code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __a :List[Any] = logging.get_logger(__name__) __a :List[Any] = {'vocab_file': 'spiece.model'} __a :Optional[Any] = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } __a :int = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) __a :Optional[Any] = 0 __a :Optional[Any] = 1 __a :List[Any] = 2 __a :Dict = 3 __a :List[Any] = 4 class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[str] = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : str = 'left' def __init__( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Tuple=False , UpperCAmelCase : Tuple=True , UpperCAmelCase : Tuple=False , UpperCAmelCase : Dict="<s>" , UpperCAmelCase : Dict="</s>" , UpperCAmelCase : Optional[int]="<unk>" , UpperCAmelCase : Tuple="<sep>" , UpperCAmelCase : Any="<pad>" , UpperCAmelCase : Union[str, Any]="<cls>" , UpperCAmelCase : Optional[int]="<mask>" , UpperCAmelCase : List[Any]=["<eop>", "<eod>"] , UpperCAmelCase : Dict = None , **UpperCAmelCase : Tuple , ): A_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token A_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase , remove_space=UpperCAmelCase , keep_accents=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) A_ = 3 A_ = do_lower_case A_ = remove_space A_ = keep_accents A_ = vocab_file A_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase ) @property def __A ( self : Any ): return len(self.sp_model ) def __A ( self : Any ): A_ = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): A_ = self.__dict__.copy() A_ = None return state def __setstate__( self : str , UpperCAmelCase : Dict ): A_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A_ = {} A_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self : List[str] , UpperCAmelCase : Optional[Any] ): if self.remove_space: A_ = " ".join(inputs.strip().split() ) else: A_ = inputs A_ = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: A_ = unicodedata.normalize("NFKD" , UpperCAmelCase ) A_ = "".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase )] ) if self.do_lower_case: A_ = outputs.lower() return outputs def __A ( self : List[str] , UpperCAmelCase : str ): A_ = self.preprocess_text(UpperCAmelCase ) A_ = self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) A_ = [] for piece in pieces: if len(UpperCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): A_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A_ = cur_pieces[1:] else: A_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase ) else: new_pieces.append(UpperCAmelCase ) return new_pieces def __A ( self : List[Any] , UpperCAmelCase : Tuple ): return self.sp_model.PieceToId(UpperCAmelCase ) def __A ( self : Tuple , UpperCAmelCase : Union[str, Any] ): return self.sp_model.IdToPiece(UpperCAmelCase ) def __A ( self : str , UpperCAmelCase : int ): A_ = "".join(UpperCAmelCase ).replace(UpperCAmelCase , " " ).strip() return out_string def __A ( self : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] = False , UpperCAmelCase : str = None , UpperCAmelCase : Dict = True , **UpperCAmelCase : Optional[Any] , ): A_ = kwargs.pop("use_source_tokenizer" , UpperCAmelCase ) A_ = self.convert_ids_to_tokens(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A_ = [] A_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase ) ) A_ = [] sub_texts.append(UpperCAmelCase ) else: current_sub_text.append(UpperCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens A_ = "".join(UpperCAmelCase ) A_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A_ = self.clean_up_tokenization(UpperCAmelCase ) return clean_text else: return text def __A ( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : str = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __A ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : Tuple = None , UpperCAmelCase : Optional[int] = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1, 1] return ([0] * len(UpperCAmelCase )) + [1, 1] def __A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] = None ): A_ = [self.sep_token_id] A_ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __A ( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] = None ): if not os.path.isdir(UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: A_ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
86
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _UpperCamelCase = random.Random() def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__=1.0 , lowercase__=None , lowercase__=None ) -> Optional[Any]: if rng is None: lowerCAmelCase__ : Union[str, Any] = global_rng lowerCAmelCase__ : Dict = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __a ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case , snake_case=7 , snake_case=400 , snake_case=2_000 , snake_case=2_048 , snake_case=128 , snake_case=1 , snake_case=512 , snake_case=30 , snake_case=44_100 , ): """simple docstring""" lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : Optional[Any] = min_seq_length lowerCAmelCase__ : Optional[int] = max_seq_length lowerCAmelCase__ : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase__ : Dict = spectrogram_length lowerCAmelCase__ : Any = feature_size lowerCAmelCase__ : int = num_audio_channels lowerCAmelCase__ : Optional[int] = hop_length lowerCAmelCase__ : List[str] = chunk_length lowerCAmelCase__ : Optional[Any] = sampling_rate def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def SCREAMING_SNAKE_CASE_ ( self , snake_case=False , snake_case=False ): """simple docstring""" def _flatten(snake_case ): return list(itertools.chain(*snake_case ) ) if equal_length: lowerCAmelCase__ : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase__ : Tuple = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase__ : Dict = [np.asarray(snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __a ( __magic_name__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = TvltFeatureExtractor def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = TvltFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case , "spectrogram_length" ) ) self.assertTrue(hasattr(snake_case , "feature_size" ) ) self.assertTrue(hasattr(snake_case , "num_audio_channels" ) ) self.assertTrue(hasattr(snake_case , "hop_length" ) ) self.assertTrue(hasattr(snake_case , "chunk_length" ) ) self.assertTrue(hasattr(snake_case , "sampling_rate" ) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Union[str, Any] = feat_extract_first.save_pretrained(snake_case )[0] check_json_file_has_correct_format(snake_case ) lowerCAmelCase__ : Tuple = self.feature_extraction_class.from_pretrained(snake_case ) lowerCAmelCase__ : Union[str, Any] = feat_extract_first.to_dict() lowerCAmelCase__ : int = feat_extract_second.to_dict() lowerCAmelCase__ : Union[str, Any] = dict_first.pop("mel_filters" ) lowerCAmelCase__ : List[Any] = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : List[Any] = os.path.join(snake_case , "feat_extract.json" ) feat_extract_first.to_json_file(snake_case ) lowerCAmelCase__ : List[Any] = self.feature_extraction_class.from_json_file(snake_case ) lowerCAmelCase__ : Optional[Any] = feat_extract_first.to_dict() lowerCAmelCase__ : Dict = feat_extract_second.to_dict() lowerCAmelCase__ : Tuple = dict_first.pop("mel_filters" ) lowerCAmelCase__ : Dict = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase__ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase__ : Optional[int] = [np.asarray(snake_case ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase__ : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched lowerCAmelCase__ : Optional[int] = feature_extractor(snake_case , return_tensors="np" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking lowerCAmelCase__ : List[str] = feature_extractor( snake_case , return_tensors="np" , sampling_rate=44_100 , mask_audio=snake_case ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. lowerCAmelCase__ : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCAmelCase__ : Tuple = np.asarray(snake_case ) lowerCAmelCase__ : List[Any] = feature_extractor(snake_case , return_tensors="np" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def SCREAMING_SNAKE_CASE_ ( self , snake_case ): """simple docstring""" lowerCAmelCase__ : str = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowerCAmelCase__ : int = ds.sort("id" ).select(range(snake_case ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : str = self._load_datasamples(1 ) lowerCAmelCase__ : Optional[Any] = TvltFeatureExtractor() lowerCAmelCase__ : Dict = feature_extractor(snake_case , return_tensors="pt" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) lowerCAmelCase__ : Dict = torch.tensor([[-0.3_032, -0.2_708], [-0.4_434, -0.4_007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case , atol=1e-4 ) )
453
0
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
710
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase_ = get_tests_dir("fixtures") lowercase_ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase_ = get_tests_dir("fixtures/dummy-config.json") class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : Any ): __snake_case : Tuple = 0 def snake_case__ ( self : int ): __snake_case : int = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Dict ): __snake_case : Optional[Any] = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Optional[Any] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __snake_case : Optional[Any] = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase ).to_dict() config_dict.pop("""feature_extractor_type""" ) __snake_case : Tuple = WavaVecaFeatureExtractor(**_lowerCAmelCase ) # save in new folder model_config.save_pretrained(_lowerCAmelCase ) config.save_pretrained(_lowerCAmelCase ) __snake_case : Optional[Any] = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase ) # make sure private variable is not incorrectly saved __snake_case : Any = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Dict ): __snake_case : Dict = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : List[str] ): with self.assertRaisesRegex( _lowerCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ): __snake_case : Any = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def snake_case__ ( self : Dict ): with self.assertRaisesRegex( _lowerCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __snake_case : Dict = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase , revision="""aaaaaa""" ) def snake_case__ ( self : str ): with self.assertRaisesRegex( _lowerCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __snake_case : Union[str, Any] = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def snake_case__ ( self : str ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowerCAmelCase ): __snake_case : Optional[int] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCAmelCase ): __snake_case : List[str] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowerCAmelCase ) __snake_case : Tuple = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowerCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_lowerCAmelCase ) __snake_case : Optional[int] = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def snake_case__ ( self : List[Any] ): try: AutoConfig.register("""custom""" , _lowerCAmelCase ) AutoFeatureExtractor.register(_lowerCAmelCase , _lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase ): AutoFeatureExtractor.register(_lowerCAmelCase , _lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API __snake_case : List[str] = CustomFeatureExtractor.from_pretrained(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_lowerCAmelCase ) __snake_case : Optional[int] = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def snake_case__ ( self : Union[str, Any] ): class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Tuple = True try: AutoConfig.register("""custom""" , _lowerCAmelCase ) AutoFeatureExtractor.register(_lowerCAmelCase , _lowerCAmelCase ) # If remote code is not set, the default is to use local __snake_case : Any = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __snake_case : List[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowerCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __snake_case : List[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowerCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(_lowerCAmelCase , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
390
0
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def __a(SCREAMING_SNAKE_CASE_ : Namespace ): '''simple docstring''' return TrainCommand(snake_case_ ) class lowerCAmelCase_ ( __lowercase ): @staticmethod def _snake_case ( _lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=_lowerCAmelCase , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=_lowerCAmelCase , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=_lowerCAmelCase , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=_lowerCAmelCase , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=_lowerCAmelCase , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=_lowerCAmelCase , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=_lowerCAmelCase , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=_lowerCAmelCase , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=_lowerCAmelCase , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=_lowerCAmelCase , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=_lowerCAmelCase , default=3E-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=_lowerCAmelCase , default=1E-08 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=_lowerCAmelCase ) def __init__( self , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = logging.get_logger("transformers-cli/training" ) _lowerCAmelCase = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=_lowerCAmelCase ) _lowerCAmelCase = args.output _lowerCAmelCase = args.column_label _lowerCAmelCase = args.column_text _lowerCAmelCase = args.column_id self.logger.info(f'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase = None if args.validation_data: self.logger.info(f'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase = args.validation_split _lowerCAmelCase = args.train_batch_size _lowerCAmelCase = args.valid_batch_size _lowerCAmelCase = args.learning_rate _lowerCAmelCase = args.adam_epsilon def _snake_case ( self ) -> str: if self.framework == "tf": return self.run_tf() return self.run_torch() def _snake_case ( self ) -> List[str]: raise NotImplementedError def _snake_case ( self ) -> Optional[int]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
18
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = {'''vocab_file''': '''vocab.txt'''} SCREAMING_SNAKE_CASE : List[str] = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } SCREAMING_SNAKE_CASE : str = { '''openbmb/cpm-ant-10b''': 1_0_2_4, } def __UpperCAmelCase ( snake_case_ : Optional[Any] ) -> List[str]: """simple docstring""" _lowerCAmelCase = collections.OrderedDict() with open(snake_case_ , """r""" , encoding="""utf-8""" ) as reader: _lowerCAmelCase = reader.readlines() for index, token in enumerate(snake_case_ ): _lowerCAmelCase = token.rstrip("""\n""" ) _lowerCAmelCase = index return vocab class __lowerCamelCase ( __lowercase ): def __init__(self , lowerCamelCase , lowerCamelCase="<unk>" , lowerCamelCase=200 ): '''simple docstring''' _lowerCAmelCase = vocab _lowerCAmelCase = unk_token _lowerCAmelCase = max_input_chars_per_word def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = list(lowerCamelCase ) if len(lowerCamelCase ) > self.max_input_chars_per_word: return [self.unk_token] _lowerCAmelCase = 0 _lowerCAmelCase = [] while start < len(lowerCamelCase ): _lowerCAmelCase = len(lowerCamelCase ) _lowerCAmelCase = None while start < end: _lowerCAmelCase = """""".join(chars[start:end] ) if substr in self.vocab: _lowerCAmelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowerCamelCase ) _lowerCAmelCase = end return sub_tokens class __lowerCamelCase ( __lowercase ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['input_ids', 'attention_mask'] __UpperCamelCase = False def __init__(self , lowerCamelCase , lowerCamelCase="<d>" , lowerCamelCase="</d>" , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="<pad>" , lowerCamelCase="<unk>" , lowerCamelCase="</n>" , lowerCamelCase="</_>" , lowerCamelCase="left" , **lowerCamelCase , ): '''simple docstring''' requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=lowerCamelCase , eod_token=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , pad_token=lowerCamelCase , unk_token=lowerCamelCase , line_token=lowerCamelCase , space_token=lowerCamelCase , padding_side=lowerCamelCase , **lowerCamelCase , ) _lowerCAmelCase = bod_token _lowerCAmelCase = eod_token _lowerCAmelCase = load_vocab(lowerCamelCase ) _lowerCAmelCase = self.encoder[space_token] _lowerCAmelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] _lowerCAmelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase : x[1] ) ) _lowerCAmelCase = {v: k for k, v in self.encoder.items()} _lowerCAmelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def A__ (self ): '''simple docstring''' return self.encoder[self.bod_token] @property def A__ (self ): '''simple docstring''' return self.encoder[self.eod_token] @property def A__ (self ): '''simple docstring''' return self.encoder["\n"] @property def A__ (self ): '''simple docstring''' return len(self.encoder ) def A__ (self ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = [] for x in jieba.cut(lowerCamelCase , cut_all=lowerCamelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase ) ) return output_tokens def A__ (self , lowerCamelCase , **lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = [i for i in token_ids if i >= 0] _lowerCAmelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase , **lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return token in self.encoder def A__ (self , lowerCamelCase ): '''simple docstring''' return "".join(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.decoder.get(lowerCamelCase , self.unk_token ) def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' if os.path.isdir(lowerCamelCase ): _lowerCAmelCase = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: _lowerCAmelCase = (filename_prefix + """-""" if filename_prefix else """""") + save_directory _lowerCAmelCase = 0 if " " in self.encoder: _lowerCAmelCase = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: _lowerCAmelCase = self.encoder["""\n"""] del self.encoder["\n"] _lowerCAmelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase : x[1] ) ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" """ Please check that the vocabulary is not corrupted!""" ) _lowerCAmelCase = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def A__ (self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase )) + [1] + ([0] * len(lowerCamelCase )) return [1] + ([0] * len(lowerCamelCase ))
156
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : int =logging.get_logger(__name__) _lowercase : Any ={ "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class _SCREAMING_SNAKE_CASE (__UpperCAmelCase ): A__ = """switch_transformers""" A__ = ["""past_key_values"""] A__ = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : List[str] , __UpperCamelCase : Union[str, Any]=32128 , __UpperCamelCase : str=768 , __UpperCamelCase : List[str]=64 , __UpperCamelCase : str=2048 , __UpperCamelCase : Dict=64 , __UpperCamelCase : List[Any]=12 , __UpperCamelCase : List[str]=3 , __UpperCamelCase : Any=12 , __UpperCamelCase : Dict=3 , __UpperCamelCase : List[Any]=12 , __UpperCamelCase : Union[str, Any]=8 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=0.01 , __UpperCamelCase : Optional[Any]="float32" , __UpperCamelCase : Tuple=False , __UpperCamelCase : Tuple=32 , __UpperCamelCase : Any=128 , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : Tuple=1e-6 , __UpperCamelCase : str=0.001 , __UpperCamelCase : Tuple=0.001 , __UpperCamelCase : str=1.0 , __UpperCamelCase : Dict="relu" , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Any=0 , __UpperCamelCase : Any=1 , **__UpperCamelCase : Dict , ) -> Union[str, Any]: """simple docstring""" snake_case__ : Optional[Any] = vocab_size snake_case__ : str = d_model snake_case__ : Tuple = d_kv snake_case__ : Tuple = d_ff snake_case__ : str = num_sparse_encoder_layers snake_case__ : Dict = num_layers snake_case__ : List[str] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry snake_case__ : Optional[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: snake_case__ : Optional[int] = self.num_layers // self.num_sparse_encoder_layers else: snake_case__ : str = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: snake_case__ : List[str] = self.num_decoder_layers // self.num_sparse_decoder_layers else: snake_case__ : Union[str, Any] = self.num_decoder_layers # HACK: this will create 0 sparse layers snake_case__ : int = num_heads snake_case__ : Tuple = num_experts snake_case__ : str = expert_capacity snake_case__ : Optional[int] = router_bias snake_case__ : int = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) snake_case__ : Tuple = router_dtype snake_case__ : Optional[Any] = router_ignore_padding_tokens snake_case__ : Optional[int] = relative_attention_num_buckets snake_case__ : Optional[Any] = relative_attention_max_distance snake_case__ : List[Any] = dropout_rate snake_case__ : Optional[int] = layer_norm_epsilon snake_case__ : Any = initializer_factor snake_case__ : List[str] = feed_forward_proj snake_case__ : Optional[Any] = use_cache snake_case__ : Union[str, Any] = add_router_probs snake_case__ : str = router_z_loss_coef snake_case__ : str = router_aux_loss_coef snake_case__ : List[Any] = self.feed_forward_proj.split('''-''' ) snake_case__ : Union[str, Any] = act_info[-1] snake_case__ : Union[str, Any] = act_info[0] == '''gated''' if len(UpperCAmelCase_ ) > 1 and act_info[0] != "gated" or len(UpperCAmelCase_ ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": snake_case__ : Union[str, Any] = '''gelu_new''' super().__init__( pad_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , **UpperCAmelCase_ , )
711
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowercase : Any =logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : A__ = field( default='tab_fact', metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) A__ = field( default='tab_fact', metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}, ) A__ = field( default=1024, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) A__ = field( default=lowercase__, metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) A__ = field( default=lowercase__, metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) }, ) A__ = field( default=lowercase__, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) A__ = field( default=lowercase__, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) }, ) A__ = field( default=lowercase__, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) }, ) A__ = field( default=lowercase__, metadata={'help': 'A csv or a json file containing the training data.'} ) A__ = field( default=lowercase__, metadata={'help': 'A csv or a json file containing the validation data.'} ) A__ = field(default=lowercase__, metadata={'help': 'A csv or a json file containing the test data.'} ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: snake_case__ : int = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." snake_case__ : str = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _SCREAMING_SNAKE_CASE : A__ = field( default=lowercase__, metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) A__ = field( default=lowercase__, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A__ = field( default=lowercase__, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A__ = field( default=lowercase__, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) A__ = field( default=lowercase__, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, ) A__ = field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) A__ = field( default=lowercase__, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case__ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case__ , snake_case__ , snake_case__ : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case__ , snake_case__ , snake_case__ : Optional[Any] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case__ : Optional[int] = training_args.get_process_log_level() logger.setLevel(UpperCamelCase__ ) datasets.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. snake_case__ : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case__ : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case__ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. snake_case__ : Optional[int] = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: snake_case__ : int = data_args.train_file.split('''.''' )[-1] snake_case__ : str = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." snake_case__ : List[str] = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(F'''load a local file for {key}: {data_files[key]}''' ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files snake_case__ : Any = load_dataset('''csv''' , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files snake_case__ : Union[str, Any] = load_dataset('''json''' , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels snake_case__ : List[Any] = raw_datasets['''train'''].features['''label'''].names snake_case__ : Optional[Any] = len(UpperCamelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case__ : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer snake_case__ : Optional[Any] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=UpperCamelCase__ , ) snake_case__ : Tuple = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: snake_case__ : List[str] = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case__ : str = False # Some models have set the order of the labels to use, so let's make sure we do use it. snake_case__ : List[Any] = {'''Refused''': 0, '''Entailed''': 1} snake_case__ : Optional[Any] = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) snake_case__ : Dict = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(UpperCamelCase__ :Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(UpperCamelCase__ :List[Any] ): snake_case__ : str = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] snake_case__ : List[Any] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd snake_case__ : Optional[Any] = examples['''statement'''] snake_case__ : str = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) ) snake_case__ : Tuple = tokenizer(UpperCamelCase__ , UpperCamelCase__ , padding=UpperCamelCase__ , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ ) snake_case__ : List[str] = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): snake_case__ : str = raw_datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) snake_case__ : Optional[int] = raw_datasets['''train'''] if data_args.max_train_samples is not None: snake_case__ : List[Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) snake_case__ : int = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: snake_case__ : Union[str, Any] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) snake_case__ : Union[str, Any] = raw_datasets['''test'''] if data_args.max_predict_samples is not None: snake_case__ : str = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(UpperCamelCase__ ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(UpperCamelCase__ :EvalPrediction ): snake_case__ : Optional[Any] = p.predictions[0] if isinstance(p.predictions , UpperCamelCase__ ) else p.predictions snake_case__ : Dict = np.argmax(UpperCamelCase__ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case__ : str = default_data_collator elif training_args.fpaa: snake_case__ : List[str] = DataCollatorWithPadding(UpperCamelCase__ , pad_to_multiple_of=8 ) else: snake_case__ : str = None # Initialize our Trainer snake_case__ : Optional[Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=UpperCamelCase__ , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , ) # Training if training_args.do_train: snake_case__ : Optional[Any] = None if training_args.resume_from_checkpoint is not None: snake_case__ : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case__ : List[Any] = last_checkpoint snake_case__ : Union[str, Any] = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) snake_case__ : Dict = train_result.metrics snake_case__ : Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ ) ) snake_case__ : Any = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , UpperCamelCase__ ) trainer.save_metrics('''train''' , UpperCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) snake_case__ : Union[str, Any] = trainer.evaluate(eval_dataset=UpperCamelCase__ ) snake_case__ : str = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ ) snake_case__ : Tuple = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics('''eval''' , UpperCamelCase__ ) trainer.save_metrics('''eval''' , UpperCamelCase__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. snake_case__ : Any = predict_dataset.remove_columns('''label''' ) snake_case__ : Union[str, Any] = trainer.predict(UpperCamelCase__ , metric_key_prefix='''predict''' ).predictions snake_case__ : Optional[Any] = np.argmax(UpperCamelCase__ , axis=1 ) snake_case__ : str = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(UpperCamelCase__ ): snake_case__ : Tuple = label_list[item] writer.write(F'''{index}\t{item}\n''' ) snake_case__ : List[str] = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase__ ) else: trainer.create_model_card(**UpperCamelCase__ ) def __UpperCAmelCase ( UpperCamelCase__ :List[Any] ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
574
0
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __snake_case ( _lowercase): def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = tempfile.mkdtemp() _lowerCamelCase : List[Any] = 5 # Realm tok _lowerCamelCase : Union[str, Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _lowerCamelCase : Tuple = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Dict = RealmConfig(num_block_records=self.num_block_records ) return config def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Optional[Any] = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Any = np.array( [ B'''This is the first record''', B'''This is the second record''', B'''This is the third record''', B'''This is the fourth record''', B'''This is the fifth record''', B'''This is a longer longer longer record''', ] , dtype=__lowerCAmelCase , ) return block_records def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : str = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Dict = self.get_config() _lowerCamelCase : Dict = self.get_dummy_retriever() _lowerCamelCase : List[Any] = retriever.tokenizer _lowerCamelCase : str = np.array([0, 3] , dtype='''long''' ) _lowerCamelCase : Optional[int] = tokenizer(['''Test question'''] ).input_ids _lowerCamelCase : str = tokenizer( ['''the fourth'''] , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ).input_ids _lowerCamelCase : Dict = config.reader_seq_len _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = retriever( __lowerCAmelCase , __lowerCAmelCase , answer_ids=__lowerCAmelCase , max_length=__lowerCAmelCase , return_tensors='''np''' ) self.assertEqual(len(__lowerCAmelCase ) , 2 ) self.assertEqual(len(__lowerCAmelCase ) , 2 ) self.assertEqual(len(__lowerCAmelCase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : int = self.get_config() _lowerCamelCase : Dict = self.get_dummy_retriever() _lowerCamelCase : List[Any] = retriever.tokenizer _lowerCamelCase : Optional[int] = np.array([0, 3, 5] , dtype='''long''' ) _lowerCamelCase : Dict = tokenizer(['''Test question'''] ).input_ids _lowerCamelCase : List[Any] = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ).input_ids _lowerCamelCase : Optional[Any] = config.reader_seq_len _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = retriever( __lowerCAmelCase , __lowerCAmelCase , answer_ids=__lowerCAmelCase , max_length=__lowerCAmelCase , return_tensors='''np''' ) self.assertEqual([False, True, True] , __lowerCAmelCase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __lowerCAmelCase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : int = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path _lowerCamelCase : str = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , B'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: _lowerCamelCase : List[Any] = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) _lowerCamelCase : List[Any] = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , B'''This is the first record''' )
83
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCamelCase ( unittest.TestCase ): def __A ( self ): A__ = 10 def __A ( self ): A__ = [1, 2, 3, 4] A__ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __A ( self ): A__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] A__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __A ( self ): A__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] A__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __A ( self ): A__ = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." A__ , A__ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) def __A ( self ): A__ = "" A__ , A__ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) self.assertEqual(UpperCAmelCase__ , [] ) def __A ( self ): A__ = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) A__ , A__ = process_story(UpperCAmelCase__ ) A__ = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = ["It was the best of times."] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __A ( self ): A__ = torch.tensor([1, 2, 3, 4] ) A__ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 0 ).numpy() , expected.numpy() ) def __A ( self ): A__ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) A__ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 23 ).numpy() , expected.numpy() ) def __A ( self ): A__ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) A__ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 1 ).numpy() , expected.numpy() ) def __A ( self ): A__ = 101 A__ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) A__ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) A__ = compute_token_type_ids(UpperCAmelCase__ , UpperCAmelCase__ ) np.testing.assert_array_equal(UpperCAmelCase__ , UpperCAmelCase__ )
491
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class __SCREAMING_SNAKE_CASE ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = 1 / 2_55 , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" super().__init__(**__a ) _snake_case : int = size if size is not None else {'shortest_edge': 2_24} _snake_case : str = get_size_dict(__a , default_to_square=__a ) _snake_case : Tuple = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _snake_case : str = get_size_dict(__a , default_to_square=__a , param_name="""crop_size""" ) _snake_case : Any = do_resize _snake_case : Optional[int] = size _snake_case : int = resample _snake_case : List[Any] = do_center_crop _snake_case : Tuple = crop_size _snake_case : Union[str, Any] = do_rescale _snake_case : int = rescale_factor _snake_case : Tuple = do_normalize _snake_case : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _snake_case : Any = image_std if image_std is not None else OPENAI_CLIP_STD _snake_case : int = do_convert_rgb def __lowerCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" _snake_case : List[str] = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _snake_case : str = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __lowerCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" _snake_case : Union[str, Any] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def __lowerCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def __lowerCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __lowerCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" _snake_case : Optional[Any] = do_resize if do_resize is not None else self.do_resize _snake_case : List[Any] = size if size is not None else self.size _snake_case : Any = get_size_dict(__a , param_name="""size""" , default_to_square=__a ) _snake_case : Optional[int] = resample if resample is not None else self.resample _snake_case : Any = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case : str = crop_size if crop_size is not None else self.crop_size _snake_case : Optional[int] = get_size_dict(__a , param_name="""crop_size""" , default_to_square=__a ) _snake_case : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _snake_case : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _snake_case : Tuple = image_mean if image_mean is not None else self.image_mean _snake_case : Union[str, Any] = image_std if image_std is not None else self.image_std _snake_case : Dict = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _snake_case : Any = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _snake_case : str = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. _snake_case : List[Any] = [to_numpy_array(__a ) for image in images] if do_resize: _snake_case : Union[str, Any] = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: _snake_case : Union[str, Any] = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: _snake_case : Any = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: _snake_case : Optional[int] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] _snake_case : int = [to_channel_dimension_format(__a , __a ) for image in images] _snake_case : Tuple = {'pixel_values': images} return BatchFeature(data=__a , tensor_type=__a )
717
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput UpperCAmelCase_ = '''scheduler_config.json''' class __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 5 @dataclass class __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 class __SCREAMING_SNAKE_CASE : """simple docstring""" SCREAMING_SNAKE_CASE_ = SCHEDULER_CONFIG_NAME SCREAMING_SNAKE_CASE_ = ['dtype'] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = True @classmethod def __lowerCamelCase( cls , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" _snake_case , _snake_case : List[str] = cls.load_config( pretrained_model_name_or_path=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , return_unused_kwargs=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) _snake_case , _snake_case : Dict = cls.from_config(SCREAMING_SNAKE_CASE__ , return_unused_kwargs=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """create_state""" ) and getattr(SCREAMING_SNAKE_CASE__ , """has_state""" , SCREAMING_SNAKE_CASE__ ): _snake_case : int = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __lowerCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False , **SCREAMING_SNAKE_CASE__ ): """simple docstring""" self.save_config(save_directory=SCREAMING_SNAKE_CASE__ , push_to_hub=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __lowerCamelCase( self ): """simple docstring""" return self._get_compatibles() @classmethod def __lowerCamelCase( cls ): """simple docstring""" _snake_case : Dict = list(set([cls.__name__] + cls._compatibles ) ) _snake_case : Union[str, Any] = importlib.import_module(__name__.split(""".""" )[0] ) _snake_case : List[str] = [ getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for c in compatible_classes_str if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ] return compatible_classes def UpperCAmelCase ( A__ , A__ ) -> jnp.ndarray: assert len(A__ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(A__ ) - x.ndim) ) , A__ ) def UpperCAmelCase ( A__ , A__=0.999 , A__=jnp.floataa ) -> jnp.ndarray: def alpha_bar(A__ ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 _snake_case : List[Any] = [] for i in range(A__ ): _snake_case : Optional[Any] = i / num_diffusion_timesteps _snake_case : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(A__ ) / alpha_bar(A__ ) , A__ ) ) return jnp.array(A__ , dtype=A__ ) @flax.struct.dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 @classmethod def __lowerCamelCase( cls , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _snake_case : List[Any] = scheduler.config if config.trained_betas is not None: _snake_case : Optional[Any] = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": _snake_case : str = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _snake_case : Tuple = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _snake_case : Any = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) _snake_case : str = 1.0 - betas _snake_case : Dict = jnp.cumprod(SCREAMING_SNAKE_CASE__ , axis=0 ) return cls( alphas=SCREAMING_SNAKE_CASE__ , betas=SCREAMING_SNAKE_CASE__ , alphas_cumprod=SCREAMING_SNAKE_CASE__ , ) def UpperCAmelCase ( A__ , A__ , A__ , A__ ) -> List[str]: _snake_case : Union[str, Any] = state.alphas_cumprod _snake_case : Tuple = alphas_cumprod[timesteps] ** 0.5 _snake_case : Union[str, Any] = sqrt_alpha_prod.flatten() _snake_case : Optional[Any] = broadcast_to_shape_from_left(A__ , original_samples.shape ) _snake_case : Tuple = (1 - alphas_cumprod[timesteps]) ** 0.5 _snake_case : List[str] = sqrt_one_minus_alpha_prod.flatten() _snake_case : Any = broadcast_to_shape_from_left(A__ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def UpperCAmelCase ( A__ , A__ , A__ , A__ ) -> Optional[int]: _snake_case , _snake_case : Optional[Any] = get_sqrt_alpha_prod(A__ , A__ , A__ , A__ ) _snake_case : List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def UpperCAmelCase ( A__ , A__ , A__ , A__ ) -> int: _snake_case , _snake_case : Union[str, Any] = get_sqrt_alpha_prod(A__ , A__ , A__ , A__ ) _snake_case : List[str] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
519
0
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(lowerCamelCase_ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
105
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = value _lowerCAmelCase : Node | None = None _lowerCAmelCase : Node | None = None class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = tree def a ( self , snake_case__ ): '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
444
0
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') __lowerCAmelCase = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) __lowerCAmelCase = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) __lowerCAmelCase = BeautifulSoup(res.text, 'html.parser') __lowerCAmelCase = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
666
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
666
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
7
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( A__ , A__ , unittest.TestCase ): """simple docstring""" snake_case =StableDiffusionSAGPipeline snake_case =TEXT_TO_IMAGE_PARAMS snake_case =TEXT_TO_IMAGE_BATCH_PARAMS snake_case =TEXT_TO_IMAGE_IMAGE_PARAMS snake_case =TEXT_TO_IMAGE_IMAGE_PARAMS snake_case =False def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) _UpperCAmelCase =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) _UpperCAmelCase =DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) _UpperCAmelCase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCAmelCase =CLIPTextModel(_snake_case ) _UpperCAmelCase =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase ={ "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case=0 ): if str(_snake_case ).startswith("mps" ): _UpperCAmelCase =torch.manual_seed(_snake_case ) else: _UpperCAmelCase =torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _UpperCAmelCase ={ "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) _UpperCAmelCase =sag_pipe.to(_snake_case ) sag_pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase ="." _UpperCAmelCase =torch.manual_seed(0 ) _UpperCAmelCase =sag_pipe( [prompt] , generator=_snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) _UpperCAmelCase =output.images _UpperCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase =np.array([0.1_568, 0.1_738, 0.1_695, 0.1_693, 0.1_507, 0.1_705, 0.1_547, 0.1_751, 0.1_949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) _UpperCAmelCase =sag_pipe.to(_snake_case ) sag_pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase ="." _UpperCAmelCase =torch.manual_seed(0 ) _UpperCAmelCase =sag_pipe( [prompt] , generator=_snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) _UpperCAmelCase =output.images _UpperCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase =np.array([0.3_459, 0.2_876, 0.2_537, 0.3_002, 0.2_671, 0.2_160, 0.3_026, 0.2_262, 0.2_371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) _UpperCAmelCase =sag_pipe.to(_snake_case ) sag_pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase ="." _UpperCAmelCase =torch.manual_seed(0 ) _UpperCAmelCase =sag_pipe( [prompt] , width=768 , height=512 , generator=_snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" , ) _UpperCAmelCase =output.images assert image.shape == (1, 512, 768, 3)
408
0
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None ) -> Optional[int]: if version.parse(hfh.__version__ ).release < version.parse("""0.11.0""" ).release: # old versions of hfh don't url-encode the file path UpperCAmelCase__ : int = quote(UpperCamelCase__ ) return hfh.hf_hub_url(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" , revision=UpperCamelCase__ )
707
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __A =logging.get_logger(__name__) __A =Dict[str, Any] __A =List[Prediction] @add_end_docstrings(a__ ) class _snake_case ( a__ ): def __init__( self , *_lowerCamelCase , **_lowerCamelCase): super().__init__(*_lowerCamelCase , **_lowerCamelCase) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''') requires_backends(self , """vision""") self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items())) def snake_case__ ( self , **_lowerCamelCase): UpperCAmelCase__ : int = {} if "threshold" in kwargs: UpperCAmelCase__ : List[str] = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self , *_lowerCamelCase , **_lowerCamelCase): return super().__call__(*_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : List[Any] = load_image(_lowerCamelCase) UpperCAmelCase__ : Dict = torch.IntTensor([[image.height, image.width]]) UpperCAmelCase__ : str = self.image_processor(images=[image] , return_tensors="""pt""") if self.tokenizer is not None: UpperCAmelCase__ : Tuple = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""") UpperCAmelCase__ : str = target_size return inputs def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : Optional[int] = model_inputs.pop("""target_size""") UpperCAmelCase__ : Optional[Any] = self.model(**_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = outputs.__class__({"""target_size""": target_size, **outputs}) if self.tokenizer is not None: UpperCAmelCase__ : int = model_inputs["""bbox"""] return model_outputs def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=0.9): UpperCAmelCase__ : Optional[Any] = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = target_size[0].tolist() def unnormalize(_lowerCamelCase): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ])) UpperCAmelCase__ , UpperCAmelCase__ : Tuple = model_outputs["""logits"""].squeeze(0).softmax(dim=-1).max(dim=-1) UpperCAmelCase__ : List[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] UpperCAmelCase__ : Tuple = [unnormalize(_lowerCamelCase) for bbox in model_outputs["""bbox"""].squeeze(0)] UpperCAmelCase__ : Tuple = ["""score""", """label""", """box"""] UpperCAmelCase__ : Dict = [dict(zip(_lowerCamelCase , _lowerCamelCase)) for vals in zip(scores.tolist() , _lowerCamelCase , _lowerCamelCase) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel UpperCAmelCase__ : Union[str, Any] = self.image_processor.post_process_object_detection(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : int = raw_annotations[0] UpperCAmelCase__ : Any = raw_annotation["""scores"""] UpperCAmelCase__ : List[str] = raw_annotation["""labels"""] UpperCAmelCase__ : str = raw_annotation["""boxes"""] UpperCAmelCase__ : Tuple = scores.tolist() UpperCAmelCase__ : int = [self.model.config.idalabel[label.item()] for label in labels] UpperCAmelCase__ : int = [self._get_bounding_box(_lowerCamelCase) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] UpperCAmelCase__ : Dict = ["""score""", """label""", """box"""] UpperCAmelCase__ : Optional[int] = [ dict(zip(_lowerCamelCase , _lowerCamelCase)) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""]) ] return annotation def snake_case__ ( self , _lowerCamelCase): if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""") UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = box.int().tolist() UpperCAmelCase__ : Dict = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
113
0
'''simple docstring''' from graphs.minimum_spanning_tree_kruskal import kruskal def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' A: str = 9 A: Union[str, Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] A: List[Any] = kruskal(lowerCamelCase__ , lowerCamelCase__ ) A: int = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(lowerCamelCase__ ) == sorted(lowerCamelCase__ )
135
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
135
1
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class __A (_UpperCamelCase): '''simple docstring''' __lowercase: str = """mvp""" __lowercase: Any = ["""past_key_values"""] __lowercase: List[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Dict , UpperCAmelCase_ : Tuple=50_267 , UpperCAmelCase_ : Any=1_024 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : List[str]=4_096 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : List[Any]=4_096 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : Optional[Any]=1_024 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=False , UpperCAmelCase_ : List[Any]=100 , UpperCAmelCase_ : str=800 , **UpperCAmelCase_ : Tuple , ) ->int: """simple docstring""" snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = d_model snake_case_ = encoder_ffn_dim snake_case_ = encoder_layers snake_case_ = encoder_attention_heads snake_case_ = decoder_ffn_dim snake_case_ = decoder_layers snake_case_ = decoder_attention_heads snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = activation_function snake_case_ = init_std snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = classifier_dropout snake_case_ = use_cache snake_case_ = encoder_layers snake_case_ = scale_embedding # scale factor will be sqrt(d_model) if True snake_case_ = use_prompt snake_case_ = prompt_length snake_case_ = prompt_mid_dim super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , forced_eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , UpperCAmelCase_ ): snake_case_ = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ """The config can simply be saved and uploaded again to be fixed.""" )
714
"""simple docstring""" from __future__ import annotations def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = 0 snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: snake_case_ = i + 1 else: snake_case_ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
2
0
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a_ ( __lowercase ): lowercase = ["""image_processor""", """tokenizer"""] lowercase = """OwlViTImageProcessor""" lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , SCREAMING_SNAKE_CASE_ , ) UpperCamelCase = kwargs.pop("""feature_extractor""" ) UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="max_length" , _SCREAMING_SNAKE_CASE="np" , **_SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or (isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and not isinstance(text[0] , SCREAMING_SNAKE_CASE_ )): UpperCamelCase = [self.tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )] elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and isinstance(text[0] , SCREAMING_SNAKE_CASE_ ): UpperCamelCase = [] # Maximum number of queries across batch UpperCamelCase = max([len(SCREAMING_SNAKE_CASE_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(SCREAMING_SNAKE_CASE_ ) != max_num_queries: UpperCamelCase = t + [""" """] * (max_num_queries - len(SCREAMING_SNAKE_CASE_ )) UpperCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) encodings.append(SCREAMING_SNAKE_CASE_ ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": UpperCamelCase = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCamelCase = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCamelCase = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCamelCase = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCamelCase = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) UpperCamelCase = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCamelCase = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCamelCase = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) UpperCamelCase = BatchEncoding() UpperCamelCase = input_ids UpperCamelCase = attention_mask if query_images is not None: UpperCamelCase = BatchEncoding() UpperCamelCase = self.image_processor( SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).pixel_values UpperCamelCase = query_pixel_values if images is not None: UpperCamelCase = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text is not None and images is not None: UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_ ) , tensor_type=SCREAMING_SNAKE_CASE_ ) def A__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self.image_processor.post_process(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return self.image_processor.post_process_object_detection(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def A__ ( self ) -> Dict: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , SCREAMING_SNAKE_CASE_ , ) return self.image_processor_class @property def A__ ( self ) -> Union[str, Any]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , SCREAMING_SNAKE_CASE_ , ) return self.image_processor
301
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def _lowerCamelCase ( __a, __a, __a, __a = 100, ): SCREAMING_SNAKE_CASE_ = x_start SCREAMING_SNAKE_CASE_ = fnc(__a ) SCREAMING_SNAKE_CASE_ = 0.0 for _ in range(__a ): # Approximates small segments of curve as linear and solve # for trapezoidal area SCREAMING_SNAKE_CASE_ = (x_end - x_start) / steps + xa SCREAMING_SNAKE_CASE_ = fnc(__a ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step SCREAMING_SNAKE_CASE_ = xa SCREAMING_SNAKE_CASE_ = fxa return area if __name__ == "__main__": def _lowerCamelCase ( __a ): return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') lowerCAmelCase__ = 10 while i <= 100000: print(f'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
