code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import math def a__ ( snake_case , snake_case ): """simple docstring""" if ( not isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def a__ ( snake_case , snake_case ): """simple docstring""" if ( not isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
74
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __snake_case = { """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
451
0
def snake_case (__lowercase ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True _snake_case : Tuple = 4 _snake_case : str = (1 << p) - 1 for _ in range(p - 2 ): _snake_case : List[str] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
704
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(4_2) __SCREAMING_SNAKE_CASE : int = 'bert-base-cased' __SCREAMING_SNAKE_CASE : Union[str, Any] = 'fp16' __SCREAMING_SNAKE_CASE : str = 'bf16' __SCREAMING_SNAKE_CASE : Optional[int] = [FPaa, BFaa] @require_fsdp @require_cuda class lowercase_ ( __snake_case ): def UpperCamelCase ( self ): super().setUp() _snake_case : Optional[int] = dict( ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , ) def UpperCamelCase ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(lowercase_ ): _snake_case : Optional[Any] = self.dist_env.copy() _snake_case : List[str] = f"""{i + 1}""" _snake_case : int = strategy with mockenv_context(**lowercase_ ): _snake_case : Any = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def UpperCamelCase ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(lowercase_ ): _snake_case : List[str] = self.dist_env.copy() _snake_case : List[Any] = prefetch_policy with mockenv_context(**lowercase_ ): _snake_case : List[str] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def UpperCamelCase ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(lowercase_ ): _snake_case : str = self.dist_env.copy() _snake_case : List[str] = state_dict_type with mockenv_context(**lowercase_ ): _snake_case : List[Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def UpperCamelCase ( self ): _snake_case : Tuple = AutoModel.from_pretrained(lowercase_ ) for policy in FSDP_AUTO_WRAP_POLICY: _snake_case : Optional[Any] = self.dist_env.copy() _snake_case : List[str] = policy if policy == "TRANSFORMER_BASED_WRAP": _snake_case : List[str] = "BertLayer" elif policy == "SIZE_BASED_WRAP": _snake_case : str = "2000" with mockenv_context(**lowercase_ ): _snake_case : List[str] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowercase_ ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) _snake_case : str = self.dist_env.copy() _snake_case : Tuple = "TRANSFORMER_BASED_WRAP" _snake_case : Union[str, Any] = "T5Layer" with mockenv_context(**lowercase_ ): _snake_case : Optional[int] = FullyShardedDataParallelPlugin() with self.assertRaises(lowercase_ ) as cm: fsdp_plugin.set_auto_wrap_policy(lowercase_ ) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) ) _snake_case : str = self.dist_env.copy() _snake_case : Any = "SIZE_BASED_WRAP" _snake_case : str = "0" with mockenv_context(**lowercase_ ): _snake_case : Optional[int] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowercase_ ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def UpperCamelCase ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: _snake_case : Union[str, Any] = self.dist_env.copy() _snake_case : int = mp_dtype with mockenv_context(**lowercase_ ): _snake_case : str = Accelerator() if mp_dtype == "fp16": _snake_case : List[str] = torch.floataa elif mp_dtype == "bf16": _snake_case : Any = torch.bfloataa _snake_case : Dict = MixedPrecision(param_dtype=lowercase_ , reduce_dtype=lowercase_ , buffer_dtype=lowercase_ ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , lowercase_ ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , lowercase_ ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(lowercase_ ) def UpperCamelCase ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: _snake_case : Union[str, Any] = self.dist_env.copy() _snake_case : Tuple = str(lowercase_ ).lower() with mockenv_context(**lowercase_ ): _snake_case : Dict = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=lowercase_ ) ) @require_fsdp @require_multi_gpu @slow class lowercase_ ( __snake_case ): def UpperCamelCase ( self ): super().setUp() _snake_case : Dict = 0.82 _snake_case : str = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] _snake_case : Tuple = { "multi_gpu_fp16": 3_200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2_000, "fsdp_full_shard_transformer_based_wrap_fp16": 1_900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } _snake_case : Tuple = 160 _snake_case : Optional[int] = 160 _snake_case : Optional[Any] = inspect.getfile(accelerate.test_utils ) _snake_case : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] ) def UpperCamelCase ( self ): _snake_case : Optional[int] = os.path.join(self.test_scripts_folder , "test_performance.py" ) _snake_case : int = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: _snake_case : str = cmd.copy() for i, strategy in enumerate(lowercase_ ): if strategy.lower() in config: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append("--mixed_precision=no" ) else: cmd_config.append("--mixed_precision=fp16" ) if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) def UpperCamelCase ( self ): _snake_case : Tuple = os.path.join(self.test_scripts_folder , "test_checkpointing.py" ) _snake_case : str = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(lowercase_ ): _snake_case : str = cmd.copy() cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue _snake_case : int = len(lowercase_ ) for state_dict_type in FSDP_STATE_DICT_TYPE: _snake_case : int = cmd_config[:state_dict_config_index] cmd_config.append(f"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) _snake_case : Union[str, Any] = cmd_config[:-1] _snake_case : Dict = os.path.join(self.tmpdir , "epoch_0" ) cmd_config.extend( [ f"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) def UpperCamelCase ( self ): _snake_case : List[Any] = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py" ) _snake_case : Any = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): _snake_case : Tuple = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"] ) else: cmd_config.extend(["--mixed_precision=no"] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"] ) for i, strategy in enumerate(lowercase_ ): if strategy.lower() in spec: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--peak_memory_upper_bound={peak_mem_upper_bound}""", f"""--n_train={self.n_train}""", f"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() )
580
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : List[str] = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __A : Dict = random.Random() def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__=1.0 , UpperCamelCase__=None , UpperCamelCase__=None ) -> Any: '''simple docstring''' if rng is None: UpperCAmelCase = global_rng UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class A_ (unittest.TestCase ): def __init__( self , _A , _A=7 , _A=4_0_0 , _A=2_0_0_0 , _A=1 , _A=0.0 , _A=1_6_0_0_0 , _A=True , _A=True , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = min_seq_length UpperCAmelCase = max_seq_length UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase = feature_size UpperCAmelCase = padding_value UpperCAmelCase = sampling_rate UpperCAmelCase = return_attention_mask UpperCAmelCase = do_normalize def _lowercase ( self ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowercase ( self , _A=False , _A=False ): '''simple docstring''' def _flatten(_A ): return list(itertools.chain(*_A ) ) if equal_length: UpperCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase = [np.asarray(_A ) for x in speech_inputs] return speech_inputs class A_ (a_ , unittest.TestCase ): UpperCAmelCase__ = WavaVecaFeatureExtractor def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = WavaVecaFeatureExtractionTester(self ) def _lowercase ( self , _A ): '''simple docstring''' self.assertTrue(np.all(np.mean(_A , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_A , axis=0 ) - 1 ) < 1E-3 ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = [np.asarray(_A ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values UpperCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) # Test batched UpperCAmelCase = feat_extract(_A , return_tensors='''np''' ).input_values UpperCAmelCase = feat_extract(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] UpperCAmelCase = np.asarray(_A ) UpperCAmelCase = feat_extract(_A , return_tensors='''np''' ).input_values UpperCAmelCase = feat_extract(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(_A , _A ): UpperCAmelCase = feat_extract(_A , padding=_A , max_length=_A , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = range(8_0_0 , 1_4_0_0 , 2_0_0 ) UpperCAmelCase = [floats_list((1, x) )[0] for x in lengths] UpperCAmelCase = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(_A , _A ): UpperCAmelCase = feat_extract(_A , max_length=_A , padding=_A ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = feat_extract( _A , truncation=_A , max_length=1_0_0_0 , padding='''max_length''' , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = feat_extract( _A , truncation=_A , max_length=1_0_0_0 , padding='''longest''' , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = feat_extract( _A , truncation=_A , max_length=2_0_0_0 , padding='''longest''' , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) @require_torch def _lowercase ( self ): '''simple docstring''' import torch UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def _lowercase ( self ): '''simple docstring''' for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: UpperCAmelCase = WavaVecaConfig.from_pretrained(_A ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(_A ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == '''layer''' )
