Any] = numbers[0] A_ : Union[str, Any] = numbers[1] A_ : Optional[int] = first_step.reshape(2 * len(lowercase ) ) A_ : int = '' for numbers_index in range(len(lowercase ) ): A_ : str = int(second_step[numbers_index * 2] ) A_ : str = int(second_step[(numbers_index * 2) + 1] ) A_ : Tuple = self.numbers_to_letter(lowercase , lowercase ) A_ : Tuple = encoded_message + letter return encoded_message def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Optional[int] = message.lower() message.replace(' ' , '' ) A_ : Tuple = np.empty(2 * len(lowercase ) ) for letter_index in range(len(lowercase ) ): A_ : Optional[Any] = self.letter_to_numbers(message[letter_index] ) A_ : Optional[int] = numbers[0] A_ : Dict = numbers[1] A_ : Optional[int] = first_step.reshape((2, len(lowercase )) ) A_ : List[str] = '' for numbers_index in range(len(lowercase ) ): A_ : List[Any] = int(second_step[0, numbers_index] ) A_ : Optional[int] = int(second_step[1, numbers_index] ) A_ : Tuple = self.numbers_to_letter(lowercase , lowercase ) A_ : str = decoded_message + letter return decoded_message
70
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase: Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase: str = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class __lowerCAmelCase ( _UpperCamelCase ): '''simple docstring''' _A = "camembert" def __init__( self: Union[str, Any], lowerCamelCase_: List[Any]=30522, lowerCamelCase_: List[str]=768, lowerCamelCase_: List[str]=12, lowerCamelCase_: Tuple=12, lowerCamelCase_: List[Any]=3072, lowerCamelCase_: Union[str, Any]="gelu", lowerCamelCase_: Dict=0.1, lowerCamelCase_: Union[str, Any]=0.1, lowerCamelCase_: Any=512, lowerCamelCase_: int=2, lowerCamelCase_: int=0.0_2, lowerCamelCase_: Optional[Any]=1E-12, lowerCamelCase_: Optional[int]=1, lowerCamelCase_: Union[str, Any]=0, lowerCamelCase_: Optional[int]=2, lowerCamelCase_: Dict="absolute", lowerCamelCase_: Optional[Any]=True, lowerCamelCase_: Union[str, Any]=None, **lowerCamelCase_: str, ): super().__init__(pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_ ) lowercase__ : Optional[Any] = vocab_size lowercase__ : Dict = hidden_size lowercase__ : Tuple = num_hidden_layers lowercase__ : List[Any] = num_attention_heads lowercase__ : Tuple = hidden_act lowercase__ : Dict = intermediate_size lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : Optional[int] = type_vocab_size lowercase__ : Tuple = initializer_range lowercase__ : Dict = layer_norm_eps lowercase__ : str = position_embedding_type lowercase__ : Any = use_cache lowercase__ : Tuple = classifier_dropout class __lowerCAmelCase ( _UpperCamelCase ): '''simple docstring''' @property def snake_case__( self: Tuple ): if self.task == "multiple-choice": lowercase__ : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase__ : Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
266
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase: List[Any] = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase: Dict = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase: Dict = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __UpperCamelCase: List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
266
1
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Any =logging.get_logger(__name__) # TODO Update this lowerCAmelCase : Optional[int] ={ 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class _a ( snake_case_ ): _UpperCamelCase: str = "esm" def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1026 , lowercase_=0.0_2 , lowercase_=1e-12 , lowercase_="absolute" , lowercase_=True , lowercase_=None , lowercase_=False , lowercase_=False , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , mask_token_id=lowercase_ , **lowercase_ ) lowerCAmelCase : Any = vocab_size lowerCAmelCase : Dict = hidden_size lowerCAmelCase : Optional[int] = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = initializer_range lowerCAmelCase : List[str] = layer_norm_eps lowerCAmelCase : Tuple = position_embedding_type lowerCAmelCase : Tuple = use_cache lowerCAmelCase : Optional[Any] = emb_layer_norm_before lowerCAmelCase : List[str] = token_dropout lowerCAmelCase : List[str] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) lowerCAmelCase : Any = EsmFoldConfig() elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Optional[Any] = EsmFoldConfig(**lowercase_ ) lowerCAmelCase : str = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) lowerCAmelCase : List[Any] = get_default_vocab_list() else: lowerCAmelCase : int = vocab_list else: lowerCAmelCase : int = None lowerCAmelCase : Dict = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , lowercase_ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : str = super().to_dict() if isinstance(self.esmfold_config , lowercase_ ): lowerCAmelCase : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class _a : _UpperCamelCase: List[str] = None _UpperCamelCase: List[Any] = True _UpperCamelCase: Optional[int] = False _UpperCamelCase: Optional[Any] = False _UpperCamelCase: List[Any] = False _UpperCamelCase: Dict = 0 _UpperCamelCase: int = True _UpperCamelCase: List[str] = False _UpperCamelCase: List[Any] = 128 _UpperCamelCase: Optional[Any] = None def _snake_case ( self ) -> Any: if self.trunk is None: lowerCAmelCase : Optional[int] = TrunkConfig() elif isinstance(self.trunk , lowercase_ ): lowerCAmelCase : Optional[Any] = TrunkConfig(**self.trunk ) def _snake_case ( self ) -> int: lowerCAmelCase : int = asdict(self ) lowerCAmelCase : Optional[Any] = self.trunk.to_dict() return output @dataclass class _a : _UpperCamelCase: Union[str, Any] = 48 _UpperCamelCase: Optional[int] = 1024 _UpperCamelCase: Dict = 128 _UpperCamelCase: Tuple = 32 _UpperCamelCase: Union[str, Any] = 32 _UpperCamelCase: Dict = 32 _UpperCamelCase: List[Any] = 0 _UpperCamelCase: List[Any] = 0 _UpperCamelCase: Union[str, Any] = False _UpperCamelCase: Tuple = 4 _UpperCamelCase: Union[str, Any] = 128 _UpperCamelCase: Optional[Any] = None def _snake_case ( self ) -> int: if self.structure_module is None: lowerCAmelCase : Optional[int] = StructureModuleConfig() elif isinstance(self.structure_module , lowercase_ ): lowerCAmelCase : Tuple = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) lowerCAmelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width lowerCAmelCase : Dict = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _snake_case ( self ) -> List[str]: lowerCAmelCase : Dict = asdict(self ) lowerCAmelCase : Dict = self.structure_module.to_dict() return output @dataclass class _a : _UpperCamelCase: Tuple = 384 _UpperCamelCase: Union[str, Any] = 128 _UpperCamelCase: Any = 16 _UpperCamelCase: Optional[int] = 128 _UpperCamelCase: Any = 12 _UpperCamelCase: Any = 4 _UpperCamelCase: Any = 8 _UpperCamelCase: int = 0.1 _UpperCamelCase: Any = 8 _UpperCamelCase: str = 1 _UpperCamelCase: Union[str, Any] = 2 _UpperCamelCase: Dict = 7 _UpperCamelCase: Optional[int] = 10 _UpperCamelCase: Optional[int] = 1e-8 _UpperCamelCase: List[Any] = 1e5 def _snake_case ( self ) -> List[Any]: return asdict(self ) def _UpperCAmelCase ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
716
from math import factorial class _a : def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = real if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = [1] * rank else: lowerCAmelCase : Any = rank def __repr__( self ) -> int: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self , lowercase_ ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase : int = self.duals.copy() lowerCAmelCase : Tuple = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) lowerCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) _UpperCamelCase: List[Any] = __add__ def __sub__( self , lowercase_ ) -> Union[str, Any]: return self + other * -1 def __mul__( self , lowercase_ ) -> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) _UpperCamelCase: str = __mul__ def __truediv__( self , lowercase_ ) -> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self , lowercase_ ) -> int: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self , lowercase_ ) -> str: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 ) lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
693
0
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : str=3 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : Dict=7 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=9_9 , lowerCAmelCase__ : List[str]=3_6 , lowerCAmelCase__ : List[str]=3 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Optional[Any]=3_7 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : List[str]=5_1_2 , lowerCAmelCase__ : List[str]=1_6 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : Optional[Any]=6 , lowerCAmelCase__ : Union[str, Any]=6 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[int]=1_0_0_0 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = parent __SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size __SCREAMING_SNAKE_CASE : List[str] = num_channels __SCREAMING_SNAKE_CASE : List[str] = image_size __SCREAMING_SNAKE_CASE : int = patch_size __SCREAMING_SNAKE_CASE : Dict = text_seq_length __SCREAMING_SNAKE_CASE : Union[str, Any] = is_training __SCREAMING_SNAKE_CASE : Any = use_input_mask __SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids __SCREAMING_SNAKE_CASE : str = use_labels __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : Tuple = hidden_size __SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : List[str] = num_attention_heads __SCREAMING_SNAKE_CASE : List[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_act __SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = max_position_embeddings __SCREAMING_SNAKE_CASE : List[str] = type_vocab_size __SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : Union[str, Any] = coordinate_size __SCREAMING_SNAKE_CASE : Optional[int] = shape_size __SCREAMING_SNAKE_CASE : str = num_labels __SCREAMING_SNAKE_CASE : Any = num_choices __SCREAMING_SNAKE_CASE : Union[str, Any] = scope __SCREAMING_SNAKE_CASE : Optional[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __SCREAMING_SNAKE_CASE : Union[str, Any] = text_seq_length __SCREAMING_SNAKE_CASE : List[Any] = (image_size // patch_size) ** 2 + 1 __SCREAMING_SNAKE_CASE : Dict = self.text_seq_length + self.image_seq_length def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __SCREAMING_SNAKE_CASE : List[Any] = bbox[i, j, 3] __SCREAMING_SNAKE_CASE : str = bbox[i, j, 1] __SCREAMING_SNAKE_CASE : str = t if bbox[i, j, 2] < bbox[i, j, 0]: __SCREAMING_SNAKE_CASE : int = bbox[i, j, 2] __SCREAMING_SNAKE_CASE : Dict = bbox[i, j, 0] __SCREAMING_SNAKE_CASE : List[Any] = t __SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : Any = random_attention_mask([self.batch_size, self.text_seq_length] ) __SCREAMING_SNAKE_CASE : Tuple = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Any = None __SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: __SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = LayoutLMvaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() # text + image __SCREAMING_SNAKE_CASE : Union[str, Any] = model(UpperCAmelCase_ , pixel_values=UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE : Any = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE : List[Any] = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE : List[str] = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __SCREAMING_SNAKE_CASE : str = model(UpperCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __SCREAMING_SNAKE_CASE : Union[str, Any] = model(pixel_values=UpperCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.num_labels __SCREAMING_SNAKE_CASE : Optional[int] = LayoutLMvaForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __SCREAMING_SNAKE_CASE : int = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels __SCREAMING_SNAKE_CASE : Tuple = LayoutLMvaForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = LayoutLMvaForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __SCREAMING_SNAKE_CASE : Optional[Any] = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : List[str] = config_and_inputs __SCREAMING_SNAKE_CASE : Tuple = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class _UpperCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _A : List[str] = False _A : Optional[Any] = False _A : Optional[Any] = False _A : Optional[Any] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _A : Optional[Any] = ( {"""document-question-answering""": LayoutLMvaForQuestionAnswering, """feature-extraction""": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase__ ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str ): """simple docstring""" return True def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = LayoutLMvaModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=3_7 ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str]=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = copy.deepcopy(UpperCAmelCase_ ) if model_class in get_values(UpperCAmelCase_ ): __SCREAMING_SNAKE_CASE : str = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCAmelCase_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase_ ): __SCREAMING_SNAKE_CASE : List[str] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) elif model_class in get_values(UpperCAmelCase_ ): __SCREAMING_SNAKE_CASE : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) elif model_class in [ *get_values(UpperCAmelCase_ ), ]: __SCREAMING_SNAKE_CASE : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) elif model_class in [ *get_values(UpperCAmelCase_ ), ]: __SCREAMING_SNAKE_CASE : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCAmelCase_ , ) return inputs_dict def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE : Dict = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) @slow def UpperCamelCase__ ( self : Dict ): """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : List[str] = LayoutLMvaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self : List[str] ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase_ ) if is_vision_available() else None @slow def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE : List[str] = self.default_image_processor __SCREAMING_SNAKE_CASE : str = prepare_img() __SCREAMING_SNAKE_CASE : int = image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values.to(UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[1, 2]] ) __SCREAMING_SNAKE_CASE : Any = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __SCREAMING_SNAKE_CASE : Optional[int] = model( input_ids=input_ids.to(UpperCAmelCase_ ) , bbox=bbox.to(UpperCAmelCase_ ) , pixel_values=pixel_values.to(UpperCAmelCase_ ) , ) # verify the logits __SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE : int = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
578
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = emb.weight.shape SCREAMING_SNAKE_CASE__ = nn.Linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = emb.weight.data return lin_layer def _lowercase ( UpperCamelCase_ , UpperCamelCase_="facebook/mbart-large-en-ro" , UpperCamelCase_=False , UpperCamelCase_=False ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.load(UpperCamelCase_ , map_location='cpu' )['model'] remove_ignore_keys_(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = state_dict['encoder.embed_tokens.weight'].shape[0] SCREAMING_SNAKE_CASE__ = MBartConfig.from_pretrained(UpperCamelCase_ , vocab_size=UpperCamelCase_ ) if mbart_aa and finetuned: SCREAMING_SNAKE_CASE__ = 'relu' SCREAMING_SNAKE_CASE__ = state_dict['decoder.embed_tokens.weight'] SCREAMING_SNAKE_CASE__ = MBartForConditionalGeneration(UpperCamelCase_ ) model.model.load_state_dict(UpperCamelCase_ ) if finetuned: SCREAMING_SNAKE_CASE__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") __snake_case = parser.parse_args() __snake_case = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
472
0
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _lowerCAmelCase ( lowerCamelCase_ : Union[dict, list, tuple, torch.Tensor] ): __lowercase = [] if isinstance(lowerCamelCase_ , lowerCamelCase_ ): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_ ) ) elif isinstance(lowerCamelCase_ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_ ) ) elif isinstance(lowerCamelCase_ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple[int, ...] ): __lowercase = [] for d in reversed(lowerCamelCase_ ): idx.append(flat_idx % d ) __lowercase = flat_idx // d return tuple(reversed(lowerCamelCase_ ) ) @torch.jit.ignore def _lowerCAmelCase ( lowerCamelCase_ : Sequence[int] , lowerCamelCase_ : Sequence[int] , lowerCamelCase_ : Sequence[int] , lowerCamelCase_ : Optional[Sequence[bool]] = None , lowerCamelCase_ : Optional[Sequence[bool]] = None , ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_ : List[bool] ) -> None: __lowercase = True for i in range(len(lowerCamelCase_ ) ): __lowercase = -1 * (i + 1) l[reversed_idx] &= tally __lowercase = l[reversed_idx] if start_edges is None: __lowercase = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_ ) if end_edges is None: __lowercase = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_ )] reduce_edge_list(lowerCamelCase_ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_ ) == 0: return [()] elif len(lowerCamelCase_ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __lowercase = [] __lowercase = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_ ): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1 ) ) else: break __lowercase = tuple(lowerCamelCase_ ) __lowercase = len(lowerCamelCase_ ) # start == end, and we're done if divergence_idx == len(lowerCamelCase_ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowercase = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowercase = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __lowercase = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _lowerCAmelCase ( lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase = t.shape[:no_batch_dims] __lowercase = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_ ) ) # _get_minimal_slice_set is inclusive __lowercase = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_ ) ) # Get an ordered list of slices to perform __lowercase = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) __lowercase = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _lowerCAmelCase ( lowerCamelCase_ : Callable , lowerCamelCase_ : Dict[str, Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : bool = False , lowerCamelCase_ : Any = None , lowerCamelCase_ : bool = False , ): if not (len(lowerCamelCase_ ) > 0): raise ValueError('''Must provide at least one input''' ) __lowercase = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_ )] __lowercase = tuple([max(lowerCamelCase_ ) for s in zip(*lowerCamelCase_ )] ) def _prep_inputs(lowerCamelCase_ : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __lowercase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __lowercase = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __lowercase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __lowercase = tensor_tree_map(_prep_inputs , lowerCamelCase_ ) __lowercase = None if _out is not None: __lowercase = tensor_tree_map(lambda lowerCamelCase_ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __lowercase = 1 for d in orig_batch_dims: flat_batch_dim *= d __lowercase = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_ : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __lowercase = 0 __lowercase = prepped_outputs for _ in range(lowerCamelCase_ ): # Chunk the input if not low_mem: __lowercase = _select_chunk else: __lowercase = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size ) , no_batch_dims=len(lowerCamelCase_ ) , ) __lowercase = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_ ) # Run the layer on the chunk __lowercase = layer(**lowerCamelCase_ ) # Allocate space for the output if out is None: __lowercase = tensor_tree_map(lambda lowerCamelCase_ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , lowerCamelCase_ ) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_ ): def assign(lowerCamelCase_ : dict , lowerCamelCase_ : dict ) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): assign(lowerCamelCase_ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __lowercase = da[k] assign(lowerCamelCase_ , lowerCamelCase_ ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_ ): if _add_into_out: xa[i : i + chunk_size] += xa else: __lowercase = xa elif isinstance(lowerCamelCase_ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __lowercase = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size __lowercase = tensor_tree_map(lambda lowerCamelCase_ : t.view(orig_batch_dims + t.shape[1:] ) , lowerCamelCase_ ) return out class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase = 512 ,) -> List[str]: '''simple docstring''' __lowercase = max_chunk_size __lowercase = None __lowercase = None def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> int: '''simple docstring''' logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __lowercase = [2**l for l in range(int(math.log(self.max_chunk_size ,2 ) ) + 1 )] __lowercase = [c for c in candidates if c > min_chunk_size] __lowercase = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_lowerCamelCase ) -> bool: try: with torch.no_grad(): fn(*_lowerCamelCase ,chunk_size=_lowerCamelCase ) return True except RuntimeError: return False __lowercase = 0 __lowercase = len(_lowerCamelCase ) - 1 while i > min_viable_chunk_size_index: __lowercase = test_chunk_size(candidates[i] ) if not viable: __lowercase = (min_viable_chunk_size_index + i) // 2 else: __lowercase = i __lowercase = (i + len(_lowerCamelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> bool: '''simple docstring''' __lowercase = True for aa, aa in zip(_lowerCamelCase ,_lowerCamelCase ): assert type(_lowerCamelCase ) == type(_lowerCamelCase ) if isinstance(_lowerCamelCase ,(list, tuple) ): consistent &= self._compare_arg_caches(_lowerCamelCase ,_lowerCamelCase ) elif isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [v for _, v in sorted(aa.items() ,key=lambda _lowerCamelCase : x[0] )] __lowercase = [v for _, v in sorted(aa.items() ,key=lambda _lowerCamelCase : x[0] )] consistent &= self._compare_arg_caches(_lowerCamelCase ,_lowerCamelCase ) else: consistent &= aa == aa return consistent def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> int: '''simple docstring''' __lowercase = True __lowercase = tree_map(lambda _lowerCamelCase : a.shape if isinstance(_lowerCamelCase ,torch.Tensor ) else a ,_lowerCamelCase ,_lowerCamelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_lowerCamelCase ) __lowercase = self._compare_arg_caches(self.cached_arg_data ,_lowerCamelCase ) else: # Otherwise, we can reuse the precomputed value __lowercase = False if not consistent: __lowercase = self._determine_favorable_chunk_size( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) __lowercase = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
56
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowerCamelCase_ ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(lowerCamelCase_ ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(lowerCamelCase_ , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=None ): __lowercase = load_checkpoint(lowerCamelCase_ ) if config is not None: __lowercase = OPTConfig.from_pretrained(lowerCamelCase_ ) else: __lowercase = OPTConfig() __lowercase = OPTModel(lowerCamelCase_ ).half().eval() model.load_state_dict(lowerCamelCase_ ) # Check results Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
56
1