626
0
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) UpperCAmelCase_ : Any = logging.getLogger(__name__) UpperCAmelCase_ : List[Any] = tf.data.AUTOTUNE def UpperCAmelCase_ ( ): '''simple docstring''' _a : List[Any] = argparse.ArgumentParser(description='Train a masked language model on TPU.' ) parser.add_argument( '--pretrained_model_config' , type=A , default='roberta-base' , help='The model config to use. Note that we don\'t copy the model\'s weights, only the config!' , ) parser.add_argument( '--tokenizer' , type=A , default='unigram-tokenizer-wikitext' , help='The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.' , ) parser.add_argument( '--per_replica_batch_size' , type=A , default=8 , help='Batch size per TPU core.' , ) parser.add_argument( '--no_tpu' , action='store_true' , help='If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.' , ) parser.add_argument( '--tpu_name' , type=A , help='Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.' , default='local' , ) parser.add_argument( '--tpu_zone' , type=A , help='Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.' , ) parser.add_argument( '--gcp_project' , type=A , help='Google cloud project name. Only used for non-Colab TPU nodes.' ) parser.add_argument( '--bfloat16' , action='store_true' , help='Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.' , ) parser.add_argument( '--train_dataset' , type=A , help='Path to training dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--shuffle_buffer_size' , type=A , default=2**1_8 , help='Size of the shuffle buffer (in samples)' , ) parser.add_argument( '--eval_dataset' , type=A , help='Path to evaluation dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--num_epochs' , type=A , default=1 , help='Number of epochs to train for.' , ) parser.add_argument( '--learning_rate' , type=A , default=1E-4 , help='Learning rate to use for training.' , ) parser.add_argument( '--weight_decay_rate' , type=A , default=1E-3 , help='Weight decay rate to use for training.' , ) parser.add_argument( '--max_length' , type=A , default=5_1_2 , help='Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py' , ) parser.add_argument( '--mlm_probability' , type=A , default=0.15 , help='Fraction of tokens to mask during training.' , ) parser.add_argument('--output_dir' , type=A , required=A , help='Path to save model checkpoints to.' ) parser.add_argument('--hub_model_id' , type=A , help='Model ID to upload to on the Hugging Face Hub.' ) _a : Tuple = parser.parse_args() return args def UpperCAmelCase_ ( A ): '''simple docstring''' try: if args.tpu_name: _a : Any = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: _a : str = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( 'Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ' '--gcp_project. When running on a TPU VM, use --tpu_name local.' ) tf.config.experimental_connect_to_cluster(A ) tf.tpu.experimental.initialize_tpu_system(A ) return tpu def UpperCAmelCase_ ( A ): '''simple docstring''' _a : Union[str, Any] = 0 for file in file_list: _a : int = file.split('/' )[-1] _a : Any = re.search(r'-\d+-(\d+)\.tfrecord' , A ).group(1 ) _a : Dict = int(A ) num_samples += sample_count return num_samples def UpperCAmelCase_ ( A , A , A , A , A , A=None ): '''simple docstring''' _a : Union[str, Any] = count_samples(A ) _a : Optional[int] = tf.data.Dataset.from_tensor_slices(A ) if shuffle: _a : Dict = dataset.shuffle(len(A ) ) _a : Optional[int] = tf.data.TFRecordDataset(A , num_parallel_reads=A ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here _a : Dict = dataset.apply(tf.data.experimental.assert_cardinality(A ) ) _a : str = dataset.map(A , num_parallel_calls=A ) if shuffle: assert shuffle_buffer_size is not None _a : Union[str, Any] = dataset.shuffle(args.shuffle_buffer_size ) _a : int = dataset.batch(A , drop_remainder=A ) _a : Optional[Any] = dataset.map(A , num_parallel_calls=A ) _a : int = dataset.prefetch(A ) return dataset def UpperCAmelCase_ ( A ): '''simple docstring''' if not args.no_tpu: _a : Union[str, Any] = initialize_tpu(A ) _a : Optional[int] = tf.distribute.TPUStrategy(A ) else: _a : Any = tf.distribute.OneDeviceStrategy(device='/gpu:0' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('mixed_bfloat16' ) _a : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer ) _a : int = AutoConfig.from_pretrained(args.pretrained_model_config ) _a : Union[str, Any] = tokenizer.vocab_size _a : List[str] = tf.io.gfile.glob(os.path.join(args.train_dataset , '*.tfrecord' ) ) if not training_records: raise ValueError(f'''No .tfrecord files found in {args.train_dataset}.''' ) _a : Tuple = tf.io.gfile.glob(os.path.join(args.eval_dataset , '*.tfrecord' ) ) if not eval_records: raise ValueError(f'''No .tfrecord files found in {args.eval_dataset}.''' ) _a : Optional[int] = count_samples(A ) _a : Union[str, Any] = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) _a : Optional[int] = steps_per_epoch * args.num_epochs with strategy.scope(): _a : Union[str, Any] = TFAutoModelForMaskedLM.from_config(A ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built _a , _a : str = create_optimizer( num_train_steps=A , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=A , metrics=['accuracy'] ) def decode_fn(A ): _a : int = { 'input_ids': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), 'attention_mask': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(A , A ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. _a : Union[str, Any] = DataCollatorForLanguageModeling( tokenizer=A , mlm_probability=args.mlm_probability , mlm=A , return_tensors='tf' ) def mask_with_collator(A ): # TF really needs an isin() function _a : str = ( ~tf.cast(batch['attention_mask'] , tf.bool ) | (batch['input_ids'] == tokenizer.cls_token_id) | (batch['input_ids'] == tokenizer.sep_token_id) ) _a , _a : str = data_collator.tf_mask_tokens( batch['input_ids'] , vocab_size=len(A ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=A , ) return batch _a : Tuple = args.per_replica_batch_size * strategy.num_replicas_in_sync _a : List[str] = prepare_dataset( A , decode_fn=A , mask_fn=A , batch_size=A , shuffle=A , shuffle_buffer_size=args.shuffle_buffer_size , ) _a : Dict = prepare_dataset( A , decode_fn=A , mask_fn=A , batch_size=A , shuffle=A , ) _a : Tuple = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=A ) ) model.fit( A , validation_data=A , epochs=args.num_epochs , callbacks=A , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = parse_args() main(args)
424
'''simple docstring''' def UpperCAmelCase_ ( A , A , A ): '''simple docstring''' return round(float(moles / volume ) * nfactor ) def UpperCAmelCase_ ( A , A , A ): '''simple docstring''' return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def UpperCAmelCase_ ( A , A , A ): '''simple docstring''' return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def UpperCAmelCase_ ( A , A , A ): '''simple docstring''' return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
424
1
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
276
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Optional[int] = ['image_processor', 'tokenizer'] _A : List[Any] = 'LayoutLMv2ImageProcessor' _A : Dict = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase ): if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase , ) snake_case__ = kwargs.pop("feature_extractor" ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCamelCase , lowerCamelCase ) def __call__( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = 0 , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = True , lowerCamelCase = None , **lowerCamelCase , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor snake_case__ = self.image_processor(images=lowerCamelCase , return_tensors=lowerCamelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCamelCase , lowerCamelCase ): snake_case__ = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case__ = features["words"] snake_case__ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , stride=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_attention_mask=lowerCamelCase , return_overflowing_tokens=lowerCamelCase , return_special_tokens_mask=lowerCamelCase , return_offsets_mapping=lowerCamelCase , return_length=lowerCamelCase , verbose=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) # add pixel values snake_case__ = features.pop("pixel_values" ) if return_overflowing_tokens is True: snake_case__ = self.get_overflowing_images(lowerCamelCase , encoded_inputs["overflow_to_sample_mapping"] ) snake_case__ = images return encoded_inputs def A_ ( self , lowerCamelCase , lowerCamelCase ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image snake_case__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCamelCase ) != len(lowerCamelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F""" {len(lowerCamelCase )} and {len(lowerCamelCase )}""" ) return images_with_overflow def A_ ( self , *lowerCamelCase , **lowerCamelCase ): return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def A_ ( self , *lowerCamelCase , **lowerCamelCase ): return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def A_ ( self ): return ["input_ids", "bbox", "attention_mask", "image"] @property def A_ ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCamelCase , ) return self.image_processor_class @property def A_ ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCamelCase , ) return self.image_processor
276
1
'''simple docstring''' from PIL import Image def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Image: """simple docstring""" def brightness(__SCREAMING_SNAKE_CASE ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 SCREAMING_SNAKE_CASE_ = change_brightness(img, 1_00) brigt_img.save('image_data/lena_brightness.png', format='png')
201
'''simple docstring''' from ...processing_utils import ProcessorMixin class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" a_ :Dict =["""image_processor""", """feature_extractor"""] a_ :str ="""TvltImageProcessor""" a_ :str ="""TvltFeatureExtractor""" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' super().__init__(image_processor=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) __a = image_processor __a = feature_extractor def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : List[str]=False , *SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Optional[int] , ): '''simple docstring''' if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __a = None if images is not None: __a = self.image_processor(SCREAMING_SNAKE_CASE__ , mask_pixel=SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if images_mixed is not None: __a = self.image_processor(SCREAMING_SNAKE_CASE__ , is_mixed=SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if audio is not None: __a = self.feature_extractor( SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , mask_audio=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a = {} if audio is not None: output_dict.update(SCREAMING_SNAKE_CASE__ ) if images is not None: output_dict.update(SCREAMING_SNAKE_CASE__ ) if images_mixed_dict is not None: output_dict.update(SCREAMING_SNAKE_CASE__ ) return output_dict @property def __a ( self : List[str] ): '''simple docstring''' __a = self.image_processor.model_input_names __a = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
201
1
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCAmelCase = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def __lowerCamelCase ( _lowerCAmelCase ) -> Union[str, Any]: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model _UpperCAmelCase = list(s_dict.keys() ) for key in keys: _UpperCAmelCase = r".*/layers_(\d+)" _UpperCAmelCase = key if re.match(_A , _A ): _UpperCAmelCase = re.sub(r"layers_(\d+)" , r"block/\1/layer" , _A ) _UpperCAmelCase = r"(encoder|decoder)\/" if re.match(_A , _A ): _UpperCAmelCase = re.match(_A , _A ).groups() if groups[0] == "encoder": _UpperCAmelCase = re.sub(r"/mlp/" , r"/1/mlp/" , _A ) _UpperCAmelCase = re.sub(r"/pre_mlp_layer_norm/" , r"/1/layer_norm/" , _A ) elif groups[0] == "decoder": _UpperCAmelCase = re.sub(r"/mlp/" , r"/2/mlp/" , _A ) _UpperCAmelCase = re.sub(r"/pre_mlp_layer_norm/" , r"/2/layer_norm/" , _A ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _UpperCAmelCase = new_key.replace(_A , _A ) print(F'''{key} -> {new_key}''' ) _UpperCAmelCase = s_dict.pop(_A ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _UpperCAmelCase = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _UpperCAmelCase = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: _UpperCAmelCase = s_dict[key].shape[0] _UpperCAmelCase = s_dict[key] for idx in range(_A ): _UpperCAmelCase = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/" , "nested fstring" )}''' ) s_dict.pop(_A ) return s_dict __lowerCAmelCase = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> str: # Convert a google style config to the hugging face fromat import regex as re with open(_A , "r" ) as f: _UpperCAmelCase = f.read() _UpperCAmelCase = re.findall(r"(.*) = ([0-9.]*)" , _A ) _UpperCAmelCase = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _UpperCAmelCase = float(_A ) if "." in value else int(_A ) _UpperCAmelCase = re.findall(r"(.*activations) = \(\'(.*)\',\)" , _A )[0] _UpperCAmelCase = str(activation[1] ) _UpperCAmelCase = num_experts _UpperCAmelCase = SwitchTransformersConfig(**_A ) return config def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="./" , _lowerCAmelCase=8 ) -> str: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) _UpperCAmelCase = checkpoints.load_tax_checkpoint(_A ) if gin_file is not None: _UpperCAmelCase = convert_gin_to_config(_A , _A ) else: _UpperCAmelCase = SwitchTransformersConfig.from_pretrained(_A ) _UpperCAmelCase = SwitchTransformersForConditionalGeneration(_A ) _UpperCAmelCase = flax_params["target"] _UpperCAmelCase = flatten_dict(_A , sep="/" ) _UpperCAmelCase = rename_keys(_A ) _UpperCAmelCase = unflatten_dict(_A , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_A , _A ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(_A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") __lowerCAmelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
684
def __UpperCamelCase ( _A ): if isinstance(_A , _A ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if isinstance(_A , _A ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if num == 0: return "0b0" lowerCAmelCase_ = False if num < 0: lowerCAmelCase_ = True lowerCAmelCase_ = -num lowerCAmelCase_ = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_A ) for e in binary ) return "0b" + "".join(str(_A ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
431
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Dict = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) lowerCAmelCase__ : Any = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(__lowerCamelCase ) ,torch_builtin(__lowerCamelCase ) ) ) self.assertFalse(torch.allclose(gelu_python(__lowerCamelCase ) ,gelu_new(__lowerCamelCase ) ) ) def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Tuple = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) lowerCAmelCase__ : str = get_activation('''gelu''' ) lowerCAmelCase__ : Optional[int] = get_activation('''gelu_10''' ) lowerCAmelCase__ : List[Any] = torch_builtin(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = geluaa(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.where(y_gelu_aa < 10.0 ,1 ,0 ) self.assertTrue(torch.max(__lowerCamelCase ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask ,y_gelu_aa * clipped_mask ) ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(__lowerCamelCase ): get_activation('''bogus''' ) with self.assertRaises(__lowerCamelCase ): get_activation(__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Optional[int] = get_activation('''gelu''' ) lowerCAmelCase__ : List[str] = 1 lowerCAmelCase__ : Union[str, Any] = get_activation('''gelu''' ) self.assertEqual(acta.a ,1 ) with self.assertRaises(__lowerCamelCase ): lowerCAmelCase__ : List[str] = acta.a
714
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case : str =logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =["""pixel_values"""] def __init__(self ,__lowerCamelCase = True ,__lowerCamelCase = None ,__lowerCamelCase = PILImageResampling.BICUBIC ,__lowerCamelCase = True ,__lowerCamelCase = None ,__lowerCamelCase = True ,__lowerCamelCase = 1 / 2_55 ,__lowerCamelCase = True ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = True ,**__lowerCamelCase ,) -> None: """simple docstring""" super().__init__(**__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = size if size is not None else {'''shortest_edge''': 2_24} lowerCAmelCase__ : Union[str, Any] = get_size_dict(__lowerCamelCase ,default_to_square=__lowerCamelCase ) lowerCAmelCase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} lowerCAmelCase__ : Optional[int] = get_size_dict(__lowerCamelCase ,default_to_square=__lowerCamelCase ,param_name='''crop_size''' ) lowerCAmelCase__ : Optional[int] = do_resize lowerCAmelCase__ : Any = size lowerCAmelCase__ : int = resample lowerCAmelCase__ : Dict = do_center_crop lowerCAmelCase__ : str = crop_size lowerCAmelCase__ : Dict = do_rescale lowerCAmelCase__ : Optional[Any] = rescale_factor lowerCAmelCase__ : Dict = do_normalize lowerCAmelCase__ : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase__ : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase__ : int = do_convert_rgb def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = PILImageResampling.BICUBIC ,__lowerCamelCase = None ,**__lowerCamelCase ,) -> np.ndarray: """simple docstring""" lowerCAmelCase__ : Optional[int] = get_size_dict(__lowerCamelCase ,default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowerCAmelCase__ : Optional[int] = get_resize_output_image_size(__lowerCamelCase ,size=size['''shortest_edge'''] ,default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase ,size=__lowerCamelCase ,resample=__lowerCamelCase ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = None ,**__lowerCamelCase ,) -> np.ndarray: """simple docstring""" lowerCAmelCase__ : List[Any] = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__lowerCamelCase ,size=(size['''height'''], size['''width''']) ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = None ,**__lowerCamelCase ,) -> int: """simple docstring""" return rescale(__lowerCamelCase ,scale=__lowerCamelCase ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = None ,**__lowerCamelCase ,) -> np.ndarray: """simple docstring""" return normalize(__lowerCamelCase ,mean=__lowerCamelCase ,std=__lowerCamelCase ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = ChannelDimension.FIRST ,**__lowerCamelCase ,) -> PIL.Image.Image: """simple docstring""" lowerCAmelCase__ : Tuple = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ : Tuple = size if size is not None else self.size lowerCAmelCase__ : Any = get_size_dict(__lowerCamelCase ,param_name='''size''' ,default_to_square=__lowerCamelCase ) lowerCAmelCase__ : Tuple = resample if resample is not None else self.resample lowerCAmelCase__ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ : List[Any] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ : str = get_size_dict(__lowerCamelCase ,param_name='''crop_size''' ,default_to_square=__lowerCamelCase ) lowerCAmelCase__ : Dict = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ : List[Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ : Dict = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ : int = image_std if image_std is not None else self.image_std lowerCAmelCase__ : Dict = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase__ : Optional[int] = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase__ : Union[str, Any] = [convert_to_rgb(__lowerCamelCase ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase__ : Any = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: lowerCAmelCase__ : str = [self.resize(image=__lowerCamelCase ,size=__lowerCamelCase ,resample=__lowerCamelCase ) for image in images] if do_center_crop: lowerCAmelCase__ : Dict = [self.center_crop(image=__lowerCamelCase ,size=__lowerCamelCase ) for image in images] if do_rescale: lowerCAmelCase__ : Union[str, Any] = [self.rescale(image=__lowerCamelCase ,scale=__lowerCamelCase ) for image in images] if do_normalize: lowerCAmelCase__ : Optional[Any] = [self.normalize(image=__lowerCamelCase ,mean=__lowerCamelCase ,std=__lowerCamelCase ) for image in images] lowerCAmelCase__ : List[Any] = [to_channel_dimension_format(__lowerCamelCase ,__lowerCamelCase ) for image in images] lowerCAmelCase__ : Optional[int] = {'''pixel_values''': images} return BatchFeature(data=__lowerCamelCase ,tensor_type=__lowerCamelCase )
90
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def A__ ( snake_case_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__: Dict= test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F'{test_file} instead.' ) SCREAMING_SNAKE_CASE__: Optional[int]= components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F'`test_file` should be a python file. Got {test_fn} instead.' ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F'`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.' ) SCREAMING_SNAKE_CASE__: int= components[:-1] + [test_fn.replace('''.py''' , '''''' )] SCREAMING_SNAKE_CASE__: List[str]= '''.'''.join(snake_case_ ) return test_module_path def A__ ( snake_case_ : Dict ): SCREAMING_SNAKE_CASE__: Dict= get_module_path(snake_case_ ) SCREAMING_SNAKE_CASE__: int= importlib.import_module(snake_case_ ) return test_module def A__ ( snake_case_ : List[str] ): SCREAMING_SNAKE_CASE__: Any= [] SCREAMING_SNAKE_CASE__: Optional[Any]= get_test_module(snake_case_ ) for attr in dir(snake_case_ ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(snake_case_ , snake_case_ ) ) # sort with class names return sorted(snake_case_ , key=lambda snake_case_ : x.__name__ ) def A__ ( snake_case_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__: Union[str, Any]= [] SCREAMING_SNAKE_CASE__: Dict= get_test_module(snake_case_ ) for attr in dir(snake_case_ ): SCREAMING_SNAKE_CASE__: str= getattr(snake_case_ , snake_case_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). SCREAMING_SNAKE_CASE__: List[Any]= getattr(snake_case_ , '''all_model_classes''' , [] ) if len(snake_case_ ) > 0: test_classes.append(snake_case_ ) # sort with class names return sorted(snake_case_ , key=lambda snake_case_ : x.__name__ ) def A__ ( snake_case_ : int ): SCREAMING_SNAKE_CASE__: List[str]= get_test_classes(snake_case_ ) SCREAMING_SNAKE_CASE__: Optional[int]= set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(snake_case_ , key=lambda snake_case_ : x.__name__ ) def A__ ( snake_case_ : str ): SCREAMING_SNAKE_CASE__: Tuple= test_class() if hasattr(snake_case_ , '''setUp''' ): test.setUp() SCREAMING_SNAKE_CASE__: List[str]= None if hasattr(snake_case_ , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: SCREAMING_SNAKE_CASE__: List[Any]= test.model_tester.__class__ return model_tester def A__ ( snake_case_ : List[Any] , snake_case_ : List[str] ): SCREAMING_SNAKE_CASE__: Tuple= get_test_classes(snake_case_ ) SCREAMING_SNAKE_CASE__: Dict= [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(snake_case_ ) # sort with class names return sorted(snake_case_ , key=lambda snake_case_ : x.__name__ ) def A__ ( snake_case_ : Dict , snake_case_ : Dict ): SCREAMING_SNAKE_CASE__: str= get_test_classes_for_model(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE__: Union[str, Any]= [] for test_class in test_classes: SCREAMING_SNAKE_CASE__: Optional[Any]= get_model_tester_from_test_class(snake_case_ ) if tester_class is not None: tester_classes.append(snake_case_ ) # sort with class names return sorted(snake_case_ , key=lambda snake_case_ : x.__name__ ) def A__ ( snake_case_ : Optional[Any] ): SCREAMING_SNAKE_CASE__: List[str]= get_test_classes(snake_case_ ) SCREAMING_SNAKE_CASE__: Optional[int]= {test_class: get_model_tester_from_test_class(snake_case_ ) for test_class in test_classes} return test_tester_mapping def A__ ( snake_case_ : Optional[int] ): SCREAMING_SNAKE_CASE__: List[str]= get_model_classes(snake_case_ ) SCREAMING_SNAKE_CASE__: Any= { model_class: get_test_classes_for_model(snake_case_ , snake_case_ ) for model_class in model_classes } return model_test_mapping def A__ ( snake_case_ : Dict ): SCREAMING_SNAKE_CASE__: int= get_model_classes(snake_case_ ) SCREAMING_SNAKE_CASE__: List[str]= { model_class: get_tester_classes_for_model(snake_case_ , snake_case_ ) for model_class in model_classes } return model_to_tester_mapping def A__ ( snake_case_ : Union[str, Any] ): if isinstance(snake_case_ , snake_case_ ): return o elif isinstance(snake_case_ , snake_case_ ): return o.__name__ elif isinstance(snake_case_ , (list, tuple) ): return [to_json(snake_case_ ) for x in o] elif isinstance(snake_case_ , snake_case_ ): return {to_json(snake_case_ ): to_json(snake_case_ ) for k, v in o.items()} else: return o
64
def _A ( lowerCamelCase ): a__ : Optional[Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def _A ( lowerCamelCase ): a__ : List[Any] = 0 while number > 0: a__ : str = number % 10 sum_of_digits += last_digit a__ : Dict = number // 10 # Removing the last_digit from the given number return sum_of_digits def _A ( lowerCamelCase = 100 ): a__ : Any = factorial(lowerCamelCase ) a__ : Optional[Any] = split_and_add(lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
112
0
'''simple docstring''' class __A : def __init__(self : Any , __a : int , __a : List[Any]=None , __a : Union[str, Any]=None ): UpperCAmelCase_ = data UpperCAmelCase_ = previous UpperCAmelCase_ = next_node def __str__(self : int ): return f"""{self.data}""" def _lowercase (self : Optional[int] ): return self.data def _lowercase (self : Optional[int] ): return self.next def _lowercase (self : Optional[Any] ): return self.previous class __A : def __init__(self : Optional[int] , __a : int ): UpperCAmelCase_ = head def __iter__(self : Optional[Any] ): return self def _lowercase (self : Dict ): if not self.current: raise StopIteration else: UpperCAmelCase_ = self.current.get_data() UpperCAmelCase_ = self.current.get_next() return value class __A : def __init__(self : str ): UpperCAmelCase_ = None # First node in list UpperCAmelCase_ = None # Last node in list def __str__(self : Union[str, Any] ): UpperCAmelCase_ = self.head UpperCAmelCase_ = [] while current is not None: nodes.append(current.get_data() ) UpperCAmelCase_ = current.get_next() return " ".join(str(__a ) for node in nodes ) def __contains__(self : int , __a : int ): UpperCAmelCase_ = self.head while current: if current.get_data() == value: return True UpperCAmelCase_ = current.get_next() return False def __iter__(self : Optional[int] ): return LinkedListIterator(self.head ) def _lowercase (self : List[str] ): if self.head: return self.head.get_data() return None def _lowercase (self : Tuple ): if self.tail: return self.tail.get_data() return None def _lowercase (self : int , __a : Node ): if self.head is None: UpperCAmelCase_ = node UpperCAmelCase_ = node else: self.insert_before_node(self.head , __a ) def _lowercase (self : List[str] , __a : Node ): if self.head is None: self.set_head(__a ) else: self.insert_after_node(self.tail , __a ) def _lowercase (self : int , __a : int ): UpperCAmelCase_ = Node(__a ) if self.head is None: self.set_head(__a ) else: self.set_tail(__a ) def _lowercase (self : Optional[Any] , __a : Node , __a : Node ): UpperCAmelCase_ = node UpperCAmelCase_ = node.previous if node.get_previous() is None: UpperCAmelCase_ = node_to_insert else: UpperCAmelCase_ = node_to_insert UpperCAmelCase_ = node_to_insert def _lowercase (self : List[Any] , __a : Node , __a : Node ): UpperCAmelCase_ = node UpperCAmelCase_ = node.next if node.get_next() is None: UpperCAmelCase_ = node_to_insert else: UpperCAmelCase_ = node_to_insert UpperCAmelCase_ = node_to_insert def _lowercase (self : Optional[int] , __a : int , __a : int ): UpperCAmelCase_ = 1 UpperCAmelCase_ = Node(__a ) UpperCAmelCase_ = self.head while node: if current_position == position: self.insert_before_node(__a , __a ) return current_position += 1 UpperCAmelCase_ = node.next self.insert_after_node(self.tail , __a ) def _lowercase (self : Tuple , __a : int ): UpperCAmelCase_ = self.head while node: if node.get_data() == item: return node UpperCAmelCase_ = node.get_next() raise Exception("Node not found" ) def _lowercase (self : List[str] , __a : str ): if (node := self.get_node(__a )) is not None: if node == self.head: UpperCAmelCase_ = self.head.get_next() if node == self.tail: UpperCAmelCase_ = self.tail.get_previous() self.remove_node_pointers(__a ) @staticmethod def _lowercase (__a : Node ): if node.get_next(): UpperCAmelCase_ = node.previous if node.get_previous(): UpperCAmelCase_ = node.next UpperCAmelCase_ = None UpperCAmelCase_ = None def _lowercase (self : Optional[Any] ): return self.head is None def lowerCAmelCase_ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
415
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_: Optional[Any] ={ 'configuration_bloom': ['BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BloomConfig', 'BloomOnnxConfig'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Any =['BloomTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Optional[int] =[ 'BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST', 'BloomForCausalLM', 'BloomModel', 'BloomPreTrainedModel', 'BloomForSequenceClassification', 'BloomForTokenClassification', 'BloomForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: int =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
415
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) A = logging.getLogger() def __UpperCAmelCase ( __A ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ = {} UpperCAmelCase__ = os.path.join(__A , "all_results.json" ) if os.path.exists(__A ): with open(__A , "r" ) as f: UpperCAmelCase__ = json.load(__A ) else: raise ValueError(F"""can't find {path}""" ) return results A = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowercase__ ( __SCREAMING_SNAKE_CASE ): def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" import xla_spawn UpperCAmelCase__ = self.get_auto_remove_tmp_dir() UpperCAmelCase__ = F""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_lowercase , "argv" , _lowercase ): UpperCAmelCase__ = time() xla_spawn.main() UpperCAmelCase__ = time() UpperCAmelCase__ = get_results(_lowercase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.7_5 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_00 ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" import xla_spawn UpperCAmelCase__ = "\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n ".split() with patch.object(_lowercase , "argv" , _lowercase ): xla_spawn.main()
475
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
475
1
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowerCamelCase : def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case: Union[str, Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) _snake_case: List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) _snake_case: Tuple = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _snake_case: List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_001 , beta_end=0.02 , thresholding=__snake_case , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) _snake_case: List[str] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) _snake_case: List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) _snake_case: Optional[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) _snake_case: Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.414 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _snake_case: Any = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_001 , beta_end=0.02 , thresholding=__snake_case , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) _snake_case: Dict = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_001 , beta_end=0.02 , ) torch.manual_seed(0 ) _snake_case: str = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' _snake_case: str = self.get_dummy_components() _snake_case: Dict = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _snake_case: Tuple = self.get_dummy_inputs(__snake_case ) _snake_case: Tuple = inputs['prompt'] _snake_case: str = inputs['generator'] _snake_case: Dict = inputs['num_inference_steps'] _snake_case: Optional[int] = inputs['output_type'] if "image" in inputs: _snake_case: Union[str, Any] = inputs['image'] else: _snake_case: List[str] = None if "mask_image" in inputs: _snake_case: Union[str, Any] = inputs['mask_image'] else: _snake_case: Union[str, Any] = None if "original_image" in inputs: _snake_case: List[Any] = inputs['original_image'] else: _snake_case: Optional[int] = None _snake_case , _snake_case: Union[str, Any] = pipe.encode_prompt(__snake_case ) # inputs with prompt converted to embeddings _snake_case: List[str] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: _snake_case: Dict = image if mask_image is not None: _snake_case: Optional[Any] = mask_image if original_image is not None: _snake_case: Optional[int] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__snake_case , __snake_case , __snake_case ) _snake_case: Union[str, Any] = pipe(**__snake_case )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__snake_case ) _snake_case: Dict = self.pipeline_class.from_pretrained(__snake_case ) pipe_loaded.to(__snake_case ) pipe_loaded.set_progress_bar_config(disable=__snake_case ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__snake_case , __snake_case ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) _snake_case: int = self.get_dummy_inputs(__snake_case ) _snake_case: List[Any] = inputs['generator'] _snake_case: Optional[int] = inputs['num_inference_steps'] _snake_case: Optional[Any] = inputs['output_type'] # inputs with prompt converted to embeddings _snake_case: List[str] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: _snake_case: Tuple = image if mask_image is not None: _snake_case: Dict = mask_image if original_image is not None: _snake_case: Dict = original_image _snake_case: Any = pipe_loaded(**__snake_case )[0] _snake_case: Dict = np.abs(to_np(__snake_case ) - to_np(__snake_case ) ).max() self.assertLess(__snake_case , 1e-4 ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' _snake_case: List[Any] = self.get_dummy_components() _snake_case: Dict = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _snake_case: int = self.get_dummy_inputs(__snake_case ) _snake_case: Optional[int] = pipe(**__snake_case )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__snake_case ) _snake_case: str = self.pipeline_class.from_pretrained(__snake_case ) pipe_loaded.to(__snake_case ) pipe_loaded.set_progress_bar_config(disable=__snake_case ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests _snake_case: Any = self.get_dummy_inputs(__snake_case ) _snake_case: Optional[int] = pipe_loaded(**__snake_case )[0] _snake_case: Tuple = np.abs(to_np(__snake_case ) - to_np(__snake_case ) ).max() self.assertLess(__snake_case , 1e-4 )
273
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A : Dict = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys A : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
273
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Any = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = '''markuplm''' def __init__( self , _lowerCAmelCase=30522 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1e-12 , _lowerCAmelCase=0 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=256 , _lowerCAmelCase=1024 , _lowerCAmelCase=216 , _lowerCAmelCase=1001 , _lowerCAmelCase=32 , _lowerCAmelCase=50 , _lowerCAmelCase="absolute" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): """simple docstring""" super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) __SCREAMING_SNAKE_CASE: Any = vocab_size __SCREAMING_SNAKE_CASE: int = hidden_size __SCREAMING_SNAKE_CASE: List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE: int = num_attention_heads __SCREAMING_SNAKE_CASE: Optional[int] = hidden_act __SCREAMING_SNAKE_CASE: Tuple = intermediate_size __SCREAMING_SNAKE_CASE: Union[str, Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE: Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE: Dict = max_position_embeddings __SCREAMING_SNAKE_CASE: Union[str, Any] = type_vocab_size __SCREAMING_SNAKE_CASE: List[Any] = initializer_range __SCREAMING_SNAKE_CASE: Optional[int] = layer_norm_eps __SCREAMING_SNAKE_CASE: Union[str, Any] = position_embedding_type __SCREAMING_SNAKE_CASE: Tuple = use_cache __SCREAMING_SNAKE_CASE: List[str] = classifier_dropout # additional properties __SCREAMING_SNAKE_CASE: Union[str, Any] = max_depth __SCREAMING_SNAKE_CASE: Dict = max_xpath_tag_unit_embeddings __SCREAMING_SNAKE_CASE: List[Any] = max_xpath_subs_unit_embeddings __SCREAMING_SNAKE_CASE: Dict = tag_pad_id __SCREAMING_SNAKE_CASE: Optional[int] = subs_pad_id __SCREAMING_SNAKE_CASE: int = xpath_unit_hidden_size
202
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''data2vec-vision''' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1e-12 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=True , _lowerCAmelCase=[3, 5, 7, 11] , _lowerCAmelCase=[1, 2, 3, 6] , _lowerCAmelCase=True , _lowerCAmelCase=0.4 , _lowerCAmelCase=256 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=255 , **_lowerCAmelCase , ): """simple docstring""" super().__init__(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: str = hidden_size __SCREAMING_SNAKE_CASE: Tuple = num_hidden_layers __SCREAMING_SNAKE_CASE: Tuple = num_attention_heads __SCREAMING_SNAKE_CASE: int = intermediate_size __SCREAMING_SNAKE_CASE: Optional[Any] = hidden_act __SCREAMING_SNAKE_CASE: int = hidden_dropout_prob __SCREAMING_SNAKE_CASE: str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE: Any = initializer_range __SCREAMING_SNAKE_CASE: Union[str, Any] = layer_norm_eps __SCREAMING_SNAKE_CASE: Optional[Any] = image_size __SCREAMING_SNAKE_CASE: List[str] = patch_size __SCREAMING_SNAKE_CASE: Optional[int] = num_channels __SCREAMING_SNAKE_CASE: List[Any] = use_mask_token __SCREAMING_SNAKE_CASE: Tuple = use_absolute_position_embeddings __SCREAMING_SNAKE_CASE: Any = use_relative_position_bias __SCREAMING_SNAKE_CASE: Dict = use_shared_relative_position_bias __SCREAMING_SNAKE_CASE: Any = layer_scale_init_value __SCREAMING_SNAKE_CASE: List[Any] = drop_path_rate __SCREAMING_SNAKE_CASE: int = use_mean_pooling # decode head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE: Union[str, Any] = out_indices __SCREAMING_SNAKE_CASE: Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE: Optional[int] = use_auxiliary_head __SCREAMING_SNAKE_CASE: Optional[Any] = auxiliary_loss_weight __SCREAMING_SNAKE_CASE: Optional[Any] = auxiliary_channels __SCREAMING_SNAKE_CASE: Optional[int] = auxiliary_num_convs __SCREAMING_SNAKE_CASE: Any = auxiliary_concat_input __SCREAMING_SNAKE_CASE: List[str] = semantic_loss_ignore_index class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : List[Any] = version.parse('''1.11''' ) @property def snake_case_ ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case_ ( self ): """simple docstring""" return 1e-4
202
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class a ( __UpperCAmelCase ): lowercase_ : Union[str, Any] = 'beit' def __init__( self : Optional[Any] , snake_case__ : List[Any]=8_192 , snake_case__ : str=768 , snake_case__ : Union[str, Any]=12 , snake_case__ : str=12 , snake_case__ : Optional[int]=3_072 , snake_case__ : Optional[int]="gelu" , snake_case__ : str=0.0 , snake_case__ : Optional[Any]=0.0 , snake_case__ : int=0.0_2 , snake_case__ : Optional[int]=1E-12 , snake_case__ : Dict=224 , snake_case__ : str=16 , snake_case__ : Optional[Any]=3 , snake_case__ : int=False , snake_case__ : List[str]=False , snake_case__ : Tuple=False , snake_case__ : Dict=False , snake_case__ : List[str]=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Any=True , snake_case__ : List[Any]=[3, 5, 7, 11] , snake_case__ : Optional[int]=[1, 2, 3, 6] , snake_case__ : str=True , snake_case__ : Any=0.4 , snake_case__ : Dict=256 , snake_case__ : str=1 , snake_case__ : Tuple=False , snake_case__ : Union[str, Any]=255 , **snake_case__ : List[str] , ): """simple docstring""" super().__init__(**snake_case__ ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_mask_token __lowerCAmelCase = use_absolute_position_embeddings __lowerCAmelCase = use_relative_position_bias __lowerCAmelCase = use_shared_relative_position_bias __lowerCAmelCase = layer_scale_init_value __lowerCAmelCase = drop_path_rate __lowerCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) __lowerCAmelCase = out_indices __lowerCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) __lowerCAmelCase = use_auxiliary_head __lowerCAmelCase = auxiliary_loss_weight __lowerCAmelCase = auxiliary_channels __lowerCAmelCase = auxiliary_num_convs __lowerCAmelCase = auxiliary_concat_input __lowerCAmelCase = semantic_loss_ignore_index class a ( __UpperCAmelCase ): lowercase_ : List[str] = version.parse('1.11' ) @property def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return 1E-4
712
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a ( unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] __lowerCAmelCase = DisjunctiveConstraint(snake_case__ ) self.assertTrue(isinstance(dc.token_ids , snake_case__ ) ) with self.assertRaises(snake_case__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(snake_case__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __lowerCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(snake_case__ ): DisjunctiveConstraint(snake_case__ ) # fails here def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __lowerCAmelCase = [[1, 2, 3], [1, 2, 4]] __lowerCAmelCase = DisjunctiveConstraint(snake_case__ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(snake_case__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(snake_case__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 ) __lowerCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(snake_case__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCAmelCase = DisjunctiveConstraint(snake_case__ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
376
0
import argparse import json import subprocess def _SCREAMING_SNAKE_CASE ( __lowercase : Any , __lowercase : str ) -> Optional[int]: """simple docstring""" __A = [] __A = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) __A = subprocess.run(_UpperCamelCase , shell=_UpperCamelCase , stdout=subprocess.PIPE ) __A = output.stdout.decode("""utf-8""" ) __A = json.loads(_UpperCamelCase ) __A = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_UpperCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" , """w""" ) as fp: fp.write(json.dumps(_UpperCamelCase ) ) if len(_UpperCamelCase ) > 0: __A = '''\n'''.join([x["""name"""] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def _SCREAMING_SNAKE_CASE ( __lowercase : List[str] ) -> str: """simple docstring""" return values.split(""",""" ) __a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) __a : str = parser.parse_args() get_runner_status(args.target_runners, args.token)
637
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __SCREAMING_SNAKE_CASE : def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=[0, 1, 2, 3] , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=[1, 384, 24, 24] , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , ): lowercase : Optional[Any] = parent lowercase : Tuple = batch_size lowercase : Any = image_size lowercase : Union[str, Any] = patch_size lowercase : Optional[Any] = num_channels lowercase : Optional[int] = is_training lowercase : Dict = use_labels lowercase : Union[str, Any] = hidden_size lowercase : Dict = num_hidden_layers lowercase : Optional[Any] = backbone_out_indices lowercase : Dict = num_attention_heads lowercase : Tuple = intermediate_size lowercase : Union[str, Any] = hidden_act lowercase : str = hidden_dropout_prob lowercase : Optional[Any] = attention_probs_dropout_prob lowercase : Union[str, Any] = initializer_range lowercase : str = num_labels lowercase : str = backbone_featmap_shape lowercase : Optional[int] = scope lowercase : int = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) lowercase : List[Any] = (image_size // patch_size) ** 2 lowercase : int = num_patches + 1 def __lowerCamelCase ( self ): lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : int = None if self.use_labels: lowercase : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): lowercase : List[str] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=SCREAMING_SNAKE_CASE__ , backbone_featmap_shape=self.backbone_featmap_shape , ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = DPTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Tuple = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Union[str, Any] = self.num_labels lowercase : Optional[Any] = DPTForDepthEstimation(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Dict = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[Any] = self.num_labels lowercase : List[str] = DPTForSemanticSegmentation(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Optional[int] = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCamelCase ( self ): lowercase : List[Any] = self.prepare_config_and_inputs() lowercase , lowercase , lowercase : Union[str, Any] = config_and_inputs lowercase : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( A__ , A__ , unittest.TestCase ): A : Tuple = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () A : Optional[int] = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) A : str = False A : Union[str, Any] = False A : List[Any] = False def __lowerCamelCase ( self ): lowercase : List[str] = DPTModelTester(self ) lowercase : Tuple = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def __lowerCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): lowercase , lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : str = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) ) def __lowerCamelCase ( self ): lowercase , lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Dict = model_class(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : List[str] = [*signature.parameters.keys()] lowercase : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase , lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Tuple = True if model_class in get_values(SCREAMING_SNAKE_CASE__ ): continue lowercase : List[str] = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.train() lowercase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ).loss loss.backward() def __lowerCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase , lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Dict = False lowercase : Optional[int] = True if model_class in get_values(SCREAMING_SNAKE_CASE__ ) or not model_class.supports_gradient_checkpointing: continue lowercase : Any = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.gradient_checkpointing_enable() model.train() lowercase : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = model(**SCREAMING_SNAKE_CASE__ ).loss loss.backward() def __lowerCamelCase ( self ): lowercase , lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Optional[Any] = _config_zero_init(SCREAMING_SNAKE_CASE__ ) for model_class in self.all_model_classes: lowercase : List[Any] = model_class(config=SCREAMING_SNAKE_CASE__ ) # Skip the check for the backbone lowercase : Tuple = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": lowercase : List[Any] = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCamelCase ( self ): pass @slow def __lowerCamelCase ( self ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: lowercase : Any = DPTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type lowercase , lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Any = '''add''' with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = DPTForDepthEstimation(SCREAMING_SNAKE_CASE__ ) def __lowercase ( ) ->List[Any]: """simple docstring""" lowercase : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): lowercase : Optional[Any] = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) lowercase : Optional[Any] = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(SCREAMING_SNAKE_CASE__ ) lowercase : Any = prepare_img() lowercase : str = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): lowercase : Any = model(**SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = outputs.predicted_depth # verify the predicted depth lowercase : str = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
319
0
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict=13 , SCREAMING_SNAKE_CASE_ : Any=7 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Dict=99 , SCREAMING_SNAKE_CASE_ : List[str]=64 , SCREAMING_SNAKE_CASE_ : int=32 , SCREAMING_SNAKE_CASE_ : Tuple=5 , SCREAMING_SNAKE_CASE_ : Any=4 , SCREAMING_SNAKE_CASE_ : Optional[Any]=37 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : Any=512 , SCREAMING_SNAKE_CASE_ : List[Any]=16 , SCREAMING_SNAKE_CASE_ : Any=2 , SCREAMING_SNAKE_CASE_ : str=0.0_2 , SCREAMING_SNAKE_CASE_ : Tuple=3 , SCREAMING_SNAKE_CASE_ : List[str]=4 , SCREAMING_SNAKE_CASE_ : int=None , ): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = embedding_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope def __UpperCAmelCase ( self : List[str] ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : Union[str, Any] ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str ): lowerCamelCase__ = MobileBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCAmelCase ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] ): lowerCamelCase__ = MobileBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ): lowerCamelCase__ = MobileBertForNextSentencePrediction(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str ): lowerCamelCase__ = MobileBertForPreTraining(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , next_sentence_label=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): lowerCamelCase__ = MobileBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = MobileBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = MobileBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict ): lowerCamelCase__ = self.num_choices lowerCamelCase__ = MobileBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCAmelCase ( self : int ): lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): snake_case = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) snake_case = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) snake_case = True def __UpperCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int]=False ): lowerCamelCase__ = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE_ ): lowerCamelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def __UpperCAmelCase ( self : List[str] ): lowerCamelCase__ = MobileBertModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def __UpperCAmelCase ( self : str ): self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Tuple ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : Any ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : List[Any] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : List[str] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : str ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : Optional[Any] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : Dict ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : Tuple ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def _A ( __lowercase ): """simple docstring""" return torch.tensor( __lowercase , dtype=torch.long , device=__lowercase , ) __magic_name__ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : Optional[Any] ): lowerCamelCase__ = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCamelCase__ = model(SCREAMING_SNAKE_CASE_ )[0] lowerCamelCase__ = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = torch.tensor( [ [ [-2.4_736_526e07, 8.2_691_656e04, 1.6_521_838e05], [-5.7_541_704e-01, 3.9_056_022e00, 4.4_011_507e00], [2.6_047_359e00, 1.5_677_652e00, -1.7_324_188e-01], ] ] , device=SCREAMING_SNAKE_CASE_ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCamelCase__ = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCamelCase__ = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
258
"""simple docstring""" print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
258
1
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments _UpperCAmelCase = logging.getLogger(__name__) @dataclass class UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) lowerCamelCase_ = field(default=lowerCAmelCase__ , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) lowerCamelCase_ = field( default=lowerCAmelCase__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCamelCase_ = field(default=lowerCAmelCase__ , metadata={'''help''': '''whether to use adafactor'''} ) lowerCamelCase_ = field( default=lowerCAmelCase__ , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) lowerCamelCase_ = field( default=lowerCAmelCase__ , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) lowerCamelCase_ = field(default=lowerCAmelCase__ , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) lowerCamelCase_ = field( default=lowerCAmelCase__ , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) lowerCamelCase_ = field( default='''linear''' , metadata={'''help''': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
558