130
0
"""simple docstring""" import os def __lowerCAmelCase ( ) -> List[Any]: """simple docstring""" with open(os.path.dirname(lowercase ) + "/grid.txt" ) as f: snake_case : Optional[Any] = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Any = 0 # right for i in range(20 ): for j in range(17 ): snake_case : Optional[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : List[Any] = temp # down for i in range(17 ): for j in range(20 ): snake_case : Optional[Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : Any = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : Optional[Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : Tuple = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): snake_case : str = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : int = temp return maximum if __name__ == "__main__": print(solution())
117
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class _lowerCAmelCase ( snake_case_ ): def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : List[Any] = tempfile.mkdtemp() snake_case : Union[str, Any] = 8 # DPR tok snake_case : str = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] snake_case : Union[str, Any] = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) snake_case : Union[str, Any] = os.path.join(UpperCamelCase__ , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok snake_case : Union[str, Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] snake_case : Tuple = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : List[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] snake_case : Optional[Any] = {"unk_token": "<unk>"} snake_case : Tuple = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) snake_case : Optional[Any] = os.path.join(UpperCamelCase__ , BART_VOCAB_FILES_NAMES["vocab_file"] ) snake_case : int = os.path.join(UpperCamelCase__ , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCamelCase__ ) ) def lowerCamelCase ( self ) -> DPRQuestionEncoderTokenizer: '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def lowerCamelCase ( self ) -> DPRContextEncoderTokenizer: '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def lowerCamelCase ( self ) -> BartTokenizer: '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : Dict = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : List[str] = self.get_dummy_dataset() snake_case : int = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: snake_case : int = dataset snake_case : int = RagRetriever( UpperCamelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def lowerCamelCase ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = self.get_dummy_dataset() snake_case : Any = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: snake_case : str = os.path.join(self.tmpdirname , "dataset" ) snake_case : Any = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset snake_case : Any = RagRetriever( UpperCamelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: snake_case : str = RagRetriever( UpperCamelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , UpperCamelCase__ ) , ) return retriever def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[int] = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) snake_case : Dict = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) snake_case : int = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) snake_case : Any = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(UpperCamelCase__ , open(UpperCamelCase__ , "wb" ) ) snake_case : List[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) snake_case : Dict = RagRetriever( UpperCamelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : str = 1 snake_case : Any = self.get_dummy_canonical_hf_index_retriever() snake_case : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case ,snake_case ,snake_case : Any = retriever.retrieve(UpperCamelCase__ , n_docs=UpperCamelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCamelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , UpperCamelCase__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : List[str] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: snake_case : List[str] = self.get_dummy_dataset() retriever.save_pretrained(UpperCamelCase__ ) snake_case : Union[str, Any] = RagRetriever.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case : List[Any] = retriever.retrieve(UpperCamelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = 1 snake_case : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCamelCase__ ) snake_case : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case ,snake_case ,snake_case : Any = retriever.retrieve(UpperCamelCase__ , n_docs=UpperCamelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCamelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , UpperCamelCase__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCamelCase__ ) snake_case : int = RagRetriever.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case : int = retriever.retrieve(UpperCamelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = 1 snake_case : int = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCamelCase__ ) snake_case : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case ,snake_case ,snake_case : List[str] = retriever.retrieve(UpperCamelCase__ , n_docs=UpperCamelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCamelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , UpperCamelCase__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCamelCase__ ) snake_case : Any = RagRetriever.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case : Any = retriever.retrieve(UpperCamelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : Union[str, Any] = 1 snake_case : Tuple = self.get_dummy_legacy_index_retriever() snake_case : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case ,snake_case ,snake_case : Any = retriever.retrieve(UpperCamelCase__ , n_docs=UpperCamelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCamelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , UpperCamelCase__ ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : int = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCamelCase__ ) snake_case : Tuple = RagRetriever.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) snake_case : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case : Optional[Any] = retriever.retrieve(UpperCamelCase__ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' import torch snake_case : str = 1 snake_case : Dict = self.get_dummy_canonical_hf_index_retriever() snake_case : str = [[5, 7], [10, 11]] snake_case : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case : int = retriever(UpperCamelCase__ , UpperCamelCase__ , prefix=retriever.config.generator.prefix , n_docs=UpperCamelCase__ ) snake_case ,snake_case ,snake_case : Dict = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , np.ndarray ) snake_case : Tuple = retriever( UpperCamelCase__ , UpperCamelCase__ , prefix=retriever.config.generator.prefix , n_docs=UpperCamelCase__ , return_tensors="pt" , ) snake_case ,snake_case ,snake_case ,snake_case : str = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Tuple = self.get_dpr_ctx_encoder_tokenizer() snake_case : Union[str, Any] = 1 snake_case : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCamelCase__ ) retriever.set_ctx_encoder_tokenizer(UpperCamelCase__ ) snake_case : str = [[5, 7], [10, 11]] snake_case : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case : Dict = retriever(UpperCamelCase__ , UpperCamelCase__ , prefix=retriever.config.generator.prefix , n_docs=UpperCamelCase__ ) self.assertEqual( len(UpperCamelCase__ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , UpperCamelCase__ ) # check for doc token related keys in dictionary.
117
1
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def a ( UpperCamelCase_ : str = "isbn/0140328726" ) -> dict: snake_case__ =olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: snake_case__ =f"""{olid} is not a valid Open Library olid""" raise ValueError(UpperCamelCase_ ) return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json() def a ( UpperCamelCase_ : dict ) -> dict: snake_case__ ={ 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } snake_case__ ={better_key: ol_book_data[key] for key, better_key in desired_keys.items()} snake_case__ =[ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] snake_case__ =data['First sentence']['value'] for key, value in data.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): snake_case__ =', '.join(UpperCamelCase_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE__ : Dict = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (1_0, 1_3) or not isbn.isdigit(): print(f"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(f"""\nSearching Open Library for ISBN: {isbn}...\n""") try: SCREAMING_SNAKE_CASE__ : Dict = summarize_book(get_openlibrary_data(f"""isbn/{isbn}""")) print('''\n'''.join(f"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f"""Sorry, there are no results for ISBN: {isbn}.""")