"""simple docstring""" import math import os import sys def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = "" try: with open(lowerCAmelCase__ , "rb" ) as binary_file: UpperCAmelCase_ = binary_file.read() for dat in data: UpperCAmelCase_ = f"""{dat:08b}""" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lexicon.pop(lowerCAmelCase__ ) UpperCAmelCase_ = last_match_id if math.loga(lowerCAmelCase__ ).is_integer(): for curr_key in lexicon: UpperCAmelCase_ = "0" + lexicon[curr_key] UpperCAmelCase_ = bin(lowerCAmelCase__ )[2:] def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {"0": "0", "1": "1"} UpperCAmelCase_ = "", "" UpperCAmelCase_ = len(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCAmelCase_ = lexicon[curr_string] result += last_match_id add_key_to_lexicon(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) index += 1 UpperCAmelCase_ = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": UpperCAmelCase_ = lexicon[curr_string] result += last_match_id return result def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = os.path.getsize(lowerCAmelCase__ ) UpperCAmelCase_ = bin(lowerCAmelCase__ )[2:] UpperCAmelCase_ = len(lowerCAmelCase__ ) return "0" * (length_length - 1) + file_length_binary + compressed def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = 8 try: with open(lowerCAmelCase__ , "wb" ) as opened_file: UpperCAmelCase_ = [ to_write[i : i + byte_length] for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(lowerCAmelCase__ , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = read_file_binary(lowerCAmelCase__ ) UpperCAmelCase_ = compress_data(lowerCAmelCase__ ) UpperCAmelCase_ = add_file_length(lowerCAmelCase__ , lowerCAmelCase__ ) write_file_binary(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
82
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
143
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ : str = { "configuration_layoutlmv3": [ "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv3Config", "LayoutLMv3OnnxConfig", ], "processing_layoutlmv3": ["LayoutLMv3Processor"], "tokenization_layoutlmv3": ["LayoutLMv3Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = ["LayoutLMv3TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = [ "LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv3ForQuestionAnswering", "LayoutLMv3ForSequenceClassification", "LayoutLMv3ForTokenClassification", "LayoutLMv3Model", "LayoutLMv3PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = [ "TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForTokenClassification", "TFLayoutLMv3Model", "TFLayoutLMv3PreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[Any] = ["LayoutLMv3FeatureExtractor"] SCREAMING_SNAKE_CASE__ : str = ["LayoutLMv3ImageProcessor"] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys SCREAMING_SNAKE_CASE__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
700
"""simple docstring""" from torch import nn class A_ ( nn.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: super().__init__() a : List[str] = class_size a : Tuple = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) a : int = nn.Linear(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ ( self , __UpperCAmelCase ) -> Any: # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) a : int = self.mlp(__UpperCAmelCase ) return logits
509
0
def __A ( _A ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") SCREAMING_SNAKE_CASE : Dict = int(input("""Enter number: """).strip()) print(f'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
197
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCAmelCase : Optional[int] = {'vocab_file': 'sentencepiece.model'} __UpperCAmelCase : Dict = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } __UpperCAmelCase : str = { 'google/rembert': 2_56, } class __lowerCAmelCase (__UpperCamelCase ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , a , a=False , a=True , a=True , a="[CLS]" , a="[SEP]" , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , **a , ): """simple docstring""" super().__init__( do_lower_case=a , remove_space=a , keep_accents=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , **a , ) snake_case_ :Dict = do_lower_case snake_case_ :Tuple = remove_space snake_case_ :List[Any] = keep_accents snake_case_ :Union[str, Any] = vocab_file snake_case_ :Optional[Any] = spm.SentencePieceProcessor() self.sp_model.Load(a ) @property def _a ( self ): """simple docstring""" return len(self.sp_model ) def _a ( self ): """simple docstring""" snake_case_ :List[Any] = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" snake_case_ :Tuple = self.__dict__.copy() snake_case_ :List[Any] = None return state def __setstate__( self , a ): """simple docstring""" snake_case_ :List[Any] = d snake_case_ :Dict = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def _a ( self , a , a=False ): """simple docstring""" snake_case_ :str = self.sp_model.EncodeAsPieces(a ) return pieces def _a ( self , a ): """simple docstring""" return self.sp_model.PieceToId(a ) def _a ( self , a ): """simple docstring""" return self.sp_model.IdToPiece(a ) def _a ( self , a ): """simple docstring""" snake_case_ :int = self.sp_model.decode_pieces(a ) return out_string def _a ( self , a , a = None ): """simple docstring""" snake_case_ :List[Any] = [self.sep_token_id] snake_case_ :List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _a ( self , a , a = None , a = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a )) + [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1] def _a ( self , a , a = None ): """simple docstring""" snake_case_ :Any = [self.sep_token_id] snake_case_ :Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , a , a = None ): """simple docstring""" if not os.path.isdir(a ): logger.error("Vocabulary path ({}) should be a directory".format(a ) ) return snake_case_ :str = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
584
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar __UpperCAmelCase : List[str] = TypeVar("T") class _snake_case ( Generic[T] ): def __init__( self ,UpperCamelCase ,UpperCamelCase ) -> None: snake_case__ :Any | T = None snake_case__ :int = len(UpperCamelCase ) snake_case__ :list[T] = [any_type for _ in range(self.N )] + arr snake_case__ :Optional[Any] = fnc self.build() def lowerCAmelCase_ ( self ) -> None: for p in range(self.N - 1 ,0 ,-1 ): snake_case__ :Optional[Any] = self.fn(self.st[p * 2] ,self.st[p * 2 + 1] ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> None: p += self.N snake_case__ :Optional[Any] = v while p > 1: snake_case__ :List[str] = p // 2 snake_case__ :List[Any] = self.fn(self.st[p * 2] ,self.st[p * 2 + 1] ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> T | None: # noqa: E741 snake_case__ , snake_case__ :List[str] = l + self.N, r + self.N snake_case__ :T | None = None while l <= r: if l % 2 == 1: snake_case__ :List[str] = self.st[l] if res is None else self.fn(UpperCamelCase ,self.st[l] ) if r % 2 == 0: snake_case__ :Union[str, Any] = self.st[r] if res is None else self.fn(UpperCamelCase ,self.st[r] ) snake_case__ , snake_case__ :List[str] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce __UpperCAmelCase : Optional[Any] = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] __UpperCAmelCase : Dict = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } __UpperCAmelCase : Optional[int] = SegmentTree(test_array, min) __UpperCAmelCase : Dict = SegmentTree(test_array, max) __UpperCAmelCase : Dict = SegmentTree(test_array, lambda a, b: a + b) def lowercase_ ( ) -> None: '''simple docstring''' for i in range(len(__snake_case ) ): for j in range(__snake_case , len(__snake_case ) ): snake_case__ :Optional[Any] = reduce(__snake_case , test_array[i : j + 1] ) snake_case__ :str = reduce(__snake_case , test_array[i : j + 1] ) snake_case__ :List[str] = reduce(lambda __snake_case , __snake_case : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__snake_case , __snake_case ) assert max_range == max_segment_tree.query(__snake_case , __snake_case ) assert sum_range == sum_segment_tree.query(__snake_case , __snake_case ) test_all_segments() for index, value in test_updates.items(): __UpperCAmelCase : Optional[Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
57
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
57
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
204
def UpperCamelCase ( __lowerCamelCase : int = 1 , __lowerCamelCase : int = 1000 ): snake_case : int = 1 snake_case : int = 0 for divide_by_number in range(__lowerCamelCase , digit + 1 ): snake_case : list[int] = [] snake_case : Optional[int] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__lowerCamelCase ): snake_case : List[Any] = len(__lowerCamelCase ) snake_case : List[str] = divide_by_number else: has_been_divided.append(__lowerCamelCase ) snake_case : Any = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
204
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a = logging.get_logger(__name__) a = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } a = { "gpt2": 1024, "gpt2-medium": 1024, "gpt2-large": 1024, "gpt2-xl": 1024, "distilgpt2": 1024, } class _A ( __lowercase ): __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ["""input_ids""", """attention_mask"""] __a = GPTaTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ): super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = kwargs.pop("""add_bos_token""" , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _SCREAMING_SNAKE_CASE ) != add_prefix_space: _UpperCAmelCase = getattr(_SCREAMING_SNAKE_CASE , pre_tok_state.pop("""type""" ) ) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = pre_tok_class(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = add_prefix_space def UpperCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = kwargs.get("""is_split_into_words""" , _SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = kwargs.get("""is_split_into_words""" , _SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): _UpperCAmelCase = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) + [self.eos_token_id] ) if len(_SCREAMING_SNAKE_CASE ) > self.model_max_length: _UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
703
import math def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> float: if ( not isinstance(snake_case , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> float: if ( not isinstance(snake_case , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
175
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __lowerCAmelCase ( unittest.TestCase ): def snake_case_ (self ): _UpperCAmelCase : List[Any] = 0 def snake_case_ (self ): _UpperCAmelCase : Any = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case_ (self ): with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Any = Path(lowerCAmelCase__ ) / """preprocessor_config.json""" _UpperCAmelCase : Optional[Any] = Path(lowerCAmelCase__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(lowerCAmelCase__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCAmelCase__ , """w""" ) ) _UpperCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case_ (self ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Optional[int] = Path(lowerCAmelCase__ ) / """preprocessor_config.json""" _UpperCAmelCase : str = Path(lowerCAmelCase__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(lowerCAmelCase__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCAmelCase__ , """w""" ) ) _UpperCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case_ (self ): with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Optional[Any] = CLIPConfig() # Create a dummy config file with image_proceesor_type _UpperCAmelCase : str = Path(lowerCAmelCase__ ) / """preprocessor_config.json""" _UpperCAmelCase : Union[str, Any] = Path(lowerCAmelCase__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(lowerCAmelCase__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCAmelCase__ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _UpperCAmelCase : int = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ).to_dict() config_dict.pop("""image_processor_type""" ) _UpperCAmelCase : Any = CLIPImageProcessor(**lowerCAmelCase__ ) # save in new folder model_config.save_pretrained(lowerCAmelCase__ ) config.save_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) # make sure private variable is not incorrectly saved _UpperCAmelCase : str = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case_ (self ): with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : List[str] = Path(lowerCAmelCase__ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(lowerCAmelCase__ , """w""" ) , ) _UpperCAmelCase : str = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case_ (self ): with self.assertRaisesRegex( lowerCAmelCase__ , """clip-base is not a local folder and is not a valid model identifier""" ): _UpperCAmelCase : str = AutoImageProcessor.from_pretrained("""clip-base""" ) def snake_case_ (self ): with self.assertRaisesRegex( lowerCAmelCase__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _UpperCAmelCase : List[Any] = AutoImageProcessor.from_pretrained(lowerCAmelCase__ , revision="""aaaaaa""" ) def snake_case_ (self ): with self.assertRaisesRegex( lowerCAmelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): _UpperCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def snake_case_ (self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : Any = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained(lowerCAmelCase__ , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def snake_case_ (self ): try: AutoConfig.register("""custom""" , lowerCAmelCase__ ) AutoImageProcessor.register(lowerCAmelCase__ , lowerCAmelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase__ ): AutoImageProcessor.register(lowerCAmelCase__ , lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : int = Path(lowerCAmelCase__ ) / """preprocessor_config.json""" _UpperCAmelCase : List[Any] = Path(lowerCAmelCase__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(lowerCAmelCase__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCAmelCase__ , """w""" ) ) _UpperCAmelCase : Tuple = CustomImageProcessor.from_pretrained(lowerCAmelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def snake_case_ (self ): class __lowerCAmelCase ( __a ): snake_case : List[str] = True try: AutoConfig.register("""custom""" , lowerCAmelCase__ ) AutoImageProcessor.register(lowerCAmelCase__ , lowerCAmelCase__ ) # If remote code is not set, the default is to use local _UpperCAmelCase : int = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(lowerCAmelCase__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
414
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __lowerCAmelCase ( unittest.TestCase ): def __init__(self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=3_0 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=3_2 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_0 , lowerCAmelCase__=0.0_2 , ): _UpperCAmelCase : Union[str, Any] = parent _UpperCAmelCase : Optional[int] = batch_size _UpperCAmelCase : Dict = image_size _UpperCAmelCase : str = patch_size _UpperCAmelCase : List[Any] = num_channels _UpperCAmelCase : Union[str, Any] = is_training _UpperCAmelCase : str = use_labels _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Union[str, Any] = hidden_dropout_prob _UpperCAmelCase : List[str] = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = type_sequence_label_size _UpperCAmelCase : Optional[Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase : int = (image_size // patch_size) ** 2 _UpperCAmelCase : Tuple = num_patches + 1 def snake_case_ (self ): _UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : int = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, pixel_values def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = FlaxViTModel(config=lowerCAmelCase__ ) _UpperCAmelCase : Any = model(lowerCAmelCase__ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase : Union[str, Any] = (self.image_size, self.image_size) _UpperCAmelCase : Union[str, Any] = (self.patch_size, self.patch_size) _UpperCAmelCase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = self.type_sequence_label_size _UpperCAmelCase : Union[str, Any] = FlaxViTForImageClassification(config=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase : Union[str, Any] = 1 _UpperCAmelCase : Dict = FlaxViTForImageClassification(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Tuple = config_and_inputs _UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __lowerCAmelCase ( __a , unittest.TestCase ): snake_case : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def snake_case_ (self ): _UpperCAmelCase : Optional[int] = FlaxViTModelTester(self ) _UpperCAmelCase : str = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=3_7 ) def snake_case_ (self ): self.config_tester.run_common_tests() def snake_case_ (self ): _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : str = model_class(lowerCAmelCase__ ) _UpperCAmelCase : str = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : Dict = [*signature.parameters.keys()] _UpperCAmelCase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : List[str] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = model_class(lowerCAmelCase__ ) @jax.jit def model_jitted(lowerCAmelCase__ , **lowerCAmelCase__ ): return model(pixel_values=lowerCAmelCase__ , **lowerCAmelCase__ ) with self.subTest("""JIT Enabled""" ): _UpperCAmelCase : Any = model_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _UpperCAmelCase : str = model_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def snake_case_ (self ): for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) _UpperCAmelCase : List[Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(lowerCAmelCase__ )
414
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "char" a_ = "bpe" a_ = "wp" __lowerCamelCase : Any = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = ["image_processor", "char_tokenizer"] a_ = "ViTImageProcessor" a_ = "MgpstrTokenizer" def __init__( self : Union[str, Any] , __A : Any=None , __A : Dict=None , **__A : Any ): snake_case__ : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __A , ) snake_case__ : List[str] = kwargs.pop("feature_extractor" ) snake_case__ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) snake_case__ : List[Any] = tokenizer snake_case__ : List[str] = AutoTokenizer.from_pretrained("gpt2" ) snake_case__ : Dict = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__A , __A ) def __call__( self : List[str] , __A : str=None , __A : Optional[Any]=None , __A : Dict=None , **__A : Optional[Any] ): if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: snake_case__ : Union[str, Any] = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None: snake_case__ : List[str] = self.char_tokenizer(__A , return_tensors=__A , **__A ) if text is None: return inputs elif images is None: return encodings else: snake_case__ : Any = encodings["input_ids"] return inputs def _lowercase ( self : Optional[Any] , __A : Optional[int] ): snake_case__, snake_case__, snake_case__ : List[str] = sequences snake_case__ : Optional[Any] = char_preds.size(0 ) snake_case__, snake_case__ : List[Any] = self._decode_helper(__A , "char" ) snake_case__, snake_case__ : Tuple = self._decode_helper(__A , "bpe" ) snake_case__, snake_case__ : int = self._decode_helper(__A , "wp" ) snake_case__ : Dict = [] snake_case__ : Dict = [] for i in range(__A ): snake_case__ : List[str] = [char_scores[i], bpe_scores[i], wp_scores[i]] snake_case__ : str = [char_strs[i], bpe_strs[i], wp_strs[i]] snake_case__ : str = scores.index(max(__A ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) snake_case__ : Any = {} snake_case__ : Union[str, Any] = final_strs snake_case__ : Tuple = final_scores snake_case__ : Optional[Any] = char_strs snake_case__ : Tuple = bpe_strs snake_case__ : Dict = wp_strs return out def _lowercase ( self : str , __A : List[Any] , __A : Union[str, Any] ): if format == DecodeType.CHARACTER: snake_case__ : int = self.char_decode snake_case__ : List[str] = 1 snake_case__ : Optional[int] = "[s]" elif format == DecodeType.BPE: snake_case__ : Optional[int] = self.bpe_decode snake_case__ : List[str] = 2 snake_case__ : Dict = "#" elif format == DecodeType.WORDPIECE: snake_case__ : Union[str, Any] = self.wp_decode snake_case__ : Tuple = 1_0_2 snake_case__ : Optional[Any] = "[SEP]" else: raise ValueError(f'''Format {format} is not supported.''' ) snake_case__, snake_case__ : Union[str, Any] = [], [] snake_case__ : Tuple = pred_logits.size(0 ) snake_case__ : int = pred_logits.size(1 ) snake_case__, snake_case__ : Any = pred_logits.topk(1 , dim=-1 , largest=__A , sorted=__A ) snake_case__ : Tuple = preds_index.view(-1 , __A )[:, 1:] snake_case__ : List[Any] = decoder(__A ) snake_case__, snake_case__ : Optional[Any] = torch.nn.functional.softmax(__A , dim=2 ).max(dim=2 ) snake_case__ : str = preds_max_prob[:, 1:] for index in range(__A ): snake_case__ : int = preds_str[index].find(__A ) snake_case__ : Union[str, Any] = preds_str[index][:pred_eos] snake_case__ : Any = preds_index[index].cpu().tolist() snake_case__ : Union[str, Any] = pred_index.index(__A ) if eos_token in pred_index else -1 snake_case__ : Union[str, Any] = preds_max_prob[index][: pred_eos_index + 1] snake_case__ : List[str] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__A ) conf_scores.append(__A ) return dec_strs, conf_scores def _lowercase ( self : Union[str, Any] , __A : Tuple ): snake_case__ : Tuple = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__A )] return decode_strs def _lowercase ( self : List[Any] , __A : Any ): return self.bpe_tokenizer.batch_decode(__A ) def _lowercase ( self : Optional[int] , __A : List[str] ): snake_case__ : Optional[Any] = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__A )] return decode_strs
25
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Any = [0] * len(snake_case_ ) for i in range(1 , len(snake_case_ ) ): # use last results for better performance - dynamic programming snake_case__ : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: snake_case__ : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 snake_case__ : int = j return prefix_result def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return max(prefix_function(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
25
1
from typing import Any def snake_case_ (__A : list , __A : list , __A : dict , __A : dict , __A : dict , ) -> list: _validation( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) # Creates data structures and fill initial step __lowerCAmelCase : dict = {} __lowerCAmelCase : dict = {} for state in states_space: __lowerCAmelCase : int = observations_space[0] __lowerCAmelCase : Union[str, Any] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __lowerCAmelCase : List[str] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(_SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase : Optional[int] = observations_space[o] __lowerCAmelCase : Optional[int] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __lowerCAmelCase : Optional[int] = "" __lowerCAmelCase : List[str] = -1 for k_state in states_space: __lowerCAmelCase : Any = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __lowerCAmelCase : str = probability __lowerCAmelCase : Dict = k_state # Update probabilities and pointers dicts __lowerCAmelCase : Optional[int] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __lowerCAmelCase : int = arg_max # The final observation __lowerCAmelCase : int = observations_space[len(_SCREAMING_SNAKE_CASE ) - 1] # argmax for given final observation __lowerCAmelCase : Any = "" __lowerCAmelCase : int = -1 for k_state in states_space: __lowerCAmelCase : Any = probabilities[(k_state, final_observation)] if probability > max_probability: __lowerCAmelCase : Tuple = probability __lowerCAmelCase : List[str] = k_state __lowerCAmelCase : Tuple = arg_max # Process pointers backwards __lowerCAmelCase : Optional[Any] = last_state __lowerCAmelCase : str = [] for o in range(len(_SCREAMING_SNAKE_CASE ) - 1 , -1 , -1 ): result.