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def _lowercase ( self , UpperCamelCase__ ) -> Tuple: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): lowerCamelCase : Union[str, Any] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(UpperCamelCase__ ) def _lowercase ( self ) -> Tuple: lowerCamelCase : Tuple = "sshleifer/tiny-gpt2" lowerCamelCase : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowerCamelCase : Dict = PyTorchBenchmark(UpperCamelCase__ ) lowerCamelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase ( self ) -> int: lowerCamelCase : List[str] = "sgugger/tiny-distilbert-classification" lowerCamelCase : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , only_pretrain_model=UpperCamelCase__ , ) lowerCamelCase : Tuple = PyTorchBenchmark(UpperCamelCase__ ) lowerCamelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase ( self ) -> int: lowerCamelCase : Dict = "sshleifer/tiny-gpt2" lowerCamelCase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , torchscript=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowerCamelCase : Union[str, Any] = PyTorchBenchmark(UpperCamelCase__ ) lowerCamelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : Any = "sshleifer/tiny-gpt2" lowerCamelCase : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , fpaa=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowerCamelCase : Optional[int] = PyTorchBenchmark(UpperCamelCase__ ) lowerCamelCase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase ( self ) -> Optional[int]: lowerCamelCase : int = "sshleifer/tiny-gpt2" lowerCamelCase : List[str] = AutoConfig.from_pretrained(UpperCamelCase__ ) # set architectures equal to `None` lowerCamelCase : Union[str, Any] = None lowerCamelCase : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowerCamelCase : List[Any] = PyTorchBenchmark(UpperCamelCase__ , configs=[config] ) lowerCamelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase ( self ) -> str: lowerCamelCase : Optional[int] = "sshleifer/tiny-gpt2" lowerCamelCase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowerCamelCase : int = PyTorchBenchmark(UpperCamelCase__ ) lowerCamelCase : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def _lowercase ( self ) -> Dict: lowerCamelCase : List[str] = "sshleifer/tiny-gpt2" lowerCamelCase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) lowerCamelCase : Dict = PyTorchBenchmark(UpperCamelCase__ ) lowerCamelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : Union[str, Any] = "sshleifer/tiny-gpt2" lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase__ ) lowerCamelCase : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowerCamelCase : Dict = PyTorchBenchmark(UpperCamelCase__ , configs=[config] ) lowerCamelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase ( self ) -> int: lowerCamelCase : Tuple = "sshleifer/tinier_bart" lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(UpperCamelCase__ ) lowerCamelCase : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowerCamelCase : Any = PyTorchBenchmark(UpperCamelCase__ , configs=[config] ) lowerCamelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase ( self ) -> Any: lowerCamelCase : List[Any] = "sshleifer/tiny-gpt2" lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(UpperCamelCase__ ) lowerCamelCase : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowerCamelCase : int = PyTorchBenchmark(UpperCamelCase__ , configs=[config] ) lowerCamelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowercase ( self ) -> Dict: lowerCamelCase : List[str] = "sshleifer/tinier_bart" lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowerCamelCase : Tuple = PyTorchBenchmark(UpperCamelCase__ , configs=[config] ) lowerCamelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : Optional[Any] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , save_to_csv=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCamelCase__ , "inf_time.csv" ) , train_memory_csv_file=os.path.join(UpperCamelCase__ , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(UpperCamelCase__ , "inf_mem.csv" ) , train_time_csv_file=os.path.join(UpperCamelCase__ , "train_time.csv" ) , env_info_csv_file=os.path.join(UpperCamelCase__ , "env.csv" ) , multi_process=UpperCamelCase__ , ) lowerCamelCase : str = PyTorchBenchmark(UpperCamelCase__ ) benchmark.run() self.assertTrue(Path(os.path.join(UpperCamelCase__ , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , "env.csv" ) ).exists() ) def _lowercase ( self ) -> Dict: lowerCamelCase : Union[str, Any] = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(UpperCamelCase__ ): self.assertTrue(hasattr(UpperCamelCase__ , "sequential" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "cumulative" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "current" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCamelCase__ , "log.txt" ) , log_print=UpperCamelCase__ , trace_memory_line_by_line=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) lowerCamelCase : Any = PyTorchBenchmark(UpperCamelCase__ ) lowerCamelCase : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , "log.txt" ) ).exists() )
311
0
"""simple docstring""" def A ( snake_case :int ) -> bool: __UpperCamelCase = (1 + 2_4 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A ( snake_case :int = 5_0_0_0 ) -> int: __UpperCamelCase = [(i * (3 * i - 1)) // 2 for i in range(1 , snake_case )] for i, pentagonal_i in enumerate(snake_case ): for j in range(snake_case , len(snake_case ) ): __UpperCamelCase = pentagonal_nums[j] __UpperCamelCase = pentagonal_i + pentagonal_j __UpperCamelCase = pentagonal_j - pentagonal_i if is_pentagonal(snake_case ) and is_pentagonal(snake_case ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
293
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase : Tuple = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCamelCase : Dict = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def A ( snake_case :List[str] , snake_case :Optional[int] , snake_case :Optional[Any] ) -> Any: __UpperCamelCase = SavedModel() __UpperCamelCase = [] with open(os.path.join(snake_case , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: __UpperCamelCase = json.load(snake_case )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(snake_case )] ) with open(snake_case , 'rb' ) as f: saved_model.ParseFromString(f.read() ) __UpperCamelCase = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __UpperCamelCase = sorted(snake_case ) __UpperCamelCase = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(snake_case ) if strict and len(snake_case ) > 0: raise Exception(f'Found the following incompatible ops for the opset {opset}:\n' + incompatible_ops ) elif len(snake_case ) > 0: print(f'Found the following incompatible ops for the opset {opset}:' ) print(*snake_case , sep='\n' ) else: print(f'The saved model {saved_model_path} can properly be converted with ONNX.' ) if __name__ == "__main__": UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=1_2, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) UpperCamelCase : str = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
293
1
"""simple docstring""" def _UpperCamelCase ( ) -> Any: """simple docstring""" __UpperCAmelCase : Dict = [] __UpperCAmelCase : List[Any] = 1 while len(SCREAMING_SNAKE_CASE__ ) < 1e6: constant.append(str(SCREAMING_SNAKE_CASE__ ) ) i += 1 __UpperCAmelCase : Union[str, Any] = "".join(SCREAMING_SNAKE_CASE__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
77
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class snake_case_ ( a_ ): __lowerCAmelCase = (DEISMultistepScheduler,) __lowerCAmelCase = (("num_inference_steps", 2_5),) def snake_case_ ( self , **a_ ): a_ : Optional[Any] = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, } config.update(**a_ ) return config def snake_case_ ( self , a_=0 , **a_ ): a_ : Union[str, Any] = dict(self.forward_default_kwargs ) a_ : Union[str, Any] = kwargs.pop("num_inference_steps" , a_ ) a_ : List[str] = self.dummy_sample a_ : Union[str, Any] = 0.1 * sample a_ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: a_ : Any = self.get_scheduler_config(**a_ ) a_ : Dict = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals a_ : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) a_ : Dict = scheduler_class.from_pretrained(a_ ) new_scheduler.set_timesteps(a_ ) # copy over dummy past residuals a_ : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] a_ , a_ : List[str] = sample, sample for t in range(a_ , time_step + scheduler.config.solver_order + 1 ): a_ : Dict = scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample a_ : List[str] = new_scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ): pass def snake_case_ ( self , a_=0 , **a_ ): a_ : List[str] = dict(self.forward_default_kwargs ) a_ : Dict = kwargs.pop("num_inference_steps" , a_ ) a_ : List[str] = self.dummy_sample a_ : str = 0.1 * sample a_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: a_ : Union[str, Any] = self.get_scheduler_config() a_ : Optional[Any] = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals (must be after setting timesteps) a_ : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) a_ : List[Any] = scheduler_class.from_pretrained(a_ ) # copy over dummy past residuals new_scheduler.set_timesteps(a_ ) # copy over dummy past residual (must be after setting timesteps) a_ : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] a_ : Optional[int] = scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample a_ : Tuple = new_scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , a_=None , **a_ ): if scheduler is None: a_ : Optional[Any] = self.scheduler_classes[0] a_ : Dict = self.get_scheduler_config(**a_ ) a_ : Union[str, Any] = scheduler_class(**a_ ) a_ : Optional[int] = self.scheduler_classes[0] a_ : List[str] = self.get_scheduler_config(**a_ ) a_ : Tuple = scheduler_class(**a_ ) a_ : Optional[int] = 1_0 a_ : Optional[Any] = self.dummy_model() a_ : Tuple = self.dummy_sample_deter scheduler.set_timesteps(a_ ) for i, t in enumerate(scheduler.timesteps ): a_ : str = model(a_ , a_ ) a_ : str = scheduler.step(a_ , a_ , a_ ).prev_sample return sample def snake_case_ ( self ): a_ : Union[str, Any] = dict(self.forward_default_kwargs ) a_ : Tuple = kwargs.pop("num_inference_steps" , a_ ) for scheduler_class in self.scheduler_classes: a_ : List[Any] = self.get_scheduler_config() a_ : str = scheduler_class(**a_ ) a_ : Any = self.dummy_sample a_ : int = 0.1 * sample if num_inference_steps is not None and hasattr(a_ , "set_timesteps" ): scheduler.set_timesteps(a_ ) elif num_inference_steps is not None and not hasattr(a_ , "set_timesteps" ): a_ : Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a_ : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.10] a_ : str = dummy_past_residuals[: scheduler.config.solver_order] a_ : str = scheduler.timesteps[5] a_ : Dict = scheduler.timesteps[6] a_ : Dict = scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample a_ : Any = scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ): # make sure that iterating over schedulers with same config names gives same results # for defaults a_ : Dict = DEISMultistepScheduler(**self.get_scheduler_config() ) a_ : List[str] = self.full_loop(scheduler=a_ ) a_ : Tuple = torch.mean(torch.abs(a_ ) ) assert abs(result_mean.item() - 0.23_916 ) < 1e-3 a_ : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) a_ : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) a_ : Tuple = UniPCMultistepScheduler.from_config(scheduler.config ) a_ : Any = DEISMultistepScheduler.from_config(scheduler.config ) a_ : str = self.full_loop(scheduler=a_ ) a_ : Any = torch.mean(torch.abs(a_ ) ) assert abs(result_mean.item() - 0.23_916 ) < 1e-3 def snake_case_ ( self ): for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=a_ ) def snake_case_ ( self ): self.check_over_configs(thresholding=a_ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=a_ , prediction_type=a_ , sample_max_value=a_ , algorithm_type="deis" , solver_order=a_ , solver_type=a_ , ) def snake_case_ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a_ ) def snake_case_ ( self ): for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=a_ , solver_type=a_ , prediction_type=a_ , algorithm_type=a_ , ) a_ : List[Any] = self.full_loop( solver_order=a_ , solver_type=a_ , prediction_type=a_ , algorithm_type=a_ , ) assert not torch.isnan(a_ ).any(), "Samples have nan numbers" def snake_case_ ( self ): self.check_over_configs(lower_order_final=a_ ) self.check_over_configs(lower_order_final=a_ ) def snake_case_ ( self ): for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=a_ , time_step=0 ) def snake_case_ ( self ): a_ : str = self.full_loop() a_ : Dict = torch.mean(torch.abs(a_ ) ) assert abs(result_mean.item() - 0.23_916 ) < 1e-3 def snake_case_ ( self ): a_ : Optional[Any] = self.full_loop(prediction_type="v_prediction" ) a_ : Union[str, Any] = torch.mean(torch.abs(a_ ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def snake_case_ ( self ): a_ : List[str] = self.scheduler_classes[0] a_ : str = self.get_scheduler_config(thresholding=a_ , dynamic_thresholding_ratio=0 ) a_ : Dict = scheduler_class(**a_ ) a_ : int = 1_0 a_ : List[str] = self.dummy_model() a_ : Optional[int] = self.dummy_sample_deter.half() scheduler.set_timesteps(a_ ) for i, t in enumerate(scheduler.timesteps ): a_ : Optional[int] = model(a_ , a_ ) a_ : Optional[Any] = scheduler.step(a_ , a_ , a_ ).prev_sample assert sample.dtype == torch.floataa
237
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase ): if len(_lowerCamelCase ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) lowerCamelCase__ : Tuple = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = 1_0_0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = True, ): '''simple docstring''' if audio_length_in_s is None: lowerCamelCase__ : str = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase__ : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase__ : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCamelCase__ : Dict = int(lowerCamelCase_ ) if sample_size % down_scale_factor != 0: lowerCamelCase__ : Union[str, Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ' process.' ) lowerCamelCase__ : Optional[Any] = int(lowerCamelCase_ ) lowerCamelCase__ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase__ : Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase_, lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ : Union[str, Any] = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_, device=self.device, dtype=lowerCamelCase_ ) # set step values self.scheduler.set_timesteps(lowerCamelCase_, device=audio.device ) lowerCamelCase__ : int = self.scheduler.timesteps.to(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase__ : List[Any] = self.unet(lowerCamelCase_, lowerCamelCase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase__ : List[str] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample lowerCamelCase__ : Union[str, Any] = audio.clamp(-1, 1 ).float().cpu().numpy() lowerCamelCase__ : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase_ )
696
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
67
import math import random from typing import Any from .hill_climbing import SearchProblem def __snake_case ( _UpperCamelCase , _UpperCamelCase = True , _UpperCamelCase = math.inf , _UpperCamelCase = -math.inf , _UpperCamelCase = math.inf , _UpperCamelCase = -math.inf , _UpperCamelCase = False , _UpperCamelCase = 1_00 , _UpperCamelCase = 0.01 , _UpperCamelCase = 1 , ) -> Any: _a = False _a = search_prob _a = start_temperate _a = [] _a = 0 _a = None while not search_end: _a = current_state.score() if best_state is None or current_score > best_state.score(): _a = current_state scores.append(_UpperCamelCase ) iterations += 1 _a = None _a = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _a = random.randint(0 , len(_UpperCamelCase ) - 1 ) # picking a random neighbor _a = neighbors.pop(_UpperCamelCase ) _a = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _a = change * -1 # in case we are finding minimum if change > 0: # improves the solution _a = picked_neighbor else: _a = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _a = picked_neighbor _a = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _a = True else: _a = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_UpperCamelCase ) , _UpperCamelCase ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> int: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCamelCase :Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCamelCase :List[str] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) lowerCamelCase :Dict = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCamelCase :int = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: return (3 * x**2) - (6 * y) lowerCamelCase :Optional[int] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCamelCase :List[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F'''{local_min.score()}''' ) lowerCamelCase :Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCamelCase :Union[str, Any] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F'''{local_min.score()}''' )
487
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A ( _UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ) -> complex: '''simple docstring''' _UpperCAmelCase = symbols(_UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = starting_point while True: if diff_function(_UpperCAmelCase ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function( _UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
639
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __a ( unittest.TestCase ): def __init__( self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=7 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : List[str]=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : Tuple=400 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : List[str]=True , )-> Dict: """simple docstring""" UpperCamelCase = size if size is not None else {"height": 18, "width": 18} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = apply_ocr def _SCREAMING_SNAKE_CASE ( self : Tuple )-> List[str]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __a ( _lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : Any = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _SCREAMING_SNAKE_CASE ( self : List[str] )-> Any: """simple docstring""" UpperCamelCase = LayoutLMvaImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> List[str]: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "size" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "apply_ocr" ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> str: """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def _SCREAMING_SNAKE_CASE ( self : Any )-> Optional[Any]: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Dict )-> int: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , UpperCAmelCase_ ) self.assertIsInstance(encoding.boxes , UpperCAmelCase_ ) # Test batched UpperCamelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : Any )-> Union[str, Any]: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCamelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Dict: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCamelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> List[Any]: """simple docstring""" # with apply_OCR = True UpperCamelCase = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCamelCase = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) UpperCamelCase = Image.open(ds[0]["file"] ).convert("RGB" ) UpperCamelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCamelCase = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 UpperCamelCase = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCAmelCase_ ) self.assertListEqual(encoding.boxes , UpperCAmelCase_ ) # with apply_OCR = False UpperCamelCase = LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase_ ) UpperCamelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
554
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : Any = VQModel UpperCamelCase_ : Dict = '''sample''' @property def _SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) )-> List[str]: """simple docstring""" UpperCamelCase = 4 UpperCamelCase = 3 UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) return {"sample": image} @property def _SCREAMING_SNAKE_CASE ( self : int )-> List[Any]: """simple docstring""" return (3, 32, 32) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Tuple: """simple docstring""" return (3, 32, 32) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCamelCase = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } UpperCamelCase = self.dummy_input return init_dict, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Any )-> List[Any]: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Any )-> str: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> List[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCAmelCase_ ) UpperCamelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> List[str]: """simple docstring""" UpperCamelCase = VQModel.from_pretrained("fusing/vqgan-dummy" ) model.to(UpperCAmelCase_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) UpperCamelCase = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) UpperCamelCase = image.to(UpperCAmelCase_ ) with torch.no_grad(): UpperCamelCase = model(UpperCAmelCase_ ).sample UpperCamelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCamelCase = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-3 ) )
554
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Any = "bloom" lowerCAmelCase : Any = ["past_key_values"] lowerCAmelCase : Union[str, Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Any , lowerCamelCase__ : List[Any]=25_08_80 , lowerCamelCase__ : List[str]=64 , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : List[Any]=8 , lowerCamelCase__ : Any=1E-5 , lowerCamelCase__ : str=0.0_2 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : str=1 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Any=False , lowerCamelCase__ : Union[str, Any]=0.0 , lowerCamelCase__ : Optional[Any]=0.0 , lowerCamelCase__ : Optional[Any]=1 , lowerCamelCase__ : List[str]=False , **lowerCamelCase__ : Union[str, Any] , ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase : Optional[Any] = kwargs.pop("n_embed" , lowerCamelCase__ ) _UpperCAmelCase : int = hidden_size if n_embed is None else n_embed _UpperCAmelCase : Optional[Any] = n_layer _UpperCAmelCase : Dict = n_head _UpperCAmelCase : Union[str, Any] = layer_norm_epsilon _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Optional[Any] = use_cache _UpperCAmelCase : Dict = pretraining_tp _UpperCAmelCase : int = apply_residual_connection_post_layernorm _UpperCAmelCase : str = hidden_dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : int = bos_token_id _UpperCAmelCase : List[str] = eos_token_id _UpperCAmelCase : List[str] = slow_but_exact super().__init__(bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.12" ) def __init__( self : List[Any] , lowerCamelCase__ : PretrainedConfig , lowerCamelCase__ : str = "default" , lowerCamelCase__ : List[PatchingSpec] = None , lowerCamelCase__ : bool = False , ) ->int: '''simple docstring''' super().__init__(lowerCamelCase__ , task=lowerCamelCase__ , patching_specs=lowerCamelCase__ , use_past=lowerCamelCase__ ) if not getattr(self._config , "pad_token_id" , lowerCamelCase__ ): # TODO: how to do that better? _UpperCAmelCase : Union[str, Any] = 0 @property def lowerCAmelCase__ ( self : Optional[int] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' _UpperCAmelCase : int = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowerCamelCase__ , direction="inputs" , inverted_values_shape=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = {0: "batch", 1: "past_sequence + sequence"} else: _UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return common_inputs @property def lowerCAmelCase__ ( self : Dict ) ->int: '''simple docstring''' return self._config.n_layer @property def lowerCAmelCase__ ( self : Union[str, Any] ) ->int: '''simple docstring''' return self._config.n_head @property def lowerCAmelCase__ ( self : Any ) ->float: '''simple docstring''' return 1E-3 def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : "PreTrainedTokenizer" , lowerCamelCase__ : int = -1 , lowerCamelCase__ : int = -1 , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional["TensorType"] = None , ) ->Mapping[str, Any]: '''simple docstring''' _UpperCAmelCase : List[str] = super(lowerCamelCase__ , self ).generate_dummy_inputs( lowerCamelCase__ , batch_size=lowerCamelCase__ , seq_length=lowerCamelCase__ , is_pair=lowerCamelCase__ , framework=lowerCamelCase__ ) # We need to order the input in the way they appears in the forward() _UpperCAmelCase : Optional[int] = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _UpperCAmelCase , _UpperCAmelCase : List[str] = common_inputs["input_ids"].shape # Not using the same length for past_key_values _UpperCAmelCase : Optional[Any] = seqlen + 2 _UpperCAmelCase : int = self._config.hidden_size // self.num_attention_heads _UpperCAmelCase : Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) _UpperCAmelCase : str = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) _UpperCAmelCase : Optional[int] = [ (torch.zeros(lowerCamelCase__ ), torch.zeros(lowerCamelCase__ )) for _ in range(self.num_layers ) ] _UpperCAmelCase : str = common_inputs["attention_mask"] if self.use_past: _UpperCAmelCase : str = ordered_inputs["attention_mask"].dtype _UpperCAmelCase : Optional[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(lowerCamelCase__ , lowerCamelCase__ , dtype=lowerCamelCase__ )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase__ ( self : List[Any] ) ->int: '''simple docstring''' return 13
40
'''simple docstring''' import os def __lowerCAmelCase (): _UpperCAmelCase : List[Any] = os.path.join(os.path.dirname(__lowerCAmelCase ) , "num.txt" ) with open(__lowerCAmelCase ) as file_hand: return str(sum(int(__lowerCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
40
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( UpperCamelCase__ ,UpperCamelCase__ ,unittest.TestCase ): A = StableDiffusionXLImgaImgPipeline A = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} A = PipelineTesterMixin.required_optional_params - {"latents"} A = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A = IMAGE_TO_IMAGE_IMAGE_PARAMS A = IMAGE_TO_IMAGE_IMAGE_PARAMS def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) lowerCamelCase_ : int = EulerDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase_ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=32 , ) lowerCamelCase_ : str = CLIPTextModel(lowercase_ ) lowerCamelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=lowercase_ ) lowerCamelCase_ : int = CLIPTextModelWithProjection(lowercase_ ) lowerCamelCase_ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=lowercase_ ) lowerCamelCase_ : str = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int]=0 ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCamelCase_ : List[Any] = image / 2 + 0.5 if str(lowercase_ ).startswith('''mps''' ): lowerCamelCase_ : Union[str, Any] = torch.manual_seed(lowercase_ ) else: lowerCamelCase_ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCamelCase_ : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : Any = self.get_dummy_components() lowerCamelCase_ : List[str] = StableDiffusionXLImgaImgPipeline(**lowercase_ ) lowerCamelCase_ : Tuple = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCamelCase_ : str = self.get_dummy_inputs(lowercase_ ) lowerCamelCase_ : Union[str, Any] = sd_pipe(**lowercase_ ).images lowerCamelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase_ : str = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" pass def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ : Union[str, Any] = self.get_dummy_components() lowerCamelCase_ : Dict = StableDiffusionXLImgaImgPipeline(**lowercase_ ) lowerCamelCase_ : Any = sd_pipe.to(lowercase_ ) lowerCamelCase_ : Optional[int] = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) # forward without prompt embeds lowerCamelCase_ : str = self.get_dummy_inputs(lowercase_ ) lowerCamelCase_ : Tuple = 3 * ['''this is a negative prompt'''] lowerCamelCase_ : Dict = negative_prompt lowerCamelCase_ : Optional[Any] = 3 * [inputs['''prompt''']] lowerCamelCase_ : Tuple = sd_pipe(**lowercase_ ) lowerCamelCase_ : Any = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCamelCase_ : Dict = self.get_dummy_inputs(lowercase_ ) lowerCamelCase_ : List[Any] = 3 * ['''this is a negative prompt'''] lowerCamelCase_ : int = 3 * [inputs.pop('''prompt''' )] ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) : Any = sd_pipe.encode_prompt(lowercase_ , negative_prompt=lowercase_ ) lowerCamelCase_ : Optional[Any] = sd_pipe( **lowercase_ , prompt_embeds=lowercase_ , negative_prompt_embeds=lowercase_ , pooled_prompt_embeds=lowercase_ , negative_pooled_prompt_embeds=lowercase_ , ) lowerCamelCase_ : List[Any] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any]="cpu" , UpperCamelCase_ : int=torch.floataa , UpperCamelCase_ : List[Any]=0 ) -> int: """simple docstring""" lowerCamelCase_ : Tuple = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCamelCase_ : Optional[Any] = np.random.RandomState(lowercase_ ).standard_normal((1, 4, 64, 64) ) lowerCamelCase_ : Union[str, Any] = torch.from_numpy(lowercase_ ).to(device=lowercase_ , dtype=lowercase_ ) lowerCamelCase_ : Optional[Any] = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : Dict = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowerCamelCase_ : int = self.get_inputs(lowercase_ ) lowerCamelCase_ : List[str] = pipe(**lowercase_ ).images lowerCamelCase_ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCamelCase_ : Union[str, Any] = np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
501
'''simple docstring''' __lowerCAmelCase : List[str] ="Alexander Joslin" import operator as op from .stack import Stack def UpperCamelCase ( _lowerCamelCase : str ): A__ = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} A__ = Stack() A__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowerCamelCase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowerCamelCase ) elif i == ")": # RULE 4 A__ = operator_stack.peek() operator_stack.pop() A__ = operand_stack.peek() operand_stack.pop() A__ = operand_stack.peek() operand_stack.pop() A__ = operators[opr](_lowerCamelCase , _lowerCamelCase ) operand_stack.push(_lowerCamelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __lowerCAmelCase : Dict ="(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
440
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 a_ = get_tests_dir('''fixtures''') class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = mock.Mock() lowerCAmelCase__ = 500 lowerCAmelCase__ = {} lowerCAmelCase__ = HTTPError lowerCAmelCase__ = {} # Download this model to make sure it's in the cache. lowerCAmelCase__ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__UpperCAmelCase ) as mock_head: lowerCAmelCase__ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json" ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' with self.assertRaises(__UpperCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder lowerCAmelCase__ = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants" ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor" ) self.assertIsNotNone(__UpperCAmelCase ) @is_staging_test class lowercase__ ( unittest.TestCase ): @classmethod def UpperCAmelCase ( cls )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = TOKEN HfFolder.save_token(__UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls )-> Optional[int]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-image-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor" ) except HTTPError: pass def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = ViTImageProcessor.from_pretrained(__UpperCAmelCase ) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token ) lowerCAmelCase__ = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __UpperCAmelCase , repo_id="test-image-processor" , push_to_hub=__UpperCAmelCase , use_auth_token=self._token ) lowerCAmelCase__ = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = ViTImageProcessor.from_pretrained(__UpperCAmelCase ) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token ) lowerCAmelCase__ = ViTImageProcessor.from_pretrained("valid_org/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __UpperCAmelCase , repo_id="valid_org/test-image-processor-org" , push_to_hub=__UpperCAmelCase , use_auth_token=self._token ) lowerCAmelCase__ = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) def UpperCAmelCase ( self )-> str: '''simple docstring''' CustomImageProcessor.register_for_auto_class() lowerCAmelCase__ = CustomImageProcessor.from_pretrained(__UpperCAmelCase ) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained( F"{USER}/test-dynamic-image-processor" , trust_remote_code=__UpperCAmelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor" )
115
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } a_ = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } a_ = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } a_ = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } a_ = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } a_ = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } a_ = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a_ =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a_ =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) a_ = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) a_ = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(_UpperCAmelCase ) class lowercase__ : def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( __UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) elif titles is None or texts is None: lowerCAmelCase__ = titles if texts is None else texts return super().__call__( __UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = titles if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) else [titles] lowerCAmelCase__ = texts if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) else [texts] lowerCAmelCase__ = len(__UpperCAmelCase ) lowerCAmelCase__ = questions if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) else [questions] * n_passages if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( F"There should be as many titles than texts but got {len(__UpperCAmelCase )} titles and {len(__UpperCAmelCase )} texts." ) lowerCAmelCase__ = super().__call__(__UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase )["input_ids"] lowerCAmelCase__ = super().__call__(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase )["input_ids"] lowerCAmelCase__ = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCAmelCase , __UpperCAmelCase ) ] } if return_attention_mask is not False: lowerCAmelCase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCAmelCase__ = attention_mask return self.pad(__UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 16 , __UpperCAmelCase = 64 , __UpperCAmelCase = 4 , )-> List[DPRSpanPrediction]: '''simple docstring''' lowerCAmelCase__ = reader_input["input_ids"] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = reader_output[:3] lowerCAmelCase__ = len(__UpperCAmelCase ) lowerCAmelCase__ = sorted(range(__UpperCAmelCase ) , reverse=__UpperCAmelCase , key=relevance_logits.__getitem__ ) lowerCAmelCase__ = [] for doc_id in sorted_docs: lowerCAmelCase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCAmelCase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCAmelCase__ = sequence_ids.index(self.pad_token_id ) else: lowerCAmelCase__ = len(__UpperCAmelCase ) lowerCAmelCase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCAmelCase , top_spans=__UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCAmelCase , start_index=__UpperCAmelCase , end_index=__UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , )-> List[DPRSpanPrediction]: '''simple docstring''' lowerCAmelCase__ = [] for start_index, start_score in enumerate(__UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCAmelCase__ = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x[1] , reverse=__UpperCAmelCase ) lowerCAmelCase__ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"Wrong span indices: [{start_index}:{end_index}]" ) lowerCAmelCase__ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase, _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =READER_PRETRAINED_VOCAB_FILES_MAP a_ =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =READER_PRETRAINED_INIT_CONFIGURATION a_ =["""input_ids""", """attention_mask"""]
115
1
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class SCREAMING_SNAKE_CASE_ : def __init__( self , lowercase , lowercase=1_4 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=9_9 , lowercase=3_2 , lowercase=5 , lowercase=4 , lowercase=3_7 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=5_1_2 , lowercase=1_6 , lowercase=2 , lowercase=0.0_2 , lowercase=3 , lowercase=4 , lowercase=None , ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE : Union[str, Any] = parent __SCREAMING_SNAKE_CASE : Optional[Any] = batch_size __SCREAMING_SNAKE_CASE : Optional[int] = seq_length __SCREAMING_SNAKE_CASE : str = is_training __SCREAMING_SNAKE_CASE : List[str] = use_token_type_ids __SCREAMING_SNAKE_CASE : List[str] = use_input_mask __SCREAMING_SNAKE_CASE : Optional[Any] = use_labels __SCREAMING_SNAKE_CASE : Tuple = use_mc_token_ids __SCREAMING_SNAKE_CASE : Optional[int] = vocab_size __SCREAMING_SNAKE_CASE : int = hidden_size __SCREAMING_SNAKE_CASE : Dict = num_hidden_layers __SCREAMING_SNAKE_CASE : Any = num_attention_heads __SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size __SCREAMING_SNAKE_CASE : Optional[int] = initializer_range __SCREAMING_SNAKE_CASE : Any = num_labels __SCREAMING_SNAKE_CASE : List[str] = num_choices __SCREAMING_SNAKE_CASE : Union[str, Any] = scope __SCREAMING_SNAKE_CASE : int = self.vocab_size - 1 def _snake_case ( self ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Any = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE : str = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Dict = None if self.use_mc_token_ids: __SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) __SCREAMING_SNAKE_CASE : Tuple = None __SCREAMING_SNAKE_CASE : Any = None __SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : List[Any] = self.get_config() __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _snake_case ( self ) -> int: '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = CTRLModel(config=lowercase ) model.to(lowercase ) model.eval() model(lowercase , token_type_ids=lowercase , head_mask=lowercase ) model(lowercase , token_type_ids=lowercase ) __SCREAMING_SNAKE_CASE : Any = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[Any] = CTRLLMHeadModel(lowercase ) model.to(lowercase ) model.eval() __SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : int = config_and_inputs __SCREAMING_SNAKE_CASE : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : int = self.num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = CTRLForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class SCREAMING_SNAKE_CASE_ ( snake_case , snake_case , snake_case , unittest.TestCase ): __a : Dict = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () __a : Union[str, Any] = (CTRLLMHeadModel,) if is_torch_available() else () __a : Any = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) __a : Dict = True __a : List[str] = False __a : Dict = False def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Any: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _snake_case ( self ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = CTRLModelTester(self ) __SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=lowercase , n_embd=3_7 ) def _snake_case ( self ) -> Any: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*lowercase ) def _snake_case ( self ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _snake_case ( self ) -> Dict: '''simple docstring''' pass @slow def _snake_case ( self ) -> List[Any]: '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : List[str] = CTRLModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _snake_case ( self ) -> Optional[int]: '''simple docstring''' pass @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def _snake_case ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _snake_case ( self ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(lowercase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[1_1_8_5_9, 0, 1_6_1_1, 8]] , dtype=torch.long , device=lowercase ) # Legal the president is __SCREAMING_SNAKE_CASE : int = [ 1_1_8_5_9, 0, 1_6_1_1, 8, 5, 1_5_0, 2_6_4_4_9, 2, 1_9, 3_4_8, 4_6_9, 3, 2_5_9_5, 4_8, 2_0_7_4_0, 2_4_6_5_3_3, 2_4_6_5_3_3, 1_9, 3_0, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __SCREAMING_SNAKE_CASE : Optional[int] = model.generate(lowercase , do_sample=lowercase ) self.assertListEqual(output_ids[0].tolist() , lowercase )
158
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def _snake_case ( self ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[Any] = tempfile.mkdtemp() # fmt: off __SCREAMING_SNAKE_CASE : List[str] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on __SCREAMING_SNAKE_CASE : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __SCREAMING_SNAKE_CASE : List[Any] = { '''do_resize''': True, '''size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } __SCREAMING_SNAKE_CASE : int = os.path.join(self.tmpdirname , lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowercase , lowercase ) def _snake_case ( self , **lowercase ) -> Tuple: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase ) def _snake_case ( self , **lowercase ) -> Optional[Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase ) def _snake_case ( self ) -> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[int] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE : int = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = self.get_image_processor() __SCREAMING_SNAKE_CASE : str = VisionTextDualEncoderProcessor(tokenizer=lowercase , image_processor=lowercase ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : List[Any] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) def _snake_case ( self ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE : str = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : str = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_image_processor(do_normalize=lowercase , padding_value=1.0 ) __SCREAMING_SNAKE_CASE : Optional[int] = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) def _snake_case ( self ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() __SCREAMING_SNAKE_CASE : List[str] = VisionTextDualEncoderProcessor(tokenizer=lowercase , image_processor=lowercase ) __SCREAMING_SNAKE_CASE : int = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Dict = image_processor(lowercase , return_tensors='''np''' ) __SCREAMING_SNAKE_CASE : str = processor(images=lowercase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE : str = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : List[str] = VisionTextDualEncoderProcessor(tokenizer=lowercase , image_processor=lowercase ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''lower newer''' __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=lowercase ) __SCREAMING_SNAKE_CASE : str = tokenizer(lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : List[str] = VisionTextDualEncoderProcessor(tokenizer=lowercase , image_processor=lowercase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = '''lower newer''' __SCREAMING_SNAKE_CASE : Dict = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Any = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(lowercase ): processor() def _snake_case ( self ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : int = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : int = VisionTextDualEncoderProcessor(tokenizer=lowercase , image_processor=lowercase ) __SCREAMING_SNAKE_CASE : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE : Optional[Any] = processor.batch_decode(lowercase ) __SCREAMING_SNAKE_CASE : str = tokenizer.batch_decode(lowercase ) self.assertListEqual(lowercase , lowercase ) def _snake_case ( self ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() __SCREAMING_SNAKE_CASE : str = VisionTextDualEncoderProcessor(tokenizer=lowercase , image_processor=lowercase ) __SCREAMING_SNAKE_CASE : str = '''lower newer''' __SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : List[Any] = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
158
1
def __lowerCAmelCase ( __snake_case , __snake_case ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) __lowerCAmelCase = str(bin(__snake_case ) )[2:] # remove the leading "0b" __lowerCAmelCase = str(bin(__snake_case ) )[2:] __lowerCAmelCase = max(len(__snake_case ) , len(__snake_case ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(__snake_case ) , b_binary.zfill(__snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
715
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Dict = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _UpperCamelCase (a_ ): snake_case_ = """biogpt""" def __init__( self , __UpperCamelCase=4_2_3_8_4 , __UpperCamelCase=1_0_2_4 , __UpperCamelCase=2_4 , __UpperCamelCase=1_6 , __UpperCamelCase=4_0_9_6 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=1_0_2_4 , __UpperCamelCase=0.0_2 , __UpperCamelCase=1e-12 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , **__UpperCamelCase , )-> Optional[Any]: __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = scale_embedding __lowerCAmelCase = use_cache __lowerCAmelCase = layerdrop __lowerCAmelCase = activation_dropout super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase )
290
0
"""simple docstring""" from __future__ import annotations _lowerCAmelCase = list[tuple[int, int]] _lowerCAmelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _lowerCAmelCase = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class UpperCamelCase : def __init__( self :Tuple , __magic_name__ :int , __magic_name__ :int , __magic_name__ :int , __magic_name__ :int , __magic_name__ :float , __magic_name__ :Node | None , ) ->Dict: lowercase : Optional[int] = pos_x lowercase : Tuple = pos_y lowercase : Any = (pos_y, pos_x) lowercase : Optional[Any] = goal_x lowercase : str = goal_y lowercase : Tuple = g_cost lowercase : Optional[Any] = parent lowercase : List[Any] = self.calculate_heuristic() def __snake_case ( self :Optional[int] ) ->List[str]: lowercase : Dict = abs(self.pos_x - self.goal_x ) lowercase : Optional[int] = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self :Union[str, Any] , __magic_name__ :int ) ->int: return self.f_cost < other.f_cost class UpperCamelCase : def __init__( self :List[str] , __magic_name__ :tuple[int, int] , __magic_name__ :tuple[int, int] ) ->Optional[Any]: lowercase : str = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , a__ ) lowercase : Union[str, Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , a__ ) lowercase : Any = [self.start] lowercase : Dict = [] lowercase : List[str] = False def __snake_case ( self :Union[str, Any] ) ->Tuple: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowercase : str = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: lowercase : Tuple = True return self.retrace_path(a__ ) self.closed_nodes.append(a__ ) lowercase : Dict = self.get_successors(a__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(a__ ) else: # retrieve the best current path lowercase : int = self.open_nodes.pop(self.open_nodes.index(a__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(a__ ) else: self.open_nodes.append(a__ ) if not self.reached: return [self.start.pos] return None def __snake_case ( self :Any , __magic_name__ :Node ) ->List[str]: lowercase : int = [] for action in delta: lowercase : Optional[Any] = parent.pos_x + action[1] lowercase : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(a__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( a__ , a__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , a__ , ) ) return successors def __snake_case ( self :Dict , __magic_name__ :Node | None ) ->Tuple: lowercase : Optional[int] = node lowercase : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowercase : List[str] = current_node.parent path.reverse() return path if __name__ == "__main__": _lowerCAmelCase = (0, 0) _lowerCAmelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') _lowerCAmelCase = GreedyBestFirst(init, goal) _lowerCAmelCase = greedy_bf.search() if path: for pos_x, pos_y in path: _lowerCAmelCase = 2 for elem in grid: print(elem)
264
'''simple docstring''' from collections import defaultdict class lowerCamelCase__ : """simple docstring""" def __init__( self : Tuple ,a__ : List[str] ,a__ : str ): a__ = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 a__ = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(a__ ) ) ] a__ = defaultdict(a__ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 a__ = (1 << len(a__ )) - 1 def lowerCAmelCase_ ( self : Union[str, Any] ,a__ : Tuple ,a__ : Optional[int] ): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement a__ = self.count_ways_until(a__ ,task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) ,task_no + 1 ) # save the value. a__ = total_ways_util return self.dp[mask][task_no] def lowerCAmelCase_ ( self : Dict ,a__ : Union[str, Any] ): # Store the list of persons for each task for i in range(len(a__ ) ): for j in task_performed[i]: self.task[j].append(a__ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 ,1 ) if __name__ == "__main__": UpperCamelCase_ : Dict = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. UpperCamelCase_ : List[str] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
331
0
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _UpperCAmelCase ( _UpperCamelCase : List[str] ) -> Optional[int]: A_ = VideoMAEConfig() set_architecture_configs(__lowercase, __lowercase ) if "finetuned" not in model_name: A_ = False if "finetuned" in model_name: A_ = 'huggingface/label-files' if "kinetics" in model_name: A_ = 4_00 A_ = 'kinetics400-id2label.json' elif "ssv2" in model_name: A_ = 1_74 A_ = 'something-something-v2-id2label.json' else: raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' ) A_ = json.load(open(hf_hub_download(__lowercase, __lowercase, repo_type='''dataset''' ), '''r''' ) ) A_ = {int(__lowercase ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : Union[str, Any] ) -> Optional[int]: if "small" in model_name: A_ = 3_84 A_ = 15_36 A_ = 12 A_ = 16 A_ = 12 A_ = 3 A_ = 1_92 A_ = 7_68 elif "large" in model_name: A_ = 10_24 A_ = 40_96 A_ = 24 A_ = 16 A_ = 12 A_ = 8 A_ = 5_12 A_ = 20_48 elif "huge" in model_name: A_ = 12_80 A_ = 51_20 A_ = 32 A_ = 16 A_ = 12 A_ = 8 A_ = 6_40 A_ = 25_60 elif "base" not in model_name: raise ValueError('''Model name should include either "small", "base", "large", or "huge"''' ) def _UpperCAmelCase ( _UpperCamelCase : Any ) -> int: if "encoder." in name: A_ = name.replace('''encoder.''', '''''' ) if "cls_token" in name: A_ = name.replace('''cls_token''', '''videomae.embeddings.cls_token''' ) if "decoder_pos_embed" in name: A_ = name.replace('''decoder_pos_embed''', '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: A_ = name.replace('''pos_embed''', '''videomae.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: A_ = name.replace('''patch_embed.proj''', '''videomae.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: A_ = name.replace('''patch_embed.norm''', '''videomae.embeddings.norm''' ) if "decoder.blocks" in name: A_ = name.replace('''decoder.blocks''', '''decoder.decoder_layers''' ) if "blocks" in name: A_ = name.replace('''blocks''', '''videomae.encoder.layer''' ) if "attn.proj" in name: A_ = name.replace('''attn.proj''', '''attention.output.dense''' ) if "attn" in name and "bias" not in name: A_ = name.replace('''attn''', '''attention.self''' ) if "attn" in name: A_ = name.replace('''attn''', '''attention.attention''' ) if "norm1" in name: A_ = name.replace('''norm1''', '''layernorm_before''' ) if "norm2" in name: A_ = name.replace('''norm2''', '''layernorm_after''' ) if "mlp.fc1" in name: A_ = name.replace('''mlp.fc1''', '''intermediate.dense''' ) if "mlp.fc2" in name: A_ = name.replace('''mlp.fc2''', '''output.dense''' ) if "decoder_embed" in name: A_ = name.replace('''decoder_embed''', '''decoder.decoder_embed''' ) if "decoder_norm" in name: A_ = name.replace('''decoder_norm''', '''decoder.decoder_norm''' ) if "decoder_pred" in name: A_ = name.replace('''decoder_pred''', '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: A_ = name.replace('''norm.weight''', '''videomae.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: A_ = name.replace('''norm.bias''', '''videomae.layernorm.bias''' ) if "head" in name and "decoder" not in name: A_ = name.replace('''head''', '''classifier''' ) return name def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : Any ) -> Any: for key in orig_state_dict.copy().keys(): A_ = orig_state_dict.pop(__lowercase ) if key.startswith('''encoder.''' ): A_ = key.replace('''encoder.''', '''''' ) if "qkv" in key: A_ = key.split('''.''' ) if key.startswith('''decoder.blocks''' ): A_ = config.decoder_hidden_size A_ = int(key_split[2] ) A_ = 'decoder.decoder_layers.' if "weight" in key: A_ = val[:dim, :] A_ = val[dim : dim * 2, :] A_ = val[-dim:, :] else: A_ = config.hidden_size A_ = int(key_split[1] ) A_ = 'videomae.encoder.layer.' if "weight" in key: A_ = val[:dim, :] A_ = val[dim : dim * 2, :] A_ = val[-dim:, :] else: A_ = val return orig_state_dict def _UpperCAmelCase ( ) -> List[Any]: A_ = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''', filename='''eating_spaghetti.npy''', repo_type='''dataset''' ) A_ = np.load(__lowercase ) return list(__lowercase ) def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : Any, _UpperCamelCase : Union[str, Any], _UpperCamelCase : Any ) -> Dict: A_ = get_videomae_config(__lowercase ) if "finetuned" in model_name: A_ = VideoMAEForVideoClassification(__lowercase ) else: A_ = VideoMAEForPreTraining(__lowercase ) # download original checkpoint, hosted on Google Drive A_ = 'pytorch_model.bin' gdown.cached_download(__lowercase, __lowercase, quiet=__lowercase ) A_ = torch.load(__lowercase, map_location='''cpu''' ) if "model" in files: A_ = files['model'] else: A_ = files['module'] A_ = convert_state_dict(__lowercase, __lowercase ) model.load_state_dict(__lowercase ) model.eval() # verify model on basic input A_ = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5] ) A_ = prepare_video() A_ = image_processor(__lowercase, return_tensors='''pt''' ) if "finetuned" not in model_name: A_ = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''', filename='''bool_masked_pos.pt''' ) A_ = torch.load(__lowercase ) A_ = model(**__lowercase ) A_ = outputs.logits A_ = [ 'videomae-small-finetuned-kinetics', 'videomae-small-finetuned-ssv2', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) 'videomae-base-short', 'videomae-base-short-finetuned-kinetics', 'videomae-base', 'videomae-base-finetuned-kinetics', 'videomae-large', 'videomae-large-finetuned-kinetics', 'videomae-huge-finetuned-kinetics', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) 'videomae-base-short-ssv2', 'videomae-base-short-finetuned-ssv2', 'videomae-base-ssv2', 'videomae-base-finetuned-ssv2', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": A_ = torch.Size([1, 4_00] ) A_ = torch.tensor([-0.9_2_9_1, -0.4_0_6_1, -0.9_3_0_7] ) elif model_name == "videomae-small-finetuned-ssv2": A_ = torch.Size([1, 1_74] ) A_ = torch.tensor([0.2_6_7_1, -0.4_6_8_9, -0.8_2_3_5] ) elif model_name == "videomae-base": A_ = torch.Size([1, 14_08, 15_36] ) A_ = torch.tensor([[0.7_7_3_9, 0.7_9_6_8, 0.7_0_8_9], [0.6_7_0_1, 0.7_4_8_7, 0.6_2_0_9], [0.4_2_8_7, 0.5_1_5_8, 0.4_7_7_3]] ) elif model_name == "videomae-base-short": A_ = torch.Size([1, 14_08, 15_36] ) A_ = torch.tensor([[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ) # we verified the loss both for normalized and unnormalized targets for this one A_ = torch.tensor([0.5_1_4_2] ) if config.norm_pix_loss else torch.tensor([0.6_4_6_9] ) elif model_name == "videomae-large": A_ = torch.Size([1, 14_08, 15_36] ) A_ = torch.tensor([[0.7_1_4_9, 0.7_9_9_7, 0.6_9_6_6], [0.6_7_6_8, 0.7_8_6_9, 0.6_9_4_8], [0.5_1_3_9, 0.6_2_2_1, 0.5_6_0_5]] ) elif model_name == "videomae-large-finetuned-kinetics": A_ = torch.Size([1, 4_00] ) A_ = torch.tensor([0.0_7_7_1, 0.0_0_1_1, -0.3_6_2_5] ) elif model_name == "videomae-huge-finetuned-kinetics": A_ = torch.Size([1, 4_00] ) A_ = torch.tensor([0.2_4_3_3, 0.1_6_3_2, -0.4_8_9_4] ) elif model_name == "videomae-base-short-finetuned-kinetics": A_ = torch.Size([1, 4_00] ) A_ = torch.tensor([0.6_5_8_8, 0.0_9_9_0, -0.2_4_9_3] ) elif model_name == "videomae-base-finetuned-kinetics": A_ = torch.Size([1, 4_00] ) A_ = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ) elif model_name == "videomae-base-short-ssv2": A_ = torch.Size([1, 14_08, 15_36] ) A_ = torch.tensor([[0.4_7_1_2, 0.5_2_9_6, 0.5_7_8_6], [0.2_2_7_8, 0.2_7_2_9, 0.4_0_2_6], [0.0_3_5_2, 0.0_7_3_0, 0.2_5_0_6]] ) elif model_name == "videomae-base-short-finetuned-ssv2": A_ = torch.Size([1, 1_74] ) A_ = torch.tensor([-0.0_5_3_7, -0.1_5_3_9, -0.3_2_6_6] ) elif model_name == "videomae-base-ssv2": A_ = torch.Size([1, 14_08, 15_36] ) A_ = torch.tensor([[0.8_1_3_1, 0.8_7_2_7, 0.8_5_4_6], [0.7_3_6_6, 0.9_3_7_7, 0.8_8_7_0], [0.5_9_3_5, 0.8_8_7_4, 0.8_5_6_4]] ) elif model_name == "videomae-base-finetuned-ssv2": A_ = torch.Size([1, 1_74] ) A_ = torch.tensor([0.1_9_6_1, -0.8_3_3_7, -0.6_3_8_9] ) else: raise ValueError(F'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3], __lowercase, atol=1E-4 ) else: print('''Logits:''', logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3], __lowercase, atol=1E-4 ) print('''Logits ok!''' ) # verify loss, if applicable if model_name == "videomae-base-short": A_ = outputs.loss assert torch.allclose(__lowercase, __lowercase, atol=1E-4 ) print('''Loss ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowercase ) model.save_pretrained(__lowercase ) if push_to_hub: print('''Pushing to the hub...''' ) model.push_to_hub(__lowercase, organization='''nielsr''' ) if __name__ == "__main__": __snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __snake_case : Optional[int] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