538
'''simple docstring''' import os SCREAMING_SNAKE_CASE__ : Optional[Any] = {'''I''': 1, '''V''': 5, '''X''': 1_0, '''L''': 5_0, '''C''': 1_0_0, '''D''': 5_0_0, '''M''': 1_0_0_0} def a ( UpperCamelCase_ : str ) -> int: snake_case__ =0 snake_case__ =0 while index < len(UpperCamelCase_ ) - 1: snake_case__ =SYMBOLS[numerals[index]] snake_case__ =SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a ( UpperCamelCase_ : int ) -> str: snake_case__ ='' snake_case__ =num // 1000 numerals += m_count * "M" num %= 1000 snake_case__ =num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 snake_case__ =num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a ( UpperCamelCase_ : str = "/p089_roman.txt" ) -> int: snake_case__ =0 with open(os.path.dirname(UpperCamelCase_ ) + roman_numerals_filename ) as filea: snake_case__ =filea.readlines() for line in lines: snake_case__ =line.strip() snake_case__ =parse_roman_numerals(UpperCamelCase_ ) snake_case__ =generate_roman_numerals(UpperCamelCase_ ) savings += len(UpperCamelCase_ ) - len(UpperCamelCase_ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
538
1
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() __lowerCAmelCase = { '''bart''': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''bert''': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-base-cased-finetuned-mrpc''': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''dpr''': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''gpt2''': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlnet''': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm''': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm-roberta''': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''transfo-xl''': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''openai-gpt''': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''roberta''': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''layoutlm''': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''roberta-large-mnli''': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''camembert''': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''flaubert''': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert''': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert-base-distilled-squad''': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert''': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert-visual-feature-encoder''': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''ctrl''': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''albert''': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''t5''': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''electra''': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''wav2vec2''': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def snake_case_ ( snake_case , snake_case , snake_case , snake_case , snake_case=False , snake_case=True ) -> Union[str, Any]: if model_type not in MODEL_CLASSES: raise ValueError(f'Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.' ) lowercase__: str = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: lowercase__: Optional[Any] = cached_file(lowerCamelCase__ , lowerCamelCase__ , force_download=not use_cached_models ) lowercase__: Tuple = config_class.from_json_file(lowerCamelCase__ ) lowercase__: List[Any] = True lowercase__: Dict = True print(f'Building TensorFlow model from configuration: {config}' ) lowercase__: Tuple = model_class(lowerCamelCase__ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): lowercase__: Union[str, Any] = cached_file( lowerCamelCase__ , lowerCamelCase__ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: lowercase__: str = load_pytorch_checkpoint_in_tfa_model(lowerCamelCase__ , lowerCamelCase__ ) if compare_with_pt_model: lowercase__: int = tf_model(tf_model.dummy_inputs , training=lowerCamelCase__ ) # build the network lowercase__: Tuple = torch.load(lowerCamelCase__ , map_location='cpu' ) lowercase__: Optional[Any] = pt_model_class.from_pretrained( pretrained_model_name_or_path=lowerCamelCase__ , config=lowerCamelCase__ , state_dict=lowerCamelCase__ ) with torch.no_grad(): lowercase__: Any = pt_model(**pt_model.dummy_inputs ) lowercase__: int = pto[0].numpy() lowercase__: List[Any] = tfo[0].numpy() lowercase__: List[Any] = np.amax(np.abs(np_pt - np_tf ) ) print(f'Max absolute difference between models outputs {diff}' ) assert diff <= 2e-2, f'Error, model absolute difference is >2e-2: {diff}' # Save pytorch-model print(f'Save TensorFlow model to {tf_dump_path}' ) tf_model.save_weights(lowerCamelCase__ , save_format='h5' ) def snake_case_ ( snake_case , snake_case , snake_case=None , snake_case=None , snake_case=False , snake_case=False , snake_case=False , snake_case=False , ) -> Tuple: if args_model_type is None: lowercase__: Tuple = list(MODEL_CLASSES.keys() ) else: lowercase__: int = [args_model_type] for j, model_type in enumerate(lowerCamelCase__ , start=1 ): print('=' * 1_00 ) print(f' Converting model type {j}/{len(lowerCamelCase__ )}: {model_type}' ) print('=' * 1_00 ) if model_type not in MODEL_CLASSES: raise ValueError(f'Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.' ) lowercase__: Dict = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: lowercase__: int = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: lowercase__: Union[str, Any] = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(lowerCamelCase__ , lowerCamelCase__ ) , start=1 ): print('-' * 1_00 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f' Skipping finetuned checkpoint {model_shortcut_name}' ) continue lowercase__: Tuple = model_shortcut_name elif only_convert_finetuned_models: print(f' Skipping not finetuned checkpoint {model_shortcut_name}' ) continue print( f' Converting checkpoint {i}/{len(lowerCamelCase__ )}: {model_shortcut_name} - model_type {model_type}' ) print('-' * 1_00 ) if config_shortcut_name in aws_config_map: lowercase__: Optional[Any] = cached_file(lowerCamelCase__ , lowerCamelCase__ , force_download=not use_cached_models ) else: lowercase__: Union[str, Any] = config_shortcut_name if model_shortcut_name in aws_model_maps: lowercase__: Union[str, Any] = cached_file(lowerCamelCase__ , lowerCamelCase__ , force_download=not use_cached_models ) else: lowercase__: Any = model_shortcut_name if os.path.isfile(lowerCamelCase__ ): lowercase__: Optional[Any] = "converted_model" convert_pt_checkpoint_to_tf( model_type=lowerCamelCase__ , pytorch_checkpoint_path=lowerCamelCase__ , config_file=lowerCamelCase__ , tf_dump_path=os.path.join(lowerCamelCase__ , model_shortcut_name + '-tf_model.h5' ) , compare_with_pt_model=lowerCamelCase__ , ) if remove_cached_files: os.remove(lowerCamelCase__ ) os.remove(lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_dump_path''', default=None, type=str, required=True, help='''Path to the output Tensorflow dump file.''' ) parser.add_argument( '''--model_type''', default=None, type=str, help=( F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ''' '''convert all the models from AWS.''' ), ) parser.add_argument( '''--pytorch_checkpoint_path''', default=None, type=str, help=( '''Path to the PyTorch checkpoint path or shortcut name to download from AWS. ''' '''If not given, will download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--config_file''', default=None, type=str, help=( '''The config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture. If not given and ''' '''--pytorch_checkpoint_path is not given or is a shortcut name ''' '''use the configuration associated to the shortcut name on the AWS''' ), ) parser.add_argument( '''--compare_with_pt_model''', action='''store_true''', help='''Compare Tensorflow and PyTorch model predictions.''' ) parser.add_argument( '''--use_cached_models''', action='''store_true''', help='''Use cached models if possible instead of updating to latest checkpoint versions.''', ) parser.add_argument( '''--remove_cached_files''', action='''store_true''', help='''Remove pytorch models after conversion (save memory when converting in batches).''', ) parser.add_argument('''--only_convert_finetuned_models''', action='''store_true''', help='''Only convert finetuned models.''') __lowerCAmelCase = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
715