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = pointers[previous, observations_space[o]] result.reverse() return result def snake_case_ (__A : Any , __A : Any , __A : Any , __A : Any , __A : Any , ) -> None: _validate_not_empty( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) _validate_lists(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _validate_dicts( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ (__A : Any , __A : Any , __A : Any , __A : Any , __A : Any , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There's an empty parameter""" ) def snake_case_ (__A : Any , __A : Any ) -> None: _validate_list(_SCREAMING_SNAKE_CASE , """observations_space""" ) _validate_list(_SCREAMING_SNAKE_CASE , """states_space""" ) def snake_case_ (__A : Any , __A : str ) -> None: if not isinstance(_object , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = f'''{var_name} must be a list''' raise ValueError(_SCREAMING_SNAKE_CASE ) else: for x in _object: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : int = f'''{var_name} must be a list of strings''' raise ValueError(_SCREAMING_SNAKE_CASE ) def snake_case_ (__A : Any , __A : Any , __A : Any , ) -> None: _validate_dict(_SCREAMING_SNAKE_CASE , """initial_probabilities""" , _SCREAMING_SNAKE_CASE ) _validate_nested_dict(_SCREAMING_SNAKE_CASE , """transition_probabilities""" ) _validate_nested_dict(_SCREAMING_SNAKE_CASE , """emission_probabilities""" ) def snake_case_ (__A : Any , __A : str ) -> None: _validate_dict(_object , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for x in _object.values(): _validate_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ (__A : Any , __A : str , __A : type , __A : bool = False ) -> None: if not isinstance(_object , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = f'''{var_name} must be a dict''' raise ValueError(_SCREAMING_SNAKE_CASE ) if not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for x in _object ): __lowerCAmelCase : Tuple = f'''{var_name} all keys must be strings''' raise ValueError(_SCREAMING_SNAKE_CASE ) if not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for x in _object.values() ): __lowerCAmelCase : Tuple = "nested dictionary " if nested else "" __lowerCAmelCase : int = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": from doctest import testmod testmod()
651
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class _snake_case : __A : Dict =BlenderbotConfig __A : Union[str, Any] ={} __A : Any ="gelu" def __init__( self ,_snake_case ,_snake_case=13 ,_snake_case=7 ,_snake_case=True ,_snake_case=False ,_snake_case=99 ,_snake_case=32 ,_snake_case=2 ,_snake_case=4 ,_snake_case=37 ,_snake_case=0.1 ,_snake_case=0.1 ,_snake_case=20 ,_snake_case=2 ,_snake_case=1 ,_snake_case=0 ,): UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : str = batch_size UpperCAmelCase_ : Dict = seq_length UpperCAmelCase_ : int = is_training UpperCAmelCase_ : Optional[Any] = use_labels UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : Optional[int] = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Tuple = intermediate_size UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : List[Any] = max_position_embeddings UpperCAmelCase_ : str = eos_token_id UpperCAmelCase_ : List[Any] = pad_token_id UpperCAmelCase_ : List[Any] = bos_token_id def UpperCamelCase__ ( self ): UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) UpperCAmelCase_ : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) UpperCAmelCase_ : Optional[Any] = tf.concat([input_ids, eos_tensor] ,axis=1 ) UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : Optional[Any] = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) UpperCAmelCase_ : List[str] = prepare_blenderbot_inputs_dict(_snake_case ,_snake_case ,_snake_case ) return config, inputs_dict def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): UpperCAmelCase_ : Tuple = TFBlenderbotModel(config=_snake_case ).get_decoder() UpperCAmelCase_ : int = inputs_dict["input_ids"] UpperCAmelCase_ : Dict = input_ids[:1, :] UpperCAmelCase_ : Any = inputs_dict["attention_mask"][:1, :] UpperCAmelCase_ : int = inputs_dict["head_mask"] UpperCAmelCase_ : Optional[int] = 1 # first forward pass UpperCAmelCase_ : List[str] = model(_snake_case ,attention_mask=_snake_case ,head_mask=_snake_case ,use_cache=_snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ : Optional[int] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) UpperCAmelCase_ : Any = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and UpperCAmelCase_ : Union[str, Any] = tf.concat([input_ids, next_tokens] ,axis=-1 ) UpperCAmelCase_ : Any = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) UpperCAmelCase_ : Any = model(_snake_case ,attention_mask=_snake_case )[0] UpperCAmelCase_ : List[Any] = model(_snake_case ,attention_mask=_snake_case ,past_key_values=_snake_case )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice UpperCAmelCase_ : str = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) UpperCAmelCase_ : List[str] = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ : Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_snake_case ,_snake_case ,rtol=1E-3 ) def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : List[str]=None , _SCREAMING_SNAKE_CASE : Dict=None , ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: UpperCAmelCase_ : Dict = tf.cast(tf.math.not_equal(_SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase_ : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _snake_case (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Union[str, Any] =(TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __A : List[str] =(TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __A : Dict =( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __A : Any =True __A : Dict =False __A : Dict =False def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = TFBlenderbotModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self ,config_class=_snake_case ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_snake_case ) @require_tokenizers @require_tf class _snake_case (unittest.TestCase): __A : Optional[int] =["My friends are cool but they eat too many carbs."] __A : Optional[Any] ="facebook/blenderbot-400M-distill" @cached_property def UpperCamelCase__ ( self ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[Any] = self.tokenizer(self.src_text ,return_tensors="tf" ) UpperCAmelCase_ : Union[str, Any] = self.model.generate( model_inputs.input_ids ,) UpperCAmelCase_ : str = self.tokenizer.batch_decode(generated_ids.numpy() ,skip_special_tokens=_snake_case )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
71
0
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowercase : Dict = HfApi() lowercase : List[str] = {} # fmt: off lowercase : Optional[Any] = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) lowercase : str = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) lowercase : List[str] = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) lowercase : List[Any] = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) lowercase : Any = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) lowercase : Dict = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) lowercase : Union[str, Any] = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) lowercase : Dict = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) lowercase : Dict = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) lowercase : List[str] = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) lowercase : List[Any] = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) lowercase : Optional[Any] = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) lowercase : Tuple = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) lowercase : Dict = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) lowercase : Optional[Any] = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on lowercase : Optional[int] = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowercase : int = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1] print(f"Started running {mod.modelId}!!!") if mod.modelId.startswith('CompVis'): lowercase : Tuple = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: lowercase : Any = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowercase : List[str] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowercase : Any = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowercase : Tuple = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1E-3 ) print(f"{mod.modelId} has passed successfully!!!")
94
from __future__ import annotations lowercase : str = list[tuple[int, int]] lowercase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase : int = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class lowerCamelCase__ : '''simple docstring''' def __init__( self :Optional[int] , a :int , a :int , a :int , a :int , a :float , a :Node | None , ) -> List[Any]: __UpperCamelCase : List[Any] = pos_x __UpperCamelCase : List[str] = pos_y __UpperCamelCase : str = (pos_y, pos_x) __UpperCamelCase : Optional[int] = goal_x __UpperCamelCase : str = goal_y __UpperCamelCase : int = g_cost __UpperCamelCase : Dict = parent __UpperCamelCase : str = self.calculate_heuristic() def _lowerCamelCase ( self :List[Any] ) -> float: __UpperCamelCase : Any = abs(self.pos_x - self.goal_x ) __UpperCamelCase : Tuple = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self :Union[str, Any] , a :Dict ) -> bool: return self.f_cost < other.f_cost class lowerCamelCase__ : '''simple docstring''' def __init__( self :List[str] , a :tuple[int, int] , a :tuple[int, int] ) -> List[str]: __UpperCamelCase : Any = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , a ) __UpperCamelCase : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , a ) __UpperCamelCase : Optional[int] = [self.start] __UpperCamelCase : list[Node] = [] __UpperCamelCase : Any = False def _lowerCamelCase ( self :List[str] ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __UpperCamelCase : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __UpperCamelCase : Dict = True return self.retrace_path(a ) self.closed_nodes.append(a ) __UpperCamelCase : Union[str, Any] = self.get_successors(a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(a ) else: # retrieve the best current path __UpperCamelCase : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(a ) else: self.open_nodes.append(a ) if not self.reached: return [self.start.pos] return None def _lowerCamelCase ( self :str , a :Node ) -> list[Node]: __UpperCamelCase : List[Any] = [] for action in delta: __UpperCamelCase : Optional[Any] = parent.pos_x + action[1] __UpperCamelCase : List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( a , a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , a , ) ) return successors def _lowerCamelCase ( self :Optional[Any] , a :Node | None ) -> Path: __UpperCamelCase : str = node __UpperCamelCase : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __UpperCamelCase : str = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase : List[str] = (0, 0) lowercase : int = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') lowercase : Any = GreedyBestFirst(init, goal) lowercase : List[str] = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase : Optional[int] = 2 for elem in grid: print(elem)
94
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__: Tuple = { "configuration_mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig", "MegaOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Optional[Any] = [ "MEGA_PRETRAINED_MODEL_ARCHIVE_LIST", "MegaForCausalLM", "MegaForMaskedLM", "MegaForMultipleChoice", "MegaForQuestionAnswering", "MegaForSequenceClassification", "MegaForTokenClassification", "MegaModel", "MegaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCamelCase__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
127