704
'''simple docstring''' import argparse import os import re import packaging.version __snake_case : int = 'examples/' __snake_case : Dict = { 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } __snake_case : List[str] = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } __snake_case : int = 'README.md' def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : List[Any], _UpperCamelCase : List[str] ) -> int: with open(_UpperCamelCase, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: A_ = f.read() A_ ,A_ = REPLACE_PATTERNS[pattern] A_ = replace.replace('''VERSION''', _UpperCamelCase ) A_ = re_pattern.sub(_UpperCamelCase, _UpperCamelCase ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.write(_UpperCamelCase ) def _UpperCAmelCase ( _UpperCamelCase : Any ) -> int: for folder, directories, fnames in os.walk(_UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(_UpperCamelCase, _UpperCamelCase ), _UpperCamelCase, pattern='''examples''' ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : str=False ) -> List[str]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) if not patch: update_version_in_examples(_UpperCamelCase ) def _UpperCAmelCase ( ) -> Dict: A_ = '''🤗 Transformers currently provides the following architectures''' A_ = '''1. Want to contribute a new model?''' with open(_UpperCamelCase, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: A_ = f.readlines() # Find the start of the list. A_ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 A_ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): A_ = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''', '''https://huggingface.co/docs/diffusers/model_doc''', ) index += 1 with open(_UpperCamelCase, '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.writelines(_UpperCamelCase ) def _UpperCAmelCase ( ) -> List[Any]: with open(REPLACE_FILES['''init'''], '''r''' ) as f: A_ = f.read() A_ = REPLACE_PATTERNS['''init'''][0].search(_UpperCamelCase ).groups()[0] return packaging.version.parse(_UpperCamelCase ) def _UpperCAmelCase ( _UpperCamelCase : str=False ) -> Union[str, Any]: A_ = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: A_ = default_version.base_version elif patch: A_ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: A_ = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. A_ = input(F'''Which version are you releasing? [{default_version}]''' ) if len(_UpperCamelCase ) == 0: A_ = default_version print(F'''Updating version to {version}.''' ) global_version_update(_UpperCamelCase, patch=_UpperCamelCase ) def _UpperCAmelCase ( ) -> int: A_ = get_version() A_ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' A_ = current_version.base_version # Check with the user we got that right. A_ = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(_UpperCamelCase ) == 0: A_ = dev_version print(F'''Updating version to {version}.''' ) global_version_update(_UpperCamelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": __snake_case : int = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') __snake_case : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
174
0
import datasets from .evaluate import evaluate _UpperCAmelCase = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' _UpperCAmelCase = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' _UpperCAmelCase = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): def UpperCAmelCase__ ( self : Dict )->Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , ) def UpperCAmelCase__ ( self : int , _snake_case : int , _snake_case : Optional[int] )->List[Any]: '''simple docstring''' __lowerCAmelCase : str = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} __lowerCAmelCase : Dict = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] __lowerCAmelCase : Optional[Any] = evaluate(dataset=_snake_case , predictions=_snake_case ) return score
504
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int = 4_000_000 ) -> int: __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = b, a + b return sum(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f'''{solution() = }''')
504
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: A : Dict = mf_knapsack(i - 1 , snake_case__ , snake_case__ , snake_case__ ) else: A : Dict = max( mf_knapsack(i - 1 , snake_case__ , snake_case__ , snake_case__ ) , mf_knapsack(i - 1 , snake_case__ , snake_case__ , j - wt[i - 1] ) + val[i - 1] , ) A : Tuple = val return f[i][j] def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : List[str] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: A : Any = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: A : List[Any] = dp[i - 1][w_] return dp[n][w_], dp def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if not (isinstance(snake_case__ , (list, tuple) ) and isinstance(snake_case__ , (list, tuple) )): raise ValueError( '''Both the weights and values vectors must be either lists or tuples''' ) A : Tuple = len(snake_case__ ) if num_items != len(snake_case__ ): A : Dict = ( '''The number of weights must be the same as the number of values.\n''' F'But got {num_items} weights and {len(snake_case__ )} values' ) raise ValueError(snake_case__ ) for i in range(snake_case__ ): if not isinstance(wt[i] , snake_case__ ): A : Tuple = ( '''All weights must be integers but got weight of ''' F'type {type(wt[i] )} at index {i}' ) raise TypeError(snake_case__ ) A : Tuple = knapsack(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) A : set = set() _construct_solution(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return optimal_val, example_optional_set def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(snake_case__ , snake_case__ , i - 1 , snake_case__ , snake_case__ ) else: optimal_set.add(snake_case__ ) _construct_solution(snake_case__ , snake_case__ , i - 1 , j - wt[i - 1] , snake_case__ ) if __name__ == "__main__": lowercase = [3, 2, 4, 4] lowercase = [4, 3, 2, 3] lowercase = 4 lowercase = 6 lowercase = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowercase = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowercase = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
704
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowercase : str = logging.get_logger(__name__) # TODO: upload to AWS lowercase : Optional[Any] = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class A ( __snake_case ): __magic_name__ = '''retribert''' def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : List[Any] = vocab_size A : Dict = hidden_size A : Any = num_hidden_layers A : Any = num_attention_heads A : List[Any] = hidden_act A : Any = intermediate_size A : str = hidden_dropout_prob A : int = attention_probs_dropout_prob A : List[Any] = max_position_embeddings A : Tuple = type_vocab_size A : Optional[Any] = initializer_range A : Union[str, Any] = layer_norm_eps A : Dict = share_encoders A : Dict = projection_dim
343
0
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __lowerCamelCase :Union[str, Any] = logging.getLogger(__name__) __lowerCamelCase :str = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __lowerCamelCase :int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A__ : """simple docstring""" snake_case__ : Optional[str] =field( default=__lowercase , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(__lowercase)} , ) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''}) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''}) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class A__ : """simple docstring""" snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''The input training data file (a text file).'''}) snake_case__ : Optional[str] =field( default=__lowercase , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) snake_case__ : bool =field( default=__lowercase , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) snake_case__ : bool =field( default=__lowercase , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''}) snake_case__ : bool =field(default=__lowercase , metadata={'''help''': '''Whether ot not to use whole word mask.'''}) snake_case__ : float =field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''}) snake_case__ : float =field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) snake_case__ : int =field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''}) snake_case__ : int =field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) snake_case__ : bool =field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''}) def snake_case ( UpperCamelCase__ : DataTrainingArguments , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[str] = None , ) -> Optional[int]: def _dataset(UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ) -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowerCamelCase : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCamelCase : Tuple = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: lowerCamelCase : Optional[int] = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCamelCase : Tuple = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: lowerCamelCase : Tuple = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) lowerCamelCase : Dict = AutoModelWithLMHead.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: lowerCamelCase : Dict = tokenizer.max_len # Our input block size will be the max possible for the model else: lowerCamelCase : List[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets lowerCamelCase : Tuple = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowerCamelCase : Optional[Any] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowerCamelCase : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: lowerCamelCase : int = DataCollatorForWholeWordMask( tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) else: lowerCamelCase : Optional[Any] = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCamelCase : List[Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , ) # Training if training_args.do_train: lowerCamelCase : Any = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCamelCase : Any = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCamelCase : Dict = trainer.evaluate() lowerCamelCase : List[Any] = math.exp(eval_output["""eval_loss"""] ) lowerCamelCase : Any = {"""perplexity""": perplexity} lowerCamelCase : List[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(UpperCamelCase__ ) return results def snake_case ( UpperCamelCase__ : Optional[int] ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
222
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class A__ ( __lowercase): """simple docstring""" def __init__( self: Tuple , __a: Tuple , __a: Tuple=13 , __a: Tuple=7 , __a: List[str]=True , __a: int=True , __a: Optional[int]=True , __a: Union[str, Any]=True , __a: int=99 , __a: int=32 , __a: List[Any]=5 , __a: Union[str, Any]=4 , __a: Optional[int]=37 , __a: Dict="gelu" , __a: Dict=0.1 , __a: Any=0.1 , __a: str=512 , __a: int=16 , __a: Any=2 , __a: int=0.02 , __a: List[str]=False , __a: Optional[int]=True , __a: List[Any]="None" , __a: List[Any]=3 , __a: Optional[int]=4 , __a: str=None , )-> str: lowerCamelCase : Union[str, Any] = parent lowerCamelCase : Any = batch_size lowerCamelCase : Any = seq_length lowerCamelCase : Optional[Any] = is_training lowerCamelCase : List[str] = use_input_mask lowerCamelCase : Optional[Any] = use_token_type_ids lowerCamelCase : List[str] = use_labels lowerCamelCase : Tuple = vocab_size lowerCamelCase : Union[str, Any] = hidden_size lowerCamelCase : int = num_hidden_layers lowerCamelCase : Dict = num_attention_heads lowerCamelCase : Tuple = intermediate_size lowerCamelCase : Optional[int] = hidden_act lowerCamelCase : List[str] = hidden_dropout_prob lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase : int = max_position_embeddings lowerCamelCase : str = type_vocab_size lowerCamelCase : int = type_sequence_label_size lowerCamelCase : Optional[Any] = initializer_range lowerCamelCase : Tuple = num_labels lowerCamelCase : int = num_choices lowerCamelCase : int = relative_attention lowerCamelCase : Union[str, Any] = position_biased_input lowerCamelCase : Optional[int] = pos_att_type lowerCamelCase : Optional[int] = scope def a__ ( self: Union[str, Any] )-> List[str]: lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : Optional[int] = None if self.use_input_mask: lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCamelCase : Tuple = None if self.use_token_type_ids: lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase : Union[str, Any] = None lowerCamelCase : List[Any] = None lowerCamelCase : str = None if self.use_labels: lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self: Tuple )-> Optional[int]: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def a__ ( self: int , __a: int )-> List[Any]: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def a__ ( self: Tuple , __a: Union[str, Any] , __a: int , __a: Dict , __a: List[str] , __a: Tuple , __a: Any , __a: Optional[int] )-> str: lowerCamelCase : Optional[int] = DebertaVaModel(config=__a ) model.to(__a ) model.eval() lowerCamelCase : Dict = model(__a , attention_mask=__a , token_type_ids=__a )[0] lowerCamelCase : Optional[Any] = model(__a , token_type_ids=__a )[0] lowerCamelCase : Union[str, Any] = model(__a )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def a__ ( self: Union[str, Any] , __a: Any , __a: Optional[Any] , __a: Any , __a: Optional[Any] , __a: Tuple , __a: int , __a: List[str] )-> str: lowerCamelCase : int = DebertaVaForMaskedLM(config=__a ) model.to(__a ) model.eval() lowerCamelCase : int = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self: List[Any] , __a: List[Any] , __a: Any , __a: Tuple , __a: int , __a: Optional[Any] , __a: str , __a: List[Any] )-> List[str]: lowerCamelCase : List[str] = self.num_labels lowerCamelCase : Optional[int] = DebertaVaForSequenceClassification(__a ) model.to(__a ) model.eval() lowerCamelCase : Union[str, Any] = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__a ) def a__ ( self: List[str] , __a: List[str] , __a: Optional[int] , __a: Optional[Any] , __a: Dict , __a: Union[str, Any] , __a: List[str] , __a: Optional[Any] )-> List[Any]: lowerCamelCase : Optional[int] = self.num_labels lowerCamelCase : Any = DebertaVaForTokenClassification(config=__a ) model.to(__a ) model.eval() lowerCamelCase : List[str] = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self: Optional[int] , __a: Dict , __a: int , __a: Tuple , __a: Optional[Any] , __a: List[Any] , __a: List[Any] , __a: Union[str, Any] )-> Optional[Any]: lowerCamelCase : Optional[Any] = DebertaVaForQuestionAnswering(config=__a ) model.to(__a ) model.eval() lowerCamelCase : int = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self: Any , __a: int , __a: List[str] , __a: str , __a: int , __a: str , __a: Optional[Any] , __a: List[str] )-> Tuple: lowerCamelCase : Tuple = DebertaVaForMultipleChoice(config=__a ) model.to(__a ) model.eval() lowerCamelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase : Union[str, Any] = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self: Optional[int] )-> Optional[int]: lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : int = config_and_inputs lowerCamelCase : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A__ ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" snake_case__ : Union[str, Any] =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) snake_case__ : int =( { '''feature-extraction''': DebertaVaModel, '''fill-mask''': DebertaVaForMaskedLM, '''question-answering''': DebertaVaForQuestionAnswering, '''text-classification''': DebertaVaForSequenceClassification, '''token-classification''': DebertaVaForTokenClassification, '''zero-shot''': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : List[str] =True snake_case__ : Optional[int] =False snake_case__ : Dict =False snake_case__ : Union[str, Any] =False snake_case__ : List[str] =False def a__ ( self: Dict )-> Union[str, Any]: lowerCamelCase : List[str] = DebertaVaModelTester(self ) lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=__a , hidden_size=37 ) def a__ ( self: Dict )-> List[str]: self.config_tester.run_common_tests() def a__ ( self: int )-> Any: lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__a ) def a__ ( self: List[str] )-> List[Any]: lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__a ) def a__ ( self: Optional[int] )-> List[str]: lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__a ) def a__ ( self: Optional[int] )-> Union[str, Any]: lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__a ) def a__ ( self: Optional[int] )-> Dict: lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__a ) def a__ ( self: Any )-> Any: lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__a ) @slow def a__ ( self: Any )-> int: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Dict = DebertaVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def a__ ( self: Union[str, Any] )-> Union[str, Any]: pass @slow def a__ ( self: Tuple )-> Dict: lowerCamelCase : Dict = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) lowerCamelCase : Tuple = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) lowerCamelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase : Union[str, Any] = model(__a , attention_mask=__a )[0] # compare the actual values for a slice. lowerCamelCase : Tuple = torch.tensor( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __a , atol=1e-4 ) , f'{output[:, 1:4, 1:4]}' )
222
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _UpperCAmelCase : List[Any] = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _UpperCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
108
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True ): '''simple docstring''' model.train() snake_case_ = model(UpperCamelCase__ ) snake_case_ = F.mse_loss(UpperCamelCase__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' set_seed(42 ) snake_case_ = RegressionModel() snake_case_ = deepcopy(UpperCamelCase__ ) snake_case_ = RegressionDataset(length=80 ) snake_case_ = DataLoader(UpperCamelCase__ , batch_size=16 ) model.to(accelerator.device ) if sched: snake_case_ = AdamW(params=model.parameters() , lr=1E-3 ) snake_case_ = AdamW(params=ddp_model.parameters() , lr=1E-3 ) snake_case_ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.65 ) snake_case_ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.65 ) # Make a copy of `model` if sched: snake_case_ , snake_case_ , snake_case_ , snake_case_ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: snake_case_ , snake_case_ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ , snake_case_ , snake_case_ = get_training_setup(UpperCamelCase__ ) # Use a single batch snake_case_ , snake_case_ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model snake_case_ , snake_case_ = accelerator.gather((ddp_input, ddp_target) ) snake_case_ , snake_case_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) snake_case_ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ , snake_case_ , snake_case_ = get_training_setup(UpperCamelCase__ ) # Use a single batch snake_case_ , snake_case_ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model snake_case_ , snake_case_ = accelerator.gather((ddp_input, ddp_target) ) snake_case_ , snake_case_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) snake_case_ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def __lowerCamelCase ( UpperCamelCase__=False , UpperCamelCase__=False ): '''simple docstring''' snake_case_ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly snake_case_ , snake_case_ , snake_case_ = get_training_setup(UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): snake_case_ , snake_case_ = batch.values() # Gather the distributed inputs and targs for the base model snake_case_ , snake_case_ = accelerator.gather((ddp_input, ddp_target) ) snake_case_ , snake_case_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) snake_case_ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] GradientState._reset_state() def __lowerCamelCase ( UpperCamelCase__=False , UpperCamelCase__=False ): '''simple docstring''' snake_case_ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = get_training_setup(UpperCamelCase__ , UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): snake_case_ , snake_case_ = batch.values() # Gather the distributed inputs and targs for the base model snake_case_ , snake_case_ = accelerator.gather((ddp_input, ddp_target) ) snake_case_ , snake_case_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' snake_case_ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase__ )) if accelerator.num_processes > 1: check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = Accelerator() snake_case_ = RegressionDataset(length=80 ) snake_case_ = DataLoader(UpperCamelCase__ , batch_size=16 ) snake_case_ = RegressionDataset(length=96 ) snake_case_ = DataLoader(UpperCamelCase__ , batch_size=16 ) snake_case_ , snake_case_ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if iteration < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if batch_num < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = Accelerator() snake_case_ = accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**' ) test_noop_sync(UpperCamelCase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**' ) test_distributed_sync(UpperCamelCase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(UpperCamelCase__ , UpperCamelCase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' , '2.0' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase__ , UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' main() if __name__ == "__main__": main()
108
1
'''simple docstring''' from collections.abc import Callable import numpy as np def UpperCamelCase ( _lowerCamelCase : Callable , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ): A__ = int(np.ceil((x_end - xa) / step_size ) ) A__ = np.zeros((n + 1,) ) A__ = ya A__ = xa for k in range(_lowerCamelCase ): A__ = y[k] + step_size * ode_func(_lowerCamelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
440
'''simple docstring''' from __future__ import annotations import math def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : bool , _lowerCamelCase : list[int] , _lowerCamelCase : float ): if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(_lowerCamelCase ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) def UpperCamelCase ( ): A__ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] A__ = math.log(len(_lowerCamelCase ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
440
1
"""simple docstring""" a : str = 8.31_4462 # Unit - J mol-1 K-1 def _SCREAMING_SNAKE_CASE ( _lowercase : float , _lowercase : float , _lowercase : float ) ->float: '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _SCREAMING_SNAKE_CASE ( _lowercase : float , _lowercase : float , _lowercase : float ) ->float: '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
31
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __UpperCamelCase ( unittest.TestCase ): def __a ( self , lowerCAmelCase__ ) -> Optional[int]: a : str = 3 a : str = 250 a : List[Any] = ids_tensor((batch_size, length) , lowerCAmelCase__ ) a : Optional[Any] = torch.ones((batch_size, length) , device=lowerCAmelCase__ , dtype=torch.float ) / length return input_ids, scores def __a ( self ) -> List[Any]: a, a : str = self._get_tensors(5 ) a : Any = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) a, a : str = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) a, a : Union[str, Any] = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __a ( self ) -> List[Any]: a : Optional[Any] = MaxLengthCriteria(max_length=10 ) a, a : int = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) a, a : int = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) a, a : Union[str, Any] = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __a ( self ) -> List[str]: a : Tuple = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) a, a : str = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) a, a : int = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) a, a : int = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) a : List[Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def __a ( self ) -> str: a, a : Tuple = self._get_tensors(5 ) a : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) a : Optional[int] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __a ( self ) -> str: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase__ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) a : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase__ ) , 1 )
31
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __snake_case ( lowerCamelCase_): _lowerCAmelCase = '''decision_transformer''' _lowerCAmelCase = ['''past_key_values'''] _lowerCAmelCase = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self, A=17, A=4, A=128, A=4096, A=True, A=1, A=1024, A=3, A=1, A=None, A="relu", A=0.1, A=0.1, A=0.1, A=1e-5, A=0.02, A=True, A=True, A=5_0256, A=5_0256, A=False, A=False, **A, ): """simple docstring""" lowerCamelCase : Dict = state_dim lowerCamelCase : Optional[Any] = act_dim lowerCamelCase : Optional[int] = hidden_size lowerCamelCase : Any = max_ep_len lowerCamelCase : Tuple = action_tanh lowerCamelCase : Optional[int] = vocab_size lowerCamelCase : Dict = n_positions lowerCamelCase : Optional[Any] = n_layer lowerCamelCase : int = n_head lowerCamelCase : Any = n_inner lowerCamelCase : int = activation_function lowerCamelCase : Any = resid_pdrop lowerCamelCase : Optional[int] = embd_pdrop lowerCamelCase : int = attn_pdrop lowerCamelCase : Dict = layer_norm_epsilon lowerCamelCase : Tuple = initializer_range lowerCamelCase : Union[str, Any] = scale_attn_weights lowerCamelCase : Tuple = use_cache lowerCamelCase : Tuple = scale_attn_by_inverse_layer_idx lowerCamelCase : Tuple = reorder_and_upcast_attn lowerCamelCase : Optional[Any] = bos_token_id lowerCamelCase : Optional[Any] = eos_token_id super().__init__(bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_ )
320
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
0
'''simple docstring''' import os from collections.abc import Iterator def __lowerCAmelCase (__lowerCAmelCase = "." ): for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ): _UpperCAmelCase : List[Any] = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("./" ) def __lowerCAmelCase (__lowerCAmelCase ): return F"""{i * ' '}*""" if i else "\n##" def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[str] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part: print(F"""{md_prefix(__lowerCAmelCase )} {new_part.replace('_' , ' ' ).title()}""" ) return new_path def __lowerCAmelCase (__lowerCAmelCase = "." ): _UpperCAmelCase : Tuple = "" for filepath in sorted(good_file_paths(__lowerCAmelCase ) ): _UpperCAmelCase : List[Any] = os.path.split(__lowerCAmelCase ) if filepath != old_path: _UpperCAmelCase : Union[str, Any] = print_path(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = (filepath.count(os.sep ) + 1) if filepath else 0 _UpperCAmelCase : Tuple = F"""{filepath}/{filename}""".replace(" " , "%20" ) _UpperCAmelCase : Any = os.path.splitext(filename.replace("_" , " " ).title() )[0] print(F"""{md_prefix(__lowerCAmelCase )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
700
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None ): if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path _UpperCAmelCase : str = quote(__lowerCAmelCase ) return hfh.hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" , revision=__lowerCAmelCase )
40
0
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor a__ : Optional[int] = logging.get_logger(__name__) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
622
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : Dict = {"vocab_file": "spiece.model"} a__ : str = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } a__ : Union[str, Any] = { "albert-base-v1": 5_12, "albert-large-v1": 5_12, "albert-xlarge-v1": 5_12, "albert-xxlarge-v1": 5_12, "albert-base-v2": 5_12, "albert-large-v2": 5_12, "albert-xlarge-v2": 5_12, "albert-xxlarge-v2": 5_12, } a__ : Optional[int] = "▁" class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Tuple = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : List[Any]=True , lowerCAmelCase : str=False , lowerCAmelCase : str="[CLS]" , lowerCAmelCase : Optional[int]="[SEP]" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="[SEP]" , lowerCAmelCase : Dict="<pad>" , lowerCAmelCase : int="[CLS]" , lowerCAmelCase : Tuple="[MASK]" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[str] , ) -> None: """simple docstring""" lowercase__ = ( AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase , normalized=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else mask_token ) lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCAmelCase , remove_space=lowerCAmelCase , keep_accents=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) lowercase__ = do_lower_case lowercase__ = remove_space lowercase__ = keep_accents lowercase__ = vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCAmelCase) @property def UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" return len(self.sp_model) def UpperCAmelCase ( self : Optional[int]) -> Any: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(lowerCAmelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : int) -> List[str]: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self : int , lowerCAmelCase : str) -> Any: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> List[str]: """simple docstring""" if self.remove_space: lowercase__ = ' '.join(inputs.strip().split()) else: lowercase__ = inputs lowercase__ = outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: lowercase__ = unicodedata.normalize('NFKD' , lowerCAmelCase) lowercase__ = ''.join([c for c in outputs if not unicodedata.combining(lowerCAmelCase)]) if self.do_lower_case: lowercase__ = outputs.lower() return outputs def UpperCAmelCase ( self : Any , lowerCAmelCase : str) -> List[str]: """simple docstring""" lowercase__ = self.preprocess_text(lowerCAmelCase) lowercase__ = self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase) lowercase__ = [] for piece in pieces: if len(lowerCAmelCase) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): lowercase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCAmelCase , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: lowercase__ = cur_pieces[1:] else: lowercase__ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCAmelCase) else: new_pieces.append(lowerCAmelCase) return new_pieces def UpperCAmelCase ( self : Any , lowerCAmelCase : int) -> int: """simple docstring""" return self.sp_model.PieceToId(lowerCAmelCase) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : Any) -> Tuple: """simple docstring""" return self.sp_model.IdToPiece(lowerCAmelCase) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" lowercase__ = [] lowercase__ = '' lowercase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase) + token lowercase__ = True lowercase__ = [] else: current_sub_tokens.append(lowerCAmelCase) lowercase__ = False out_string += self.sp_model.decode(lowerCAmelCase) return out_string.strip() def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase ( self : int , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase) if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase)) + [1] + ([0] * len(lowerCAmelCase)) + [1] return [1] + ([0] * len(lowerCAmelCase)) + [1] def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCAmelCase) elif not os.path.isfile(self.vocab_file): with open(lowerCAmelCase , 'wb') as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase) return (out_vocab_file,)
622
1
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def snake_case__ ( _A: List[str] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = int(lowerCAmelCase__ ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = t // 3600, (t // 60) % 60, t % 60 return f"{h}:{m:02d}:{s:02d}" if h != 0 else f"{m:02d}:{s:02d}" def snake_case__ ( _A: Tuple , _A: Tuple , _A: Dict , _A: Union[str, Any] , _A: Dict=300 ) -> Tuple: '''simple docstring''' return f"\n <div>\n {prefix}\n <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress>\n {label}\n </div>\n " def snake_case__ ( _A: Dict ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = """<table border=\"1\" class=\"dataframe\">\n""" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f" <th>{i}</th>\n" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: lowerCAmelCase = f"{elt:.6f}" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else str(lowerCAmelCase__ ) html_code += f" <td>{elt}</td>\n" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class a__: '''simple docstring''' UpperCAmelCase_ : Any = 5 UpperCAmelCase_ : List[str] = 0.2 def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = 300 , ): """simple docstring""" lowerCAmelCase = total lowerCAmelCase = """""" if prefix is None else prefix lowerCAmelCase = leave lowerCAmelCase = parent lowerCAmelCase = width lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = None): """simple docstring""" lowerCAmelCase = value if comment is not None: lowerCAmelCase = comment if self.last_value is None: lowerCAmelCase = lowerCAmelCase = time.time() lowerCAmelCase = lowerCAmelCase = value lowerCAmelCase = lowerCAmelCase = None lowerCAmelCase = self.warmup lowerCAmelCase = 1 self.update_bar(_a) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total): if self.first_calls > 0: self.first_calls -= 1 lowerCAmelCase = time.time() lowerCAmelCase = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: lowerCAmelCase = self.elapsed_time / (value - self.start_value) else: lowerCAmelCase = None if value >= self.total: lowerCAmelCase = self.total lowerCAmelCase = None if not self.leave: self.close() elif self.average_time_per_item is not None: lowerCAmelCase = self.average_time_per_item * (self.total - value) self.update_bar(_a) lowerCAmelCase = value lowerCAmelCase = current_time if self.average_time_per_item is None: lowerCAmelCase = 1 else: lowerCAmelCase = max(int(self.update_every / self.average_time_per_item) , 1) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase=None): """simple docstring""" lowerCAmelCase = """ """ * (len(str(self.total)) - len(str(_a))) + str(_a) if self.elapsed_time is None: lowerCAmelCase = f"[{spaced_value}/{self.total} : < :" elif self.predicted_remaining is None: lowerCAmelCase = f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)}" else: lowerCAmelCase = ( f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <" f" {format_time(self.predicted_remaining)}" ) self.label += f", {1/self.average_time_per_item:.2f} it/s" self.label += "]" if self.comment is None or len(self.comment) == 0 else f", {self.comment}]" self.display() def a_ ( self): """simple docstring""" lowerCAmelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: lowerCAmelCase = disp.display(disp.HTML(self.html_code) , display_id=_a) else: self.output.update(disp.HTML(self.html_code)) def a_ ( self): """simple docstring""" if self.parent is None and self.output is not None: self.output.update(disp.HTML("""""")) class a__( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=None): """simple docstring""" super().__init__(_a) lowerCAmelCase = None if column_names is None else [column_names] lowerCAmelCase = None def a_ ( self): """simple docstring""" lowerCAmelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: lowerCAmelCase = disp.display(disp.HTML(self.html_code) , display_id=_a) else: self.output.update(disp.HTML(self.html_code)) def a_ ( self , __lowerCAmelCase): """simple docstring""" if self.inner_table is None: lowerCAmelCase = [list(values.keys()), list(values.values())] else: lowerCAmelCase = self.inner_table[0] if len(self.inner_table) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(_a) lowerCAmelCase = columns self.inner_table.append([values[c] for c in columns]) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=300): """simple docstring""" lowerCAmelCase = NotebookProgressBar(_a , prefix=_a , parent=self , width=_a) return self.child_bar def a_ ( self): """simple docstring""" lowerCAmelCase = None self.display() class a__( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self): """simple docstring""" lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = False def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = """Epoch""" if args.evaluation_strategy == IntervalStrategy.EPOCH else """Step""" lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = [self.first_column] + ["""Training Loss"""] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("""Validation Loss""") lowerCAmelCase = NotebookTrainingTracker(state.max_steps , _a) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = int(state.epoch) if int(state.epoch) == state.epoch else f"{state.epoch:.2f}" self.training_tracker.update( state.global_step + 1 , comment=f"Epoch {epoch}/{state.num_train_epochs}" , force_update=self._force_next_update , ) lowerCAmelCase = False def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase): """simple docstring""" if not has_length(_a): return if self.prediction_bar is None: if self.training_tracker is not None: lowerCAmelCase = self.training_tracker.add_child(len(_a)) else: lowerCAmelCase = NotebookProgressBar(len(_a)) self.prediction_bar.update(1) else: self.prediction_bar.update(self.prediction_bar.value + 1) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" if self.prediction_bar is not None: self.prediction_bar.close() lowerCAmelCase = None def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase): """simple docstring""" if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: lowerCAmelCase = {"""Training Loss""": logs["""loss"""]} # First column is necessarily Step sine we're not in epoch eval strategy lowerCAmelCase = state.global_step self.training_tracker.write_line(_a) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase): """simple docstring""" if self.training_tracker is not None: lowerCAmelCase = {"""Training Loss""": """No log""", """Validation Loss""": """No log"""} for log in reversed(state.log_history): if "loss" in log: lowerCAmelCase = log["""loss"""] break if self.first_column == "Epoch": lowerCAmelCase = int(state.epoch) else: lowerCAmelCase = state.global_step lowerCAmelCase = """eval""" for k in metrics: if k.endswith("""_loss"""): lowerCAmelCase = re.sub(r"""\_loss$""" , """""" , _a) lowerCAmelCase = metrics.pop("""total_flos""" , _a) lowerCAmelCase = metrics.pop("""epoch""" , _a) lowerCAmelCase = metrics.pop(f"{metric_key_prefix}_runtime" , _a) lowerCAmelCase = metrics.pop(f"{metric_key_prefix}_samples_per_second" , _a) lowerCAmelCase = metrics.pop(f"{metric_key_prefix}_steps_per_second" , _a) lowerCAmelCase = metrics.pop(f"{metric_key_prefix}_jit_compilation_time" , _a) for k, v in metrics.items(): if k == f"{metric_key_prefix}_loss": lowerCAmelCase = v else: lowerCAmelCase = k.split("""_""") lowerCAmelCase = """ """.join([part.capitalize() for part in splits[1:]]) lowerCAmelCase = v self.training_tracker.write_line(_a) self.training_tracker.remove_child() lowerCAmelCase = None # Evaluation takes a long time so we should force the next update. lowerCAmelCase = True def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" self.training_tracker.update( state.global_step , comment=f"Epoch {int(state.epoch)}/{state.num_train_epochs}" , force_update=_a) lowerCAmelCase = None
721
'''simple docstring''' from collections.abc import Generator from math import sin def snake_case__ ( _A: bytes ) -> bytes: '''simple docstring''' if len(_A ) != 32: raise ValueError("""Input must be of length 32""" ) lowerCAmelCase = b"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def snake_case__ ( _A: int ) -> bytes: '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) lowerCAmelCase = format(_A , """08x""" )[-8:] lowerCAmelCase = b"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def snake_case__ ( _A: bytes ) -> bytes: '''simple docstring''' lowerCAmelCase = b"""""" for char in message: bit_string += format(_A , """08b""" ).encode("""utf-8""" ) lowerCAmelCase = format(len(_A ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_A ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def snake_case__ ( _A: bytes ) -> Generator[list[int], None, None]: '''simple docstring''' if len(_A ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(_A ) , 512 ): lowerCAmelCase = bit_string[pos : pos + 512] lowerCAmelCase = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def snake_case__ ( _A: int ) -> int: '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) lowerCAmelCase = format(_A , """032b""" ) lowerCAmelCase = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(_A , 2 ) def snake_case__ ( _A: int , _A: int ) -> int: '''simple docstring''' return (a + b) % 2**32 def snake_case__ ( _A: int , _A: int ) -> int: '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def snake_case__ ( _A: bytes ) -> bytes: '''simple docstring''' lowerCAmelCase = preprocess(_A ) lowerCAmelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states lowerCAmelCase = 0X6_7_4_5_2_3_0_1 lowerCAmelCase = 0Xe_f_c_d_a_b_8_9 lowerCAmelCase = 0X9_8_b_a_d_c_f_e lowerCAmelCase = 0X1_0_3_2_5_4_7_6 lowerCAmelCase = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_A ): lowerCAmelCase = aa lowerCAmelCase = ba lowerCAmelCase = ca lowerCAmelCase = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f lowerCAmelCase = d ^ (b & (c ^ d)) lowerCAmelCase = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f lowerCAmelCase = c ^ (d & (b ^ c)) lowerCAmelCase = (5 * i + 1) % 16 elif i <= 47: lowerCAmelCase = b ^ c ^ d lowerCAmelCase = (3 * i + 5) % 16 else: lowerCAmelCase = c ^ (b | not_aa(_A )) lowerCAmelCase = (7 * i) % 16 lowerCAmelCase = (f + a + added_consts[i] + block_words[g]) % 2**32 lowerCAmelCase = d lowerCAmelCase = c lowerCAmelCase = b lowerCAmelCase = sum_aa(_A , left_rotate_aa(_A , shift_amounts[i] ) ) # Add hashed chunk to running total lowerCAmelCase = sum_aa(_A , _A ) lowerCAmelCase = sum_aa(_A , _A ) lowerCAmelCase = sum_aa(_A , _A ) lowerCAmelCase = sum_aa(_A , _A ) lowerCAmelCase = reformat_hex(_A ) + reformat_hex(_A ) + reformat_hex(_A ) + reformat_hex(_A ) return digest if __name__ == "__main__": import doctest doctest.testmod()
605
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType snake_case : int = logging.get_logger(__name__) snake_case : List[Any] = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = '''layoutlmv3''' def __init__( self :Optional[Any] ,__snake_case :Dict=5_02_65 ,__snake_case :Union[str, Any]=7_68 ,__snake_case :Dict=12 ,__snake_case :List[str]=12 ,__snake_case :Any=30_72 ,__snake_case :int="gelu" ,__snake_case :List[str]=0.1 ,__snake_case :Optional[Any]=0.1 ,__snake_case :List[Any]=5_12 ,__snake_case :Any=2 ,__snake_case :Dict=0.02 ,__snake_case :Dict=1E-5 ,__snake_case :Tuple=1 ,__snake_case :Optional[int]=0 ,__snake_case :List[Any]=2 ,__snake_case :Optional[Any]=10_24 ,__snake_case :List[str]=1_28 ,__snake_case :List[str]=1_28 ,__snake_case :str=True ,__snake_case :Any=32 ,__snake_case :Union[str, Any]=1_28 ,__snake_case :Optional[Any]=64 ,__snake_case :List[Any]=2_56 ,__snake_case :Any=True ,__snake_case :Optional[int]=True ,__snake_case :List[str]=True ,__snake_case :Any=2_24 ,__snake_case :Union[str, Any]=3 ,__snake_case :int=16 ,__snake_case :Any=None ,**__snake_case :Dict ,) -> Any: super().__init__( vocab_size=__snake_case ,hidden_size=__snake_case ,num_hidden_layers=__snake_case ,num_attention_heads=__snake_case ,intermediate_size=__snake_case ,hidden_act=__snake_case ,hidden_dropout_prob=__snake_case ,attention_probs_dropout_prob=__snake_case ,max_position_embeddings=__snake_case ,type_vocab_size=__snake_case ,initializer_range=__snake_case ,layer_norm_eps=__snake_case ,pad_token_id=__snake_case ,bos_token_id=__snake_case ,eos_token_id=__snake_case ,**__snake_case ,) a__ = max_ad_position_embeddings a__ = coordinate_size a__ = shape_size a__ = has_relative_attention_bias a__ = rel_pos_bins a__ = max_rel_pos a__ = has_spatial_attention_bias a__ = rel_ad_pos_bins a__ = max_rel_ad_pos a__ = text_embed a__ = visual_embed a__ = input_size a__ = num_channels a__ = patch_size a__ = classifier_dropout class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Tuple = version.parse('''1.12''' ) @property def lowerCamelCase__( self :Optional[int] ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def lowerCamelCase__( self :Tuple ) -> float: return 1E-5 @property def lowerCamelCase__( self :Any ) -> int: return 12 def lowerCamelCase__( self :Tuple ,__snake_case :"ProcessorMixin" ,__snake_case :int = -1 ,__snake_case :int = -1 ,__snake_case :bool = False ,__snake_case :Optional["TensorType"] = None ,__snake_case :int = 3 ,__snake_case :int = 40 ,__snake_case :int = 40 ,) -> Mapping[str, Any]: setattr(processor.image_processor ,'apply_ocr' ,__snake_case ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX a__ = compute_effective_axis_dimension( __snake_case ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX a__ = processor.tokenizer.num_special_tokens_to_add(__snake_case ) a__ = compute_effective_axis_dimension( __snake_case ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=__snake_case ) # Generate dummy inputs according to compute batch and sequence a__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes a__ = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) a__ = self._generate_dummy_images(__snake_case ,__snake_case ,__snake_case ,__snake_case ) a__ = dict( processor( __snake_case ,text=__snake_case ,boxes=__snake_case ,return_tensors=__snake_case ,) ) return inputs
335
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Tuple = ['''image_processor''', '''tokenizer'''] UpperCAmelCase__ : Any = '''OwlViTImageProcessor''' UpperCAmelCase__ : Optional[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self :Any ,__snake_case :Tuple=None ,__snake_case :Optional[int]=None ,**__snake_case :Dict ) -> Tuple: a__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' ,__snake_case ,) a__ = kwargs.pop('feature_extractor' ) a__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__snake_case ,__snake_case ) def __call__( self :str ,__snake_case :List[str]=None ,__snake_case :Optional[Any]=None ,__snake_case :List[str]=None ,__snake_case :Union[str, Any]="max_length" ,__snake_case :int="np" ,**__snake_case :List[str] ) -> List[str]: if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__snake_case ,__snake_case ) or (isinstance(__snake_case ,__snake_case ) and not isinstance(text[0] ,__snake_case )): a__ = [self.tokenizer(__snake_case ,padding=__snake_case ,return_tensors=__snake_case ,**__snake_case )] elif isinstance(__snake_case ,__snake_case ) and isinstance(text[0] ,__snake_case ): a__ = [] # Maximum number of queries across batch a__ = max([len(__snake_case ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__snake_case ) != max_num_queries: a__ = t + [' '] * (max_num_queries - len(__snake_case )) a__ = self.tokenizer(__snake_case ,padding=__snake_case ,return_tensors=__snake_case ,**__snake_case ) encodings.append(__snake_case ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": a__ = np.concatenate([encoding['input_ids'] for encoding in encodings] ,axis=0 ) a__ = np.concatenate([encoding['attention_mask'] for encoding in encodings] ,axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp a__ = jnp.concatenate([encoding['input_ids'] for encoding in encodings] ,axis=0 ) a__ = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] ,axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch a__ = torch.cat([encoding['input_ids'] for encoding in encodings] ,dim=0 ) a__ = torch.cat([encoding['attention_mask'] for encoding in encodings] ,dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf a__ = tf.stack([encoding['input_ids'] for encoding in encodings] ,axis=0 ) a__ = tf.stack([encoding['attention_mask'] for encoding in encodings] ,axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) a__ = BatchEncoding() a__ = input_ids a__ = attention_mask if query_images is not None: a__ = BatchEncoding() a__ = self.image_processor( __snake_case ,return_tensors=__snake_case ,**__snake_case ).pixel_values a__ = query_pixel_values if images is not None: a__ = self.image_processor(__snake_case ,return_tensors=__snake_case ,**__snake_case ) if text is not None and images is not None: a__ = image_features.pixel_values return encoding elif query_images is not None and images is not None: a__ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__snake_case ) ,tensor_type=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,*__snake_case :Union[str, Any] ,**__snake_case :Any ) -> Dict: return self.image_processor.post_process(*__snake_case ,**__snake_case ) def lowerCamelCase__( self :Optional[int] ,*__snake_case :List[str] ,**__snake_case :List[str] ) -> Dict: return self.image_processor.post_process_object_detection(*__snake_case ,**__snake_case ) def lowerCamelCase__( self :Optional[int] ,*__snake_case :List[Any] ,**__snake_case :Tuple ) -> Tuple: return self.image_processor.post_process_image_guided_detection(*__snake_case ,**__snake_case ) def lowerCamelCase__( self :Dict ,*__snake_case :str ,**__snake_case :Optional[Any] ) -> List[Any]: return self.tokenizer.batch_decode(*__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,*__snake_case :Union[str, Any] ,**__snake_case :Dict ) -> List[str]: return self.tokenizer.decode(*__snake_case ,**__snake_case ) @property def lowerCamelCase__( self :Optional[int] ) -> Optional[Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' ,__snake_case ,) return self.image_processor_class @property def lowerCamelCase__( self :List[Any] ) -> Dict: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' ,__snake_case ,) return self.image_processor
335
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ : Union[str, Any] = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys a_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
484
a_ : List[str] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' a_ : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] a_ : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
484
1
'''simple docstring''' def UpperCamelCase ( lowercase_ : int , lowercase_ : int ) -> str: '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
72