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCAmelCase = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } __lowerCAmelCase = { '''gpt2''': 10_24, '''gpt2-medium''': 10_24, '''gpt2-large''': 10_24, '''gpt2-xl''': 10_24, '''distilgpt2''': 10_24, } class __a ( __UpperCamelCase ): __lowercase : Optional[int] = VOCAB_FILES_NAMES __lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Dict = ['input_ids', 'attention_mask'] __lowercase : Any = GPTaTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowercase__: Optional[Any] = kwargs.pop('add_bos_token' , lowerCAmelCase__ ) lowercase__: Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase__ ) != add_prefix_space: lowercase__: Optional[int] = getattr(lowerCAmelCase__ , pre_tok_state.pop('type' ) ) lowercase__: Union[str, Any] = add_prefix_space lowercase__: Tuple = pre_tok_class(**lowerCAmelCase__ ) lowercase__: Optional[int] = add_prefix_space def SCREAMING_SNAKE_CASE__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> BatchEncoding: '''simple docstring''' lowercase__: List[str] = kwargs.get('is_split_into_words' , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> BatchEncoding: '''simple docstring''' lowercase__: Union[str, Any] = kwargs.get('is_split_into_words' , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' lowercase__: Dict = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[int]: '''simple docstring''' lowercase__: List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] ) if len(lowerCAmelCase__ ) > self.model_max_length: lowercase__: Union[str, Any] = input_ids[-self.model_max_length :] return input_ids
335
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } __A = { "gpt-neox-20b": 2048, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : int , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]="<|endoftext|>" , UpperCAmelCase_ : Optional[int]="<|endoftext|>" , UpperCAmelCase_ : int="<|endoftext|>" , UpperCAmelCase_ : int=False , **UpperCAmelCase_ : Optional[int] , ) ->int: '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase_) != add_prefix_space: lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , pre_tok_state.pop("type")) lowerCamelCase__: Optional[int] =add_prefix_space lowerCamelCase__: Any =pre_tok_class(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =add_prefix_space def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: str =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : "Conversation") ->List[int]: '''simple docstring''' lowerCamelCase__: int =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) + [self.eos_token_id]) if len(UpperCAmelCase_) > self.model_max_length: lowerCamelCase__: str =input_ids[-self.model_max_length :] return input_ids
59
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowercase__( A ): # A local function to see if a dot lands in the circle. def is_in_circle(A , A ) -> bool: snake_case__ : Optional[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case__ : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(A ) ) # The ratio of the area for circle to square is pi/4. snake_case__ : Optional[Any] = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowercase__( A , A , A = 0.0 , A = 1.0 , ): return mean( function_to_integrate(uniform(A , A ) ) for _ in range(A ) ) * (max_value - min_value) def lowercase__( A , A = 0.0 , A = 1.0 ): def identity_function(A ) -> float: return x snake_case__ : List[Any] = area_under_curve_estimator( A , A , A , A ) snake_case__ : List[str] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print('******************' ) def lowercase__( A ): def function_to_integrate(A ) -> float: return sqrt(4.0 - x * x ) snake_case__ : Tuple = area_under_curve_estimator( A , A , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
170
0
"""simple docstring""" def a__ ( __lowercase ) -> list: _A = int(__lowercase ) if n_element < 1: _A = ValueError("a should be a positive number" ) raise my_error _A = [1] _A = (0, 0, 0) _A = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": a_ = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") a_ = hamming(int(n)) print("-----------------------------------------------------") print(f'''The list with nth numbers is: {hamming_numbers}''') print("-----------------------------------------------------")
719
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging a_ = logging.get_logger(__name__) a_ = {"vocab_file": "spiece.model"} a_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 a_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } a_ = "▁" class snake_case ( _UpperCamelCase): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self : List[str] , a__ : Optional[int] , a__ : Union[str, Any]="</s>" , a__ : Union[str, Any]="<unk>" , a__ : str="<pad>" , a__ : Optional[int]=1_00 , a__ : List[Any]=None , a__ : Optional[Dict[str, Any]] = None , a__ : Any=True , **a__ : Optional[int] , ) -> None: '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: _A = [F"""<extra_id_{i}>""" for i in range(a__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _A = len(set(filter(lambda a__ : bool("extra_id" in str(a__ ) ) , a__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) if legacy: logger.warning_once( F"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" " read the related pull request available at https://github.com/huggingface/transformers/pull/24565" ) _A = legacy _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=a__ , unk_token=a__ , pad_token=a__ , extra_ids=a__ , additional_special_tokens=a__ , sp_model_kwargs=self.sp_model_kwargs , legacy=a__ , **a__ , ) _A = vocab_file _A = extra_ids _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a__ ) @staticmethod def a_ ( a__ : List[str] , a__ : Optional[int] , a__ : Tuple ) -> Tuple: '''simple docstring''' if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _A = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , a__ , ) return max_model_length @property def a_ ( self : List[Any] ) -> Dict: '''simple docstring''' return self.sp_model.get_piece_size() + self._extra_ids def a_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' _A = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a_ ( self : Optional[Any] , a__ : List[int] , a__ : Optional[List[int]] = None , a__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(a__ )) + [1] return ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1] def a_ ( self : List[str] ) -> List[str]: '''simple docstring''' return list( set(filter(lambda a__ : bool(re.search(r"<extra_id_\d+>" , a__ ) ) is not None , self.additional_special_tokens ) ) ) def a_ ( self : str ) -> List[Any]: '''simple docstring''' return [self._convert_token_to_id(a__ ) for token in self.get_sentinel_tokens()] def a_ ( self : List[Any] , a__ : List[int] ) -> List[int]: '''simple docstring''' if len(a__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def a_ ( self : int , a__ : List[int] , a__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _A = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def a_ ( self : Union[str, Any] , a__ : List[int] , a__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _A = self._add_eos_if_not_present(a__ ) if token_ids_a is None: return token_ids_a else: _A = self._add_eos_if_not_present(a__ ) return token_ids_a + token_ids_a def __getstate__( self : Dict ) -> Union[str, Any]: '''simple docstring''' _A = self.__dict__.copy() _A = None return state def __setstate__( self : int , a__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _A = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a_ ( self : int , a__ : "TextInput" , **a__ : List[str] ) -> List[str]: '''simple docstring''' if not self.legacy: _A = SPIECE_UNDERLINE + text.replace(a__ , " " ) return super().tokenize(a__ , **a__ ) def a_ ( self : str , a__ : Dict , **a__ : Optional[int] ) -> Any: '''simple docstring''' if not self.legacy: _A = text.startswith(a__ ) if is_first: _A = text[1:] _A = self.sp_model.encode(a__ , out_type=a__ ) if not self.legacy and not is_first and not text.startswith(" " ) and tokens[0].startswith(a__ ): _A = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def a_ ( self : int , a__ : List[Any] ) -> List[str]: '''simple docstring''' if token.startswith("<extra_id_" ): _A = re.match(r"<extra_id_(\d+)>" , a__ ) _A = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(a__ ) def a_ ( self : Dict , a__ : Union[str, Any] ) -> Any: '''simple docstring''' if index < self.sp_model.get_piece_size(): _A = self.sp_model.IdToPiece(a__ ) else: _A = F"""<extra_id_{self.vocab_size - 1 - index}>""" return token def a_ ( self : Optional[int] , a__ : Tuple ) -> List[str]: '''simple docstring''' _A = [] _A = "" _A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a__ ) + token _A = True _A = [] else: current_sub_tokens.append(a__ ) _A = False out_string += self.sp_model.decode(a__ ) return out_string.strip() def a_ ( self : Dict , a__ : str , a__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(a__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A = os.path.join( a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , "wb" ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,)
621
0
'''simple docstring''' import re from filelock import FileLock try: import nltk UpperCAmelCase__ = True except (ImportError, ModuleNotFoundError): UpperCAmelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" re.sub('<n>','',_SCREAMING_SNAKE_CASE ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_SCREAMING_SNAKE_CASE ) )
186