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ : Dict = { "vocab_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt" ), "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt" ), "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json" ), "bert-base-multilingual-cased": ( "https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json" ), "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-cased": ( "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ : List[Any] = { "bert-base-uncased": 5_12, "bert-large-uncased": 5_12, "bert-base-cased": 5_12, "bert-large-cased": 5_12, "bert-base-multilingual-uncased": 5_12, "bert-base-multilingual-cased": 5_12, "bert-base-chinese": 5_12, "bert-base-german-cased": 5_12, "bert-large-uncased-whole-word-masking": 5_12, "bert-large-cased-whole-word-masking": 5_12, "bert-large-uncased-whole-word-masking-finetuned-squad": 5_12, "bert-large-cased-whole-word-masking-finetuned-squad": 5_12, "bert-base-cased-finetuned-mrpc": 5_12, "bert-base-german-dbmdz-cased": 5_12, "bert-base-german-dbmdz-uncased": 5_12, "TurkuNLP/bert-base-finnish-cased-v1": 5_12, "TurkuNLP/bert-base-finnish-uncased-v1": 5_12, "wietsedv/bert-base-dutch-cased": 5_12, } SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "bert-base-uncased": {"do_lower_case": True}, "bert-large-uncased": {"do_lower_case": True}, "bert-base-cased": {"do_lower_case": False}, "bert-large-cased": {"do_lower_case": False}, "bert-base-multilingual-uncased": {"do_lower_case": True}, "bert-base-multilingual-cased": {"do_lower_case": False}, "bert-base-chinese": {"do_lower_case": False}, "bert-base-german-cased": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking": {"do_lower_case": True}, "bert-large-cased-whole-word-masking": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, "bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, "bert-base-german-dbmdz-cased": {"do_lower_case": False}, "bert-base-german-dbmdz-uncased": {"do_lower_case": True}, "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, "wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, } class a_ ( SCREAMING_SNAKE_CASE__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_INIT_CONFIGURATION A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = BertTokenizer def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="[UNK]" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="[PAD]" , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[MASK]" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , tokenize_chinese_chars=SCREAMING_SNAKE_CASE , strip_accents=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE_ = getattr(SCREAMING_SNAKE_CASE , normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = strip_accents SCREAMING_SNAKE_CASE_ = tokenize_chinese_chars SCREAMING_SNAKE_CASE_ = normalizer_class(**SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = do_lower_case def A_( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE , name=SCREAMING_SNAKE_CASE ) return tuple(SCREAMING_SNAKE_CASE )
205
0
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE = 1_6 , __SCREAMING_SNAKE_CASE = 8_8 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 3_2 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "geglu" , __SCREAMING_SNAKE_CASE = None , ): super().__init__() snake_case__ : Dict = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , num_layers=__SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , cross_attention_dim=__SCREAMING_SNAKE_CASE , attention_bias=__SCREAMING_SNAKE_CASE , sample_size=__SCREAMING_SNAKE_CASE , num_vector_embeds=__SCREAMING_SNAKE_CASE , activation_fn=__SCREAMING_SNAKE_CASE , num_embeds_ada_norm=__SCREAMING_SNAKE_CASE , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference snake_case__ : Optional[Any] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` snake_case__ : Any = [7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` snake_case__ : Dict = [1, 0] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = True , ): snake_case__ : List[str] = hidden_states snake_case__ : Optional[Any] = [] snake_case__ : int = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens snake_case__ : int = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] snake_case__ : int = self.transformer_index_for_condition[i] snake_case__ : List[str] = self.transformers[transformer_index]( __SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , cross_attention_kwargs=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] snake_case__ : Union[str, Any] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) snake_case__ : Dict = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__SCREAMING_SNAKE_CASE )
419
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = KandinskyVaaImgaImgPipeline lowerCamelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''image'''] lowerCamelCase__ = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowerCamelCase__ = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowerCamelCase__ = False @property def __UpperCamelCase ( self ): return 3_2 @property def __UpperCamelCase ( self ): return 3_2 @property def __UpperCamelCase ( self ): return self.time_input_dim @property def __UpperCamelCase ( self ): return self.time_input_dim * 4 @property def __UpperCamelCase ( self ): return 1_0_0 @property def __UpperCamelCase ( self ): torch.manual_seed(0 ) snake_case__ : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case__ : Optional[int] = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def __UpperCamelCase ( self ): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase ( self ): torch.manual_seed(0 ) snake_case__ : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase ( self ): snake_case__ : Dict = self.dummy_unet snake_case__ : Any = self.dummy_movq snake_case__ : Any = { """num_train_timesteps""": 1_0_0_0, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } snake_case__ : int = DDIMScheduler(**__SCREAMING_SNAKE_CASE ) snake_case__ : str = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): snake_case__ : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) # create init_image snake_case__ : Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ : str = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ).resize((2_5_6, 2_5_6) ) if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): snake_case__ : Union[str, Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: snake_case__ : List[Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 1_0, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = """cpu""" snake_case__ : Dict = self.get_dummy_components() snake_case__ : List[Any] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) snake_case__ : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) snake_case__ : int = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Union[str, Any] = output.images snake_case__ : Dict = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) , return_dict=__SCREAMING_SNAKE_CASE , )[0] snake_case__ : List[str] = image[0, -3:, -3:, -1] snake_case__ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case__ : Optional[int] = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ): snake_case__ : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) snake_case__ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case__ : int = """A red cartoon frog, 4k""" snake_case__ : Tuple = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) snake_case__ : Any = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case__ , snake_case__ : int = pipe_prior( __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() snake_case__ : str = pipeline( image=__SCREAMING_SNAKE_CASE , image_embeds=__SCREAMING_SNAKE_CASE , negative_image_embeds=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type="""np""" , ) snake_case__ : List[Any] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
419
1
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __magic_name__ ( ctypes.Structure ): # _fields is a specific attr expected by ctypes UpperCamelCase_ = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def _lowerCAmelCase ( ): """simple docstring""" if os.name == "nt": _lowercase: List[Any] = CursorInfo() _lowercase: Union[str, Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) _lowercase: Tuple = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def _lowerCAmelCase ( ): """simple docstring""" if os.name == "nt": _lowercase: Tuple = CursorInfo() _lowercase: Optional[int] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) _lowercase: List[str] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def _lowerCAmelCase ( ): """simple docstring""" try: hide_cursor() yield finally: show_cursor()
353
"""simple docstring""" # Imports import numpy as np class __a : def __init__( self , a__=None , a__=None , a__=None , a__=None , a__=None ): self.set_matricies(red=a__ , green=a__ , blue=a__ , red_edge=a__ , nir=a__ ) def snake_case_ ( self , a__=None , a__=None , a__=None , a__=None , a__=None ): if red is not None: _lowerCamelCase = red if green is not None: _lowerCamelCase = green if blue is not None: _lowerCamelCase = blue if red_edge is not None: _lowerCamelCase = red_edge if nir is not None: _lowerCamelCase = nir return True def snake_case_ ( self , a__="" , a__=None , a__=None , a__=None , a__=None , a__=None ): self.set_matricies(red=a__ , green=a__ , blue=a__ , red_edge=a__ , nir=a__ ) _lowerCamelCase = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!' ) return False def snake_case_ ( self ): return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def snake_case_ ( self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def snake_case_ ( self ): return self.nir * (self.red / (self.green**2)) def snake_case_ ( self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def snake_case_ ( self ): return (self.nir - self.red) / (self.nir + self.red) def snake_case_ ( self ): return (self.nir - self.blue) / (self.nir + self.blue) def snake_case_ ( self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def snake_case_ ( self ): return (self.nir - self.green) / (self.nir + self.green) def snake_case_ ( self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def snake_case_ ( self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def snake_case_ ( self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def snake_case_ ( self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def snake_case_ ( self , a__=0.08 , a__=1.22 , a__=0.03 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def snake_case_ ( self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def snake_case_ ( self ): return (self.nir / self.green) - 1 def snake_case_ ( self ): return (self.nir / self.redEdge) - 1 def snake_case_ ( self ): return (self.red - self.blue) / self.red def snake_case_ ( self ): _lowerCamelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def snake_case_ ( self ): return self.nir - self.green def snake_case_ ( self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def snake_case_ ( self ): _lowerCamelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def snake_case_ ( self , a__=0.16 ): return (self.nir - self.green) / (self.nir + self.green + y) def snake_case_ ( self , a__=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def snake_case_ ( self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def snake_case_ ( self , a__=None , a__=None ): return (self.nir - b) / (a * self.red) def snake_case_ ( self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def snake_case_ ( self ): return (self.red + self.green + self.blue) / 30.5 def snake_case_ ( self ): return self.nir / self.red def snake_case_ ( self ): return (self.rvi() - 1) / (self.rvi() + 1) def snake_case_ ( self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def snake_case_ ( self ): return self.green / (self.nir + self.red + self.green) def snake_case_ ( self ): return self.nir / (self.nir + self.red + self.green) def snake_case_ ( self ): return self.red / (self.nir + self.red + self.green) def snake_case_ ( self ): return (self.green - self.red) / (self.green + self.red) def snake_case_ ( self ): return (self.red - self.green) / (self.red + self.green) def snake_case_ ( self ): _lowerCamelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) _lowerCamelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def snake_case_ ( self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def snake_case_ ( self ): return self.nir / self.red def snake_case_ ( self ): return (self.ndvi() + 0.5) ** (1 / 2) def snake_case_ ( self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
650