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class a_ : def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_12 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ): a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = scope def lowerCAmelCase__ ( self ): a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length] ) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ = ids_tensor([self.batch_size] , self.num_choices ) a_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): a_ = BioGptModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() a_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) a_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): a_ = BioGptForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() a_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase ): a_ = BioGptModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() # create attention mask a_ = torch.ones(input_ids.shape , dtype=torch.long , device=UpperCAmelCase ) a_ = self.seq_length // 2 a_ = 0 # first forward pass a_ , a_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids a_ = ids_tensor((1,) , UpperCAmelCase ).item() + 1 a_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) a_ = random_other_next_tokens # append to next input_ids and attn_mask a_ = torch.cat([input_ids, next_tokens] , dim=-1 ) a_ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=UpperCAmelCase )] , dim=1 , ) # get two different outputs a_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase )["""last_hidden_state"""] a_ = model(UpperCAmelCase , past_key_values=UpperCAmelCase , attention_mask=UpperCAmelCase )["""last_hidden_state"""] # select random slice a_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() a_ = output_from_no_past[:, -1, random_slice_idx].detach() a_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase ): a_ = BioGptModel(config=UpperCAmelCase ).to(UpperCAmelCase ).eval() a_ = torch.ones(input_ids.shape , dtype=torch.long , device=UpperCAmelCase ) # first forward pass a_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , use_cache=UpperCAmelCase ) a_ , a_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) a_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and a_ = torch.cat([input_ids, next_tokens] , dim=-1 ) a_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) a_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase )["""last_hidden_state"""] a_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase )[ """last_hidden_state""" ] # select random slice a_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() a_ = output_from_no_past[:, -3:, random_slice_idx].detach() a_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase , UpperCAmelCase=False ): a_ = BioGptForCausalLM(UpperCAmelCase ) model.to(UpperCAmelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() a_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def lowerCAmelCase__ ( self , UpperCAmelCase , *UpperCAmelCase ): a_ = BioGptModel(UpperCAmelCase ) a_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_01 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase ): a_ = self.num_labels a_ = BioGptForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() a_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self ): a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : Optional[int] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) lowerCamelCase__ : Dict = (BioGptForCausalLM,) if is_torch_available() else () lowerCamelCase__ : int = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Union[str, Any] = False def lowerCAmelCase__ ( self ): a_ = BioGptModelTester(self ) a_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ = type self.model_tester.create_and_check_model(*UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*UpperCAmelCase , gradient_checkpointing=UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*UpperCAmelCase ) @slow def lowerCAmelCase__ ( self ): a_ = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(UpperCAmelCase ) a_ = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) a_ = """left""" # Define PAD Token = EOS Token = 50256 a_ = tokenizer.eos_token a_ = model.config.eos_token_id # use different length sentences to test batching a_ = [ """Hello, my dog is a little""", """Today, I""", ] a_ = tokenizer(UpperCAmelCase , return_tensors="""pt""" , padding=UpperCAmelCase ) a_ = inputs["""input_ids"""].to(UpperCAmelCase ) a_ = model.generate( input_ids=UpperCAmelCase , attention_mask=inputs["""attention_mask"""].to(UpperCAmelCase ) , ) a_ = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(UpperCAmelCase ) a_ = model.generate(input_ids=UpperCAmelCase ) a_ = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() a_ = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(UpperCAmelCase ) a_ = model.generate(input_ids=UpperCAmelCase , max_length=model.config.max_length - num_paddings ) a_ = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) a_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase ) a_ = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase ) a_ = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , [non_padded_sentence, padded_sentence] ) @slow def lowerCAmelCase__ ( self ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = BioGptModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = 3 a_ = input_dict["""input_ids"""] a_ = input_ids.ne(1 ).to(UpperCAmelCase ) a_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a_ = BioGptForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() a_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase__ ( self ): a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = 3 a_ = """multi_label_classification""" a_ = input_dict["""input_ids"""] a_ = input_ids.ne(1 ).to(UpperCAmelCase ) a_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) a_ = BioGptForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() a_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class a_ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self ): a_ = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) a_ = torch.tensor([[2, 48_05, 9, 6_56, 21]] ) a_ = model(UpperCAmelCase )[0] a_ = 4_23_84 a_ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase ) a_ = torch.tensor( [[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow def lowerCAmelCase__ ( self ): a_ = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) a_ = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(UpperCAmelCase ) torch.manual_seed(0 ) a_ = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(UpperCAmelCase ) a_ = model.generate( **UpperCAmelCase , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=UpperCAmelCase , ) a_ = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCAmelCase ) a_ = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
263
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A = logging.get_logger(__name__) class __a ( __A ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = ["""pixel_values"""] def __init__( self , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = PILImageResampling.BILINEAR , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = 1 / 255 , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ): super().__init__(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = size if size is not None else {'shortest_edge': 256} SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE_ : List[Any] = get_size_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = do_resize SCREAMING_SNAKE_CASE_ : Optional[int] = size SCREAMING_SNAKE_CASE_ : Optional[int] = resample SCREAMING_SNAKE_CASE_ : Any = do_center_crop SCREAMING_SNAKE_CASE_ : List[Any] = crop_size SCREAMING_SNAKE_CASE_ : Optional[Any] = do_rescale SCREAMING_SNAKE_CASE_ : int = rescale_factor SCREAMING_SNAKE_CASE_ : Any = do_normalize SCREAMING_SNAKE_CASE_ : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE_ : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = PILImageResampling.BICUBIC , UpperCamelCase__ = None , **UpperCamelCase__ , ): SCREAMING_SNAKE_CASE_ : Tuple = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = get_resize_output_image_size(UpperCamelCase__ , size=size['shortest_edge'] , default_to_square=UpperCamelCase__ ) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_size_dict(UpperCamelCase__ ) return center_crop(UpperCamelCase__ , size=(size['height'], size['width']) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ ): return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ): return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = ChannelDimension.FIRST , **UpperCamelCase__ , ): SCREAMING_SNAKE_CASE_ : str = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ : List[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE_ : int = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : int = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_ : List[str] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_ : Dict = get_size_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ : Dict = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ : Tuple = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ : Any = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ : int = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ : Optional[int] = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ : Optional[int] = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_ : Dict = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ : Optional[int] = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images] SCREAMING_SNAKE_CASE_ : Optional[Any] = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] SCREAMING_SNAKE_CASE_ : Dict = {'pixel_values': images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
704
import math def _lowerCamelCase( lowerCAmelCase__ : float , lowerCAmelCase__ : float ): '''simple docstring''' return math.pow(lowerCAmelCase__ , 2 ) - a def _lowerCamelCase( lowerCAmelCase__ : float ): '''simple docstring''' return 2 * x def _lowerCamelCase( lowerCAmelCase__ : float ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = 2.0 while start <= a: SCREAMING_SNAKE_CASE_ : str = math.pow(lowerCAmelCase__ , 2 ) return start def _lowerCamelCase( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 9999 , lowerCAmelCase__ : float = 0.00_000_000_000_001 ): '''simple docstring''' if a < 0: raise ValueError('math domain error' ) SCREAMING_SNAKE_CASE_ : Optional[int] = get_initial_point(lowerCAmelCase__ ) for _ in range(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Tuple = value SCREAMING_SNAKE_CASE_ : Union[str, Any] = value - fx(lowerCAmelCase__ , lowerCAmelCase__ ) / fx_derivative(lowerCAmelCase__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
97
0
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() __a = logging.get_logger(__name__) def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->int: """simple docstring""" lowercase : Union[str, Any] = UniSpeechSatForSequenceClassification.from_pretrained(_UpperCamelCase, config=_UpperCamelCase ) lowercase : Optional[Any] = downstream_dict['''projector.weight'''] lowercase : List[str] = downstream_dict['''projector.bias'''] lowercase : Union[str, Any] = downstream_dict['''model.post_net.linear.weight'''] lowercase : int = downstream_dict['''model.post_net.linear.bias'''] return model def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->List[str]: """simple docstring""" lowercase : int = UniSpeechSatForAudioFrameClassification.from_pretrained(_UpperCamelCase, config=_UpperCamelCase ) lowercase : str = downstream_dict['''model.linear.weight'''] lowercase : Union[str, Any] = downstream_dict['''model.linear.bias'''] return model def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->int: """simple docstring""" lowercase : Dict = UniSpeechSatForXVector.from_pretrained(_UpperCamelCase, config=_UpperCamelCase ) lowercase : Union[str, Any] = downstream_dict['''connector.weight'''] lowercase : Optional[Any] = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowercase : int = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] lowercase : Any = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] lowercase : Tuple = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] lowercase : Optional[Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] lowercase : Tuple = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] lowercase : Tuple = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] lowercase : str = downstream_dict['''objective.W'''] return model @torch.no_grad() def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->List[Any]: """simple docstring""" lowercase : Union[str, Any] = torch.load(_UpperCamelCase, map_location='''cpu''' ) lowercase : Dict = checkpoint['''Downstream'''] lowercase : Tuple = UniSpeechSatConfig.from_pretrained(_UpperCamelCase ) lowercase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( _UpperCamelCase, return_attention_mask=_UpperCamelCase, do_normalize=_UpperCamelCase ) lowercase : List[Any] = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): lowercase : List[Any] = convert_classification(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) elif arch.endswith('''ForAudioFrameClassification''' ): lowercase : Optional[Any] = convert_diarization(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) elif arch.endswith('''ForXVector''' ): lowercase : Union[str, Any] = convert_xvector(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: lowercase : Optional[Any] = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(_UpperCamelCase ) hf_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') __a = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
319
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @require_torch def __lowerCamelCase ( self ): lowercase : Optional[Any] = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''' ) lowercase : Any = load_dataset('''ashraq/esc50''' ) lowercase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] lowercase : Optional[int] = audio_classifier(SCREAMING_SNAKE_CASE__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'''score''': 0.501, '''label''': '''Sound of a dog'''}, {'''score''': 0.499, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''' ) def __lowerCamelCase ( self ): pass @slow @require_torch def __lowerCamelCase ( self ): lowercase : List[str] = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog lowercase : List[str] = load_dataset('''ashraq/esc50''' ) lowercase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] lowercase : Dict = audio_classifier(SCREAMING_SNAKE_CASE__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ] , ) lowercase : Tuple = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) lowercase : Dict = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''' ) def __lowerCamelCase ( self ): pass
319
1
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @property def snake_case ( self : Dict )-> Any: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case ( self : int )-> Tuple: lowerCamelCase__ : List[str] =ort.SessionOptions() lowerCamelCase__ : List[Any] =False return options def snake_case ( self : Union[str, Any] )-> Optional[Any]: lowerCamelCase__ : Dict =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) lowerCamelCase__ : Union[str, Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) lowerCamelCase__ : Tuple =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy''' ) # using the PNDM scheduler by default lowerCamelCase__ : Any =OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( '''CompVis/stable-diffusion-v1-4''', revision='''onnx''', safety_checker=lowercase_, feature_extractor=lowercase_, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowercase_ ) lowerCamelCase__ : int ='''A red cat sitting on a park bench''' lowerCamelCase__ : Any =np.random.RandomState(0 ) lowerCamelCase__ : Dict =pipe( prompt=lowercase_, image=lowercase_, mask_image=lowercase_, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=lowercase_, output_type='''np''', ) lowerCamelCase__ : Union[str, Any] =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
716
"""simple docstring""" def snake_case__ ( __lowerCamelCase : int = 4000000 ): """simple docstring""" lowerCamelCase__ : Dict =[] lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =b, a + b return sum(__lowerCamelCase ) if __name__ == "__main__": print(f'{solution() = }')
625
0
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowerCamelCase_ (UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : bool = False ): if radian_mode: return [magnitude * cos(UpperCamelCase__ ), magnitude * sin(UpperCamelCase__ )] return [magnitude * cos(radians(UpperCamelCase__ ) ), magnitude * sin(radians(UpperCamelCase__ ) )] def lowerCamelCase_ (UpperCamelCase__ : NDArray[floataa] , UpperCamelCase__ : NDArray[floataa] , UpperCamelCase__ : float = 10**-1 ): _UpperCAmelCase : NDArray[floataa] = cross(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase : float = sum(UpperCamelCase__ ) return abs(UpperCamelCase__ ) < eps if __name__ == "__main__": # Test to check if it works _lowerCAmelCase :Union[str, Any] = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) _lowerCAmelCase :NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg _lowerCAmelCase :Union[str, Any] = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) _lowerCAmelCase :List[Any] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg _lowerCAmelCase :str = array([[0, -2_000], [0, -1_200], [0, 15_600], [0, -12_400]]) _lowerCAmelCase :int = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
506
"""simple docstring""" from __future__ import annotations import math def lowerCamelCase_ (UpperCamelCase__ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _lowerCAmelCase :Optional[int] = [num for num in range(3, 100_001, 2) if not is_prime(num)] def lowerCamelCase_ (UpperCamelCase__ : int ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) _UpperCAmelCase : Dict = [] for num in range(len(UpperCamelCase__ ) ): _UpperCAmelCase : Optional[int] = 0 while 2 * i * i <= odd_composites[num]: _UpperCAmelCase : Any = odd_composites[num] - 2 * i * i if is_prime(UpperCamelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCamelCase__ ) == n: return list_nums return [] def lowerCamelCase_ (): return compute_nums(1 )[0] if __name__ == "__main__": print(f"{solution() = }")
506
1
from __future__ import annotations from math import pow, sqrt def a ( A__ , A__ , A__ ) -> List[str]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(UpperCAmelCase__ , 2 ) - pow(UpperCAmelCase__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(UpperCAmelCase__ , 2 ) - pow(UpperCAmelCase__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(UpperCAmelCase__ , 2 ) + pow(UpperCAmelCase__ , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
710
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a_ :Optional[Any] = logging.get_logger(__name__) class lowercase : def __init__( self : Dict , _lowercase : str = None , _lowercase : uuid.UUID = None , _lowercase : List[str]=None , _lowercase : List[Any]=None ): if not conversation_id: SCREAMING_SNAKE_CASE__ : Union[str, Any] = uuid.uuida() if past_user_inputs is None: SCREAMING_SNAKE_CASE__ : List[str] = [] if generated_responses is None: SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : uuid.UUID = conversation_id SCREAMING_SNAKE_CASE__ : List[str] = past_user_inputs SCREAMING_SNAKE_CASE__ : List[str] = generated_responses SCREAMING_SNAKE_CASE__ : Optional[str] = text def __eq__( self : Optional[Any] , _lowercase : List[str] ): if not isinstance(_lowercase , _lowercase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowercase__ ( self : int , _lowercase : str , _lowercase : bool = False ): if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = text def lowercase__ ( self : Union[str, Any] ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) SCREAMING_SNAKE_CASE__ : List[Any] = None def lowercase__ ( self : Optional[int] , _lowercase : str ): self.generated_responses.append(_lowercase ) def lowercase__ ( self : int ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Any ): SCREAMING_SNAKE_CASE__ : Dict = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): SCREAMING_SNAKE_CASE__ : Dict = '''user''' if is_user else '''bot''' output += f"""{name} >> {text} \n""" return output @add_end_docstrings( _UpperCAmelCase , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowercase ( _UpperCAmelCase ): def __init__( self : str , *_lowercase : List[Any] , **_lowercase : Union[str, Any] ): super().__init__(*_lowercase , **_lowercase ) if self.tokenizer.pad_token_id is None: SCREAMING_SNAKE_CASE__ : int = self.tokenizer.eos_token def lowercase__ ( self : List[Any] , _lowercase : Union[str, Any]=None , _lowercase : Dict=None , _lowercase : Tuple=None , **_lowercase : List[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = {} SCREAMING_SNAKE_CASE__ : List[Any] = {} SCREAMING_SNAKE_CASE__ : Tuple = {} if min_length_for_response is not None: SCREAMING_SNAKE_CASE__ : List[str] = min_length_for_response if minimum_tokens is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = minimum_tokens if "max_length" in generate_kwargs: SCREAMING_SNAKE_CASE__ : List[Any] = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: SCREAMING_SNAKE_CASE__ : str = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_lowercase ) return preprocess_params, forward_params, postprocess_params def __call__( self : Union[str, Any] , _lowercase : Union[Conversation, List[Conversation]] , _lowercase : Dict=0 , **_lowercase : Optional[int] ): SCREAMING_SNAKE_CASE__ : Tuple = super().__call__(_lowercase , num_workers=_lowercase , **_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) == 1: return outputs[0] return outputs def lowercase__ ( self : str , _lowercase : Conversation , _lowercase : Optional[int]=32 ): if not isinstance(_lowercase , _lowercase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer._build_conversation_input_ids(_lowercase ) else: # If the tokenizer cannot handle conversations, we default to only the old version SCREAMING_SNAKE_CASE__ : Optional[int] = self._legacy_parse_and_tokenize(_lowercase ) if self.framework == "pt": SCREAMING_SNAKE_CASE__ : List[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowercase__ ( self : int , _lowercase : Optional[int] , _lowercase : Dict=10 , **_lowercase : Any ): SCREAMING_SNAKE_CASE__ : List[str] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) SCREAMING_SNAKE_CASE__ : Any = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = max_length - minimum_tokens SCREAMING_SNAKE_CASE__ : Tuple = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: SCREAMING_SNAKE_CASE__ : Optional[Any] = model_inputs['''attention_mask'''][:, -trim:] SCREAMING_SNAKE_CASE__ : Dict = model_inputs.pop('''conversation''' ) SCREAMING_SNAKE_CASE__ : Any = max_length SCREAMING_SNAKE_CASE__ : Tuple = self.model.generate(**_lowercase , **_lowercase ) if self.model.config.is_encoder_decoder: SCREAMING_SNAKE_CASE__ : List[str] = 1 else: SCREAMING_SNAKE_CASE__ : List[str] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowercase__ ( self : Union[str, Any] , _lowercase : List[str] , _lowercase : Dict=True ): SCREAMING_SNAKE_CASE__ : Optional[Any] = model_outputs['''output_ids'''] SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(_lowercase ) return conversation def lowercase__ ( self : Any , _lowercase : Conversation ): SCREAMING_SNAKE_CASE__ : int = self.tokenizer.eos_token_id SCREAMING_SNAKE_CASE__ : int = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) if len(_lowercase ) > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE__ : Optional[int] = input_ids[-self.tokenizer.model_max_length :] return input_ids
250
0
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) _lowercase = logging.getLogger(__name__) _lowercase = {'''facebook/bart-base''': BartForConditionalGeneration} _lowercase = {'''facebook/bart-base''': BartTokenizer} def UpperCamelCase ( ): lowerCAmelCase_ : int = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph.") parser.add_argument( "--validation_file" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="A csv or a json file containing the validation data.") parser.add_argument( "--max_length" , type=__lowerCAmelCase , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=__lowerCAmelCase , default=__lowerCAmelCase , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=__lowerCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__lowerCAmelCase , ) parser.add_argument( "--config_name" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=__lowerCAmelCase , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="Where to store the final ONNX file.") lowerCAmelCase_ : Tuple = parser.parse_args() return args def UpperCamelCase ( snake_case__ , snake_case__="cpu"): lowerCAmelCase_ : List[Any] = model_dict[model_name].from_pretrained(__lowerCAmelCase).to(__lowerCAmelCase) lowerCAmelCase_ : Any = tokenizer_dict[model_name].from_pretrained(__lowerCAmelCase) if model_name in ["facebook/bart-base"]: lowerCAmelCase_ : str = 0 lowerCAmelCase_ : str = None lowerCAmelCase_ : Optional[int] = 0 return huggingface_model, tokenizer def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): model.eval() lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : List[Any] = torch.jit.script(BARTBeamSearchGenerator(__lowerCAmelCase)) with torch.no_grad(): lowerCAmelCase_ : int = "My friends are cool but they eat too many carbs." lowerCAmelCase_ : List[Any] = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors="pt").to(model.device) lowerCAmelCase_ : Dict = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=__lowerCAmelCase , max_length=__lowerCAmelCase , early_stopping=__lowerCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( __lowerCAmelCase , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , __lowerCAmelCase , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=__lowerCAmelCase , ) logger.info("Model exported to {}".format(__lowerCAmelCase)) lowerCAmelCase_ : Any = remove_dup_initializers(os.path.abspath(__lowerCAmelCase)) logger.info("Deduplicated and optimized model written to {}".format(__lowerCAmelCase)) lowerCAmelCase_ : int = onnxruntime.InferenceSession(__lowerCAmelCase) lowerCAmelCase_ : List[Any] = ort_sess.run( __lowerCAmelCase , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(__lowerCAmelCase), "max_length": np.array(__lowerCAmelCase), "decoder_start_token_id": np.array(model.config.decoder_start_token_id), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3) logger.info("Model outputs from torch and ONNX Runtime are similar.") logger.info("Success.") def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = parse_args() lowerCAmelCase_ : Dict = 5 lowerCAmelCase_ : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO) transformers.utils.logging.set_verbosity_error() lowerCAmelCase_ : List[str] = torch.device(args.device) lowerCAmelCase_ , lowerCAmelCase_ : str = load_model_tokenizer(args.model_name_or_path , __lowerCAmelCase) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") model.to(__lowerCAmelCase) if args.max_length: lowerCAmelCase_ : int = args.max_length if args.num_beams: lowerCAmelCase_ : Union[str, Any] = args.num_beams if args.output_file_path: lowerCAmelCase_ : List[str] = args.output_file_path else: lowerCAmelCase_ : List[str] = "BART.onnx" logger.info("Exporting model to ONNX") export_and_validate_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) if __name__ == "__main__": main()
659
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') class _SCREAMING_SNAKE_CASE ( Generic[T] ): def __init__( self , lowerCamelCase ): snake_case__ = data snake_case__ = None def __str__( self ): return F"""{self.data}""" class _SCREAMING_SNAKE_CASE ( Generic[T] ): def __init__( self ): snake_case__ = None def __iter__( self ): snake_case__ = self.top while node: yield node.data snake_case__ = node.next def __str__( self ): return "->".join([str(lowerCamelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def A_ ( self ): return self.top is None def A_ ( self , lowerCamelCase ): snake_case__ = Node(lowerCamelCase ) if not self.is_empty(): snake_case__ = self.top snake_case__ = node def A_ ( self ): if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase ) snake_case__ = self.top snake_case__ = self.top.next return pop_node.data def A_ ( self ): if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def A_ ( self ): snake_case__ = None if __name__ == "__main__": from doctest import testmod testmod()
276
0
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def __lowerCamelCase ( __snake_case : int = 8 ) -> Optional[Any]: """simple docstring""" A__ : str =ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) ) def __lowerCamelCase ( __snake_case : str, __snake_case : int ) -> Tuple: """simple docstring""" i -= len(_lowerCAmelCase ) A__ : Union[str, Any] =i // 3 A__ : str =i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) A__ : Optional[Any] =( chars_incl + random(_lowerCAmelCase, quotient + remainder ) + random(_lowerCAmelCase, _lowerCAmelCase ) + random(_lowerCAmelCase, _lowerCAmelCase ) ) A__ : Optional[Any] =list(_lowerCAmelCase ) shuffle(_lowerCAmelCase ) return "".join(_lowerCAmelCase ) # random is a generalised function for letters, characters and numbers def __lowerCamelCase ( __snake_case : str, __snake_case : int ) -> int: """simple docstring""" return "".join(secrets.choice(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) ) def __lowerCamelCase ( __snake_case : List[str], __snake_case : Tuple ) -> Any: """simple docstring""" pass # Put your code here... def __lowerCamelCase ( __snake_case : int, __snake_case : int ) -> Union[str, Any]: """simple docstring""" pass # Put your code here... def __lowerCamelCase ( __snake_case : Dict, __snake_case : Dict ) -> int: """simple docstring""" pass # Put your code here... def __lowerCamelCase ( __snake_case : str, __snake_case : int = 8 ) -> Tuple: """simple docstring""" if len(_lowerCAmelCase ) < min_length: # Your Password must be at least 8 characters long return False A__ : List[Any] =any(char in ascii_uppercase for char in password ) A__ : str =any(char in ascii_lowercase for char in password ) A__ : Any =any(char in digits for char in password ) A__ : Tuple =any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def __lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ : str =int(input("""Please indicate the max length of your password: """ ).strip() ) A__ : Any =input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""", password_generator(_lowerCAmelCase ) ) print( """Alternative Password generated:""", alternative_password_generator(_lowerCAmelCase, _lowerCAmelCase ), ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
711
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : int = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' import numpy as np def __A ( lowerCAmelCase_ ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
414
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Any = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class __lowerCAmelCase ( __a ): snake_case : int = """dpt""" def __init__(self , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-12 , lowerCAmelCase__=3_8_4 , lowerCAmelCase__=1_6 , lowerCAmelCase__=3 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=[2, 5, 8, 1_1] , lowerCAmelCase__="project" , lowerCAmelCase__=[4, 2, 1, 0.5] , lowerCAmelCase__=[9_6, 1_9_2, 3_8_4, 7_6_8] , lowerCAmelCase__=2_5_6 , lowerCAmelCase__=-1 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.4 , lowerCAmelCase__=2_5_5 , lowerCAmelCase__=0.1 , lowerCAmelCase__=[1, 1_0_2_4, 2_4, 2_4] , lowerCAmelCase__=[0, 1] , lowerCAmelCase__=None , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : str = hidden_size _UpperCAmelCase : str = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) _UpperCAmelCase : str = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } _UpperCAmelCase : int = BitConfig(**lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info("""Initializing the config with a `BiT` backbone.""" ) _UpperCAmelCase : Union[str, Any] = BitConfig(**lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = backbone_config else: raise ValueError( F"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}." ) _UpperCAmelCase : Dict = backbone_featmap_shape _UpperCAmelCase : Optional[Any] = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: _UpperCAmelCase : List[Any] = None _UpperCAmelCase : Tuple = None _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : str = initializer_range _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Union[str, Any] = patch_size _UpperCAmelCase : Any = num_channels _UpperCAmelCase : List[Any] = qkv_bias _UpperCAmelCase : str = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) _UpperCAmelCase : str = readout_type _UpperCAmelCase : Optional[int] = reassemble_factors _UpperCAmelCase : Union[str, Any] = neck_hidden_sizes _UpperCAmelCase : Optional[int] = fusion_hidden_size _UpperCAmelCase : Tuple = head_in_index _UpperCAmelCase : str = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _UpperCAmelCase : int = use_auxiliary_head _UpperCAmelCase : Optional[Any] = auxiliary_loss_weight _UpperCAmelCase : Optional[int] = semantic_loss_ignore_index _UpperCAmelCase : Optional[Any] = semantic_classifier_dropout def snake_case_ (self ): _UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _UpperCAmelCase : List[Any] = self.backbone_config.to_dict() _UpperCAmelCase : List[Any] = self.__class__.model_type return output
414
1
def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> Union[str, Any]: '''simple docstring''' if not head: return True # split the list to two parts A , A = head.next, head while fast and fast.next: A = fast.next.next A = slow.next A = slow.next A = None # Don't forget here! But forget still works! # reverse the second part A = None while second: A = second.next A = node A = second A = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False A = node.next A = head.next return True def lowerCamelCase_ ( lowerCAmelCase__ : Optional[Any] ) -> Any: '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) A = A = A = head while fast and fast.next: A , A = fast.next.next, slow.next # 2. Push the second half into the stack A = [slow.val] while slow.next: A = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False A = cur.next return True def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] ) -> str: '''simple docstring''' if not head or not head.next: return True A = {} A = 0 while head: if head.val in d: d[head.val].append(lowerCAmelCase__ ) else: A = [pos] A = head.next pos += 1 A = pos - 1 A = 0 for v in d.values(): if len(lowerCAmelCase__ ) % 2 != 0: middle += 1 else: A = 0 for i in range(0 , len(lowerCAmelCase__ ) ): if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
714
def lowerCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] ) -> Optional[int]: '''simple docstring''' A = '' for i in table: res += inp[i - 1] return res def lowerCamelCase_ ( lowerCAmelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' return data[1:] + data[0] def lowerCamelCase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> Any: '''simple docstring''' A = '' for i in range(len(lowerCAmelCase__ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' A = int('0b' + data[0] + data[-1] , 2 ) A = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowerCamelCase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A = message[:4] A = message[4:] A = apply_table(lowerCAmelCase__ , lowerCAmelCase__ ) A = xor(lowerCAmelCase__ , lowerCAmelCase__ ) A = apply_sbox(lowerCAmelCase__ , temp[:4] ) # noqa: E741 A = apply_sbox(lowerCAmelCase__ , temp[4:] ) A = '0' * (2 - len(lowerCAmelCase__ )) + l # noqa: E741 A = '0' * (2 - len(lowerCAmelCase__ )) + r A = apply_table(l + r , lowerCAmelCase__ ) A = xor(lowerCAmelCase__ , lowerCAmelCase__ ) return temp + right if __name__ == "__main__": __snake_case :Tuple =input('Enter 10 bit key: ') __snake_case :Union[str, Any] =input('Enter 8 bit message: ') __snake_case :int =[6, 3, 7, 4, 8, 5, 10, 9] __snake_case :Dict =[3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __snake_case :Optional[int] =[2, 4, 3, 1] __snake_case :Tuple =[2, 6, 3, 1, 4, 8, 5, 7] __snake_case :Dict =[4, 1, 3, 5, 7, 2, 8, 6] __snake_case :str =[4, 1, 2, 3, 2, 3, 4, 1] __snake_case :Optional[int] =[[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __snake_case :Optional[Any] =[[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __snake_case :List[Any] =apply_table(key, paa_table) __snake_case :Tuple =temp[:5] __snake_case :int =temp[5:] __snake_case :int =left_shift(left) __snake_case :List[str] =left_shift(right) __snake_case :Tuple =apply_table(left + right, pa_table) __snake_case :List[Any] =left_shift(left) __snake_case :str =left_shift(right) __snake_case :Optional[Any] =left_shift(left) __snake_case :Optional[Any] =left_shift(right) __snake_case :Any =apply_table(left + right, pa_table) # encryption __snake_case :Optional[Any] =apply_table(message, IP) __snake_case :Optional[int] =function(expansion, sa, sa, keya, temp) __snake_case :Dict =temp[4:] + temp[:4] __snake_case :Any =function(expansion, sa, sa, keya, temp) __snake_case :Optional[int] =apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption __snake_case :str =apply_table(CT, IP) __snake_case :str =function(expansion, sa, sa, keya, temp) __snake_case :List[str] =temp[4:] + temp[:4] __snake_case :Tuple =function(expansion, sa, sa, keya, temp) __snake_case :Optional[int] =apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
224
0
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version _lowercase: Tuple = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') _lowercase: Optional[int] = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization _lowercase: Optional[int] = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } _lowercase: Dict = sorted(arg_to_scheduler.keys()) _lowercase: List[Any] = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class lowerCamelCase__ ( pl.LightningModule ): def __init__( self : Dict , lowercase__ : argparse.Namespace , lowercase__ : List[str]=None , lowercase__ : Any="base" , lowercase__ : Optional[Any]=None , lowercase__ : int=None , lowercase__ : int=None , **lowercase__ : Optional[Any] , ): super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase__ ) _lowerCAmelCase = 0 _lowerCAmelCase = Path(self.hparams.output_dir ) _lowerCAmelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _lowerCAmelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=lowercase__ , **lowercase__ , ) else: _lowerCAmelCase = config _lowerCAmelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , lowercase__ , lowercase__ ): assert hasattr(self.config , lowercase__ ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config , lowercase__ , getattr(self.hparams , lowercase__ ) ) if tokenizer is None: _lowerCAmelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase__ , ) else: _lowerCAmelCase = tokenizer _lowerCAmelCase = MODEL_MODES[mode] if model is None: _lowerCAmelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase__ , ) else: _lowerCAmelCase = model def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , *lowercase__ : Dict , **lowercase__ : Tuple ): _lowerCAmelCase = self.model_type.from_pretrained(*lowercase__ , **lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = arg_to_scheduler[self.hparams.lr_scheduler] _lowerCAmelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _lowerCAmelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = self.model _lowerCAmelCase = ['bias', 'LayerNorm.weight'] _lowerCAmelCase = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: _lowerCAmelCase = Adafactor( lowercase__ , lr=self.hparams.learning_rate , scale_parameter=lowercase__ , relative_step=lowercase__ ) else: _lowerCAmelCase = AdamW( lowercase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _lowerCAmelCase = optimizer _lowerCAmelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , lowercase__ : str , lowercase__ : Union[str, Any] ): return self.validation_step(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Any ): return self.validation_end(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _lowerCAmelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def SCREAMING_SNAKE_CASE__ ( self : Dict , lowercase__ : str ): if stage == "test": _lowerCAmelCase = len(self.test_dataloader().dataset ) else: _lowerCAmelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=lowercase__ ) _lowerCAmelCase = len(self.train_dataloader().dataset ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : str , lowercase__ : int , lowercase__ : bool = False ): raise NotImplementedError('You must implement this for your task' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return self.train_loader def SCREAMING_SNAKE_CASE__ ( self : Dict ): return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : int ): return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( lowercase__ , list(filter(lowercase__ , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Dict[str, Any] ): _lowerCAmelCase = self.output_dir.joinpath('best_tfmr' ) _lowerCAmelCase = self.step_count self.model.save_pretrained(lowercase__ ) self.tokenizer.save_pretrained(lowercase__ ) @staticmethod def SCREAMING_SNAKE_CASE__ ( lowercase__ : Dict , lowercase__ : Union[str, Any] ): parser.add_argument( '--model_name_or_path' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=lowercase__ , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=lowercase__ , type=lowercase__ , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(lowercase__ ).parent / 'test_run' / 'cache' ) , type=lowercase__ , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=lowercase__ , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=lowercase__ , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=lowercase__ , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=lowercase__ , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5e-5 , type=lowercase__ , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=lowercase__ , metavar=lowercase__ , type=lowercase__ , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=lowercase__ , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=lowercase__ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=lowercase__ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=lowercase__ , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=lowercase__ ) parser.add_argument('--train_batch_size' , default=32 , type=lowercase__ ) parser.add_argument('--eval_batch_size' , default=32 , type=lowercase__ ) parser.add_argument('--adafactor' , action='store_true' ) class lowerCamelCase__ ( pl.Callback ): def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : Any , lowercase__ : int ): if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCamelCase__ ( pl.Callback ): def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : Dict , lowercase__ : int ): # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase__ ) class lowerCamelCase__ ( pl.Callback ): def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Optional[Any] , lowercase__ : Optional[int] ): _lowerCAmelCase = trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase = {f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict , lowercase__ : pl.Trainer , lowercase__ : pl.LightningModule ): rank_zero_info('***** Validation results *****' ) _lowerCAmelCase = trainer.callback_metrics # Log results for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(lowercase__ , str(metrics[key] ) ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : pl.Trainer , lowercase__ : pl.LightningModule ): rank_zero_info('***** Test results *****' ) _lowerCAmelCase = trainer.callback_metrics # Log and save results to file _lowerCAmelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(lowercase__ , 'w' ) as writer: for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(lowercase__ , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(lowercase__ , str(metrics[key] ) ) ) def _lowerCamelCase ( snake_case , snake_case ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=snake_case , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=snake_case ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=snake_case , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=snake_case , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def _lowerCamelCase ( snake_case , snake_case , snake_case=None , snake_case=True , snake_case=[] , snake_case=None , snake_case=None , **snake_case , ): pl.seed_everything(args.seed ) # init model _lowerCAmelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=snake_case ) # add custom checkpoints if checkpoint_callback is None: _lowerCAmelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(snake_case ) if logging_callback is None: _lowerCAmelCase = LoggingCallback() _lowerCAmelCase = {} if args.fpaa: _lowerCAmelCase = 16 if args.gpus > 1: _lowerCAmelCase = 'auto' _lowerCAmelCase = 'ddp' _lowerCAmelCase = args.accumulate_grad_batches _lowerCAmelCase = None _lowerCAmelCase = 'auto' _lowerCAmelCase = pl.Trainer.from_argparse_args( snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , ) if args.do_train: trainer.fit(snake_case ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
192
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCamelCase__ ( UpperCAmelCase ): def __init__( self : Dict , lowercase__ : Dict , lowercase__ : Optional[Any]=13 , lowercase__ : Dict=7 , lowercase__ : Dict=True , lowercase__ : Optional[Any]=True , lowercase__ : Optional[int]=False , lowercase__ : Any=True , lowercase__ : Union[str, Any]=99 , lowercase__ : Optional[int]=32 , lowercase__ : Any=5 , lowercase__ : Any=4 , lowercase__ : List[str]=64 , lowercase__ : Any="gelu" , lowercase__ : Optional[Any]=0.1 , lowercase__ : List[str]=0.1 , lowercase__ : Dict=5_12 , lowercase__ : List[str]=16 , lowercase__ : Union[str, Any]=2 , lowercase__ : str=0.0_2 , lowercase__ : Optional[int]=3 , lowercase__ : Union[str, Any]=4 , lowercase__ : Union[str, Any]=None , lowercase__ : Optional[int]=2 , lowercase__ : Optional[int]=2 , lowercase__ : List[Any]=2 , lowercase__ : Optional[int]=2 , lowercase__ : Union[str, Any]=4 , lowercase__ : Tuple=1 , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope _lowerCAmelCase = q_groups _lowerCAmelCase = k_groups _lowerCAmelCase = v_groups _lowerCAmelCase = post_attention_groups _lowerCAmelCase = intermediate_groups _lowerCAmelCase = output_groups def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : int ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : Dict , lowercase__ : Any , lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Tuple ): _lowerCAmelCase = SqueezeBertModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , lowercase__ ) _lowerCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : int , lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] ): _lowerCAmelCase = SqueezeBertForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : str , lowercase__ : Dict , lowercase__ : Tuple , lowercase__ : int ): _lowerCAmelCase = SqueezeBertForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model( lowercase__ , attention_mask=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , lowercase__ : Dict , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : List[str] , lowercase__ : List[Any] , lowercase__ : Tuple ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = SqueezeBertForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : str , lowercase__ : Dict , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Optional[int] ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = SqueezeBertForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : List[Any] , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : Any ): _lowerCAmelCase = self.num_choices _lowerCAmelCase = SqueezeBertForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( lowercase__ , attention_mask=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = config_and_inputs _lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase__ =( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ =False UpperCamelCase__ =True UpperCamelCase__ =False def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = SqueezeBertModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=lowercase__ , dim=37 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = SqueezeBertModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) _lowerCAmelCase = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) _lowerCAmelCase = model(lowercase__ )[0] _lowerCAmelCase = torch.Size((1, 3) ) self.assertEqual(output.shape , lowercase__ ) _lowerCAmelCase = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] ) self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-4 ) )
192
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : Dict = """dpt""" def __init__( self : Optional[int] , __UpperCamelCase : str=768 , __UpperCamelCase : Any=12 , __UpperCamelCase : Optional[int]=12 , __UpperCamelCase : Optional[int]=3_072 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : Tuple=0.0 , __UpperCamelCase : str=0.0 , __UpperCamelCase : List[str]=0.02 , __UpperCamelCase : List[Any]=1e-1_2 , __UpperCamelCase : List[Any]=384 , __UpperCamelCase : Tuple=16 , __UpperCamelCase : List[str]=3 , __UpperCamelCase : str=False , __UpperCamelCase : Dict=True , __UpperCamelCase : List[str]=[2, 5, 8, 11] , __UpperCamelCase : Optional[int]="project" , __UpperCamelCase : Optional[Any]=[4, 2, 1, 0.5] , __UpperCamelCase : int=[96, 192, 384, 768] , __UpperCamelCase : Union[str, Any]=256 , __UpperCamelCase : List[str]=-1 , __UpperCamelCase : List[Any]=False , __UpperCamelCase : Dict=True , __UpperCamelCase : Optional[Any]=0.4 , __UpperCamelCase : Tuple=255 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : List[Any]=[1, 1_024, 24, 24] , __UpperCamelCase : Any=[0, 1] , __UpperCamelCase : List[str]=None , **__UpperCamelCase : Dict , ): super().__init__(**__UpperCamelCase ) _UpperCAmelCase = hidden_size _UpperCAmelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) _UpperCAmelCase = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } _UpperCAmelCase = BitConfig(**__UpperCamelCase ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): logger.info("Initializing the config with a `BiT` backbone." ) _UpperCAmelCase = BitConfig(**__UpperCamelCase ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) _UpperCAmelCase = backbone_featmap_shape _UpperCAmelCase = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = [] _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = qkv_bias _UpperCAmelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) _UpperCAmelCase = readout_type _UpperCAmelCase = reassemble_factors _UpperCAmelCase = neck_hidden_sizes _UpperCAmelCase = fusion_hidden_size _UpperCAmelCase = head_in_index _UpperCAmelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = semantic_loss_ignore_index _UpperCAmelCase = semantic_classifier_dropout def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
129
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __lowerCAmelCase = pd.read_csv("sample_data.csv", header=None) __lowerCAmelCase = df.shape[:1][0] # If you're using some other dataset input the target column __lowerCAmelCase = df.iloc[:, 1:2] __lowerCAmelCase = actual_data.values.reshape(len_data, 1) __lowerCAmelCase = MinMaxScaler().fit_transform(actual_data) __lowerCAmelCase = 1_0 __lowerCAmelCase = 5 __lowerCAmelCase = 2_0 __lowerCAmelCase = len_data - periods * look_back __lowerCAmelCase = actual_data[:division] __lowerCAmelCase = actual_data[division - look_back :] __lowerCAmelCase , __lowerCAmelCase = [], [] __lowerCAmelCase , __lowerCAmelCase = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __lowerCAmelCase = np.array(train_x) __lowerCAmelCase = np.array(test_x) __lowerCAmelCase = np.array([list(i.ravel()) for i in train_y]) __lowerCAmelCase = np.array([list(i.ravel()) for i in test_y]) __lowerCAmelCase = Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") __lowerCAmelCase = model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) __lowerCAmelCase = model.predict(x_test)
129
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case : Optional[int] = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __snake_case : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
215
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
215
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class UpperCamelCase__ : def __init__( self : str , lowerCamelCase : Any , ): '''simple docstring''' a__ = parent a__ = 1_3 a__ = 7 a__ = True a__ = True a__ = True a__ = 9_9 a__ = 3_2 a__ = 2 a__ = 4 a__ = 3_7 a__ = "gelu" a__ = 0.1 a__ = 0.1 a__ = 5_1_2 a__ = 1_6 a__ = 2 a__ = 0.02 a__ = 3 a__ = 4 a__ = None def __a ( self : Tuple ): '''simple docstring''' a__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ = ids_tensor([self.batch_size] , self.num_choices ) a__ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self : Any ): '''simple docstring''' ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = self.prepare_config_and_inputs() a__ = True a__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __a ( self : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : Dict ): '''simple docstring''' a__ = TFEsmModel(config=lowerCamelCase ) a__ = {"input_ids": input_ids, "attention_mask": input_mask} a__ = model(lowerCamelCase ) a__ = [input_ids, input_mask] a__ = model(lowerCamelCase ) a__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : Dict , lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : List[Any] , lowerCamelCase : Tuple , ): '''simple docstring''' a__ = True a__ = TFEsmModel(config=lowerCamelCase ) a__ = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } a__ = model(lowerCamelCase ) a__ = [input_ids, input_mask] a__ = model(lowerCamelCase , encoder_hidden_states=lowerCamelCase ) # Also check the case where encoder outputs are not passed a__ = model(lowerCamelCase , attention_mask=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] ): '''simple docstring''' a__ = TFEsmForMaskedLM(config=lowerCamelCase ) a__ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] , lowerCamelCase : str ): '''simple docstring''' a__ = self.num_labels a__ = TFEsmForTokenClassification(config=lowerCamelCase ) a__ = {"input_ids": input_ids, "attention_mask": input_mask} a__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : str ): '''simple docstring''' a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCamelCase__ ( __lowerCAmelCase ,__lowerCAmelCase ,unittest.TestCase ): lowerCAmelCase__ : Any = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase__ : Dict = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ : Dict = False lowerCAmelCase__ : List[Any] = False def __a ( self : List[str] ): '''simple docstring''' a__ = TFEsmModelTester(self ) a__ = ConfigTester(self , config_class=lowerCamelCase , hidden_size=3_7 ) def __a ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : Tuple ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __a ( self : int ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase ) def __a ( self : Optional[int] ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase ) def __a ( self : Any ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase ) @slow def __a ( self : List[str] ): '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = TFEsmModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @unittest.skip("Protein models do not support embedding resizing." ) def __a ( self : List[Any] ): '''simple docstring''' pass @unittest.skip("Protein models do not support embedding resizing." ) def __a ( self : Optional[Any] ): '''simple docstring''' pass def __a ( self : Optional[Any] ): '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(lowerCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer a__ = model.get_bias() assert isinstance(lowerCamelCase , lowerCamelCase ) for k, v in name.items(): assert isinstance(lowerCamelCase , tf.Variable ) else: a__ = model.get_output_embeddings() assert x is None a__ = model.get_bias() assert name is None @require_tf class UpperCamelCase__ ( unittest.TestCase ): @slow def __a ( self : List[str] ): '''simple docstring''' a__ = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) a__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) a__ = model(lowerCamelCase )[0] a__ = [1, 6, 3_3] self.assertEqual(list(output.numpy().shape ) , lowerCamelCase ) # compare the actual values for a slice. a__ = tf.constant( [ [ [8.921518, -10.589814, -6.4671307], [-6.3967156, -13.911377, -1.1211915], [-7.781247, -13.951557, -3.740592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def __a ( self : Any ): '''simple docstring''' a__ = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) a__ = tf.constant([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) a__ = model(lowerCamelCase )[0] # compare the actual values for a slice. a__ = tf.constant( [ [ [0.14443092, 0.54125327, 0.3247739], [0.30340484, 0.00526676, 0.31077722], [0.32278043, -0.24987096, 0.3414628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