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class a__ ( a_ ): '''simple docstring''' A : Union[str, Any] = '''roberta''' def __init__( self : Any , lowerCAmelCase_ : int=50_265 , lowerCAmelCase_ : int=768 , lowerCAmelCase_ : Optional[Any]=12 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Optional[int]=3_072 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : List[Any]=512 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[int]=1E-12 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Dict=0 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : List[str]="absolute" , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Dict=None , **lowerCAmelCase_ : Any , ) -> int: super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) __A= vocab_size __A= hidden_size __A= num_hidden_layers __A= num_attention_heads __A= hidden_act __A= intermediate_size __A= hidden_dropout_prob __A= attention_probs_dropout_prob __A= max_position_embeddings __A= type_vocab_size __A= initializer_range __A= layer_norm_eps __A= position_embedding_type __A= use_cache __A= classifier_dropout class a__ ( a_ ): '''simple docstring''' @property def lowerCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __A= {0: 'batch', 1: 'choice', 2: 'sequence'} else: __A= {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
186
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a : int = logging.get_logger(__name__) _a : str = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class a_ ( a ): A__ : str = 'sew-d' def __init__( self : Tuple , UpperCAmelCase__ : int=32 , UpperCAmelCase__ : Tuple=768 , UpperCAmelCase__ : Tuple=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Any=3_072 , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Optional[int]=512 , UpperCAmelCase__ : Tuple=256 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : List[str]=("p2c", "c2p") , UpperCAmelCase__ : int="layer_norm" , UpperCAmelCase__ : List[str]="gelu_python" , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : Tuple=1e-7 , UpperCAmelCase__ : Union[str, Any]=1e-5 , UpperCAmelCase__ : List[Any]="group" , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Dict=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , UpperCAmelCase__ : Tuple=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCAmelCase__ : Any=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : List[Any]=128 , UpperCAmelCase__ : List[str]=16 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Tuple=0.05 , UpperCAmelCase__ : Tuple=10 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : List[str]=0.0 , UpperCAmelCase__ : Dict=10 , UpperCAmelCase__ : List[str]=0 , UpperCAmelCase__ : List[Any]="mean" , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : Union[str, Any]=256 , UpperCAmelCase__ : List[Any]=0 , UpperCAmelCase__ : Tuple=1 , UpperCAmelCase__ : str=2 , **UpperCAmelCase__ : Optional[int] , ): """simple docstring""" super().__init__(**UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) snake_case : Dict = hidden_size snake_case : List[str] = feat_extract_norm snake_case : List[str] = feat_extract_activation snake_case : int = list(UpperCAmelCase__ ) snake_case : Optional[Any] = list(UpperCAmelCase__ ) snake_case : Any = list(UpperCAmelCase__ ) snake_case : Union[str, Any] = conv_bias snake_case : Dict = num_conv_pos_embeddings snake_case : List[str] = num_conv_pos_embedding_groups snake_case : Any = len(self.conv_dim ) snake_case : Optional[int] = num_hidden_layers snake_case : Dict = intermediate_size snake_case : List[str] = squeeze_factor snake_case : Optional[Any] = max_position_embeddings snake_case : str = position_buckets snake_case : str = share_att_key snake_case : Optional[int] = relative_attention snake_case : Dict = norm_rel_ebd snake_case : str = list(UpperCAmelCase__ ) snake_case : Optional[int] = hidden_act snake_case : Union[str, Any] = num_attention_heads snake_case : str = hidden_dropout snake_case : Optional[int] = attention_dropout snake_case : Any = activation_dropout snake_case : Optional[Any] = feat_proj_dropout snake_case : List[Any] = final_dropout snake_case : Any = layer_norm_eps snake_case : Optional[int] = feature_layer_norm_eps snake_case : str = initializer_range snake_case : Tuple = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case : List[str] = apply_spec_augment snake_case : Optional[int] = mask_time_prob snake_case : Union[str, Any] = mask_time_length snake_case : List[Any] = mask_time_min_masks snake_case : Dict = mask_feature_prob snake_case : Optional[Any] = mask_feature_length snake_case : int = mask_feature_min_masks # ctc loss snake_case : Optional[Any] = ctc_loss_reduction snake_case : int = ctc_zero_infinity # sequence classification snake_case : str = use_weighted_layer_sum snake_case : List[Any] = classifier_proj_size @property def lowerCAmelCase( self : Union[str, Any] ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
701
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a : str = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys _a : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
84
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) @dataclass class snake_case_ ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: Dict = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **__a ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: A__ = deprecated_arg[3:] A__ = not kwargs.pop(__a ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) A__ = kwargs.pop('tpu_name' , self.tpu_name ) A__ = kwargs.pop('device_idx' , self.device_idx ) A__ = kwargs.pop('eager_mode' , self.eager_mode ) A__ = kwargs.pop('use_xla' , self.use_xla ) super().__init__(**__a ) SCREAMING_SNAKE_CASE_: str = field( default=_lowerCamelCase , metadata={"""help""": """Name of TPU"""} , ) SCREAMING_SNAKE_CASE_: int = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) SCREAMING_SNAKE_CASE_: bool = field(default=_lowerCamelCase , metadata={"""help""": """Benchmark models in eager model."""} ) SCREAMING_SNAKE_CASE_: bool = field( default=_lowerCamelCase , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def _UpperCAmelCase ( self ): """simple docstring""" requires_backends(self , ['tf'] ) A__ = None if self.tpu: try: if self.tpu_name: A__ = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: A__ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: A__ = None return tpu @cached_property def _UpperCAmelCase ( self ): """simple docstring""" requires_backends(self , ['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) A__ = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' ) A__ = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , 'GPU' ) # disable GPU A__ = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def _UpperCAmelCase ( self ): """simple docstring""" requires_backends(self , ['tf'] ) return self._setup_tpu is not None @property def _UpperCAmelCase ( self ): """simple docstring""" requires_backends(self , ['tf'] ) return self._setup_strategy @property def _UpperCAmelCase ( self ): """simple docstring""" requires_backends(self , ['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def _UpperCAmelCase ( self ): """simple docstring""" requires_backends(self , ['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _UpperCAmelCase ( self ): """simple docstring""" return self.n_gpu > 0
260
"""simple docstring""" from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) class snake_case_ ( _lowerCamelCase ): """simple docstring""" def _UpperCAmelCase ( self , __a ): """simple docstring""" if isinstance(__a , __a ): A__ = [label.strip() for label in labels.split(',' ) if label.strip()] return labels def __call__( self , __a , __a , __a ): """simple docstring""" if len(__a ) == 0 or len(__a ) == 0: raise ValueError('You must include at least one label and at least one sequence.' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' 'Make sure the passed template includes formatting syntax such as {{}} where the label should go.' ).format(__a ) ) if isinstance(__a , __a ): A__ = [sequences] A__ = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__a )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(_lowerCamelCase ) class snake_case_ ( _lowerCamelCase ): """simple docstring""" def __init__( self , __a=ZeroShotClassificationArgumentHandler() , *__a , **__a ): """simple docstring""" A__ = args_parser super().