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' for attribute in key.split('''.''' ): __UpperCAmelCase : str = getattr(lowercase_ , lowercase_ ) if weight_type is not None: __UpperCAmelCase : Optional[int] = getattr(lowercase_ , lowercase_ ).shape else: __UpperCAmelCase : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __UpperCAmelCase : Union[str, Any] = value elif weight_type == "weight_g": __UpperCAmelCase : Dict = value elif weight_type == "weight_v": __UpperCAmelCase : Tuple = value elif weight_type == "bias": __UpperCAmelCase : str = value else: __UpperCAmelCase : Optional[int] = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : int = [] __UpperCAmelCase : str = fairseq_model.state_dict() __UpperCAmelCase : Optional[Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __UpperCAmelCase : Tuple = False if "conv_layers" in name: load_conv_layer( lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == '''group''' , ) __UpperCAmelCase : str = True else: for key, mapped_key in MAPPING.items(): __UpperCAmelCase : Any = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): __UpperCAmelCase : List[str] = True if "*" in mapped_key: __UpperCAmelCase : List[Any] = name.split(lowercase_ )[0].split('''.''' )[-2] __UpperCAmelCase : Optional[Any] = mapped_key.replace('''*''' , lowercase_ ) if "weight_g" in name: __UpperCAmelCase : Optional[int] = '''weight_g''' elif "weight_v" in name: __UpperCAmelCase : Any = '''weight_v''' elif "weight" in name: __UpperCAmelCase : Union[str, Any] = '''weight''' elif "bias" in name: __UpperCAmelCase : List[str] = '''bias''' else: __UpperCAmelCase : Optional[int] = None set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(f"Unused weights: {unused_weights}" ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Dict = full_name.split('''conv_layers.''' )[-1] __UpperCAmelCase : Dict = name.split('''.''' ) __UpperCAmelCase : Tuple = int(items[0] ) __UpperCAmelCase : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __UpperCAmelCase : Optional[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __UpperCAmelCase : Optional[int] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) __UpperCAmelCase : List[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __UpperCAmelCase : Optional[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowercase_ ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: __UpperCAmelCase : List[str] = HubertConfig.from_pretrained(lowercase_ ) else: __UpperCAmelCase : str = HubertConfig() if is_finetuned: if dict_path: __UpperCAmelCase : Dict = Dictionary.load(lowercase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCAmelCase : Any = target_dict.pad_index __UpperCAmelCase : List[Any] = target_dict.bos_index __UpperCAmelCase : Tuple = target_dict.eos_index __UpperCAmelCase : Union[str, Any] = len(target_dict.symbols ) __UpperCAmelCase : List[Any] = os.path.join(lowercase_ , '''vocab.json''' ) if not os.path.isdir(lowercase_ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(lowercase_ ) ) return os.makedirs(lowercase_ , exist_ok=lowercase_ ) with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , lowercase_ ) __UpperCAmelCase : List[str] = WavaVecaCTCTokenizer( lowercase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=lowercase_ , ) __UpperCAmelCase : Union[str, Any] = True if config.feat_extract_norm == '''layer''' else False __UpperCAmelCase : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , ) __UpperCAmelCase : Optional[Any] = WavaVecaProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ ) processor.save_pretrained(lowercase_ ) __UpperCAmelCase : int = HubertForCTC(lowercase_ ) else: __UpperCAmelCase : Optional[Any] = HubertModel(lowercase_ ) if is_finetuned: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __UpperCAmelCase : Any = model[0].eval() recursively_load_weights(lowercase_ , lowercase_ , lowercase_ ) hf_wavavec.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCAmelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
701
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
0
import sys SCREAMING_SNAKE_CASE__ : Optional[Any] = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def __lowercase ( snake_case = N ): """simple docstring""" __magic_name__ :Optional[int] = -sys.maxsize - 1 for i in range(len(snake_case ) - 1_2 ): __magic_name__ :List[Any] = 1 for j in range(1_3 ): product *= int(n[i + j] ) if product > largest_product: __magic_name__ :str = product return largest_product if __name__ == "__main__": print(f"{solution() = }")
0
from string import ascii_lowercase, ascii_uppercase def UpperCAmelCase__ ( lowerCamelCase_ : str ): if not sentence: return "" __a : Union[str, Any] = dict(zip(lowerCamelCase_ , lowerCamelCase_ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
47
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def __UpperCAmelCase ( _snake_case : List[Any] ): _lowercase = torch.load(lowercase__, map_location="cpu" ) if "model" in sd.keys(): _lowercase = torch.load(lowercase__, map_location="cpu" )["model"] # pop unnecessary weights _lowercase = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) _lowercase = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowercase = sd.pop(lowercase__ ) _lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowercase = sd[key] # We split QKV in separate Q,K,V _lowercase = key.replace(".qkv_proj.", ".q_proj." ) _lowercase = key.replace(".qkv_proj.", ".k_proj." ) _lowercase = key.replace(".qkv_proj.", ".v_proj." ) _lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowercase , _lowercase , _lowercase = torch.split(lowercase__, depth // 3, dim=0 ) _lowercase = q _lowercase = k _lowercase = v del sd[key] return sd @torch.no_grad() def __UpperCAmelCase ( _snake_case : Tuple, _snake_case : List[str], _snake_case : Optional[Any]=None ): _lowercase = load_checkpoint(lowercase__ ) if config is not None: _lowercase = OPTConfig.from_pretrained(lowercase__ ) else: _lowercase = OPTConfig() _lowercase = OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") __UpperCamelCase : List[Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
719
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class UpperCAmelCase_ ( lowercase__ ): snake_case_ = """audio-spectrogram-transformer""" def __init__( self : Optional[Any] , _lowercase : Union[str, Any]=7_6_8 , _lowercase : Any=1_2 , _lowercase : List[Any]=1_2 , _lowercase : Tuple=3_0_7_2 , _lowercase : List[str]="gelu" , _lowercase : List[Any]=0.0 , _lowercase : Optional[Any]=0.0 , _lowercase : List[Any]=0.02 , _lowercase : Any=1e-1_2 , _lowercase : Any=1_6 , _lowercase : int=True , _lowercase : Optional[int]=1_0 , _lowercase : Optional[int]=1_0 , _lowercase : str=1_0_2_4 , _lowercase : Dict=1_2_8 , **_lowercase : Optional[int] , ) -> Any: super().__init__(**_lowercase ) _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = intermediate_size _lowercase = hidden_act _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = initializer_range _lowercase = layer_norm_eps _lowercase = patch_size _lowercase = qkv_bias _lowercase = frequency_stride _lowercase = time_stride _lowercase = max_length _lowercase = num_mel_bins
227
0
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = str(id_ ) snake_case__ : Dict = None snake_case__ : List[Any] = None snake_case__ : Optional[int] = [] snake_case__ : Tuple = {} # {vertex:distance} def __lt__( self , __SCREAMING_SNAKE_CASE ): return self.key < other.key def __repr__( self ): return self.id def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): self.neighbors.append(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = weight def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Dict ) -> Union[str, Any]: '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __magic_name__ ) graph[b - 1].add_edge(graph[a - 1] , __magic_name__ ) def UpperCamelCase__ ( __magic_name__ : list , __magic_name__ : Vertex ) -> list: '''simple docstring''' snake_case__ : Optional[int] = [] for u in graph: snake_case__ : str = math.inf snake_case__ : List[Any] = None snake_case__ : Dict = 0 snake_case__ : Tuple = graph[:] while q: snake_case__ : Any = min(__magic_name__ ) q.remove(__magic_name__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): snake_case__ : Optional[int] = u snake_case__ : Dict = u.edges[v.id] for i in range(1 , len(__magic_name__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCamelCase__ ( __magic_name__ : list , __magic_name__ : Vertex ) -> Iterator[tuple]: '''simple docstring''' for u in graph: snake_case__ : Tuple = math.inf snake_case__ : Tuple = None snake_case__ : Optional[int] = 0 snake_case__ : str = list(__magic_name__ ) hq.heapify(__magic_name__ ) while h: snake_case__ : str = hq.heappop(__magic_name__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): snake_case__ : Union[str, Any] = u snake_case__ : Dict = u.edges[v.id] hq.heapify(__magic_name__ ) for i in range(1 , len(__magic_name__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCamelCase__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
38
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _snake_case = '''src/diffusers''' _snake_case = '''.''' # This is to make sure the diffusers module imported is the one in the repo. _snake_case = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) _snake_case = spec.loader.load_module() def __snake_case ( SCREAMING_SNAKE_CASE: Optional[Any] , SCREAMING_SNAKE_CASE: Optional[Any] ): """simple docstring""" return line.startswith(SCREAMING_SNAKE_CASE ) or len(SCREAMING_SNAKE_CASE ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , SCREAMING_SNAKE_CASE ) is not None def __snake_case ( SCREAMING_SNAKE_CASE: List[str] ): """simple docstring""" _lowerCAmelCase = object_name.split('.' ) _lowerCAmelCase = 0 # First let's find the module where our object lives. _lowerCAmelCase = parts[i] while i < len(SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , f"""{module}.py""" ) ): i += 1 if i < len(SCREAMING_SNAKE_CASE ): _lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE , parts[i] ) if i >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(SCREAMING_SNAKE_CASE , f"""{module}.py""" ) , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase = f.readlines() # Now let's find the class / func in the code! _lowerCAmelCase = '' _lowerCAmelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(SCREAMING_SNAKE_CASE ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _lowerCAmelCase = line_index while line_index < len(SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index] , SCREAMING_SNAKE_CASE ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCAmelCase = lines[start_index:line_index] return "".join(SCREAMING_SNAKE_CASE ) _snake_case = re.compile(R'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') _snake_case = re.compile(R'''^\s*(\S+)->(\S+)(\s+.