289
'''simple docstring''' import re def _lowerCamelCase (__lowerCamelCase : str ) -> bool: a__ = re.compile( r"^(?:0|94|\+94|0{2}94)" r"7(0|1|2|4|5|6|7|8)" r"(-| |)" r"\d{7}$" ) return bool(re.search(__lowerCamelCase , __lowerCamelCase ) ) if __name__ == "__main__": lowerCAmelCase_ : Any = "0094702343221" print(is_sri_lankan_phone_number(phone))
289
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor snake_case_ = logging.get_logger(__name__) class a__ ( _lowercase ): def __init__(self : Any, *__UpperCAmelCase : Dict, **__UpperCAmelCase : Optional[int] ) -> None: """simple docstring""" warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''', __UpperCAmelCase, ) super().__init__(*__UpperCAmelCase, **__UpperCAmelCase )
507
'''simple docstring''' import random from typing import Any def __lowercase (_SCREAMING_SNAKE_CASE :list ): for _ in range(len(_SCREAMING_SNAKE_CASE ) ): SCREAMING_SNAKE_CASE : List[str] = random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) SCREAMING_SNAKE_CASE : str = random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": snake_case_ = [0, 1, 2, 3, 4, 5, 6, 7] snake_case_ = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
507
1
"""simple docstring""" snake_case = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' snake_case = [{'type': 'code', 'content': INSTALL_CONTENT}] snake_case = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
719
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification snake_case = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co snake_case = 'main' # Default branch name snake_case = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) snake_case = 'aaaaaaa' # This commit does not exist, so we should 404. snake_case = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes snake_case = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def UpperCamelCase_ ( ): print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def UpperCamelCase_ ( ): print('Bonjour!' ) yield print('Au revoir!' ) class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def A ( self ) -> str: """simple docstring""" assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def A ( self , lowercase__ ) -> str: """simple docstring""" with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , 'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def A ( self , lowercase__ ) -> str: """simple docstring""" with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def A ( self , lowercase__ ) -> List[Any]: """simple docstring""" with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def A ( self ) -> str: """simple docstring""" self.assertEqual(find_labels(lowercase__ ) , ['labels'] ) self.assertEqual(find_labels(lowercase__ ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(lowercase__ ) , ['start_positions', 'end_positions'] ) class UpperCamelCase ( __magic_name__ ): """simple docstring""" pass self.assertEqual(find_labels(lowercase__ ) , ['labels'] ) @require_tf def A ( self ) -> Optional[int]: """simple docstring""" self.assertEqual(find_labels(lowercase__ ) , ['labels'] ) self.assertEqual(find_labels(lowercase__ ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(lowercase__ ) , ['start_positions', 'end_positions'] ) class UpperCamelCase ( __magic_name__ ): """simple docstring""" pass self.assertEqual(find_labels(lowercase__ ) , ['labels'] ) @require_flax def A ( self ) -> List[Any]: """simple docstring""" self.assertEqual(find_labels(lowercase__ ) , [] ) self.assertEqual(find_labels(lowercase__ ) , [] ) self.assertEqual(find_labels(lowercase__ ) , [] ) class UpperCamelCase ( __magic_name__ ): """simple docstring""" pass self.assertEqual(find_labels(lowercase__ ) , [] )
406
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device lowercase__ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self ): _lowerCamelCase : List[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Union[str, Any] = 'A painting of a squirrel eating a burger ' _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : Union[str, Any] = pipe( prompt=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained(lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Any = generator.manual_seed(0 ) _lowerCamelCase : Union[str, Any] = pipe( prompt=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def A_ ( self ): _lowerCamelCase : Optional[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Optional[int] = 'A painting of a squirrel eating a burger ' _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = pipe( prompt=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images _lowerCamelCase : Any = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Union[str, Any] = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
630
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = RobertaTokenizer lowerCamelCase__ = RobertaTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = {"""cls_token""": """<s>"""} def A_ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _lowerCamelCase : Optional[int] = dict(zip(lowercase , range(len(lowercase ) ) ) ) _lowerCamelCase : Optional[int] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowerCamelCase : Optional[Any] = {'unk_token': '<unk>'} _lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase ) ) def A_ ( self , **lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A_ ( self , **lowercase ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : Any = 'lower newer' _lowerCamelCase : Union[str, Any] = 'lower newer' return input_text, output_text def A_ ( self ): _lowerCamelCase : Dict = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : List[str] = 'lower newer' _lowerCamelCase : Tuple = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowerCamelCase : List[str] = tokenizer.tokenize(lowercase ) # , add_prefix_space=True) self.assertListEqual(lowercase , lowercase ) _lowerCamelCase : List[Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=lowercase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=lowercase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def A_ ( self ): _lowerCamelCase : Dict = self.tokenizer_class.from_pretrained('roberta-base' ) _lowerCamelCase : Tuple = tokenizer.encode('sequence builders' , add_special_tokens=lowercase ) _lowerCamelCase : int = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase ) _lowerCamelCase : List[Any] = tokenizer.encode( 'sequence builders' , add_special_tokens=lowercase , add_prefix_space=lowercase ) _lowerCamelCase : List[str] = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowercase , add_prefix_space=lowercase ) _lowerCamelCase : Dict = tokenizer.build_inputs_with_special_tokens(lowercase ) _lowerCamelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def A_ ( self ): _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : str = 'Encode this sequence.' _lowerCamelCase : Optional[int] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments _lowerCamelCase : Optional[int] = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase , lowercase ) _lowerCamelCase : List[str] = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) _lowerCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase , lowercase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _lowerCamelCase : Optional[Any] = tokenizer.encode(lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase , lowercase ) # Testing spaces after special tokens _lowerCamelCase : List[Any] = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase )} ) # mask token has a left space _lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(lowercase ) _lowerCamelCase : Optional[int] = 'Encode <mask> sequence' _lowerCamelCase : int = 'Encode <mask>sequence' _lowerCamelCase : str = tokenizer.encode(lowercase ) _lowerCamelCase : Tuple = encoded.index(lowercase ) _lowerCamelCase : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase , lowercase ) _lowerCamelCase : Any = tokenizer.encode(lowercase ) _lowerCamelCase : Union[str, Any] = encoded.index(lowercase ) _lowerCamelCase : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase , lowercase ) def A_ ( self ): pass def A_ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) _lowerCamelCase : Dict = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) _lowerCamelCase : List[str] = 'A, <mask> AllenNLP sentence.' _lowerCamelCase : List[Any] = tokenizer_r.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer_p.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _lowerCamelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _lowerCamelCase : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def A_ ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _lowerCamelCase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _lowerCamelCase : Dict = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , lowercase ) self.assertEqual(post_processor_state['add_prefix_space'] , lowercase ) self.assertEqual(post_processor_state['trim_offsets'] , lowercase ) def A_ ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : Dict = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _lowerCamelCase : Tuple = F'''{text_of_1_token} {text_of_1_token}''' _lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _lowerCamelCase : List[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) _lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _lowerCamelCase : List[str] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) _lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _lowerCamelCase : int = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) _lowerCamelCase : int = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _lowerCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _lowerCamelCase : Optional[int] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ) + 1, 1 + len(lowercase ) + 1 + len(lowercase )) , ) _lowerCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , ) _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , )
630
1
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __A =logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , *lowercase , **lowercase ) -> None: warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , lowercase , ) super().__init__(*lowercase , **lowercase )
313
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def lowerCamelCase_ ( lowerCamelCase__ ): if "cls_token" in name: lowerCamelCase_ = name.replace("cls_token" , "vit.embeddings.cls_token" ) if "mask_token" in name: lowerCamelCase_ = name.replace("mask_token" , "decoder.mask_token" ) if "decoder_pos_embed" in name: lowerCamelCase_ = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: lowerCamelCase_ = name.replace("pos_embed" , "vit.embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace("patch_embed.proj" , "vit.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace("patch_embed.norm" , "vit.embeddings.norm" ) if "decoder_blocks" in name: lowerCamelCase_ = name.replace("decoder_blocks" , "decoder.decoder_layers" ) if "blocks" in name: lowerCamelCase_ = name.replace("blocks" , "vit.encoder.layer" ) if "attn.proj" in name: lowerCamelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: lowerCamelCase_ = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: lowerCamelCase_ = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: lowerCamelCase_ = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name: lowerCamelCase_ = name.replace("norm.weight" , "vit.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name: lowerCamelCase_ = name.replace("norm.bias" , "vit.layernorm.bias" ) return name def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: lowerCamelCase_ = key.split("." ) lowerCamelCase_ = int(key_split[1] ) if "decoder_blocks" in key: lowerCamelCase_ = config.decoder_hidden_size lowerCamelCase_ = "decoder.decoder_layers." if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[dim : dim * 2, :] lowerCamelCase_ = val[-dim:, :] elif "bias" in key: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = config.hidden_size lowerCamelCase_ = "vit.encoder.layer." if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[dim : dim * 2, :] lowerCamelCase_ = val[-dim:, :] elif "bias" in key: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = val return orig_state_dict def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = ViTMAEConfig() if "large" in checkpoint_url: lowerCamelCase_ = 1_0_2_4 lowerCamelCase_ = 4_0_9_6 lowerCamelCase_ = 2_4 lowerCamelCase_ = 1_6 elif "huge" in checkpoint_url: lowerCamelCase_ = 1_4 lowerCamelCase_ = 1_2_8_0 lowerCamelCase_ = 5_1_2_0 lowerCamelCase_ = 3_2 lowerCamelCase_ = 1_6 lowerCamelCase_ = ViTMAEForPreTraining(lowerCamelCase__ ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location="cpu" )["model"] lowerCamelCase_ = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase_ = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() lowerCamelCase_ = "https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg" lowerCamelCase_ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) lowerCamelCase_ = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase_ = image_processor(images=lowerCamelCase__ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ = outputs.logits if "large" in checkpoint_url: lowerCamelCase_ = torch.tensor( [[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]] ) elif "huge" in checkpoint_url: lowerCamelCase_ = torch.tensor( [[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]] ) else: lowerCamelCase_ = torch.tensor( [[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A =parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
1
'''simple docstring''' from math import ceil, sqrt def UpperCAmelCase_ ( lowerCAmelCase_ = 100_0000 ): """simple docstring""" lowercase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowercase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowercase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"{solution() = }")
310
'''simple docstring''' import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name __lowerCamelCase : Optional[Any] = 256 class UpperCAmelCase ( _lowercase ): UpperCAmelCase : Union[str, Any] = ['''melgan'''] def __init__(self : Optional[Any] , A__ : SpectrogramNotesEncoder , A__ : SpectrogramContEncoder , A__ : TaFilmDecoder , A__ : DDPMScheduler , A__ : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: super().__init__() # From MELGAN lowercase = math.log(1e-5 ) # Matches MelGAN training. lowercase = 4.0 # Largest value for most examples lowercase = 1_2_8 self.register_modules( notes_encoder=A__ , continuous_encoder=A__ , decoder=A__ , scheduler=A__ , melgan=A__ , ) def UpperCAmelCase__ (self : Union[str, Any] , A__ : Any , A__ : Tuple=(-1.0, 1.0) , A__ : Any=False ) -> Any: lowercase , lowercase = output_range if clip: lowercase = torch.clip(A__ , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def UpperCAmelCase__ (self : Tuple , A__ : Any , A__ : List[str]=(-1.0, 1.0) , A__ : Any=False ) -> str: lowercase , lowercase = input_range lowercase = torch.clip(A__ , A__ , A__ ) if clip else outputs # Scale to [0, 1]. lowercase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def UpperCAmelCase__ (self : List[str] , A__ : Optional[int] , A__ : Optional[Any] , A__ : List[Any] ) -> Dict: lowercase = input_tokens > 0 lowercase , lowercase = self.notes_encoder( encoder_input_tokens=A__ , encoder_inputs_mask=A__ ) lowercase , lowercase = self.continuous_encoder( encoder_inputs=A__ , encoder_inputs_mask=A__ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def UpperCAmelCase__ (self : int , A__ : int , A__ : Optional[int] , A__ : List[Any] ) -> str: lowercase = noise_time if not torch.is_tensor(A__ ): lowercase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(A__ ) and len(timesteps.shape ) == 0: lowercase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase = self.decoder( encodings_and_masks=A__ , decoder_input_tokens=A__ , decoder_noise_time=A__ ) return logits @torch.no_grad() def __call__(self : int , A__ : List[List[int]] , A__ : Optional[torch.Generator] = None , A__ : int = 1_0_0 , A__ : bool = True , A__ : str = "numpy" , A__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , A__ : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A__ , A__ ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(A__ )}.' ) lowercase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=A__ , device=self.device ) for i, encoder_input_tokens in enumerate(A__ ): if i == 0: lowercase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=A__ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase = ones lowercase = self.scale_features( A__ , output_range=[-1.0, 1.0] , clip=A__ ) lowercase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=A__ , continuous_mask=A__ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=A__ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(A__ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase = self.decode( encodings_and_masks=A__ , input_tokens=A__ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase = self.scheduler.step(A__ , A__ , A__ , generator=A__ ).prev_sample lowercase = self.scale_to_features(A__ , input_range=[-1.0, 1.0] ) lowercase = mel[:1] lowercase = mel.cpu().float().numpy() lowercase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A__ , A__ ) logger.info("Generated segment" , A__ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." ) elif output_type == "numpy" and self.melgan is None: raise ValueError( "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." ) if output_type == "numpy": lowercase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=A__ )
310
1
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCamelCase (datasets.BeamBasedBuilder ): def SCREAMING_SNAKE_CASE ( self : Any ) -> str: return datasets.DatasetInfo( features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=__UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : List[Any] ) -> int: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )] def SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] ) -> Tuple: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__UpperCAmelCase ) class lowerCamelCase (datasets.BeamBasedBuilder ): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: return datasets.DatasetInfo( features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=__UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ) -> Optional[int]: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} ) ] def SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] ) -> List[str]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__UpperCAmelCase ) def A ( ): '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] def A ( ): '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] class lowerCamelCase (A__ ): @require_beam def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE__ = DummyBeamDataset(cache_dir=__UpperCAmelCase , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__UpperCAmelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) SCREAMING_SNAKE_CASE__ = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , __UpperCAmelCase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , __UpperCAmelCase ) self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__UpperCAmelCase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: import apache_beam as beam SCREAMING_SNAKE_CASE__ = beam.io.parquetio.WriteToParquet SCREAMING_SNAKE_CASE__ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE__ = DummyBeamDataset(cache_dir=__UpperCAmelCase , beam_runner="""DirectRunner""" ) with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock: SCREAMING_SNAKE_CASE__ = partial(__UpperCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __UpperCAmelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( __UpperCAmelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) SCREAMING_SNAKE_CASE__ = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , __UpperCAmelCase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , __UpperCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) ) self.assertTrue( os.path.exists(os.path.join(__UpperCAmelCase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE__ = DummyBeamDataset(cache_dir=__UpperCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE__ = NestedBeamDataset(cache_dir=__UpperCAmelCase , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__UpperCAmelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) ) SCREAMING_SNAKE_CASE__ = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , __UpperCAmelCase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , __UpperCAmelCase ) self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__UpperCAmelCase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset
616
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowerCamelCase : def __init__( self : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int = 1_3 , __UpperCAmelCase : int = 6_4 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 3 , __UpperCAmelCase : bool = True , __UpperCAmelCase : bool = True , __UpperCAmelCase : int = 1_2_8 , __UpperCAmelCase : Optional[int]=[1_6, 3_2, 6_4, 1_2_8] , __UpperCAmelCase : int = 7 , __UpperCAmelCase : int = 4 , __UpperCAmelCase : int = 3_7 , __UpperCAmelCase : str = "gelu" , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : int = 1_0 , __UpperCAmelCase : float = 0.02 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 1_2_8 , __UpperCAmelCase : List[int] = [2, 2, 2, 2] , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 2 , ) -> Tuple: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = encoder_stride SCREAMING_SNAKE_CASE__ = num_attention_outputs SCREAMING_SNAKE_CASE__ = embed_dim SCREAMING_SNAKE_CASE__ = embed_dim + 1 SCREAMING_SNAKE_CASE__ = resolution SCREAMING_SNAKE_CASE__ = depths SCREAMING_SNAKE_CASE__ = hidden_sizes SCREAMING_SNAKE_CASE__ = dim SCREAMING_SNAKE_CASE__ = mlp_expansion_ratio def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : str ) -> Tuple: SCREAMING_SNAKE_CASE__ = TFEfficientFormerModel(config=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase , training=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any ) -> Dict: SCREAMING_SNAKE_CASE__ = self.type_sequence_label_size SCREAMING_SNAKE_CASE__ = TFEfficientFormerForImageClassification(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = TFEfficientFormerForImageClassification(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase (A__ ,A__ ,unittest.TestCase ): lowerCamelCase__ : Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowerCamelCase__ : List[Any] = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : List[Any] = False def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = TFEfficientFormerModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester( self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: pass def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> str: def check_hidden_states_output(__UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : int ): SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) , training=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE__ = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): SCREAMING_SNAKE_CASE__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: SCREAMING_SNAKE_CASE__ = seq_length * self.model_tester.chunk_length else: SCREAMING_SNAKE_CASE__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: SCREAMING_SNAKE_CASE__ = outputs.decoder_hidden_states self.asseretIsInstance(__UpperCAmelCase , (list, tuple) ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = getattr(self.model_tester , """seq_length""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = getattr(self.model_tester , """decoder_seq_length""" , __UpperCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any=False ) -> List[str]: SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = TFEfficientFormerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = getattr(self.model_tester , """seq_length""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = getattr(self.model_tester , """encoder_seq_length""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = getattr(self.model_tester , """key_length""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = getattr(self.model_tester , """chunk_length""" , __UpperCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): SCREAMING_SNAKE_CASE__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) , training=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) , training=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes SCREAMING_SNAKE_CASE__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=__UpperCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) self.assertTrue(outputs_dict is not None ) def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowerCamelCase (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=__UpperCAmelCase , return_tensors="""tf""" ) # forward pass SCREAMING_SNAKE_CASE__ = model(**__UpperCAmelCase , training=__UpperCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE__ = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=__UpperCAmelCase , return_tensors="""tf""" ) # forward pass SCREAMING_SNAKE_CASE__ = model(**__UpperCAmelCase , training=__UpperCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE__ = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
616
1
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCAmelCase_ ( __snake_case , __snake_case ): """simple docstring""" @register_to_config def __init__( self : int , UpperCAmelCase : Optional[Any] = 128 , UpperCAmelCase : Union[str, Any] = 256 , UpperCAmelCase : Dict = 2_0_0_0.0 , UpperCAmelCase : str = 768 , UpperCAmelCase : List[str] = 12 , UpperCAmelCase : Optional[Any] = 12 , UpperCAmelCase : List[str] = 64 , UpperCAmelCase : Any = 2048 , UpperCAmelCase : Any = 0.1 , ) -> List[Any]: '''simple docstring''' super().__init__() lowercase : Tuple =nn.Sequential( nn.Linear(__UpperCamelCase , d_model * 4 , bias=__UpperCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__UpperCamelCase ) , nn.SiLU() , ) lowercase : Any =nn.Embedding(__UpperCamelCase , __UpperCamelCase ) lowercase : int =False lowercase : Tuple =nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) lowercase : Dict =nn.Dropout(p=__UpperCamelCase ) lowercase : Tuple =nn.ModuleList() for lyr_num in range(__UpperCamelCase ): # FiLM conditional T5 decoder lowercase : Optional[Any] =DecoderLayer(d_model=__UpperCamelCase , d_kv=__UpperCamelCase , num_heads=__UpperCamelCase , d_ff=__UpperCamelCase , dropout_rate=__UpperCamelCase ) self.decoders.append(__UpperCamelCase ) lowercase : str =TaLayerNorm(__UpperCamelCase ) lowercase : Optional[Any] =nn.Dropout(p=__UpperCamelCase ) lowercase : str =nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) def A__ ( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def A__ ( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase , lowercase , lowercase : Optional[int] =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowercase : Dict =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) lowercase : List[str] =self.conditioning_emb(__UpperCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowercase : List[Any] =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowercase : str =torch.broadcast_to( torch.arange(__UpperCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) lowercase : Union[str, Any] =self.position_encoding(__UpperCamelCase ) lowercase : Union[str, Any] =self.continuous_inputs_projection(__UpperCamelCase ) inputs += position_encodings lowercase : List[Any] =self.dropout(__UpperCamelCase ) # decoder: No padding present. lowercase : List[Any] =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowercase : Any =[(x, self.encoder_decoder_mask(__UpperCamelCase , __UpperCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowercase : List[str] =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) lowercase : Union[str, Any] =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: lowercase : Optional[Any] =lyr( __UpperCamelCase , conditioning_emb=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , )[0] lowercase : Optional[int] =self.decoder_norm(__UpperCamelCase ) lowercase : List[Any] =self.post_dropout(__UpperCamelCase ) lowercase : Union[str, Any] =self.spec_out(__UpperCamelCase ) return spec_out class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Dict=1e-6 ) -> Tuple: '''simple docstring''' super().__init__() lowercase : Optional[Any] =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__UpperCamelCase , d_kv=__UpperCamelCase , num_heads=__UpperCamelCase , dropout_rate=__UpperCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__UpperCamelCase , d_kv=__UpperCamelCase , num_heads=__UpperCamelCase , dropout_rate=__UpperCamelCase , layer_norm_epsilon=__UpperCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__UpperCamelCase , d_ff=__UpperCamelCase , dropout_rate=__UpperCamelCase , layer_norm_epsilon=__UpperCamelCase ) ) def A__ ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : Any=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , ) -> Any: '''simple docstring''' lowercase : Tuple =self.layer[0]( __UpperCamelCase , conditioning_emb=__UpperCamelCase , attention_mask=__UpperCamelCase , ) if encoder_hidden_states is not None: lowercase : Optional[Any] =torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) lowercase : Tuple =self.layer[1]( __UpperCamelCase , key_value_states=__UpperCamelCase , attention_mask=__UpperCamelCase , ) # Apply Film Conditional Feed Forward layer lowercase : Any =self.layer[-1](__UpperCamelCase , __UpperCamelCase ) return (hidden_states,) class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' super().__init__() lowercase : int =TaLayerNorm(__UpperCamelCase ) lowercase : List[Any] =TaFiLMLayer(in_features=d_model * 4 , out_features=__UpperCamelCase ) lowercase : Dict =Attention(query_dim=__UpperCamelCase , heads=__UpperCamelCase , dim_head=__UpperCamelCase , out_bias=__UpperCamelCase , scale_qk=__UpperCamelCase ) lowercase : Optional[int] =nn.Dropout(__UpperCamelCase ) def A__ ( self : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=None , ) -> str: '''simple docstring''' lowercase : Any =self.layer_norm(__UpperCamelCase ) if conditioning_emb is not None: lowercase : Dict =self.FiLMLayer(__UpperCamelCase , __UpperCamelCase ) # Self-attention block lowercase : List[str] =self.attention(__UpperCamelCase ) lowercase : Optional[Any] =hidden_states + self.dropout(__UpperCamelCase ) return hidden_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' super().__init__() lowercase : str =Attention(query_dim=__UpperCamelCase , heads=__UpperCamelCase , dim_head=__UpperCamelCase , out_bias=__UpperCamelCase , scale_qk=__UpperCamelCase ) lowercase : str =TaLayerNorm(__UpperCamelCase , eps=__UpperCamelCase ) lowercase : Union[str, Any] =nn.Dropout(__UpperCamelCase ) def A__ ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str=None , UpperCAmelCase : str=None , ) -> Tuple: '''simple docstring''' lowercase : List[str] =self.layer_norm(__UpperCamelCase ) lowercase : int =self.attention( __UpperCamelCase , encoder_hidden_states=__UpperCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) lowercase : Tuple =hidden_states + self.dropout(__UpperCamelCase ) return layer_output class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] ) -> List[Any]: '''simple docstring''' super().__init__() lowercase : Optional[Any] =TaDenseGatedActDense(d_model=__UpperCamelCase , d_ff=__UpperCamelCase , dropout_rate=__UpperCamelCase ) lowercase : str =TaFiLMLayer(in_features=d_model * 4 , out_features=__UpperCamelCase ) lowercase : Optional[Any] =TaLayerNorm(__UpperCamelCase , eps=__UpperCamelCase ) lowercase : Optional[int] =nn.Dropout(__UpperCamelCase ) def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int=None ) -> str: '''simple docstring''' lowercase : Union[str, Any] =self.layer_norm(__UpperCamelCase ) if conditioning_emb is not None: lowercase : List[Any] =self.film(__UpperCamelCase , __UpperCamelCase ) lowercase : List[str] =self.DenseReluDense(__UpperCamelCase ) lowercase : Optional[Any] =hidden_states + self.dropout(__UpperCamelCase ) return hidden_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Dict ) -> int: '''simple docstring''' super().__init__() lowercase : Any =nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) lowercase : str =nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) lowercase : Union[str, Any] =nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) lowercase : Any =nn.Dropout(__UpperCamelCase ) lowercase : Union[str, Any] =NewGELUActivation() def A__ ( self : List[Any] , UpperCAmelCase : str ) -> List[str]: '''simple docstring''' lowercase : Union[str, Any] =self.act(self.wi_a(__UpperCamelCase ) ) lowercase : Dict =self.wi_a(__UpperCamelCase ) lowercase : Optional[int] =hidden_gelu * hidden_linear lowercase : str =self.dropout(__UpperCamelCase ) lowercase : Tuple =self.wo(__UpperCamelCase ) return hidden_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int]=1e-6 ) -> Any: '''simple docstring''' super().__init__() lowercase : Tuple =nn.Parameter(torch.ones(__UpperCamelCase ) ) lowercase : Tuple =eps def A__ ( self : List[Any] , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : Optional[int] =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__UpperCamelCase ) lowercase : Optional[Any] =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowercase : List[Any] =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def A__ ( self : Tuple , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(__UpperCamelCase , 3.0 )) )) class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self : Any , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' super().__init__() lowercase : Union[str, Any] =nn.Linear(__UpperCamelCase , out_features * 2 , bias=__UpperCamelCase ) def A__ ( self : Any , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' lowercase : Union[str, Any] =self.scale_bias(__UpperCamelCase ) lowercase , lowercase : Tuple =torch.chunk(__UpperCamelCase , 2 , -1 ) lowercase : Optional[int] =x * (1 + scale) + shift return x
94
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""flax""", """transformers"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""flax""", """transformers"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""flax""", """transformers"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""flax""", """transformers"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] )
187
0
def _lowerCAmelCase ( lowerCamelCase_ : int = 1_0_0_0 ): __lowercase = -1 __lowercase = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __lowercase = (n * n - 2 * a * n) // (2 * n - 2 * a) __lowercase = n - a - b if c * c == (a * a + b * b): __lowercase = a * b * c if candidate >= product: __lowercase = candidate return product if __name__ == "__main__": print(f'''{solution() = }''')
704
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ): __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase_ ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
56
0
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=0 ) -> int: """simple docstring""" if name is None: lowerCAmelCase_ : Dict = None else: lowerCAmelCase_ : Dict = "." * max(0 , spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}" lowerCAmelCase_ : Tuple = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , ":" , val.size() ) else: print(__UpperCamelCase , ":" , __UpperCamelCase ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase_ : Optional[int] = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCAmelCase_ : str = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCAmelCase_ : List[str] = param.view(*__UpperCamelCase ) lowerCAmelCase_ : int = param.transpose(0 , 2 ) lowerCAmelCase_ : Dict = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCAmelCase_ : Tuple = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCAmelCase_ : Optional[Any] = param.view(*__UpperCamelCase ) lowerCAmelCase_ : Dict = param.transpose(0 , 1 ).contiguous() lowerCAmelCase_ : str = param.view(*__UpperCamelCase ) return param def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : Tuple = {} # old versions did not store training args lowerCAmelCase_ : List[Any] = input_state_dict.get("args" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCAmelCase_ : List[Any] = ds_args.padded_vocab_size lowerCAmelCase_ : str = ds_args.max_position_embeddings lowerCAmelCase_ : Tuple = ds_args.hidden_size lowerCAmelCase_ : Any = ds_args.num_layers lowerCAmelCase_ : Union[str, Any] = ds_args.num_attention_heads lowerCAmelCase_ : Union[str, Any] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCAmelCase_ : Optional[int] = config.n_head # The hidden_size per head. lowerCAmelCase_ : List[str] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCAmelCase_ : List[str] = input_state_dict["checkpoint_version"] else: lowerCAmelCase_ : Dict = 0.0 # The model. lowerCAmelCase_ : Union[str, Any] = input_state_dict["model"] # The language model. lowerCAmelCase_ : str = model["language_model"] # The embeddings. lowerCAmelCase_ : Tuple = lm["embedding"] # The word embeddings. lowerCAmelCase_ : Union[str, Any] = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. lowerCAmelCase_ : Union[str, Any] = word_embeddings[: config.vocab_size, :] lowerCAmelCase_ : Union[str, Any] = word_embeddings # The position embeddings. lowerCAmelCase_ : Any = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCAmelCase_ : Optional[int] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. lowerCAmelCase_ : Tuple = pos_embeddings # The transformer. lowerCAmelCase_ : Optional[int] = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. lowerCAmelCase_ : Dict = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. lowerCAmelCase_ : List[Any] = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCAmelCase_ : Tuple = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCAmelCase_ : Dict = int(m.group(1 ) ) # The name of the operation. lowerCAmelCase_ : Union[str, Any] = m.group(2 ) # Is it a weight or a bias? lowerCAmelCase_ : Any = m.group(3 ) # The name of the layer. lowerCAmelCase_ : Optional[int] = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): lowerCAmelCase_ : Union[str, Any] = "ln_1" if op_name.startswith("input" ) else "ln_2" lowerCAmelCase_ : Tuple = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCAmelCase_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) lowerCAmelCase_ : str = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCAmelCase_ : Any = torch.tensor(-1e4 , dtype=torch.floataa ) lowerCAmelCase_ : int = masked_bias lowerCAmelCase_ : Union[str, Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCAmelCase_ : List[str] = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCAmelCase_ : List[str] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCAmelCase_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. lowerCAmelCase_ : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCAmelCase_ : Any = megatron_to_transformers[op_name] lowerCAmelCase_ : int = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCAmelCase_ : int = megatron_to_transformers[op_name] lowerCAmelCase_ : Optional[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCAmelCase_ : Any = transformer["final_layernorm.weight"] lowerCAmelCase_ : str = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. lowerCAmelCase_ : Tuple = word_embeddings # It should be done! return output_state_dict def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" , action="store_true" ) parser.add_argument( "path_to_checkpoint" , type=__UpperCamelCase , help="Path to the checkpoint file (.zip archive or direct .pt file)" , ) parser.add_argument( "--config_file" , default="" , type=__UpperCamelCase , help="An optional config json file describing the pre-trained model." , ) lowerCAmelCase_ : Tuple = parser.parse_args() # Extract the basename. lowerCAmelCase_ : Any = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: lowerCAmelCase_ : List[str] = torch.load(__UpperCamelCase , map_location="cpu" ) else: lowerCAmelCase_ : Union[str, Any] = torch.load(args.path_to_checkpoint , map_location="cpu" ) lowerCAmelCase_ : Any = input_state_dict.get("args" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCAmelCase_ : Any = "gelu_fast" elif ds_args.openai_gelu: lowerCAmelCase_ : List[str] = "gelu_new" else: lowerCAmelCase_ : List[Any] = "gelu" else: # in the very early days this used to be "gelu_new" lowerCAmelCase_ : List[Any] = "gelu_new" # Spell out all parameters in case the defaults change. lowerCAmelCase_ : List[str] = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type="cls_index" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=50256 , eos_token_id=50256 , ) else: lowerCAmelCase_ : List[str] = GPTaConfig.from_json_file(args.config_file ) lowerCAmelCase_ : Optional[int] = ["GPT2LMHeadModel"] # Convert. print("Converting" ) lowerCAmelCase_ : str = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCAmelCase_ : Optional[Any] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCAmelCase_ : int = "gpt2" elif tokenizer_type == "PretrainedFromHF": lowerCAmelCase_ : Optional[int] = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: lowerCAmelCase_ : Dict = "gpt2" lowerCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(__UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = type(__UpperCamelCase ).__name__ lowerCAmelCase_ : Any = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. lowerCAmelCase_ : int = os.path.join(__UpperCamelCase , "pytorch_model.bin" ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
610
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase ) -> str: """simple docstring""" return "".join([hex(__UpperCamelCase )[2:].zfill(2 ).upper() for byte in list(__UpperCamelCase )] ) def __lowerCamelCase ( __UpperCamelCase ) -> bytes: """simple docstring""" if (len(__UpperCamelCase ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__UpperCamelCase ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(__UpperCamelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
610
1
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase__ : Optional[Any] = "sshleifer/bart-tiny-random" lowerCAmelCase__ : Dict = "patrickvonplaten/t5-tiny-random" @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase_ ( self : Dict ): """simple docstring""" return AutoConfig.from_pretrained(UpperCAmelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase , *__UpperCAmelCase : Any = create_student_by_copying_alternating_layers(UpperCAmelCase_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase , *__UpperCAmelCase : List[str] = create_student_by_copying_alternating_layers(UpperCAmelCase_ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase_ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(UpperCAmelCase_ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase , *__UpperCAmelCase : Any = create_student_by_copying_alternating_layers(UpperCAmelCase_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def lowerCamelCase_ ( self : str ): """simple docstring""" with self.assertRaises(UpperCAmelCase_ ): create_student_by_copying_alternating_layers(UpperCAmelCase_ , tempfile.mkdtemp() , e=UpperCAmelCase_ , d=UpperCAmelCase_ )
329
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING lowerCAmelCase__ : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = '''upernet''' def __init__( self : Tuple , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Tuple=[1, 2, 3, 6] , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Tuple=0.4 , UpperCAmelCase_ : int=384 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : int=255 , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" super().__init__(**UpperCAmelCase_ ) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase : Dict = backbone_config.get("model_type" ) __UpperCAmelCase : List[Any] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[Any] = config_class.from_dict(UpperCAmelCase_ ) __UpperCAmelCase : Dict = backbone_config __UpperCAmelCase : int = hidden_size __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : Dict = pool_scales __UpperCAmelCase : Optional[Any] = use_auxiliary_head __UpperCAmelCase : Dict = auxiliary_loss_weight __UpperCAmelCase : Optional[Any] = auxiliary_in_channels __UpperCAmelCase : str = auxiliary_channels __UpperCAmelCase : Optional[Any] = auxiliary_num_convs __UpperCAmelCase : str = auxiliary_concat_input __UpperCAmelCase : Optional[Any] = loss_ignore_index def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : str = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : List[Any] = self.backbone_config.to_dict() __UpperCAmelCase : Any = self.__class__.model_type return output
329
1
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self : Optional[Any] ): _a = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _a = Vector() def _UpperCAmelCase ( self : Tuple ): _a = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(SCREAMING_SNAKE_CASE_ ) , '(0,0,0,0,0,1)' ) def _UpperCAmelCase ( self : Optional[int] ): _a = Vector([1, 2, 3, 4] ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 4 ) def _UpperCAmelCase ( self : Union[str, Any] ): _a = Vector([1, 2] ) _a = Vector([1, 2, 3, 4, 5] ) _a = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _a = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def _UpperCAmelCase ( self : Optional[Any] ): _a = Vector([1, 2, 3] ) _a = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def _UpperCAmelCase ( self : int ): _a = Vector([1, 2, 3] ) _a = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def _UpperCAmelCase ( self : str ): _a = Vector([1, 2, 3] ) _a = Vector([2, -1, 4] ) # for test of dot product _a = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def _UpperCAmelCase ( self : Tuple ): self.assertEqual(str(zero_vector(1_0 ) ).count('0' ) , 1_0 ) def _UpperCAmelCase ( self : Any ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def _UpperCAmelCase ( self : Any ): _a = Vector([1, 2, 3] ) _a = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) , '(3,4,7)' ) def _UpperCAmelCase ( self : Optional[Any] ): _a = Vector([1, 0, 0, 0, 0, 0] ) _a = x.copy() self.assertEqual(str(SCREAMING_SNAKE_CASE_ ) , str(SCREAMING_SNAKE_CASE_ ) ) def _UpperCAmelCase ( self : Any ): _a = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(SCREAMING_SNAKE_CASE_ ) , '(0,1,0)' ) def _UpperCAmelCase ( self : Union[str, Any] ): _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(SCREAMING_SNAKE_CASE_ ) ) def _UpperCAmelCase ( self : Union[str, Any] ): _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _a = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def _UpperCAmelCase ( self : Optional[int] ): _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _a = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def _UpperCAmelCase ( self : str ): _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def _UpperCAmelCase ( self : Optional[Any] ): _a = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _a = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def _UpperCAmelCase ( self : Optional[Any] ): _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(SCREAMING_SNAKE_CASE_ ) ) def _UpperCAmelCase ( self : Dict ): _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def _UpperCAmelCase ( self : Any ): _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _a = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def _UpperCAmelCase ( self : List[Any] ): _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _a = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def _UpperCAmelCase ( self : Tuple ): self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
562
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCamelCase : '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : str=3_2 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : Any=1_0 , SCREAMING_SNAKE_CASE_ : List[Any]=[1_0, 2_0, 3_0, 4_0] , SCREAMING_SNAKE_CASE_ : Tuple=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : List[Any]="relu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=3 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , ): _a = parent _a = batch_size _a = image_size _a = num_channels _a = embeddings_size _a = hidden_sizes _a = depths _a = is_training _a = use_labels _a = hidden_act _a = num_labels _a = scope _a = len(SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : int ): _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.num_labels ) _a = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self : Optional[Any] ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCAmelCase ( self : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple ): _a = TFResNetModel(config=SCREAMING_SNAKE_CASE_ ) _a = model(SCREAMING_SNAKE_CASE_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int ): _a = self.num_labels _a = TFResNetForImageClassification(SCREAMING_SNAKE_CASE_ ) _a = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self : List[str] ): _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class _UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' _A = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _A = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _A = False _A = False _A = False _A = False _A = False def _UpperCAmelCase ( self : List[str] ): _a = TFResNetModelTester(self ) _a = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self : Any ): return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def _UpperCAmelCase ( self : Optional[int] ): pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def _UpperCAmelCase ( self : int ): pass def _UpperCAmelCase ( self : int ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(SCREAMING_SNAKE_CASE_ ) _a = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : Optional[int] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : Optional[int] ): def check_hidden_states_output(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] ): _a = model_class(SCREAMING_SNAKE_CASE_ ) _a = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) _a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _a = layer_type _a = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : str ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def _UpperCAmelCase ( self : str ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TFResNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( ) -> Tuple: _a = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCAmelCase ( self : Optional[int] ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self : Union[str, Any] ): _a = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='tf' ) # forward pass _a = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits _a = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) _a = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
562
1
import fire from utils import calculate_rouge, save_json def lowerCAmelCase ( UpperCAmelCase : str, UpperCAmelCase : Any, UpperCAmelCase : Optional[int]=None, **UpperCAmelCase : Tuple ) ->Any: """simple docstring""" __magic_name__ : Any = [x.strip() for x in open(UpperCAmelCase ).readlines()] __magic_name__ : Union[str, Any] = [x.strip() for x in open(UpperCAmelCase ).readlines()][: len(UpperCAmelCase )] __magic_name__ : str = calculate_rouge(UpperCAmelCase, UpperCAmelCase, **UpperCAmelCase ) if save_path is not None: save_json(UpperCAmelCase, UpperCAmelCase, indent=UpperCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
712
def lowerCAmelCase ( UpperCAmelCase ) ->list[int]: """simple docstring""" if num <= 0: raise ValueError('''Input must be a positive integer''' ) __magic_name__ : List[str] = [True] * (num + 1) __magic_name__ : List[Any] = 2 while p * p <= num: if primes[p]: for i in range(p * p, num + 1, UpperCAmelCase ): __magic_name__ : Any = False p += 1 return [prime for prime in range(2, num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
336
0