__init__(*__a , **__a ) if self.entailment_id == -1: logger.warning( 'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ' '-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.' ) @property def _UpperCAmelCase ( self ): """simple docstring""" for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('entail' ): return ind return -1 def _UpperCAmelCase ( self , __a , __a=True , __a=True , __a=TruncationStrategy.ONLY_FIRST , **__a ): """simple docstring""" A__ = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( 'Tokenizer was not supporting padding necessary for zero-shot, attempting to use ' ' `pad_token=eos_token`' ) A__ = self.tokenizer.eos_token try: A__ = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=__a , ) except Exception as e: if "too short" in str(__a ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. A__ = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _UpperCAmelCase ( self , **__a ): """simple docstring""" if kwargs.get('multi_class' , __a ) is not None: A__ = kwargs['multi_class'] logger.warning( 'The `multi_class` argument has been deprecated and renamed to `multi_label`. ' '`multi_class` will be removed in a future version of Transformers.' ) A__ = {} if "candidate_labels" in kwargs: A__ = self._args_parser._parse_labels(kwargs['candidate_labels'] ) if "hypothesis_template" in kwargs: A__ = kwargs['hypothesis_template'] A__ = {} if "multi_label" in kwargs: A__ = kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self , __a , *__a , **__a , ): """simple docstring""" if len(__a ) == 0: pass elif len(__a ) == 1 and "candidate_labels" not in kwargs: A__ = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(__a , **__a ) def _UpperCAmelCase ( self , __a , __a=None , __a="This example is {}." ): """simple docstring""" A__ , A__ = self._args_parser(__a , __a , __a ) for i, (candidate_label, sequence_pair) in enumerate(zip(__a , __a ) ): A__ = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__a ) - 1, **model_input, } def _UpperCAmelCase ( self , __a ): """simple docstring""" A__ = inputs['candidate_label'] A__ = inputs['sequence'] A__ = {k: inputs[k] for k in self.tokenizer.model_input_names} A__ = self.model(**__a ) A__ = { 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def _UpperCAmelCase ( self , __a , __a=False ): """simple docstring""" A__ = [outputs['candidate_label'] for outputs in model_outputs] A__ = [outputs['sequence'] for outputs in model_outputs] A__ = np.concatenate([output['logits'].numpy() for output in model_outputs] ) A__ = logits.shape[0] A__ = len(__a ) A__ = N // n A__ = logits.reshape((num_sequences, n, -1) ) if multi_label or len(__a ) == 1: # softmax over the entailment vs. contradiction dim for each label independently A__ = self.entailment_id A__ = -1 if entailment_id == 0 else 0 A__ = reshaped_outputs[..., [contradiction_id, entailment_id]] A__ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) A__ = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels A__ = reshaped_outputs[..., self.entailment_id] A__ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) A__ = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
260
1
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> int: return int(input_a == input_a == 0 ) def a__ ( ) -> None: print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(F"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
312
'''simple docstring''' from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None ) -> None: if start is None: UpperCAmelCase__ : List[Any] = 0 if end is None: UpperCAmelCase__ : Optional[int] = len(lowerCAmelCase__ ) - 1 if start >= end: return UpperCAmelCase__ : List[Any] = (start + end) // 2 slowsort(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) slowsort(lowerCAmelCase__ , mid + 1 , lowerCAmelCase__ ) if sequence[end] < sequence[mid]: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = sequence[mid], sequence[end] slowsort(lowerCAmelCase__ , lowerCAmelCase__ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
312
1
import heapq def a_ ( SCREAMING_SNAKE_CASE__ : dict ): '''simple docstring''' _lowerCamelCase : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A_ , [-1 * len(A_ ), (key, value)] ) # chosen_vertices = set of chosen vertices _lowerCamelCase : str =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _lowerCamelCase : Dict =heapq.heappop(A_ )[1][0] chosen_vertices.add(A_ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _lowerCamelCase : List[str] =elem[1][1].index(A_ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A_ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
464
"""simple docstring""" def snake_case_ ( A_ : int, A_ : int ): '''simple docstring''' return int(input_a == input_a == 0 ) def snake_case_ ( ): '''simple docstring''' print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(F'''| 0 | 0 | {nor_gate(0, 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0, 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1, 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1, 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
83
0
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever UpperCAmelCase_ = logging.getLogger(__name__) class lowerCamelCase__( __lowerCamelCase): def __init__( self: Any , UpperCamelCase_: Dict , UpperCamelCase_: int , UpperCamelCase_: Tuple , UpperCamelCase_: Dict=None ): super().__init__( UpperCamelCase_ , question_encoder_tokenizer=UpperCamelCase_ , generator_tokenizer=UpperCamelCase_ , index=UpperCamelCase_ , init_retrieval=UpperCamelCase_ , ) __lowerCamelCase = None def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: int ): logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __lowerCamelCase = self._infer_socket_ifname() # avoid clash with the NCCL port __lowerCamelCase = str(distributed_port + 1 ) __lowerCamelCase = dist.new_group(ranks=UpperCamelCase_ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowerCAmelCase__ ( self: Tuple ): return dist.get_rank(group=self.process_group ) == 0 def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[str]=torch.floataa ): __lowerCamelCase = torch.empty(UpperCamelCase_ , dtype=UpperCamelCase_ ) dist.scatter(UpperCamelCase_ , src=0 , scatter_list=UpperCamelCase_ , group=self.process_group ) return target_tensor def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __lowerCamelCase = next((addr for addr in addrs if addr.startswith("""e""" )) , UpperCamelCase_ ) return ifname def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: int ): # single GPU training if not dist.is_initialized(): __lowerCamelCase, __lowerCamelCase = self._main_retrieve(UpperCamelCase_ , UpperCamelCase_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCamelCase_ ) # distributed training __lowerCamelCase = dist.get_world_size(group=self.process_group ) # gather logic __lowerCamelCase = None if self._is_main(): __lowerCamelCase = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(UpperCamelCase_ )] dist.gather(torch.tensor(UpperCamelCase_ ) , dst=0 , gather_list=UpperCamelCase_ , group=self.process_group ) # scatter logic __lowerCamelCase = question_hidden_states.shape[0] __lowerCamelCase = [] __lowerCamelCase = [] if self._is_main(): assert len(UpperCamelCase_ ) == world_size __lowerCamelCase, __lowerCamelCase = self._main_retrieve(torch.cat(UpperCamelCase_ ).numpy() , UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase = torch.tensor(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ ) __lowerCamelCase = self._chunk_tensor(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self._chunk_tensor(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self._scattered(UpperCamelCase_ , [n_queries, n_docs] , target_type=torch.intaa ) __lowerCamelCase = self._scattered(UpperCamelCase_ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(UpperCamelCase_ )
719
from __future__ import annotations def lowerCamelCase__ ( A__ : list ): '''simple docstring''' if not nums: raise ValueError("""List is empty""" ) return sum(A__ ) / len(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
80
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging snake_case : str = logging.get_logger(__name__) snake_case : Dict = '''▁''' snake_case : List[Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''} snake_case : str = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } snake_case : List[Any] = { '''facebook/nllb-200-distilled-600M''': 10_24, } # fmt: off snake_case : Optional[Any] = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self :Optional[Any] ,__snake_case :Tuple ,__snake_case :int="<s>" ,__snake_case :Union[str, Any]="</s>" ,__snake_case :Optional[Any]="</s>" ,__snake_case :str="<s>" ,__snake_case :Union[str, Any]="<unk>" ,__snake_case :str="<pad>" ,__snake_case :Optional[int]="<mask>" ,__snake_case :Any=None ,__snake_case :Dict=None ,__snake_case :int=None ,__snake_case :Optional[Dict[str, Any]] = None ,__snake_case :Optional[Any]=None ,__snake_case :List[Any]=False ,**__snake_case :Union[str, Any] ,) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else mask_token a__ = {} if sp_model_kwargs is None else sp_model_kwargs a__ = legacy_behaviour super().__init__( bos_token=__snake_case ,eos_token=__snake_case ,unk_token=__snake_case ,sep_token=__snake_case ,cls_token=__snake_case ,pad_token=__snake_case ,mask_token=__snake_case ,tokenizer_file=__snake_case ,src_lang=__snake_case ,tgt_lang=__snake_case ,additional_special_tokens=__snake_case ,sp_model_kwargs=self.sp_model_kwargs ,legacy_behaviour=__snake_case ,**__snake_case ,) a__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) a__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token a__ = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a__ = 1 a__ = len(self.sp_model ) a__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__snake_case ) } a__ = {v: k for k, v in self.lang_code_to_id.items()} a__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) a__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} a__ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) a__ = src_lang if src_lang is not None else 'eng_Latn' a__ = self.lang_code_to_id[self._src_lang] a__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self :List[str] ) -> List[Any]: a__ = self.