*|$)''') _snake_case = re.compile(R'''<FILL\s+[^>]*>''') def __snake_case ( SCREAMING_SNAKE_CASE: List[str] ): """simple docstring""" _lowerCAmelCase = code.split('\n' ) _lowerCAmelCase = 0 while idx < len(SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0: idx += 1 if idx < len(SCREAMING_SNAKE_CASE ): return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0] return "" def __snake_case ( SCREAMING_SNAKE_CASE: Optional[Any] ): """simple docstring""" _lowerCAmelCase = len(get_indent(SCREAMING_SNAKE_CASE ) ) > 0 if has_indent: _lowerCAmelCase = f"""class Bla:\n{code}""" _lowerCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=SCREAMING_SNAKE_CASE ) _lowerCAmelCase = black.format_str(SCREAMING_SNAKE_CASE , mode=SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase = style_docstrings_in_code(SCREAMING_SNAKE_CASE ) return result[len('class Bla:\n' ) :] if has_indent else result def __snake_case ( SCREAMING_SNAKE_CASE: Optional[int] , SCREAMING_SNAKE_CASE: List[str]=False ): """simple docstring""" with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase = f.readlines() _lowerCAmelCase = [] _lowerCAmelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(SCREAMING_SNAKE_CASE ): _lowerCAmelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = search.groups() _lowerCAmelCase = find_code_in_diffusers(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = get_indent(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 _lowerCAmelCase = theoretical_indent _lowerCAmelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _lowerCAmelCase = True while line_index < len(SCREAMING_SNAKE_CASE ) and should_continue: line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): break _lowerCAmelCase = lines[line_index] _lowerCAmelCase = _should_continue(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and re.search(f"""^{indent}# End copy""" , SCREAMING_SNAKE_CASE ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCAmelCase = lines[start_index:line_index] _lowerCAmelCase = ''.join(SCREAMING_SNAKE_CASE ) # Remove any nested `Copied from` comments to avoid circular copies _lowerCAmelCase = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(SCREAMING_SNAKE_CASE ) is None] _lowerCAmelCase = '\n'.join(SCREAMING_SNAKE_CASE ) # Before comparing, use the `replace_pattern` on the original code. if len(SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = replace_pattern.replace('with' , '' ).split(',' ) _lowerCAmelCase = [_re_replace_pattern.search(SCREAMING_SNAKE_CASE ) for p in patterns] for pattern in patterns: if pattern is None: continue _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = pattern.groups() _lowerCAmelCase = re.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if option.strip() == "all-casing": _lowerCAmelCase = re.sub(obja.lower() , obja.lower() , SCREAMING_SNAKE_CASE ) _lowerCAmelCase = re.sub(obja.upper() , obja.upper() , SCREAMING_SNAKE_CASE ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _lowerCAmelCase = blackify(lines[start_index - 1] + theoretical_code ) _lowerCAmelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _lowerCAmelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] _lowerCAmelCase = start_index + 1 if overwrite and len(SCREAMING_SNAKE_CASE ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(SCREAMING_SNAKE_CASE ) return diffs def __snake_case ( SCREAMING_SNAKE_CASE: bool = False ): """simple docstring""" _lowerCAmelCase = glob.glob(os.path.join(SCREAMING_SNAKE_CASE , '**/*.py' ) , recursive=SCREAMING_SNAKE_CASE ) _lowerCAmelCase = [] for filename in all_files: _lowerCAmelCase = is_copy_consistent(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = '\n'.join(SCREAMING_SNAKE_CASE ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _snake_case = parser.parse_args() check_copies(args.fix_and_overwrite)
580
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class lowerCamelCase : '''simple docstring''' a = MBartConfig a = {} a = "gelu" def __init__( self : List[str] , _snake_case : Any , _snake_case : str=13 , _snake_case : str=7 , _snake_case : Optional[Any]=True , _snake_case : int=False , _snake_case : Tuple=99 , _snake_case : Tuple=32 , _snake_case : Optional[Any]=2 , _snake_case : str=4 , _snake_case : Dict=37 , _snake_case : int=0.1 , _snake_case : int=0.1 , _snake_case : List[Any]=20 , _snake_case : List[str]=2 , _snake_case : Tuple=1 , _snake_case : Dict=0 , ) -> List[str]: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = eos_token_id SCREAMING_SNAKE_CASE__ = pad_token_id SCREAMING_SNAKE_CASE__ = bos_token_id def lowerCAmelCase_ ( self : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE__ = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) SCREAMING_SNAKE_CASE__ = prepare_mbart_inputs_dict(_snake_case , _snake_case , _snake_case ) return config, inputs_dict def lowerCAmelCase_ ( self : int , _snake_case : Any , _snake_case : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ = TFMBartModel(config=_snake_case ).get_decoder() SCREAMING_SNAKE_CASE__ = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE__ = input_ids[:1, :] SCREAMING_SNAKE_CASE__ = inputs_dict["attention_mask"][:1, :] SCREAMING_SNAKE_CASE__ = inputs_dict["head_mask"] SCREAMING_SNAKE_CASE__ = 1 # first forward pass SCREAMING_SNAKE_CASE__ = model(_snake_case , attention_mask=_snake_case , head_mask=_snake_case , use_cache=_snake_case ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs.to_tuple() SCREAMING_SNAKE_CASE__ = past_key_values[1] def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: if attention_mask is None: SCREAMING_SNAKE_CASE__ = tf.cast(tf.math.not_equal(__UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () a = (TFMBartForConditionalGeneration,) if is_tf_available() else () a = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) a = True a = False a = False def lowerCAmelCase_ ( self : int , _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : int , _snake_case : Union[str, Any] ) -> Tuple: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def lowerCAmelCase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = TFMBartModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=_snake_case ) def lowerCAmelCase_ ( self : Dict ) -> List[str]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_snake_case ) @require_sentencepiece @require_tokenizers @require_tf class lowerCamelCase (unittest.TestCase ): '''simple docstring''' a = [ " UN Chief Says There Is No Military Solution in Syria", ] a = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] a = "facebook/mbart-large-en-ro" @cached_property def lowerCAmelCase_ ( self : Union[str, Any] ) -> int: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase_ ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCAmelCase_ ( self : List[Any] , **_snake_case : str ) -> Any: SCREAMING_SNAKE_CASE__ = self.translate_src_text(**_snake_case ) self.assertListEqual(self.expected_text , _snake_case ) def lowerCAmelCase_ ( self : Any , **_snake_case : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.tokenizer(self.src_text , **_snake_case , return_tensors="tf" ) SCREAMING_SNAKE_CASE__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) SCREAMING_SNAKE_CASE__ = self.tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) return generated_words @slow def lowerCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: self._assert_generated_batch_equal_expected()
703
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def SCREAMING_SNAKE_CASE ( ) -> List[str]: SCREAMING_SNAKE_CASE__ = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ).convert("RGB" ) return image def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ = dct.pop(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = val def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases SCREAMING_SNAKE_CASE__ = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) SCREAMING_SNAKE_CASE__ = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict SCREAMING_SNAKE_CASE__ = torch.cat((q_bias, torch.zeros_like(__UpperCAmelCase , requires_grad=__UpperCAmelCase ), v_bias) ) SCREAMING_SNAKE_CASE__ = qkv_bias def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__ = 364 if "coco" in model_name else 224 SCREAMING_SNAKE_CASE__ = BlipaVisionConfig(image_size=__UpperCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: SCREAMING_SNAKE_CASE__ = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=__UpperCAmelCase ).to_dict() elif "opt-6.7b" in model_name: SCREAMING_SNAKE_CASE__ = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=__UpperCAmelCase ).to_dict() elif "t5-xl" in model_name: SCREAMING_SNAKE_CASE__ = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: SCREAMING_SNAKE_CASE__ = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() SCREAMING_SNAKE_CASE__ = BlipaConfig(vision_config=__UpperCAmelCase , text_config=__UpperCAmelCase ) return config, image_size @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> List[str]: SCREAMING_SNAKE_CASE__ = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) SCREAMING_SNAKE_CASE__ = tokenizer("\n" , add_special_tokens=__UpperCAmelCase ).input_ids[0] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_blipa_config(__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = BlipaForConditionalGeneration(__UpperCAmelCase ).eval() SCREAMING_SNAKE_CASE__ = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model_name_to_original[model_name] # load original model print("Loading original model..." ) SCREAMING_SNAKE_CASE__ = "cuda" if torch.cuda.is_available() else "cpu" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = load_model_and_preprocess( name=__UpperCAmelCase , model_type=__UpperCAmelCase , is_eval=__UpperCAmelCase , device=__UpperCAmelCase ) original_model.eval() print("Done!" ) # update state dict keys SCREAMING_SNAKE_CASE__ = original_model.state_dict() SCREAMING_SNAKE_CASE__ = create_rename_keys(__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): SCREAMING_SNAKE_CASE__ = state_dict.pop(__UpperCAmelCase ) if key.startswith("Qformer.bert" ): SCREAMING_SNAKE_CASE__ = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: SCREAMING_SNAKE_CASE__ = key.replace("self" , "attention" ) if "opt_proj" in key: SCREAMING_SNAKE_CASE__ = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: SCREAMING_SNAKE_CASE__ = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): SCREAMING_SNAKE_CASE__ = key.replace("opt" , "language" ) if key.startswith("t5" ): SCREAMING_SNAKE_CASE__ = key.replace("t5" , "language" ) SCREAMING_SNAKE_CASE__ = val # read in qv biases read_in_q_v_bias(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = hf_model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) assert len(__UpperCAmelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] SCREAMING_SNAKE_CASE__ = load_demo_image() SCREAMING_SNAKE_CASE__ = vis_processors["eval"](__UpperCAmelCase ).unsqueeze(0 ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(__UpperCAmelCase ) # create processor SCREAMING_SNAKE_CASE__ = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = BlipaProcessor(image_processor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = processor(images=__UpperCAmelCase , return_tensors="pt" ).pixel_values.to(__UpperCAmelCase ) # make sure processor creates exact same pixel values assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ) original_model.to(__UpperCAmelCase ) hf_model.to(__UpperCAmelCase ) with torch.no_grad(): if "opt" in model_name: SCREAMING_SNAKE_CASE__ = original_model({"image": original_pixel_values, "text_input": [""]} ).logits SCREAMING_SNAKE_CASE__ = hf_model(__UpperCAmelCase , __UpperCAmelCase ).logits else: SCREAMING_SNAKE_CASE__ = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits SCREAMING_SNAKE_CASE__ = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) SCREAMING_SNAKE_CASE__ = hf_model(__UpperCAmelCase , __UpperCAmelCase , labels=__UpperCAmelCase ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": SCREAMING_SNAKE_CASE__ = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=__UpperCAmelCase ) assert torch.allclose(logits[0, :3, :3] , __UpperCAmelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": SCREAMING_SNAKE_CASE__ = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=__UpperCAmelCase ) else: # cast to same type SCREAMING_SNAKE_CASE__ = logits.dtype assert torch.allclose(original_logits.to(__UpperCAmelCase ) , __UpperCAmelCase , atol=1e-2 ) print("Looks ok!" ) print("Generating a caption..." ) SCREAMING_SNAKE_CASE__ = "" SCREAMING_SNAKE_CASE__ = tokenizer(__UpperCAmelCase , return_tensors="pt" ).input_ids.to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = original_model.generate({"image": original_pixel_values} ) SCREAMING_SNAKE_CASE__ = hf_model.generate( __UpperCAmelCase , __UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = input_ids.shape[1] SCREAMING_SNAKE_CASE__ = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = [text.strip() for text in output_text] print("HF generation:" , __UpperCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__UpperCAmelCase ) hf_model.save_pretrained(__UpperCAmelCase ) if push_to_hub: processor.push_to_hub(F"""nielsr/{model_name}""" ) hf_model.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _A = argparse.ArgumentParser() _A = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) _A = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
538
0