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def SCREAMING_SNAKE_CASE__ ( snake_case__ :Tuple ) -> Tuple: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4e_00 and cp <= 0x9f_ff) or (cp >= 0x34_00 and cp <= 0x4d_bf) # or (cp >= 0x2_00_00 and cp <= 0x2_a6_df) # or (cp >= 0x2_a7_00 and cp <= 0x2_b7_3f) # or (cp >= 0x2_b7_40 and cp <= 0x2_b8_1f) # or (cp >= 0x2_b8_20 and cp <= 0x2_ce_af) # or (cp >= 0xf9_00 and cp <= 0xfa_ff) or (cp >= 0x2_f8_00 and cp <= 0x2_fa_1f) # ): # return True return False def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> Tuple: # word like '180' or '身高' or '神' for char in word: _lowercase = ord(snake_case__ ) if not _is_chinese_char(snake_case__ ): return 0 return 1 def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[str] ) -> str: _lowercase = set() for token in tokens: _lowercase = len(snake_case__ ) > 1 and is_chinese(snake_case__ ) if chinese_word: word_set.add(snake_case__ ) _lowercase = list(snake_case__ ) return word_list def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[str] , snake_case__ :set() ) -> Dict: if not chinese_word_set: return bert_tokens _lowercase = max([len(snake_case__ ) for w in chinese_word_set] ) _lowercase = bert_tokens _lowercase , _lowercase = 0, len(snake_case__ ) while start < end: _lowercase = True if is_chinese(bert_word[start] ): _lowercase = min(end - start , snake_case__ ) for i in range(snake_case__ , 1 , -1 ): _lowercase = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowercase = '##' + bert_word[j] _lowercase = start + i _lowercase = False break if single_word: start += 1 return bert_word def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[str] , snake_case__ :LTP , snake_case__ :BertTokenizer ) -> Optional[Any]: _lowercase = [] for i in range(0 , len(snake_case__ ) , 100 ): _lowercase = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['cws'] ).cws _lowercase = [get_chinese_word(snake_case__ ) for r in res] ltp_res.extend(snake_case__ ) assert len(snake_case__ ) == len(snake_case__ ) _lowercase = [] for i in range(0 , len(snake_case__ ) , 100 ): _lowercase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=snake_case__ , truncation=snake_case__ , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(snake_case__ ) == len(snake_case__ ) _lowercase = [] for input_ids, chinese_word in zip(snake_case__ , snake_case__ ): _lowercase = [] for id in input_ids: _lowercase = bert_tokenizer._convert_id_to_token(snake_case__ ) input_tokens.append(snake_case__ ) _lowercase = add_sub_symbol(snake_case__ , snake_case__ ) _lowercase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(snake_case__ ): if token[:2] == "##": _lowercase = token[2:] # save chinese tokens' pos if len(snake_case__ ) == 1 and _is_chinese_char(ord(snake_case__ ) ): ref_id.append(snake_case__ ) ref_ids.append(snake_case__ ) assert len(snake_case__ ) == len(snake_case__ ) return ref_ids def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> Any: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowercase = f.readlines() _lowercase = [line.strip() for line in data if len(snake_case__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowercase = LTP(args.ltp ) # faster in GPU device _lowercase = BertTokenizer.from_pretrained(args.bert ) _lowercase = prepare_ref(snake_case__ , snake_case__ , snake_case__ ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowercase = [json.dumps(snake_case__ ) + '\n' for ref in ref_ids] f.writelines(snake_case__ ) if __name__ == "__main__": snake_case = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) snake_case = parser.parse_args() main(args)
67
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class _UpperCAmelCase ( A__ ): UpperCamelCase__ = 0 UpperCamelCase__ = False UpperCamelCase__ = 3.0 class _UpperCAmelCase ( unittest.TestCase ): def snake_case_ ( self): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {}) self.assertDictEqual(MockClass(a=2).to_kwargs() , {'''a''': 2}) self.assertDictEqual(MockClass(a=2 , b=a__).to_kwargs() , {'''a''': 2, '''b''': True}) self.assertDictEqual(MockClass(a=2 , c=2.2_5).to_kwargs() , {'''a''': 2, '''c''': 2.2_5}) @require_cuda def snake_case_ ( self): # If no defaults are changed, `to_kwargs` returns an empty dict. A__ = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2) AcceleratorState._reset_state() A__ = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler]) print(accelerator.use_fpaa) A__ = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_0_2_4.0) self.assertEqual(scaler._growth_factor , 2.0) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5) self.assertEqual(scaler._growth_interval , 2_0_0_0) self.assertEqual(scaler._enabled , a__) @require_multi_gpu def snake_case_ ( self): A__ = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__)] execute_subprocess_async(a__ , env=os.environ.copy()) if __name__ == "__main__": _lowercase = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) _lowercase = Accelerator(kwargs_handlers=[ddp_scaler]) _lowercase = torch.nn.Linear(100, 200) _lowercase = accelerator.prepare(model) # Check the values changed in kwargs _lowercase = "" _lowercase = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
632
0
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCAmelCase ( A__ , A__ ) -> np.array: _snake_case : List[str] = f'''{sampling_rate}''' _snake_case : List[Any] = '''1''' _snake_case : Optional[int] = '''f32le''' _snake_case : int = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(a_ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: _snake_case : List[str] = ffmpeg_process.communicate(a_ ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error _snake_case : str = output_stream[0] _snake_case : List[Any] = np.frombuffer(a_ , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def UpperCAmelCase ( A__ , A__ , A__ = "f32le" , ) -> Dict: _snake_case : List[Any] = f'''{sampling_rate}''' _snake_case : int = '''1''' if format_for_conversion == "s16le": _snake_case : Optional[int] = 2 elif format_for_conversion == "f32le": _snake_case : Optional[int] = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) _snake_case : int = platform.system() if system == "Linux": _snake_case : Optional[Any] = '''alsa''' _snake_case : Optional[int] = '''default''' elif system == "Darwin": _snake_case : Tuple = '''avfoundation''' _snake_case : List[Any] = ''':0''' elif system == "Windows": _snake_case : int = '''dshow''' _snake_case : Optional[int] = '''default''' _snake_case : int = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] _snake_case : int = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _snake_case : List[str] = _ffmpeg_stream(a_ , a_ ) for item in iterator: yield item def UpperCAmelCase ( A__ , A__ , A__ = None , A__ = None , A__ = "f32le" , ) -> Optional[Any]: if stream_chunk_s is not None: _snake_case : Optional[Any] = stream_chunk_s else: _snake_case : Tuple = chunk_length_s _snake_case : Tuple = ffmpeg_microphone(a_ , a_ , format_for_conversion=a_ ) if format_for_conversion == "s16le": _snake_case : Union[str, Any] = np.intaa _snake_case : Optional[int] = 2 elif format_for_conversion == "f32le": _snake_case : int = np.floataa _snake_case : List[Any] = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: _snake_case : List[str] = chunk_length_s / 6 _snake_case : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(a_ , (int, float) ): _snake_case : Any = [stride_length_s, stride_length_s] _snake_case : int = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _snake_case : List[str] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _snake_case : Any = datetime.datetime.now() _snake_case : Dict = datetime.timedelta(seconds=a_ ) for item in chunk_bytes_iter(a_ , a_ , stride=(stride_left, stride_right) , stream=a_ ): # Put everything back in numpy scale _snake_case : str = np.frombuffer(item["""raw"""] , dtype=a_ ) _snake_case : str = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) _snake_case : Tuple = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def UpperCAmelCase ( A__ , A__ , A__ , A__ = False ) -> Any: _snake_case : List[str] = b'''''' _snake_case : Optional[Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) _snake_case : str = 0 for raw in iterator: acc += raw if stream and len(a_ ) < chunk_len: _snake_case : str = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(a_ ) >= chunk_len: # We are flushing the accumulator _snake_case : List[Any] = (_stride_left, stride_right) _snake_case : List[Any] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: _snake_case : List[str] = False yield item _snake_case : str = stride_left _snake_case : Dict = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(a_ ) > stride_left: _snake_case : int = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: _snake_case : Optional[Any] = False yield item def UpperCAmelCase ( A__ , A__ ) -> int: _snake_case : int = 2**24 # 16Mo try: with subprocess.Popen(a_ , stdout=subprocess.PIPE , bufsize=a_ ) as ffmpeg_process: while True: _snake_case : Optional[Any] = ffmpeg_process.stdout.read(a_ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
713
from timeit import timeit UpperCAmelCase_ = { '''MALAYALAM''': True, '''String''': False, '''rotor''': True, '''level''': True, '''A''': True, '''BB''': True, '''ABC''': False, '''amanaplanacanalpanama''': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def UpperCAmelCase ( A__ ) -> bool: _snake_case : Dict = 0 _snake_case : Optional[Any] = len(A__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def UpperCAmelCase ( A__ ) -> bool: _snake_case : Optional[Any] = len(A__ ) // 2 _snake_case : List[Any] = len(A__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(A__ ) ) def UpperCAmelCase ( A__ ) -> bool: if len(A__ ) <= 2: return True if s[0] == s[len(A__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def UpperCAmelCase ( A__ ) -> bool: return s == s[::-1] def UpperCAmelCase ( A__ ) -> None: _snake_case : Any = f'''all({name}(key) is value for key, value in test_data.items())''' _snake_case : Tuple = f'''from __main__ import test_data, {name}''' _snake_case : Any = 50_00_00 _snake_case : int = timeit(stmt=A__ , setup=A__ , number=A__ ) print(f'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"""{key:21} {value}""") print('''a man a plan a canal panama''') # finished 500,000 runs in 0.46793 seconds benchmark_function('''is_palindrome_slice''') # finished 500,000 runs in 0.85234 seconds benchmark_function('''is_palindrome''') # finished 500,000 runs in 1.32028 seconds benchmark_function('''is_palindrome_recursive''') # finished 500,000 runs in 2.08679 seconds benchmark_function('''is_palindrome_traversal''')
519
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Dict = { """openai/imagegpt-small""": """""", """openai/imagegpt-medium""": """""", """openai/imagegpt-large""": """""", } class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Tuple = 'imagegpt' __lowerCAmelCase : Tuple = ['past_key_values'] __lowerCAmelCase : str = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , SCREAMING_SNAKE_CASE_=5_12 + 1 , SCREAMING_SNAKE_CASE_=32 * 32 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="quick_gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Any = vocab_size lowercase__ : Optional[Any] = n_positions lowercase__ : List[str] = n_embd lowercase__ : Tuple = n_layer lowercase__ : Optional[Any] = n_head lowercase__ : List[str] = n_inner lowercase__ : Union[str, Any] = activation_function lowercase__ : Union[str, Any] = resid_pdrop lowercase__ : Optional[int] = embd_pdrop lowercase__ : int = attn_pdrop lowercase__ : str = layer_norm_epsilon lowercase__ : Optional[Any] = initializer_range lowercase__ : Any = scale_attn_weights lowercase__ : str = use_cache lowercase__ : str = scale_attn_by_inverse_layer_idx lowercase__ : Optional[int] = reorder_and_upcast_attn lowercase__ : Union[str, Any] = tie_word_embeddings super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) class _snake_case ( UpperCAmelCase_ ): @property def lowercase__ ( self): '''simple docstring''' return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ]) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 3 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 32 , ): '''simple docstring''' lowercase__ : List[Any] = self._generate_dummy_images(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = dict(preprocessor(images=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_)) return inputs
12
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( A , A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = StableDiffusionSAGPipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = False def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' torch.manual_seed(0) __lowercase =UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) __lowercase =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_lowerCAmelCase , set_alpha_to_one=_lowerCAmelCase , ) torch.manual_seed(0) __lowercase =AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0) __lowercase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __lowercase =CLIPTextModel(_lowerCAmelCase) __lowercase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') __lowercase ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any]=0): '''simple docstring''' if str(_lowerCAmelCase).startswith('mps'): __lowercase =torch.manual_seed(_lowerCAmelCase) else: __lowercase =torch.Generator(device=_lowerCAmelCase).manual_seed(_lowerCAmelCase) __lowercase ={ 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : Dict): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4') __lowercase =sag_pipe.to(_lowerCAmelCase) sag_pipe.set_progress_bar_config(disable=_lowerCAmelCase) __lowercase ='.' __lowercase =torch.manual_seed(0) __lowercase =sag_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type='np') __lowercase =output.images __lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase =np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') __lowercase =sag_pipe.to(_lowerCAmelCase) sag_pipe.set_progress_bar_config(disable=_lowerCAmelCase) __lowercase ='.' __lowercase =torch.manual_seed(0) __lowercase =sag_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type='np') __lowercase =output.images __lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase =np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') __lowercase =sag_pipe.to(_lowerCAmelCase) sag_pipe.set_progress_bar_config(disable=_lowerCAmelCase) __lowercase ='.' __lowercase =torch.manual_seed(0) __lowercase =sag_pipe( [prompt] , width=7_6_8 , height=5_1_2 , generator=_lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type='np' , ) __lowercase =output.images assert image.shape == (1, 5_1_2, 7_6_8, 3)
474
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : Tuple = '''falcon''' a_ : Optional[int] = ['''past_key_values'''] def __init__(self , UpperCAmelCase=6_5_0_2_4 , UpperCAmelCase=4_5_4_4 , UpperCAmelCase=3_2 , UpperCAmelCase=7_1 , UpperCAmelCase=1e-5 , UpperCAmelCase=0.02 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=1_1 , UpperCAmelCase=1_1 , **UpperCAmelCase , ): '''simple docstring''' __UpperCAmelCase =vocab_size # Backward compatibility with n_embed kwarg __UpperCAmelCase =kwargs.pop('''n_embed''' , UpperCAmelCase) __UpperCAmelCase =hidden_size if n_embed is None else n_embed __UpperCAmelCase =num_hidden_layers __UpperCAmelCase =num_attention_heads __UpperCAmelCase =layer_norm_epsilon __UpperCAmelCase =initializer_range __UpperCAmelCase =use_cache __UpperCAmelCase =hidden_dropout __UpperCAmelCase =attention_dropout __UpperCAmelCase =bos_token_id __UpperCAmelCase =eos_token_id __UpperCAmelCase =num_attention_heads if num_kv_heads is None else num_kv_heads __UpperCAmelCase =alibi __UpperCAmelCase =new_decoder_architecture __UpperCAmelCase =multi_query # Ignored when new_decoder_architecture is True __UpperCAmelCase =parallel_attn __UpperCAmelCase =bias super().__init__(bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase) @property def A__ (self): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def A__ (self): '''simple docstring''' return not self.alibi
142
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase , _lowerCAmelCase ): a_ : Dict = '''focalnet''' def __init__(self , UpperCAmelCase=2_2_4 , UpperCAmelCase=4 , UpperCAmelCase=3 , UpperCAmelCase=9_6 , UpperCAmelCase=False , UpperCAmelCase=[1_9_2, 3_8_4, 7_6_8, 7_6_8] , UpperCAmelCase=[2, 2, 6, 2] , UpperCAmelCase=[2, 2, 2, 2] , UpperCAmelCase=[3, 3, 3, 3] , UpperCAmelCase="gelu" , UpperCAmelCase=4.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=False , UpperCAmelCase=1e-4 , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=3_2 , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ): '''simple docstring''' super().__init__(**UpperCAmelCase) __UpperCAmelCase =image_size __UpperCAmelCase =patch_size __UpperCAmelCase =num_channels __UpperCAmelCase =embed_dim __UpperCAmelCase =use_conv_embed __UpperCAmelCase =hidden_sizes __UpperCAmelCase =depths __UpperCAmelCase =focal_levels __UpperCAmelCase =focal_windows __UpperCAmelCase =hidden_act __UpperCAmelCase =mlp_ratio __UpperCAmelCase =hidden_dropout_prob __UpperCAmelCase =drop_path_rate __UpperCAmelCase =use_layerscale __UpperCAmelCase =layerscale_value __UpperCAmelCase =use_post_layernorm __UpperCAmelCase =use_post_layernorm_in_modulation __UpperCAmelCase =normalize_modulator __UpperCAmelCase =initializer_range __UpperCAmelCase =layer_norm_eps __UpperCAmelCase =encoder_stride __UpperCAmelCase =['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths) + 1)] __UpperCAmelCase , __UpperCAmelCase =get_aligned_output_features_output_indices( out_features=UpperCAmelCase , out_indices=UpperCAmelCase , stage_names=self.stage_names)
142
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a : str = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys a : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
218
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_lxmert""": ["""LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LxmertConfig"""], """tokenization_lxmert""": ["""LxmertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ["""LxmertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ """LxmertEncoder""", """LxmertForPreTraining""", """LxmertForQuestionAnswering""", """LxmertModel""", """LxmertPreTrainedModel""", """LxmertVisualFeatureEncoder""", """LxmertXLayer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ """TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLxmertForPreTraining""", """TFLxmertMainLayer""", """TFLxmertModel""", """TFLxmertPreTrainedModel""", """TFLxmertVisualFeatureEncoder""", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys a : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
218
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase = TaTokenizerFast lowerCamelCase = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
707
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=30 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=2 , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = scope snake_case_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) snake_case_ = (image_size // patch_size) ** 2 snake_case_ = num_patches + 2 def UpperCamelCase__ ( self ): snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = DeiTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = DeiTForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case_ = 1 snake_case_ = DeiTForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = self.type_sequence_label_size snake_case_ = DeiTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case_ = 1 snake_case_ = DeiTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ ( self ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __snake_case = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase__ ( self ): snake_case_ = DeiTModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCAmelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): snake_case_ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase__ ( self ): if not self.model_tester.is_training: return snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_UpperCAmelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() snake_case_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) snake_case_ = model(**_UpperCAmelCase ).loss loss.backward() def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return snake_case_ = False snake_case_ = True for model_class in self.all_model_classes: if model_class in get_values(_UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue snake_case_ = model_class(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(_UpperCAmelCase ) model.train() snake_case_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) snake_case_ = model(**_UpperCAmelCase ).loss loss.backward() def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_UpperCAmelCase ), *get_values(_UpperCAmelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): snake_case_ = problem_type['''title'''] snake_case_ = problem_type['''num_labels'''] snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() snake_case_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if problem_type["num_labels"] > 1: snake_case_ = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) snake_case_ = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_UpperCAmelCase ) as warning_list: snake_case_ = model(**_UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def UpperCamelCase__ ( self ): for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = DeiTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __lowerCAmelCase ()-> Optional[int]: """simple docstring""" snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ): return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ): snake_case_ = DeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ).to( _UpperCAmelCase ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**_UpperCAmelCase ) # verify the logits snake_case_ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) snake_case_ = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCamelCase__ ( self ): snake_case_ = DeiTModel.from_pretrained( '''facebook/deit-base-distilled-patch16-224''' , torch_dtype=torch.floataa , device_map='''auto''' ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) snake_case_ = inputs.pixel_values.to(_UpperCAmelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): snake_case_ = model(_UpperCAmelCase )
531
0
'''simple docstring''' def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ): return [sentence[i : i + ngram_size] for i in range(len(__lowerCAmelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
50
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowercase_ = _symbol_database.Default() lowercase_ = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowercase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowercase_ = None lowercase_ = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowercase_ = 45 lowercase_ = 15_81 lowercase_ = 15_17 lowercase_ = 15_70 lowercase_ = 15_84 lowercase_ = 17_93 lowercase_ = 17_95 lowercase_ = 19_16 lowercase_ = 18_64 lowercase_ = 19_05 lowercase_ = 19_19 lowercase_ = 24_29 lowercase_ = 22_08 lowercase_ = 24_18 lowercase_ = 23_23 lowercase_ = 24_07 # @@protoc_insertion_point(module_scope)
552
0
"""simple docstring""" def snake_case_ ( A_ : int = 10, A_ : int = 22 ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = range(1, A_ ) _lowerCamelCase : Dict = range(1, A_ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
598
"""simple docstring""" import os import sys import unittest lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCAmelCase__ = os.path.join(git_repo_path, '''src''', '''transformers''') lowerCAmelCase__ = ''' {0} = None ''' lowerCAmelCase__ = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) ''' lowerCAmelCase__ = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[str] = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(__lowerCAmelCase ) _lowerCamelCase : List[str] = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(__lowerCAmelCase , '''tokenizers''' ) _lowerCamelCase : Optional[int] = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(__lowerCAmelCase , '''tensorflow_text''' ) _lowerCamelCase : Tuple = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(__lowerCAmelCase , '''sentencepiece_and_tokenizers''' ) _lowerCamelCase : List[str] = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(__lowerCAmelCase , '''sentencepiece_and_tensorflow_text''' ) _lowerCamelCase : List[str] = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(__lowerCAmelCase , '''sentencepiece_and_tokenizers_and_vision''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , __lowerCAmelCase ) self.assertIn('''tensorflow_text''' , __lowerCAmelCase ) self.assertIn('''sentencepiece_and_tokenizers''' , __lowerCAmelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : List[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(__lowerCAmelCase , '''\nCONSTANT = None\n''' ) _lowerCamelCase : Union[str, Any] = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( __lowerCAmelCase , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) _lowerCamelCase : Union[str, Any] = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' _lowerCamelCase : str = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : str = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' _lowerCamelCase : Optional[Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , __lowerCAmelCase )
598
1
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class lowercase : '''simple docstring''' def __init__( self : Optional[int] , snake_case : List[str] , snake_case : Union[str, Any]=3 , snake_case : List[Any]=7 , snake_case : List[str]=True , snake_case : Tuple=True , snake_case : Any=False , snake_case : List[str]=True , snake_case : List[str]=99 , snake_case : Tuple=32 , snake_case : Union[str, Any]=5 , snake_case : str=4 , snake_case : Dict=37 , snake_case : str="gelu" , snake_case : List[Any]=0.1 , snake_case : str=0.1 , snake_case : Union[str, Any]=512 , snake_case : Optional[int]=16 , snake_case : Tuple=2 , snake_case : List[str]=0.02 , snake_case : int=3 , snake_case : Optional[Any]=4 , snake_case : int=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = parent SCREAMING_SNAKE_CASE : List[Any] = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : List[str] = is_training SCREAMING_SNAKE_CASE : Union[str, Any] = use_input_mask SCREAMING_SNAKE_CASE : Dict = use_token_type_ids SCREAMING_SNAKE_CASE : Any = use_labels SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE : Any = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE : str = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : List[Any] = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : Dict = scope def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=snake_case , ) def lowerCamelCase_ ( self : List[str] , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Any , snake_case : Any , snake_case : int , snake_case : List[str] , snake_case : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = FalconModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(snake_case , attention_mask=snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : int , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : str , snake_case : Any , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Optional[Any] , snake_case : Tuple , snake_case : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : List[str] = FalconModel(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( snake_case , attention_mask=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , ) SCREAMING_SNAKE_CASE : Optional[Any] = model( snake_case , attention_mask=snake_case , encoder_hidden_states=snake_case , ) SCREAMING_SNAKE_CASE : Optional[int] = model(snake_case , attention_mask=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : Tuple , snake_case : Optional[Any] , snake_case : int , snake_case : List[str] , snake_case : Dict , snake_case : List[str] , snake_case : Optional[int] , snake_case : Tuple , snake_case : List[Any] , snake_case : Tuple , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = FalconForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE : Any = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Any , snake_case : Optional[Any] , snake_case : Any , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : List[str] , snake_case : str , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = FalconForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() # first forward pass SCREAMING_SNAKE_CASE : str = model( snake_case , attention_mask=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , use_cache=snake_case , ) SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE : Optional[int] = model( snake_case , attention_mask=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , output_hidden_states=snake_case , )['hidden_states'][0] SCREAMING_SNAKE_CASE : List[str] = model( snake_case , attention_mask=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , past_key_values=snake_case , output_hidden_states=snake_case , )['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1E-3 ) ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : str = config_and_inputs SCREAMING_SNAKE_CASE : str = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase): '''simple docstring''' UpperCAmelCase : Any = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase : Tuple = (FalconForCausalLM,) if is_torch_available() else () UpperCAmelCase : Tuple = ( { 'feature-extraction': FalconModel, 'text-classification': FalconForSequenceClassification, 'text-generation': FalconForCausalLM, 'question-answering': FalconForQuestionAnswering, 'token-classification': FalconForTokenClassification, 'zero-shot': FalconForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Dict = False def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = FalconModelTester(self ) SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: SCREAMING_SNAKE_CASE : Optional[Any] = alibi self.model_tester.create_and_check_model(snake_case , *snake_case ) def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = 3 SCREAMING_SNAKE_CASE : List[Any] = input_dict['input_ids'] SCREAMING_SNAKE_CASE : List[Any] = input_ids.ne(1 ).to(snake_case ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[Any] = FalconForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Union[str, Any] = 3 SCREAMING_SNAKE_CASE : Dict = 'single_label_classification' SCREAMING_SNAKE_CASE : str = input_dict['input_ids'] SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.ne(1 ).to(snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = FalconForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE : int = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = input_dict['input_ids'] SCREAMING_SNAKE_CASE : Any = FalconForCausalLM(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(snake_case , use_cache=snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = input_ids.shape[0] SCREAMING_SNAKE_CASE : Optional[int] = model._convert_to_rw_cache(result.past_key_values ) SCREAMING_SNAKE_CASE : Union[str, Any] = model._convert_cache_to_standard_format(snake_case , snake_case ) for layer in range(len(snake_case ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Dict = 'multi_label_classification' SCREAMING_SNAKE_CASE : Any = input_dict['input_ids'] SCREAMING_SNAKE_CASE : Any = input_ids.ne(1 ).to(snake_case ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE : List[str] = FalconForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE : Any = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(snake_case , 'use_cache' ): return SCREAMING_SNAKE_CASE : Any = model_class(snake_case ).to(snake_case ) if "use_cache" not in inputs: SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = model(**snake_case ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return SCREAMING_SNAKE_CASE : Tuple = ( getattr(snake_case , 'decoder_layers' , snake_case ) or getattr(snake_case , 'num_decoder_layers' , snake_case ) or config.num_hidden_layers ) SCREAMING_SNAKE_CASE : Tuple = getattr(snake_case , 'num_kv_heads' , config.num_attention_heads ) SCREAMING_SNAKE_CASE : Optional[int] = getattr(snake_case , 'd_model' , config.hidden_size ) SCREAMING_SNAKE_CASE : List[Any] = embed_dim // num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = outputs['past_key_values'] self.assertEqual(len(snake_case ) , snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = inputs['input_ids'].shape for i in range(snake_case ): if config.new_decoder_architecture: SCREAMING_SNAKE_CASE : Optional[int] = config.num_attention_heads elif config.multi_query: SCREAMING_SNAKE_CASE : int = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class lowercase ( unittest.TestCase): '''simple docstring''' @slow def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) SCREAMING_SNAKE_CASE : List[str] = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(snake_case ) SCREAMING_SNAKE_CASE : Any = tokenizer('My favorite food is' , return_tensors='pt' ).to(snake_case ) SCREAMING_SNAKE_CASE : List[Any] = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) SCREAMING_SNAKE_CASE : int = model.generate(**snake_case , do_sample=snake_case , max_new_tokens=19 ) SCREAMING_SNAKE_CASE : int = tokenizer.batch_decode(snake_case )[0] self.assertEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained(snake_case ) SCREAMING_SNAKE_CASE : Tuple = FalconForCausalLM.from_pretrained(snake_case ) model.eval() model.to(snake_case ) SCREAMING_SNAKE_CASE : Tuple = tokenizer('My favorite food is' , return_tensors='pt' ).to(snake_case ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**snake_case , do_sample=snake_case , max_new_tokens=4 ) model.generate(**snake_case , do_sample=snake_case , max_new_tokens=4 ) model.generate(**snake_case , num_beams=2 , max_new_tokens=4 ) @slow def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = FalconForCausalLM.from_pretrained(snake_case ) model.eval() model.to(device=snake_case ) SCREAMING_SNAKE_CASE : str = tokenizer('My favorite food is' , return_tensors='pt' ).to(snake_case ) # Test results are the same with and without cache SCREAMING_SNAKE_CASE : List[Any] = model.generate(**snake_case , do_sample=snake_case , max_new_tokens=20 , use_cache=snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.generate(**snake_case , do_sample=snake_case , max_new_tokens=20 , use_cache=snake_case ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
352
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def __a ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: # load base model SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors SCREAMING_SNAKE_CASE : Any = load_file(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: SCREAMING_SNAKE_CASE : Dict = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) SCREAMING_SNAKE_CASE : Tuple = pipeline.text_encoder else: SCREAMING_SNAKE_CASE : Any = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) SCREAMING_SNAKE_CASE : Dict = pipeline.unet # find the target layer SCREAMING_SNAKE_CASE : Union[str, Any] = layer_infos.pop(0 ) while len(__lowerCAmelCase ) > -1: try: SCREAMING_SNAKE_CASE : List[Any] = curr_layer.__getattr__(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE : Optional[int] = layer_infos.pop(0 ) elif len(__lowerCAmelCase ) == 0: break except Exception: if len(__lowerCAmelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: SCREAMING_SNAKE_CASE : List[str] = layer_infos.pop(0 ) SCREAMING_SNAKE_CASE : str = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(__lowerCAmelCase ) else: pair_keys.append(__lowerCAmelCase ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: SCREAMING_SNAKE_CASE : Any = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) SCREAMING_SNAKE_CASE : str = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__lowerCAmelCase , __lowerCAmelCase ).unsqueeze(2 ).unsqueeze(3 ) else: SCREAMING_SNAKE_CASE : List[Any] = state_dict[pair_keys[0]].to(torch.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__lowerCAmelCase , __lowerCAmelCase ) # update visited list for item in pair_keys: visited.append(__lowerCAmelCase ) return pipeline if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _lowerCamelCase : List[Any] = parser.parse_args() _lowerCamelCase : List[str] = args.base_model_path _lowerCamelCase : str = args.checkpoint_path _lowerCamelCase : Dict = args.dump_path _lowerCamelCase : Any = args.lora_prefix_unet _lowerCamelCase : List[Any] = args.lora_prefix_text_encoder _lowerCamelCase : List[Any] = args.alpha _lowerCamelCase : Optional[Any] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _lowerCamelCase : Optional[Any] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
352
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue_model_parallelism.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, ] ) class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Dict ): if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='''utf-8''' , check=UpperCamelCase_ , ) assert hasattr(self , '''env''' ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Optional[Any] ): # configuration for running training on smdistributed Model Parallel lowerCAmelCase : Union[str, Any] = { '''enabled''': True, '''processes_per_host''': 8, } lowerCAmelCase : Tuple = { '''enabled''': True, '''parameters''': { '''microbatches''': 4, '''placement_strategy''': '''spread''', '''pipeline''': '''interleaved''', '''optimize''': '''speed''', '''partitions''': 4, '''ddp''': True, }, } lowerCAmelCase : Optional[int] = {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options} lowerCAmelCase : List[str] = '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer''' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=UpperCamelCase_ , instance_type=self.instance_type , debugger_hook_config=UpperCamelCase_ , hyperparameters={ **self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path, '''max_steps''': 5_0_0, } , metric_definitions=self.env.metric_definitions , distribution=UpperCamelCase_ , py_version='''py36''' , ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[int] ): TrainingJobAnalytics(UpperCamelCase_ ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[Any] ): # create estimator lowerCAmelCase : Optional[Any] = self.create_estimator(UpperCamelCase_ ) # run training estimator.fit() # result dataframe lowerCAmelCase : Optional[int] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase : Any = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) lowerCAmelCase : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , UpperCamelCase_ )
637
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class snake_case_: def __init__( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict=1_3 , UpperCamelCase_ : Optional[Any]=7 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[str]=9_9 , UpperCamelCase_ : Tuple=3_2 , UpperCamelCase_ : Optional[Any]=5 , UpperCamelCase_ : str=4 , UpperCamelCase_ : Any=3_7 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Union[str, Any]=5_1_2 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Optional[Any]=0.02 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=4 , UpperCamelCase_ : int=None , ): lowerCAmelCase : Any = parent lowerCAmelCase : Any = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : str = is_training lowerCAmelCase : List[Any] = use_input_mask lowerCAmelCase : Optional[int] = use_token_type_ids lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : Tuple = type_sequence_label_size lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : str = num_labels lowerCAmelCase : Optional[int] = num_choices lowerCAmelCase : Tuple = scope def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Tuple = None if self.use_input_mask: lowerCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : List[str] = None if self.use_token_type_ids: lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : int = None lowerCAmelCase : int = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : Tuple ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ): lowerCAmelCase : List[Any] = LlamaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Any , ): lowerCAmelCase : Tuple = True lowerCAmelCase : Optional[int] = LlamaModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) lowerCAmelCase : Dict = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , ) lowerCAmelCase : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : str , ): lowerCAmelCase : Optional[Any] = LlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , ): lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : str = True lowerCAmelCase : Tuple = LlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() # first forward pass lowerCAmelCase : Optional[Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ , ) lowerCAmelCase : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase : Dict = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['''hidden_states'''][0] lowerCAmelCase : str = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['''hidden_states'''][0] # select random slice lowerCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.prepare_config_and_inputs() ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) : Tuple = config_and_inputs lowerCAmelCase : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_( a__ , a__ , a__ , unittest.TestCase ): __UpperCamelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __UpperCamelCase = (LlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Any = LlamaModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=3_7 ) def lowerCamelCase__ ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase : str = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : List[str] = 3 lowerCAmelCase : List[str] = input_dict['''input_ids'''] lowerCAmelCase : List[str] = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase : Union[str, Any] = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = 3 lowerCAmelCase : int = '''single_label_classification''' lowerCAmelCase : Tuple = input_dict['''input_ids'''] lowerCAmelCase : Tuple = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase : Tuple = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Any = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = 3 lowerCAmelCase : Dict = '''multi_label_classification''' lowerCAmelCase : Union[str, Any] = input_dict['''input_ids'''] lowerCAmelCase : Tuple = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase : Optional[int] = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def lowerCamelCase__ ( self : Optional[Any] ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Tuple ): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Optional[int] = ids_tensor([1, 1_0] , config.vocab_size ) lowerCAmelCase : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase : List[Any] = LlamaModel(UpperCamelCase_ ) original_model.to(UpperCamelCase_ ) original_model.eval() lowerCAmelCase : Optional[int] = original_model(UpperCamelCase_ ).last_hidden_state lowerCAmelCase : List[Any] = original_model(UpperCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase : int = {'''type''': scaling_type, '''factor''': 10.0} lowerCAmelCase : List[str] = LlamaModel(UpperCamelCase_ ) scaled_model.to(UpperCamelCase_ ) scaled_model.eval() lowerCAmelCase : Union[str, Any] = scaled_model(UpperCamelCase_ ).last_hidden_state lowerCAmelCase : Optional[int] = scaled_model(UpperCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) @require_torch class snake_case_( unittest.TestCase ): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Tuple = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Optional[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) lowerCAmelCase : str = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCAmelCase : int = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Tuple = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : str = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Dict = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) lowerCAmelCase : str = model(torch.tensor(UpperCamelCase_ ) ) # Expected mean on dim = -1 lowerCAmelCase : Any = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Tuple = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : int = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : List[str] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) lowerCAmelCase : List[Any] = model(torch.tensor(UpperCamelCase_ ) ) # Expected mean on dim = -1 lowerCAmelCase : List[str] = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Dict = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) lowerCAmelCase : Any = model(torch.tensor(UpperCamelCase_ ) ) lowerCAmelCase : Optional[Any] = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCAmelCase : Any = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Model is curently gated''' ) @slow def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[Any] = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' lowerCAmelCase : int = '''Simply put, the theory of relativity states that ''' lowerCAmelCase : str = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) lowerCAmelCase : Optional[int] = tokenizer.encode(UpperCamelCase_ , return_tensors='''pt''' ) lowerCAmelCase : List[Any] = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=UpperCamelCase_ ) # greedy generation outputs lowerCAmelCase : int = model.generate(UpperCamelCase_ , max_new_tokens=6_4 , top_p=UpperCamelCase_ , temperature=1 , do_sample=UpperCamelCase_ ) lowerCAmelCase : int = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
637
1
import random from .binary_exp_mod import bin_exp_mod def lowercase__ ( A_: List[str] , A_: Optional[Any]=1000 ) -> List[str]: """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd __UpperCAmelCase =n - 1 __UpperCAmelCase =0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) __UpperCAmelCase =0 while count < prec: __UpperCAmelCase =random.randint(2 , n - 1 ) __UpperCAmelCase =bin_exp_mod(A_ , A_ , A_ ) if b != 1: __UpperCAmelCase =True for _ in range(A_ ): if b == n - 1: __UpperCAmelCase =False break __UpperCAmelCase =b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": __A = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
68
"""simple docstring""" def __lowercase ( snake_case_ : int = 2000000 ) ->int: '''simple docstring''' __A : List[Any] = [0 for i in range(n + 1 )] __A : str = 1 __A : Dict = 1 for i in range(2 ,int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i ,n + 1 ,snake_case_ ): __A : List[Any] = 1 __A : Union[str, Any] = 0 for i in range(snake_case_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
177
0
'''simple docstring''' import math import sys def _SCREAMING_SNAKE_CASE ( A : str ) -> str: """simple docstring""" __snake_case : Dict = '' try: with open(A , 'rb' ) as binary_file: __snake_case : Optional[int] = binary_file.read() for dat in data: __snake_case : str = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _SCREAMING_SNAKE_CASE ( A : str ) -> str: """simple docstring""" __snake_case : str = {'0': '0', '1': '1'} __snake_case : Tuple = '', '' __snake_case : Optional[int] = len(A ) for i in range(len(A ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __snake_case : Any = lexicon[curr_string] result += last_match_id __snake_case : Tuple = last_match_id + '0' if math.loga(A ).is_integer(): __snake_case : Optional[Any] = {} for curr_key in list(A ): __snake_case : Any = lexicon.pop(A ) __snake_case : str = new_lex __snake_case : Dict = last_match_id + '1' index += 1 __snake_case : Tuple = '' return result def _SCREAMING_SNAKE_CASE ( A : str , A : str ) -> None: """simple docstring""" __snake_case : int = 8 try: with open(A , 'wb' ) as opened_file: __snake_case : str = [ to_write[i : i + byte_length] for i in range(0 , len(A ) , A ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _SCREAMING_SNAKE_CASE ( A : str ) -> str: """simple docstring""" __snake_case : Optional[int] = 0 for letter in data_bits: if letter == "1": break counter += 1 __snake_case : Any = data_bits[counter:] __snake_case : str = data_bits[counter + 1 :] return data_bits def _SCREAMING_SNAKE_CASE ( A : str , A : str ) -> None: """simple docstring""" __snake_case : List[Any] = read_file_binary(A ) __snake_case : Tuple = remove_prefix(A ) __snake_case : Optional[Any] = decompress_data(A ) write_file_binary(A , A ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
715
'''simple docstring''' import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class a_ : def __init__(self , __a , __a = 1_3 , __a = 6_4 , __a = 2 , __a = 3 , __a = 3 , __a = True , __a = True , __a = 1_2_8 , __a=[1_6, 3_2, 6_4, 1_2_8] , __a = 7 , __a = 4 , __a = 3_7 , __a = "gelu" , __a = 0.1 , __a = 0.1 , __a = 1_0 , __a = 0.02 , __a = 2 , __a = 1 , __a = 1_2_8 , __a = [2, 2, 2, 2] , __a = 2 , __a = 2 , ) -> str: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : Optional[int] = batch_size __snake_case : Optional[Any] = image_size __snake_case : Optional[int] = patch_size __snake_case : Optional[Any] = num_channels __snake_case : Optional[Any] = is_training __snake_case : Tuple = use_labels __snake_case : Optional[int] = hidden_size __snake_case : Any = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : Tuple = intermediate_size __snake_case : List[str] = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : Dict = type_sequence_label_size __snake_case : str = initializer_range __snake_case : int = encoder_stride __snake_case : List[str] = num_attention_outputs __snake_case : Optional[Any] = embed_dim __snake_case : Optional[Any] = embed_dim + 1 __snake_case : List[str] = resolution __snake_case : Optional[int] = depths __snake_case : List[Any] = hidden_sizes __snake_case : List[str] = dim __snake_case : Union[str, Any] = mlp_expansion_ratio def SCREAMING_SNAKE_CASE__ (self) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __snake_case : List[str] = None if self.use_labels: __snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case : Tuple = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ (self) -> List[str]: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def SCREAMING_SNAKE_CASE__ (self , __a , __a , __a) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = TFEfficientFormerModel(config=__a) __snake_case : int = model(__a , training=__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE__ (self , __a , __a , __a) -> Tuple: """simple docstring""" __snake_case : Dict = self.type_sequence_label_size __snake_case : List[Any] = TFEfficientFormerForImageClassification(__a) __snake_case : Optional[int] = model(__a , labels=__a , training=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images __snake_case : List[Any] = 1 __snake_case : List[Any] = TFEfficientFormerForImageClassification(__a) __snake_case : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __snake_case : str = model(__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE__ (self) -> Any: """simple docstring""" __snake_case : Union[str, Any] = self.prepare_config_and_inputs() __snake_case ,__snake_case ,__snake_case : Union[str, Any] = config_and_inputs __snake_case : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): _snake_case = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _snake_case = ( { """feature-extraction""": TFEfficientFormerModel, """image-classification""": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False def SCREAMING_SNAKE_CASE__ (self) -> Dict: """simple docstring""" __snake_case : Dict = TFEfficientFormerModelTester(self) __snake_case : List[Any] = ConfigTester( self , config_class=__a , has_text_modality=__a , hidden_size=3_7) def SCREAMING_SNAKE_CASE__ (self) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds') def SCREAMING_SNAKE_CASE__ (self) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings') def SCREAMING_SNAKE_CASE__ (self) -> Optional[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE__ (self) -> Any: """simple docstring""" __snake_case ,__snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[int] = model_class(__a) __snake_case : Union[str, Any] = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Optional[int] = [*signature.parameters.keys()] __snake_case : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a) def SCREAMING_SNAKE_CASE__ (self) -> Optional[int]: """simple docstring""" def check_hidden_states_output(__a , __a , __a): __snake_case : str = model_class(__a) __snake_case : List[Any] = model(**self._prepare_for_class(__a , __a) , training=__a) __snake_case : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case : Optional[Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(__a) , __a) if hasattr(self.model_tester , 'encoder_seq_length'): __snake_case : List[Any] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length') and self.model_tester.chunk_length > 1: __snake_case : str = seq_length * self.model_tester.chunk_length else: __snake_case : Optional[int] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __snake_case : List[Any] = outputs.decoder_hidden_states self.asseretIsInstance(__a , (list, tuple)) self.assertEqual(len(__a) , __a) __snake_case : List[str] = getattr(self.model_tester , 'seq_length' , __a) __snake_case : Tuple = getattr(self.model_tester , 'decoder_seq_length' , __a) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) __snake_case ,__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = True check_hidden_states_output(__a , __a , __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True check_hidden_states_output(__a , __a , __a) def SCREAMING_SNAKE_CASE__ (self , __a , __a , __a=False) -> int: """simple docstring""" __snake_case : Optional[int] = super()._prepare_for_class(__a , __a , return_labels=__a) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE__ (self) -> Union[str, Any]: """simple docstring""" __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet') def SCREAMING_SNAKE_CASE__ (self) -> Tuple: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a) def SCREAMING_SNAKE_CASE__ (self) -> int: """simple docstring""" __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) @slow def SCREAMING_SNAKE_CASE__ (self) -> List[str]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = TFEfficientFormerModel.from_pretrained(__a) self.assertIsNotNone(__a) def SCREAMING_SNAKE_CASE__ (self) -> Tuple: """simple docstring""" __snake_case ,__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = True __snake_case : Optional[Any] = getattr(self.model_tester , 'seq_length' , __a) __snake_case : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , __a) __snake_case : Tuple = getattr(self.model_tester , 'key_length' , __a) __snake_case : Optional[Any] = getattr(self.model_tester , 'chunk_length' , __a) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes'): __snake_case : str = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __snake_case : Optional[Any] = True __snake_case : Dict = False __snake_case : Optional[int] = True __snake_case : Dict = model_class(__a) __snake_case : Tuple = model(**self._prepare_for_class(__a , __a) , training=__a) __snake_case : Union[str, Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : Dict = True __snake_case : str = model_class(__a) __snake_case : str = model(**self._prepare_for_class(__a , __a) , training=__a) __snake_case : Tuple = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def SCREAMING_SNAKE_CASE__ (self) -> int: """simple docstring""" __snake_case ,__snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __snake_case : Tuple = model_class(__a) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __snake_case : Optional[Any] = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=__a) for key, val in model.input_signature.items() if key in model.dummy_inputs } __snake_case : Tuple = model(__a) self.assertTrue(outputs_dict is not None) def _SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" __snake_case : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ (self) -> int: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ (self) -> Union[str, Any]: """simple docstring""" __snake_case : List[str] = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300') __snake_case : Optional[int] = self.default_image_processor __snake_case : List[Any] = prepare_img() __snake_case : List[Any] = image_processor(images=__a , return_tensors='tf') # forward pass __snake_case : List[str] = model(**__a , training=__a) # verify the logits __snake_case : str = tf.TensorShape((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , __a) __snake_case : Any = tf.constant([-0.0_555, 0.4_825, -0.0_852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , __a , atol=1E-4)) @slow def SCREAMING_SNAKE_CASE__ (self) -> List[Any]: """simple docstring""" __snake_case : List[Any] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300') __snake_case : List[Any] = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[Any] = image_processor(images=__a , return_tensors='tf') # forward pass __snake_case : Optional[int] = model(**__a , training=__a) # verify the logits __snake_case : Optional[int] = tf.TensorShape((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , __a) __snake_case : List[str] = tf.constant([-0.1_312, 0.4_353, -1.0_499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , __a , atol=1E-4))