__dict__.copy() a__ = None a__ = self.sp_model.serialized_model_proto() return state def __setstate__( self :Union[str, Any] ,__snake_case :int ) -> Union[str, Any]: a__ = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): a__ = {} a__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCamelCase__( self :List[Any] ) -> Dict: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCamelCase__( self :Any ) -> str: return self._src_lang @src_lang.setter def lowerCamelCase__( self :Dict ,__snake_case :str ) -> None: a__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase__( self :List[Any] ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ,__snake_case :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case ,token_ids_a=__snake_case ,already_has_special_tokens=__snake_case ) a__ = [1] * len(self.prefix_tokens ) a__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__snake_case )) + suffix_ones return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones def lowerCamelCase__( self :Dict ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__( self :List[Any] ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ) -> List[int]: a__ = [self.sep_token_id] a__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__( self :int ,__snake_case :Any ,__snake_case :str ,__snake_case :Optional[str] ,__snake_case :Optional[str] ,**__snake_case :str ) -> Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) a__ = src_lang a__ = self(__snake_case ,add_special_tokens=__snake_case ,return_tensors=__snake_case ,**__snake_case ) a__ = self.convert_tokens_to_ids(__snake_case ) a__ = tgt_lang_id return inputs def lowerCamelCase__( self :Any ) -> Optional[int]: a__ = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__( self :List[str] ,__snake_case :str ) -> List[str]: return self.sp_model.encode(__snake_case ,out_type=__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :List[Any] ) -> Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a__ = self.sp_model.PieceToId(__snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Union[str, Any] ) -> Optional[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__( self :List[str] ,__snake_case :List[str] ) -> Optional[int]: a__ = ''.join(__snake_case ).replace(__snake_case ,' ' ).strip() return out_string def lowerCamelCase__( self :int ,__snake_case :str ,__snake_case :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ = os.path.join( __snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case ,'wb' ) as fi: a__ = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,) def lowerCamelCase__( self :List[str] ,__snake_case :List[str] ,__snake_case :str = "eng_Latn" ,__snake_case :Optional[List[str]] = None ,__snake_case :str = "fra_Latn" ,**__snake_case :Dict ,) -> BatchEncoding: a__ = src_lang a__ = tgt_lang return super().prepare_seqaseq_batch(__snake_case ,__snake_case ,**__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Union[str, Any]: return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__( self :Dict ) -> Union[str, Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :List[str] ) -> None: a__ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: a__ = [] a__ = [self.eos_token_id, self.cur_lang_code] else: a__ = [self.cur_lang_code] a__ = [self.eos_token_id] def lowerCamelCase__( self :Tuple ,__snake_case :str ) -> None: a__ = self.lang_code_to_id[lang] if self.legacy_behaviour: a__ = [] a__ = [self.eos_token_id, self.cur_lang_code] else: a__ = [self.cur_lang_code] a__ = [self.eos_token_id]
335
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
335
1
def UpperCAmelCase_ ( UpperCAmelCase__ ): if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) lowercase_ = sum(UpperCAmelCase__ ) / len(UpperCAmelCase__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
720
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizer __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizerFast __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : int = True def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase__ ) , 1_008 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) lowercase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCamelCase__ , f.name ) lowercase_ = XGLMTokenizer(f.name , keep_accents=UpperCamelCase__ ) lowercase_ = pickle.dumps(UpperCamelCase__ ) pickle.loads(UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(UpperCamelCase__ ) lowercase_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """Hello World!""" lowercase_ = [2, 31_227, 4_447, 35] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowercase_ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""facebook/xglm-564M""" , padding=UpperCamelCase__ , )
650
0
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=2 , snake_case_=8 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=16 , snake_case_=5 , snake_case_=2 , snake_case_=36 , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self ): _A = self.get_config() _A = 300 return config def lowerCAmelCase__ ( self ): ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = self.prepare_config_and_inputs() _A = True _A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = MraModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = True _A = MraModel(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , ) _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , encoder_hidden_states=snake_case_ , ) _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = MraForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = MraForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = MraForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = MraForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_choices _A = MraForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = () def lowerCAmelCase__ ( self ): _A = MraModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = MraModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip(reason='MRA does not output attentions' ) def lowerCAmelCase__ ( self ): return @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) _A = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) _A = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = 5_0265 _A = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) _A = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = 5_0265 _A = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) )
27
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :Union[str, Any] , __A :int = 3 , __A :int = 3 , __A :Tuple[str] = ("DownEncoderBlock2D",) , __A :Tuple[str] = ("UpDecoderBlock2D",) , __A :Tuple[int] = (64,) , __A :int = 1 , __A :str = "silu" , __A :int = 3 , __A :int = 32 , __A :int = 256 , __A :int = 32 , __A :Optional[int] = None , __A :float = 0.1_8_2_1_5 , __A :str = "group" , ) -> Any: """simple docstring""" super().__init__() # pass init params to Encoder SCREAMING_SNAKE_CASE__ = Encoder( in_channels=__A , out_channels=__A , down_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , double_z=__A , ) SCREAMING_SNAKE_CASE__ = vq_embed_dim if vq_embed_dim is not None else latent_channels SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = VectorQuantizer(__A , __A , beta=0.2_5 , remap=__A , sane_index_shape=__A ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) # pass init params to Decoder SCREAMING_SNAKE_CASE__ = Decoder( in_channels=__A , out_channels=__A , up_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , norm_type=__A , ) @apply_forward_hook def _snake_case ( self :Union[str, Any] , __A :torch.FloatTensor , __A :bool = True ) -> VQEncoderOutput: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.encoder(__A ) SCREAMING_SNAKE_CASE__ = self.quant_conv(__A ) if not return_dict: return (h,) return VQEncoderOutput(latents=__A ) @apply_forward_hook def _snake_case ( self :Tuple , __A :torch.FloatTensor , __A :bool = False , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if not force_not_quantize: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.quantize(__A ) else: SCREAMING_SNAKE_CASE__ = h SCREAMING_SNAKE_CASE__ = self.post_quant_conv(__A ) SCREAMING_SNAKE_CASE__ = self.decoder(__A , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__A ) def _snake_case ( self :int , __A :torch.FloatTensor , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" SCREAMING_SNAKE_CASE__ = sample SCREAMING_SNAKE_CASE__ = self.encode(__A ).latents SCREAMING_SNAKE_CASE__ = self.decode(__A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__A )
6