61
0
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LayoutLMTokenizer snake_case_ = LayoutLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Tuple ,**A : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : int ): pass
55
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowerCamelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def a_ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' for attribute in key.split('.' ): _lowerCamelCase : Optional[Any] =getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: _lowerCamelCase : str =getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: _lowerCamelCase : Optional[Any] =hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _lowerCamelCase : Tuple =value elif weight_type == "weight_g": _lowerCamelCase : Any =value elif weight_type == "weight_v": _lowerCamelCase : Any =value elif weight_type == "bias": _lowerCamelCase : Dict =value else: _lowerCamelCase : Union[str, Any] =value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def a_ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] =[] _lowerCamelCase : Optional[Any] =fairseq_model.state_dict() _lowerCamelCase : Tuple =hf_model.feature_extractor _lowerCamelCase : int =hf_model.adapter for name, value in fairseq_dict.items(): _lowerCamelCase : Optional[Any] =False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == 'group' , ) _lowerCamelCase : Optional[int] =True elif any(x in name for x in ['adaptor', 'w2v_encoder.proj.', 'w2v_proj_ln.'] ): load_adapter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : int =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _lowerCamelCase : Dict =True if "*" in mapped_key: _lowerCamelCase : List[str] =name.split(SCREAMING_SNAKE_CASE__ )[0].split('.' )[-2] _lowerCamelCase : Dict =mapped_key.replace('*' , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: _lowerCamelCase : List[Any] ='weight_g' elif "weight_v" in name: _lowerCamelCase : int ='weight_v' elif "bias" in name: _lowerCamelCase : int ='bias' elif "weight" in name: _lowerCamelCase : Optional[int] ='weight' else: _lowerCamelCase : Any =None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def a_ ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' _lowerCamelCase : str =full_name.split('conv_layers.' )[-1] _lowerCamelCase : List[Any] =name.split('.' ) _lowerCamelCase : Optional[int] =int(items[0] ) _lowerCamelCase : List[Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _lowerCamelCase : Any =value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _lowerCamelCase : int =value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _lowerCamelCase : List[Any] =value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _lowerCamelCase : Tuple =value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) def a_ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' _lowerCamelCase : Optional[int] =full_name.split('adaptor.' )[-1] _lowerCamelCase : str =name.split('.' ) if items[1].isdigit(): _lowerCamelCase : Any =int(items[1] ) else: _lowerCamelCase : int =None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' _lowerCamelCase : str =value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' _lowerCamelCase : str =value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' _lowerCamelCase : Optional[Any] =value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' _lowerCamelCase : Optional[Any] =value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' _lowerCamelCase : List[Any] =value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' _lowerCamelCase : Dict =value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) def a_ ( SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : List[Any] =emb.weight.shape _lowerCamelCase : str =nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Optional[Any] =emb.weight.data return lin_layer @torch.no_grad() def a_ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , ): '''simple docstring''' _lowerCamelCase : int =WavaVecaConfig.from_pretrained( SCREAMING_SNAKE_CASE__ , add_adapter=SCREAMING_SNAKE_CASE__ , adapter_stride=SCREAMING_SNAKE_CASE__ , adapter_kernel_size=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , output_hidden_size=SCREAMING_SNAKE_CASE__ , ) _lowerCamelCase : str =MBartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) # load model _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ 'config_yaml': config_yaml_path, 'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path, 'load_pretrained_decoder_from': None, } , ) _lowerCamelCase : Any =model[0].eval() # load feature extractor _lowerCamelCase : List[Any] =WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ ) # set weights for wav2vec2 encoder _lowerCamelCase : List[Any] =WavaVecaModel(SCREAMING_SNAKE_CASE__ ) recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE__ ) # load decoder weights _lowerCamelCase : int =MBartForCausalLM(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] =hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE__ ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) _lowerCamelCase : Dict =SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE__ , decoder=SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : List[Any] =False _lowerCamelCase : Any =MBartaaTokenizer(SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : int =hf_wavavec.config.to_dict() _lowerCamelCase : Optional[int] =tokenizer.pad_token_id _lowerCamelCase : Tuple =tokenizer.bos_token_id _lowerCamelCase : Any =tokenizer.eos_token_id _lowerCamelCase : int ='mbart50' _lowerCamelCase : Tuple ='wav2vec2' _lowerCamelCase : Tuple =tokenizer.eos_token_id _lowerCamelCase : Dict =250_004 _lowerCamelCase : List[str] =tokenizer.eos_token_id _lowerCamelCase : Dict =SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE__ ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=10_24, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=25_00_04, type=int, help='`decoder_start_token_id` of model config') lowerCamelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
464
0
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_json_file(lowercase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BertForPreTraining(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase : Union[str, Any] =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
703
def _UpperCamelCase ( lowercase__ ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(lowercase__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('doctest').testmod()
260
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=4 , ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = parent lowercase__ : Any = batch_size lowercase__ : Union[str, Any] = seq_length lowercase__ : Dict = is_training lowercase__ : str = use_attention_mask lowercase__ : Optional[Any] = use_token_type_ids lowercase__ : List[str] = use_labels lowercase__ : Union[str, Any] = vocab_size lowercase__ : Union[str, Any] = hidden_size lowercase__ : Optional[int] = num_hidden_layers lowercase__ : Dict = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : Any = hidden_act lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : Optional[int] = type_vocab_size lowercase__ : Optional[int] = type_sequence_label_size lowercase__ : str = initializer_range lowercase__ : int = num_choices def __a ( self ) -> str: """simple docstring""" lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : Dict = None if self.use_attention_mask: lowercase__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Dict = None if self.use_token_type_ids: lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : str = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __a ( self ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs lowercase__ : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase( snake_case_ , unittest.TestCase ): """simple docstring""" a : int = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def __a ( self ) -> int: """simple docstring""" lowercase__ : Any = FlaxAlbertModelTester(self ) @slow def __a ( self ) -> Optional[int]: """simple docstring""" for model_class_name in self.all_model_classes: lowercase__ : Optional[Any] = model_class_name.from_pretrained("albert-base-v2" ) lowercase__ : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase ) @require_flax class UpperCAmelCase( unittest.TestCase ): """simple docstring""" @slow def __a ( self ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) lowercase__ : Optional[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase__ : List[str] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ : List[Any] = model(lowerCamelCase , attention_mask=lowerCamelCase )[0] lowercase__ : int = (1, 11, 768) self.assertEqual(output.shape , lowerCamelCase ) lowercase__ : Tuple = np.array( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase , atol=1E-4 ) )
397
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase( snake_case_ ): """simple docstring""" a : torch.FloatTensor a : Optional[torch.FloatTensor] = None def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=0.999 ,SCREAMING_SNAKE_CASE_="cosine" ,) -> str: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowercase__ : List[str] = [] for i in range(SCREAMING_SNAKE_CASE_ ): lowercase__ : int = i / num_diffusion_timesteps lowercase__ : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) ,SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ ,dtype=torch.floataa ) class UpperCAmelCase( snake_case_ , snake_case_ ): """simple docstring""" a : int = 1 @register_to_config def __init__( self , lowerCamelCase = 1000 , lowerCamelCase = 0.00_01 , lowerCamelCase = 0.02 , lowerCamelCase = "linear" , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = True , lowerCamelCase = 0 , lowerCamelCase = "epsilon" , lowerCamelCase = 1.0 , **lowerCamelCase , ) -> List[Any]: """simple docstring""" if kwargs.get("set_alpha_to_one" , lowerCamelCase ) is not None: lowercase__ : Any = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , lowerCamelCase , standard_warn=lowerCamelCase ) lowercase__ : Optional[int] = kwargs["set_alpha_to_one"] if trained_betas is not None: lowercase__ : Optional[int] = torch.tensor(lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase__ : int = torch.linspace(lowerCamelCase , lowerCamelCase , lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase__ : List[str] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase__ : Optional[Any] = betas_for_alpha_bar(lowerCamelCase ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) lowercase__ : List[str] = 1.0 - self.betas lowercase__ : List[str] = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. lowercase__ : Dict = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution lowercase__ : Optional[int] = 1.0 # setable values lowercase__ : int = None lowercase__ : int = torch.from_numpy(np.arange(0 , lowerCamelCase ).copy().astype(np.intaa ) ) def __a ( self , lowerCamelCase , lowerCamelCase = None ) -> torch.FloatTensor: """simple docstring""" return sample def __a ( self , lowerCamelCase , lowerCamelCase = None ) -> Optional[Any]: """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"""`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:""" f""" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle""" f""" maximal {self.config.num_train_timesteps} timesteps.""" ) lowercase__ : Optional[Any] = num_inference_steps lowercase__ : Dict = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase__ : Dict = (np.arange(0 , lowerCamelCase ) * step_ratio).round().copy().astype(np.intaa ) lowercase__ : Any = torch.from_numpy(lowerCamelCase ).to(lowerCamelCase ) self.timesteps += self.config.steps_offset def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" lowercase__ : int = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process lowercase__ : Optional[int] = self.alphas_cumprod[timestep] lowercase__ : Dict = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) lowercase__ : Optional[int] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": lowercase__ : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 lowercase__ : Optional[int] = model_output elif self.config.prediction_type == "sample": lowercase__ : Any = model_output lowercase__ : Optional[int] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": lowercase__ : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output lowercase__ : Any = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or""" " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: lowercase__ : Optional[Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : int = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : Dict = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCamelCase , pred_original_sample=lowerCamelCase ) def __len__( self ) -> Tuple: """simple docstring""" return self.config.num_train_timesteps
397
1
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase ( A__ ): '''simple docstring''' def __init__( self , _snake_case , _snake_case , _snake_case ) -> Optional[Any]: """simple docstring""" super().__init__() self.register_modules(vqvae=_snake_case , unet=_snake_case , scheduler=_snake_case ) @torch.no_grad() def __call__( self , _snake_case = 1 , _snake_case = None , _snake_case = 0.0 , _snake_case = 50 , _snake_case = "pil" , _snake_case = True , **_snake_case , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" UpperCAmelCase = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_snake_case , ) UpperCAmelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_snake_case ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCAmelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase = {} if accepts_eta: UpperCAmelCase = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCAmelCase = self.scheduler.scale_model_input(_snake_case , _snake_case ) # predict the noise residual UpperCAmelCase = self.unet(_snake_case , _snake_case ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample # decode the image latents with the VAE UpperCAmelCase = self.vqvae.decode(_snake_case ).sample UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(_snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=_snake_case )
391
def _lowerCAmelCase ( A__: int , A__: int ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase = str(bin(A__ ) ) binary_number += "0" * shift_amount return binary_number def _lowerCAmelCase ( A__: int , A__: int ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase = str(bin(A__ ) )[2:] if shift_amount >= len(A__ ): return "0b0" UpperCAmelCase = binary_number[: len(A__ ) - shift_amount] return "0b" + shifted_binary_number def _lowerCAmelCase ( A__: int , A__: int ): '''simple docstring''' if number >= 0: # Get binary representation of positive number UpperCAmelCase = '''0''' + str(bin(A__ ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number UpperCAmelCase = len(bin(A__ )[3:] ) # Find 2's complement of number UpperCAmelCase = bin(abs(A__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase = ( '''1''' + '''0''' * (binary_number_length - len(A__ )) + binary_number ) if shift_amount >= len(A__ ): return "0b" + binary_number[0] * len(A__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(A__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
391
1
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin __a : int = get_tests_dir("fixtures/test_sentencepiece.model") __a : str = get_tests_dir("fixtures/test_sentencepiece_bpe.model") __a : Optional[int] = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class __lowercase ( lowercase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = CamembertTokenizer SCREAMING_SNAKE_CASE = CamembertTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __A = CamembertTokenizer(UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" __A = """<pad>""" __A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" __A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCamelCase_ ) , 1_004 ) def lowerCAmelCase_ ( self : int ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_005 ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A = CamembertTokenizer(UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) __A = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __A = """I was born in 92000, and this is falsé.""" __A = tokenizer.encode(UpperCamelCase_ ) __A = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __A = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) __A = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __A = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) __A = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" if not self.test_rust_tokenizer: return __A = self.get_tokenizer() __A = self.get_rust_tokenizer() __A = """I was born in 92000, and this is falsé.""" __A = tokenizer.tokenize(UpperCamelCase_ ) __A = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __A = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) __A = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __A = self.get_rust_tokenizer() __A = tokenizer.encode(UpperCamelCase_ ) __A = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" __A = {"""input_ids""": [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __A = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCamelCase_ , )
637
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() __a : Union[str, Any] = logging.get_logger(__name__) __a : Tuple = "Hello world! cécé herlolip" def _SCREAMING_SNAKE_CASE ( __lowercase : str , __lowercase : str , __lowercase : bool ) -> List[Any]: """simple docstring""" __A = FairseqRobertaModel.from_pretrained(__lowercase ) roberta.eval() # disable dropout __A = roberta.model.encoder.sentence_encoder __A = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: __A = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" , __lowercase ) __A = XLMRobertaXLForSequenceClassification(__lowercase ) if classification_head else XLMRobertaXLForMaskedLM(__lowercase ) model.eval() # Now let's copy all the weights. # Embeddings __A = roberta_sent_encoder.embed_tokens.weight __A = roberta_sent_encoder.embed_positions.weight __A = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. __A = roberta_sent_encoder.layer_norm.weight __A = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __A = model.roberta.encoder.layer[i] __A = roberta_sent_encoder.layers[i] __A = layer.attention __A = roberta_layer.self_attn_layer_norm.weight __A = roberta_layer.self_attn_layer_norm.bias # self attention __A = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) __A = roberta_layer.self_attn.q_proj.weight __A = roberta_layer.self_attn.q_proj.bias __A = roberta_layer.self_attn.k_proj.weight __A = roberta_layer.self_attn.k_proj.bias __A = roberta_layer.self_attn.v_proj.weight __A = roberta_layer.self_attn.v_proj.bias # self-attention output __A = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape __A = roberta_layer.self_attn.out_proj.weight __A = roberta_layer.self_attn.out_proj.bias # this one is final layer norm __A = roberta_layer.final_layer_norm.weight __A = roberta_layer.final_layer_norm.bias # intermediate __A = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape __A = roberta_layer.fca.weight __A = roberta_layer.fca.bias # output __A = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape __A = roberta_layer.fca.weight __A = roberta_layer.fca.bias # end of layer if classification_head: __A = roberta.model.classification_heads["""mnli"""].dense.weight __A = roberta.model.classification_heads["""mnli"""].dense.bias __A = roberta.model.classification_heads["""mnli"""].out_proj.weight __A = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head __A = roberta.model.encoder.lm_head.dense.weight __A = roberta.model.encoder.lm_head.dense.bias __A = roberta.model.encoder.lm_head.layer_norm.weight __A = roberta.model.encoder.lm_head.layer_norm.bias __A = roberta.model.encoder.lm_head.weight __A = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. __A = roberta.encode(__lowercase ).unsqueeze(0 ) # batch of size 1 __A = model(__lowercase )[0] if classification_head: __A = roberta.model.classification_heads["""mnli"""](roberta.extract_features(__lowercase ) ) else: __A = roberta.model(__lowercase )[0] print(our_output.shape , their_output.shape ) __A = torch.max(torch.abs(our_output - their_output ) ).item() print(f"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 __A = torch.allclose(__lowercase , __lowercase , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(__lowercase ).mkdir(parents=__lowercase , exist_ok=__lowercase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__lowercase ) if __name__ == "__main__": __a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) __a : Dict = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
637
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCamelCase__ ( A_): '''simple docstring''' __a : Tuple = '''openai/whisper-base''' __a : Union[str, Any] = ( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) __a : Any = '''transcriber''' __a : str = WhisperProcessor __a : Tuple = WhisperForConditionalGeneration __a : Union[str, Any] = ['''audio'''] __a : Any = ['''text'''] def A__ ( self , A ) ->Dict: return self.pre_processor(A , return_tensors='pt' ).input_features def A__ ( self , A ) ->Union[str, Any]: return self.model.generate(inputs=A ) def A__ ( self , A ) ->int: return self.pre_processor.batch_decode(A , skip_special_tokens=A )[0]
708
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCamelCase__ ( UpperCAmelCase__): '''simple docstring''' __a : Optional[int] = ["""image_processor""", """tokenizer"""] __a : int = """OwlViTImageProcessor""" __a : Optional[int] = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , A=None , A=None , **A ) ->str: UpperCAmelCase__ :str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , A , ) UpperCAmelCase__ :List[Any] = kwargs.pop('feature_extractor' ) UpperCAmelCase__ :Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A , A ) def __call__( self , A=None , A=None , A=None , A="max_length" , A="np" , **A ) ->Tuple: if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A , A ) or (isinstance(A , A ) and not isinstance(text[0] , A )): UpperCAmelCase__ :Optional[Any] = [self.tokenizer(A , padding=A , return_tensors=A , **A )] elif isinstance(A , A ) and isinstance(text[0] , A ): UpperCAmelCase__ :Dict = [] # Maximum number of queries across batch UpperCAmelCase__ :Dict = max([len(A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A ) != max_num_queries: UpperCAmelCase__ :List[str] = t + [' '] * (max_num_queries - len(A )) UpperCAmelCase__ :List[str] = self.tokenizer(A , padding=A , return_tensors=A , **A ) encodings.append(A ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": UpperCAmelCase__ :Any = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) UpperCAmelCase__ :int = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase__ :int = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) UpperCAmelCase__ :Optional[Any] = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase__ :List[str] = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) UpperCAmelCase__ :int = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase__ :List[str] = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) UpperCAmelCase__ :List[str] = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) UpperCAmelCase__ :Optional[int] = BatchEncoding() UpperCAmelCase__ :Any = input_ids UpperCAmelCase__ :str = attention_mask if query_images is not None: UpperCAmelCase__ :Optional[int] = BatchEncoding() UpperCAmelCase__ :Tuple = self.image_processor( A , return_tensors=A , **A ).pixel_values UpperCAmelCase__ :str = query_pixel_values if images is not None: UpperCAmelCase__ :Optional[int] = self.image_processor(A , return_tensors=A , **A ) if text is not None and images is not None: UpperCAmelCase__ :Optional[int] = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase__ :int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A ) , tensor_type=A ) def A__ ( self , *A , **A ) ->Tuple: return self.image_processor.post_process(*A , **A ) def A__ ( self , *A , **A ) ->Tuple: return self.image_processor.post_process_object_detection(*A , **A ) def A__ ( self , *A , **A ) ->Any: return self.image_processor.post_process_image_guided_detection(*A , **A ) def A__ ( self , *A , **A ) ->Optional[int]: return self.tokenizer.batch_decode(*A , **A ) def A__ ( self , *A , **A ) ->Dict: return self.tokenizer.decode(*A , **A ) @property def A__ ( self ) ->Dict: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , A , ) return self.image_processor_class @property def A__ ( self ) ->Dict: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , A , ) return self.image_processor
433
0
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __A ( _SCREAMING_SNAKE_CASE : BertModel , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __SCREAMING_SNAKE_CASE : str = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(UpperCamelCase__ ): os.makedirs(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE : Any = model.state_dict() def to_tf_var_name(_SCREAMING_SNAKE_CASE : str ): for patt, repl in iter(UpperCamelCase__ ): __SCREAMING_SNAKE_CASE : int = name.replace(UpperCamelCase__ , UpperCamelCase__ ) return f'bert/{name}' def create_tf_var(_SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : tf.Session ): __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.dtypes.as_dtype(tensor.dtype ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.get_variable(dtype=UpperCamelCase__ , shape=tensor.shape , name=UpperCamelCase__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(UpperCamelCase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __SCREAMING_SNAKE_CASE : Any = to_tf_var_name(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE : Dict = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __SCREAMING_SNAKE_CASE : int = torch_tensor.T __SCREAMING_SNAKE_CASE : Any = create_tf_var(tensor=UpperCamelCase__ , name=UpperCamelCase__ , session=UpperCamelCase__ ) tf.keras.backend.set_value(UpperCamelCase__ , UpperCamelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = session.run(UpperCamelCase__ ) print(f'Successfully created {tf_name}: {np.allclose(UpperCamelCase__ , UpperCamelCase__ )}' ) __SCREAMING_SNAKE_CASE : Tuple = tf.train.Saver(tf.trainable_variables() ) saver.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def __A ( _SCREAMING_SNAKE_CASE : List[str]=None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument("--model_name" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Directory in which to save tensorflow model" ) __SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE : Dict = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=UpperCamelCase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
211
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowerCAmelCase ( UpperCamelCase__ : BertModel , UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') __UpperCAmelCase = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(UpperCamelCase__ ): os.makedirs(UpperCamelCase__ ) __UpperCAmelCase = model.state_dict() def to_tf_var_name(UpperCamelCase__ : str ): for patt, repl in iter(UpperCamelCase__ ): __UpperCAmelCase = name.replace(UpperCamelCase__ , UpperCamelCase__ ) return f"""bert/{name}""" def create_tf_var(UpperCamelCase__ : np.ndarray , UpperCamelCase__ : str , UpperCamelCase__ : tf.Session ): __UpperCAmelCase = tf.dtypes.as_dtype(tensor.dtype ) __UpperCAmelCase = tf.get_variable(dtype=UpperCamelCase__ , shape=tensor.shape , name=UpperCamelCase__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(UpperCamelCase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __UpperCAmelCase = to_tf_var_name(UpperCamelCase__ ) __UpperCAmelCase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __UpperCAmelCase = torch_tensor.T __UpperCAmelCase = create_tf_var(tensor=UpperCamelCase__ , name=UpperCamelCase__ , session=UpperCamelCase__ ) tf.keras.backend.set_value(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = session.run(UpperCamelCase__ ) print(f"""Successfully created {tf_name}: {np.allclose(UpperCamelCase__ , UpperCamelCase__ )}""" ) __UpperCAmelCase = tf.train.Saver(tf.trainable_variables() ) saver.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def lowerCAmelCase ( UpperCamelCase__ : List[str]=None ): """simple docstring""" __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''Directory in which to save tensorflow model''' ) __UpperCAmelCase = parser.parse_args(UpperCamelCase__ ) __UpperCAmelCase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=UpperCamelCase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
262
0
"""simple docstring""" from __future__ import annotations def _a ( _SCREAMING_SNAKE_CASE ) -> bool: snake_case_ = str(_SCREAMING_SNAKE_CASE ) return n == n[::-1] def _a ( _SCREAMING_SNAKE_CASE = 1_000_000 ) -> int: snake_case_ = 0 for i in range(1 , _SCREAMING_SNAKE_CASE ): if is_palindrome(_SCREAMING_SNAKE_CASE ) and is_palindrome(bin(_SCREAMING_SNAKE_CASE ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
2
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __A : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = scope snake_case_ = range_bbox def lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case_ = bbox[i, j, 3] snake_case_ = bbox[i, j, 1] snake_case_ = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case_ = bbox[i, j, 2] snake_case_ = bbox[i, j, 0] snake_case_ = t snake_case_ = None if self.use_input_mask: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str: """simple docstring""" snake_case_ = LiltModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict: """simple docstring""" snake_case_ = self.num_labels snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict: """simple docstring""" snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Optional[int] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __lowercase: Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __lowercase: Union[str, Any] = False __lowercase: List[str] = False def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]: """simple docstring""" return True def lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" snake_case_ = LiltModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[str] ) ->int: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) @slow def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_torch @slow class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ ) snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ ) snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ ) # forward pass with torch.no_grad(): snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ ) snake_case_ = torch.Size([1, 2, 768] ) snake_case_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , ) self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
2
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets SCREAMING_SNAKE_CASE : str = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" SCREAMING_SNAKE_CASE : int = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" SCREAMING_SNAKE_CASE : Tuple = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: def remove_articles(lowerCamelCase_ ): _lowercase : Any = re.compile(R'\b(a|an|the)\b' , re.UNICODE ) return re.sub(lowerCamelCase_ , ' ' , lowerCamelCase_ ) def white_space_fix(lowerCamelCase_ ): return " ".join(text.split() ) def remove_punc(lowerCamelCase_ ): _lowercase : Tuple = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase_ ) ) ) ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: return int(normalize_answer(lowerCamelCase_ ) == normalize_answer(lowerCamelCase_ ) ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> int: _lowercase : str = [any(compute_exact(lowerCamelCase_ , lowerCamelCase_ ) for ref in refs ) for pred, refs in zip(lowerCamelCase_ , lowerCamelCase_ )] return (sum(lowerCamelCase_ ) / len(lowerCamelCase_ )) * 100 def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: _lowercase : Tuple = [rgram for rgrams in rgramslist for rgram in rgrams] _lowercase : Any = Counter(lowerCamelCase_ ) _lowercase : Optional[Any] = Counter(lowerCamelCase_ ) _lowercase : Optional[Any] = Counter() for sgram, scount in sgramcounter.items(): _lowercase : Optional[Any] = scount * numref _lowercase : Union[str, Any] = Counter(lowerCamelCase_ ) _lowercase : List[Any] = Counter() for cgram, ccount in cgramcounter.items(): _lowercase : List[str] = ccount * numref # KEEP _lowercase : Tuple = sgramcounter_rep & cgramcounter_rep _lowercase : int = keepgramcounter_rep & rgramcounter _lowercase : List[Any] = sgramcounter_rep & rgramcounter _lowercase : str = 0 _lowercase : int = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowercase : Union[str, Any] = 1 _lowercase : Tuple = 1 if len(lowerCamelCase_ ) > 0: _lowercase : Optional[int] = keeptmpscorea / len(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _lowercase : Optional[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _lowercase : str = 0 if keepscore_precision > 0 or keepscore_recall > 0: _lowercase : Optional[int] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _lowercase : Optional[int] = sgramcounter_rep - cgramcounter_rep _lowercase : Optional[int] = delgramcounter_rep - rgramcounter _lowercase : Dict = sgramcounter_rep - rgramcounter _lowercase : List[str] = 0 _lowercase : Optional[int] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowercase : int = 1 if len(lowerCamelCase_ ) > 0: _lowercase : Tuple = deltmpscorea / len(lowerCamelCase_ ) # ADDITION _lowercase : Any = set(lowerCamelCase_ ) - set(lowerCamelCase_ ) _lowercase : Optional[Any] = set(lowerCamelCase_ ) & set(lowerCamelCase_ ) _lowercase : int = set(lowerCamelCase_ ) - set(lowerCamelCase_ ) _lowercase : int = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowercase : Union[str, Any] = 1 _lowercase : Tuple = 1 if len(lowerCamelCase_ ) > 0: _lowercase : Optional[int] = addtmpscore / len(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: _lowercase : Any = addtmpscore / len(lowerCamelCase_ ) _lowercase : Optional[int] = 0 if addscore_precision > 0 or addscore_recall > 0: _lowercase : Union[str, Any] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: _lowercase : List[str] = len(lowerCamelCase_ ) _lowercase : List[str] = ssent.split(' ' ) _lowercase : Optional[int] = csent.split(' ' ) _lowercase : Dict = [] _lowercase : Union[str, Any] = [] _lowercase : Optional[Any] = [] _lowercase : Union[str, Any] = [] _lowercase : Union[str, Any] = [] _lowercase : Any = [] _lowercase : Optional[Any] = [] _lowercase : Dict = [] _lowercase : Optional[Any] = [] _lowercase : int = [] for rsent in rsents: _lowercase : Optional[int] = rsent.split(' ' ) _lowercase : List[Any] = [] _lowercase : str = [] _lowercase : Dict = [] ragramslist.append(lowerCamelCase_ ) for i in range(0 , len(lowerCamelCase_ ) - 1 ): if i < len(lowerCamelCase_ ) - 1: _lowercase : Optional[int] = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(lowerCamelCase_ ) if i < len(lowerCamelCase_ ) - 2: _lowercase : List[Any] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(lowerCamelCase_ ) if i < len(lowerCamelCase_ ) - 3: _lowercase : List[str] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(lowerCamelCase_ ) ragramslist.append(lowerCamelCase_ ) ragramslist.append(lowerCamelCase_ ) ragramslist.append(lowerCamelCase_ ) for i in range(0 , len(lowerCamelCase_ ) - 1 ): if i < len(lowerCamelCase_ ) - 1: _lowercase : Optional[Any] = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(lowerCamelCase_ ) if i < len(lowerCamelCase_ ) - 2: _lowercase : Dict = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(lowerCamelCase_ ) if i < len(lowerCamelCase_ ) - 3: _lowercase : Tuple = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(lowerCamelCase_ ) for i in range(0 , len(lowerCamelCase_ ) - 1 ): if i < len(lowerCamelCase_ ) - 1: _lowercase : str = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(lowerCamelCase_ ) if i < len(lowerCamelCase_ ) - 2: _lowercase : Optional[Any] = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(lowerCamelCase_ ) if i < len(lowerCamelCase_ ) - 3: _lowercase : List[str] = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(lowerCamelCase_ ) ((_lowercase) , (_lowercase) , (_lowercase)) : Union[str, Any] = SARIngram(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) ((_lowercase) , (_lowercase) , (_lowercase)) : Union[str, Any] = SARIngram(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) ((_lowercase) , (_lowercase) , (_lowercase)) : int = SARIngram(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) ((_lowercase) , (_lowercase) , (_lowercase)) : Optional[int] = SARIngram(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _lowercase : List[Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _lowercase : Tuple = sum([delascore, delascore, delascore, delascore] ) / 4 _lowercase : Optional[int] = sum([addascore, addascore, addascore, addascore] ) / 4 _lowercase : str = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ = True , lowerCamelCase_ = "13a" , lowerCamelCase_ = True ) -> Optional[Any]: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _lowercase : int = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _lowercase : List[Any] = sacrebleu.metrics.bleu._get_tokenizer(lowerCamelCase_ )()(lowerCamelCase_ ) else: _lowercase : Tuple = sacrebleu.TOKENIZERS[tokenizer]()(lowerCamelCase_ ) elif tokenizer == "moses": _lowercase : Union[str, Any] = sacremoses.MosesTokenizer().tokenize(lowerCamelCase_ , return_str=lowerCamelCase_ , escape=lowerCamelCase_ ) elif tokenizer == "penn": _lowercase : Dict = sacremoses.MosesTokenizer().penn_tokenize(lowerCamelCase_ , return_str=lowerCamelCase_ ) else: _lowercase : Any = sentence if not return_str: _lowercase : str = normalized_sent.split() return normalized_sent def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str: if not (len(lowerCamelCase_ ) == len(lowerCamelCase_ ) == len(lowerCamelCase_ )): raise ValueError('Sources length must match predictions and references lengths.' ) _lowercase : Optional[Any] = 0 for src, pred, refs in zip(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): sari_score += SARIsent(normalize(lowerCamelCase_ ) , normalize(lowerCamelCase_ ) , [normalize(lowerCamelCase_ ) for sent in refs] ) _lowercase : Dict = sari_score / len(lowerCamelCase_ ) return 100 * sari_score def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="exp" , lowerCamelCase_=None , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=False , ) -> List[str]: _lowercase : Tuple = len(references[0] ) if any(len(lowerCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _lowercase : int = [[refs[i] for refs in references] for i in range(lowerCamelCase_ )] _lowercase : List[Any] = sacrebleu.corpus_bleu( lowerCamelCase_ , lowerCamelCase_ , smooth_method=lowerCamelCase_ , smooth_value=lowerCamelCase_ , force=lowerCamelCase_ , lowercase=lowerCamelCase_ , use_effective_order=lowerCamelCase_ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCamelCase( datasets.Metric ): def UpperCamelCase ( self) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('string', id='sequence'), 'references': datasets.Sequence(datasets.Value('string', id='sequence'), id='references'), }), codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ], reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ], ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Union[str, Any] = {} result.update({'sari': compute_sari(sources=lowerCamelCase, predictions=lowerCamelCase, references=lowerCamelCase)}) result.update({'sacrebleu': compute_sacrebleu(predictions=lowerCamelCase, references=lowerCamelCase)}) result.update({'exact': compute_em(predictions=lowerCamelCase, references=lowerCamelCase)}) return result
89
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib UpperCAmelCase__ :List[str] = get_logger() UpperCAmelCase__ :Optional[dict] = None class SCREAMING_SNAKE_CASE ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self : Any , A__ : List[str]=None , A__ : Tuple=None , **A__ : Dict ): """simple docstring""" super().__init__(features=A__ ) import jax from jaxlib.xla_client import Device if isinstance(A__ , A__ ): raise ValueError( f"Expected {device} to be a `str` not {type(A__ )}, as `jaxlib.xla_extension.Device` " """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) __lowerCamelCase : Optional[int] = device if isinstance(A__ , A__ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __lowerCamelCase : Dict = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"Device with string identifier {self.device} not listed among the available " f"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " f"device: {str(jax.devices()[0] )}." ) __lowerCamelCase : str = str(jax.devices()[0] ) __lowerCamelCase : Optional[Any] = jnp_array_kwargs @staticmethod def a_ ( ): """simple docstring""" import jax return {str(A__ ): device for device in jax.devices()} def a_ ( self : Any , A__ : List[str] ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(A__ , A__ ) and column: if all( isinstance(A__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A__ , axis=0 ) return column def a_ ( self : Tuple , A__ : Optional[int] ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(A__ , (str, bytes, type(A__ )) ): return value elif isinstance(A__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __lowerCamelCase : Dict = {} if isinstance(A__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: __lowerCamelCase : List[Any] = {"""dtype""": jnp.intaa} else: __lowerCamelCase : Any = {"""dtype""": jnp.intaa} elif isinstance(A__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __lowerCamelCase : int = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A__ , PIL.Image.Image ): __lowerCamelCase : List[str] = np.asarray(A__ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __lowerCamelCase : Tuple = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A__ , **{**default_dtype, **self.jnp_array_kwargs} ) def a_ ( self : int , A__ : Any ): """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A__ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A__ , """__array__""" ) and not isinstance(A__ , jax.Array ): __lowerCamelCase : Tuple = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A__ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A__ ) for substruct in data_struct] ) elif isinstance(A__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A__ ) for substruct in data_struct] ) return self._tensorize(A__ ) def a_ ( self : Tuple , A__ : dict ): """simple docstring""" return map_nested(self._recursive_tensorize , A__ , map_list=A__ ) def a_ ( self : Any , A__ : pa.Table ): """simple docstring""" __lowerCamelCase : List[str] = self.numpy_arrow_extractor().extract_row(A__ ) __lowerCamelCase : str = self.python_features_decoder.decode_row(A__ ) return self.recursive_tensorize(A__ ) def a_ ( self : Dict , A__ : pa.Table ): """simple docstring""" __lowerCamelCase : List[str] = self.numpy_arrow_extractor().extract_column(A__ ) __lowerCamelCase : int = self.python_features_decoder.decode_column(A__ , pa_table.column_names[0] ) __lowerCamelCase : Optional[int] = self.recursive_tensorize(A__ ) __lowerCamelCase : List[Any] = self._consolidate(A__ ) return column def a_ ( self : Tuple , A__ : pa.Table ): """simple docstring""" __lowerCamelCase : Any = self.numpy_arrow_extractor().extract_batch(A__ ) __lowerCamelCase : int = self.python_features_decoder.decode_batch(A__ ) __lowerCamelCase : Union[str, Any] = self.recursive_tensorize(A__ ) for column_name in batch: __lowerCamelCase : Optional[int] = self._consolidate(batch[column_name] ) return batch
150
0
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def UpperCamelCase ( a ) -> int: '''simple docstring''' __magic_name__ = int(SCREAMING_SNAKE_CASE_ ) __magic_name__ , __magic_name__ , __magic_name__ = t // 3600, (t // 60) % 60, t % 60 return F'''{h}:{m:02d}:{s:02d}''' if h != 0 else F'''{m:02d}:{s:02d}''' def UpperCamelCase ( a , a , a , a , a=300 ) -> Union[str, Any]: '''simple docstring''' return F'''\n <div>\n {prefix}\n <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress>\n {label}\n </div>\n ''' def UpperCamelCase ( a ) -> Tuple: '''simple docstring''' __magic_name__ = '''<table border=\"1\" class=\"dataframe\">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __magic_name__ = F'''{elt:.6f}''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else str(SCREAMING_SNAKE_CASE_ ) html_code += F''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _SCREAMING_SNAKE_CASE : __SCREAMING_SNAKE_CASE :Dict = 5 __SCREAMING_SNAKE_CASE :Dict = 0.2 def __init__( self : str , a__ : Dict , a__ : List[str] = None , a__ : Optional[int] = True , a__ : str = None , a__ : str = 300 , ): __magic_name__ = total __magic_name__ = '''''' if prefix is None else prefix __magic_name__ = leave __magic_name__ = parent __magic_name__ = width __magic_name__ = None __magic_name__ = None __magic_name__ = None def snake_case__ ( self : Optional[Any] , a__ : Union[str, Any] , a__ : Optional[Any] = False , a__ : List[Any] = None ): __magic_name__ = value if comment is not None: __magic_name__ = comment if self.last_value is None: __magic_name__ = __magic_name__ = time.time() __magic_name__ = __magic_name__ = value __magic_name__ = __magic_name__ = None __magic_name__ = self.warmup __magic_name__ = 1 self.update_bar(A__ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __magic_name__ = time.time() __magic_name__ = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __magic_name__ = self.elapsed_time / (value - self.start_value) else: __magic_name__ = None if value >= self.total: __magic_name__ = self.total __magic_name__ = None if not self.leave: self.close() elif self.average_time_per_item is not None: __magic_name__ = self.average_time_per_item * (self.total - value) self.update_bar(A__ ) __magic_name__ = value __magic_name__ = current_time if self.average_time_per_item is None: __magic_name__ = 1 else: __magic_name__ = max(int(self.update_every / self.average_time_per_item ) , 1 ) def snake_case__ ( self : Dict , a__ : Optional[int] , a__ : Optional[Any]=None ): __magic_name__ = ''' ''' * (len(str(self.total ) ) - len(str(A__ ) )) + str(A__ ) if self.elapsed_time is None: __magic_name__ = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: __magic_name__ = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: __magic_name__ = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def snake_case__ ( self : Any ): __magic_name__ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __magic_name__ = disp.display(disp.HTML(self.html_code ) , display_id=A__ ) else: self.output.update(disp.HTML(self.html_code ) ) def snake_case__ ( self : List[Any] ): if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class _SCREAMING_SNAKE_CASE ( _lowerCamelCase ): def __init__( self : List[str] , a__ : Optional[int] , a__ : str=None ): super().__init__(A__ ) __magic_name__ = None if column_names is None else [column_names] __magic_name__ = None def snake_case__ ( self : Tuple ): __magic_name__ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __magic_name__ = disp.display(disp.HTML(self.html_code ) , display_id=A__ ) else: self.output.update(disp.HTML(self.html_code ) ) def snake_case__ ( self : Tuple , a__ : str ): if self.inner_table is None: __magic_name__ = [list(values.keys() ), list(values.values() )] else: __magic_name__ = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(A__ ) __magic_name__ = columns self.inner_table.append([values[c] for c in columns] ) def snake_case__ ( self : Tuple , a__ : Tuple , a__ : Optional[Any]=None , a__ : Optional[int]=300 ): __magic_name__ = NotebookProgressBar(A__ , prefix=A__ , parent=self , width=A__ ) return self.child_bar def snake_case__ ( self : Optional[Any] ): __magic_name__ = None self.display() class _SCREAMING_SNAKE_CASE ( _lowerCamelCase ): def __init__( self : Optional[Any] ): __magic_name__ = None __magic_name__ = None __magic_name__ = False def snake_case__ ( self : List[Any] , a__ : Optional[int] , a__ : List[Any] , a__ : Tuple , **a__ : str ): __magic_name__ = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) __magic_name__ = NotebookTrainingTracker(state.max_steps , A__ ) def snake_case__ ( self : Dict , a__ : Optional[int] , a__ : Optional[int] , a__ : Any , **a__ : Optional[int] ): __magic_name__ = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) __magic_name__ = False def snake_case__ ( self : List[Any] , a__ : Union[str, Any] , a__ : str , a__ : int , a__ : int=None , **a__ : Tuple ): if not has_length(A__ ): return if self.prediction_bar is None: if self.training_tracker is not None: __magic_name__ = self.training_tracker.add_child(len(A__ ) ) else: __magic_name__ = NotebookProgressBar(len(A__ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def snake_case__ ( self : Optional[Any] , a__ : Any , a__ : str , a__ : Tuple , **a__ : Optional[int] ): if self.prediction_bar is not None: self.prediction_bar.close() __magic_name__ = None def snake_case__ ( self : Optional[int] , a__ : str , a__ : List[Any] , a__ : Tuple , a__ : Optional[Any]=None , **a__ : Optional[int] ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __magic_name__ = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy __magic_name__ = state.global_step self.training_tracker.write_line(A__ ) def snake_case__ ( self : Optional[int] , a__ : int , a__ : Tuple , a__ : List[Any] , a__ : Any=None , **a__ : List[Any] ): if self.training_tracker is not None: __magic_name__ = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: __magic_name__ = log['''loss'''] break if self.first_column == "Epoch": __magic_name__ = int(state.epoch ) else: __magic_name__ = state.global_step __magic_name__ = '''eval''' for k in metrics: if k.endswith('''_loss''' ): __magic_name__ = re.sub(r'''\_loss$''' , '''''' , A__ ) __magic_name__ = metrics.pop('''total_flos''' , A__ ) __magic_name__ = metrics.pop('''epoch''' , A__ ) __magic_name__ = metrics.pop(F'''{metric_key_prefix}_runtime''' , A__ ) __magic_name__ = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , A__ ) __magic_name__ = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , A__ ) __magic_name__ = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , A__ ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': __magic_name__ = v else: __magic_name__ = k.split('''_''' ) __magic_name__ = ''' '''.join([part.capitalize() for part in splits[1:]] ) __magic_name__ = v self.training_tracker.write_line(A__ ) self.training_tracker.remove_child() __magic_name__ = None # Evaluation takes a long time so we should force the next update. __magic_name__ = True def snake_case__ ( self : Tuple , a__ : int , a__ : List[str] , a__ : List[Any] , **a__ : List[Any] ): self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=A__ ) __magic_name__ = None
700
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _lowerCAmelCase = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _lowerCAmelCase = [ord(letter) for letter in string.ascii_lowercase] _lowerCAmelCase = {ord(char) for char in VALID_CHARS} _lowerCAmelCase = ["the", "be", "to", "of", "and", "in", "that", "have"] def UpperCamelCase ( a , a ) -> str | None: '''simple docstring''' __magic_name__ = "" __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 for keychar, cipherchar in zip(cycle(a ) , a ): __magic_name__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(a ) return decoded def UpperCamelCase ( a ) -> list[str]: '''simple docstring''' __magic_name__ = [] for key in product(a , repeat=3 ): __magic_name__ = try_key(a , a ) if encoded is not None: possibles.append(a ) return possibles def UpperCamelCase ( a , a ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def UpperCamelCase ( a = "p059_cipher.txt" ) -> int: '''simple docstring''' __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = Path(a ).parent.joinpath(a ).read_text(encoding='''utf-8''' ) __magic_name__ = [int(a ) for number in data.strip().split(''',''' )] __magic_name__ = filter_valid_chars(a ) for common_word in COMMON_WORDS: __magic_name__ = filter_common_word(a , a ) if len(a ) == 1: break __magic_name__ = possibles[0] return sum(ord(a ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
245
0