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"image": Image()} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"labels": ClassLabel} ) SCREAMING_SNAKE_CASE__ :str = "image" SCREAMING_SNAKE_CASE__ :str = "labels" def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Optional[Any] ) -> Optional[int]: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __a ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) _UpperCamelCase : List[Any] = copy.deepcopy(self ) _UpperCamelCase : Any = self.label_schema.copy() _UpperCamelCase : str = features[self.label_column] _UpperCamelCase : str = label_schema return task_template @property def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
51
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :torch.FloatTensor class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Dict=3 , __a : Any=3 , __a : Union[str, Any]=("DownEncoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Tuple=32 , __a : int="silu" , __a : str=True , ) -> Dict: super().__init__() _UpperCamelCase : List[str] = layers_per_block _UpperCamelCase : Dict = torch.nn.Convad( __a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : int = None _UpperCamelCase : Any = nn.ModuleList([] ) # down _UpperCamelCase : List[str] = block_out_channels[0] for i, down_block_type in enumerate(__a ): _UpperCamelCase : Tuple = output_channel _UpperCamelCase : int = block_out_channels[i] _UpperCamelCase : int = i == len(__a ) - 1 _UpperCamelCase : Dict = get_down_block( __a , num_layers=self.layers_per_block , in_channels=__a , out_channels=__a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , ) self.down_blocks.append(__a ) # mid _UpperCamelCase : Union[str, Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # out _UpperCamelCase : Any = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : Any = nn.SiLU() _UpperCamelCase : Union[str, Any] = 2 * out_channels if double_z else out_channels _UpperCamelCase : Tuple = nn.Convad(block_out_channels[-1] , __a , 3 , padding=1 ) _UpperCamelCase : Optional[int] = False def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict ) -> List[str]: _UpperCamelCase : int = x _UpperCamelCase : Optional[int] = self.conv_in(__a ) if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Tuple ): def custom_forward(*__a : Any ): return module(*__a ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , use_reentrant=__a ) # middle _UpperCamelCase : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , use_reentrant=__a ) else: for down_block in self.down_blocks: _UpperCamelCase : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a ) # middle _UpperCamelCase : int = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __a ) else: # down for down_block in self.down_blocks: _UpperCamelCase : int = down_block(__a ) # middle _UpperCamelCase : int = self.mid_block(__a ) # post-process _UpperCamelCase : Any = self.conv_norm_out(__a ) _UpperCamelCase : Any = self.conv_act(__a ) _UpperCamelCase : Optional[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : int=3 , __a : Any=3 , __a : str=("UpDecoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Optional[int]=32 , __a : Tuple="silu" , __a : Union[str, Any]="group" , ) -> str: super().__init__() _UpperCamelCase : List[Any] = layers_per_block _UpperCamelCase : Tuple = nn.Convad( __a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = nn.ModuleList([] ) _UpperCamelCase : List[Any] = in_channels if norm_type == "spatial" else None # mid _UpperCamelCase : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # up _UpperCamelCase : List[str] = list(reversed(__a ) ) _UpperCamelCase : int = reversed_block_out_channels[0] for i, up_block_type in enumerate(__a ): _UpperCamelCase : int = output_channel _UpperCamelCase : Union[str, Any] = reversed_block_out_channels[i] _UpperCamelCase : Optional[Any] = i == len(__a ) - 1 _UpperCamelCase : Union[str, Any] = get_up_block( __a , num_layers=self.layers_per_block + 1 , in_channels=__a , out_channels=__a , prev_output_channel=__a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , resnet_time_scale_shift=__a , ) self.up_blocks.append(__a ) _UpperCamelCase : Optional[Any] = output_channel # out if norm_type == "spatial": _UpperCamelCase : Optional[int] = SpatialNorm(block_out_channels[0] , __a ) else: _UpperCamelCase : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : str = nn.SiLU() _UpperCamelCase : str = nn.Convad(block_out_channels[0] , __a , 3 , padding=1 ) _UpperCamelCase : Dict = False def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[Any] , __a : Union[str, Any]=None ) -> Tuple: _UpperCamelCase : List[str] = z _UpperCamelCase : Dict = self.conv_in(__a ) _UpperCamelCase : Any = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Any ): def custom_forward(*__a : Tuple ): return module(*__a ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle _UpperCamelCase : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a , use_reentrant=__a ) _UpperCamelCase : Optional[int] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , __a , use_reentrant=__a ) else: # middle _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a ) _UpperCamelCase : Union[str, Any] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a , __a ) else: # middle _UpperCamelCase : str = self.mid_block(__a , __a ) _UpperCamelCase : int = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : Any = up_block(__a , __a ) # post-process if latent_embeds is None: _UpperCamelCase : List[str] = self.conv_norm_out(__a ) else: _UpperCamelCase : Optional[int] = self.conv_norm_out(__a , __a ) _UpperCamelCase : Tuple = self.conv_act(__a ) _UpperCamelCase : List[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple , __a : List[str] , __a : List[str] , __a : str=None , __a : Optional[int]="random" , __a : Any=False , __a : Optional[Any]=True ) -> List[Any]: super().__init__() _UpperCamelCase : Tuple = n_e _UpperCamelCase : Tuple = vq_embed_dim _UpperCamelCase : Union[str, Any] = beta _UpperCamelCase : str = legacy _UpperCamelCase : Dict = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _UpperCamelCase : Any = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) _UpperCamelCase : Dict = self.used.shape[0] _UpperCamelCase : Optional[int] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _UpperCamelCase : Optional[int] = self.re_embed _UpperCamelCase : Any = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: _UpperCamelCase : Union[str, Any] = n_e _UpperCamelCase : List[str] = sane_index_shape def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[Any] ) -> Optional[int]: _UpperCamelCase : str = inds.shape assert len(__a ) > 1 _UpperCamelCase : Union[str, Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[Any] = self.used.to(__a ) _UpperCamelCase : List[str] = (inds[:, :, None] == used[None, None, ...]).long() _UpperCamelCase : Optional[Any] = match.argmax(-1 ) _UpperCamelCase : Any = match.sum(2 ) < 1 if self.unknown_index == "random": _UpperCamelCase : Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _UpperCamelCase : Dict = self.unknown_index return new.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[int] ) -> Optional[int]: _UpperCamelCase : int = inds.shape assert len(__a ) > 1 _UpperCamelCase : List[Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[int] = self.used.to(__a ) if self.re_embed > self.used.shape[0]: # extra token _UpperCamelCase : int = 0 # simply set to zero _UpperCamelCase : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __a ) return back.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : str ) -> Optional[int]: # reshape z -> (batch, height, width, channel) and flatten _UpperCamelCase : List[str] = z.permute(0 , 2 , 3 , 1 ).contiguous() _UpperCamelCase : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _UpperCamelCase : Optional[int] = torch.argmin(torch.cdist(__a , self.embedding.weight ) , dim=1 ) _UpperCamelCase : int = self.embedding(__a ).view(z.shape ) _UpperCamelCase : str = None _UpperCamelCase : Any = None # compute loss for embedding if not self.legacy: _UpperCamelCase : List[str] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _UpperCamelCase : str = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _UpperCamelCase : List[str] = z + (z_q - z).detach() # reshape back to match original input shape _UpperCamelCase : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _UpperCamelCase : Tuple = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _UpperCamelCase : Dict = self.remap_to_used(__a ) _UpperCamelCase : List[str] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _UpperCamelCase : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[str] , __a : str ) -> Any: # shape specifying (batch, height, width, channel) if self.remap is not None: _UpperCamelCase : str = indices.reshape(shape[0] , -1 ) # add batch axis _UpperCamelCase : str = self.unmap_to_all(__a ) _UpperCamelCase : int = indices.reshape(-1 ) # flatten again # get quantized latent vectors _UpperCamelCase : Optional[int] = self.embedding(__a ) if shape is not None: _UpperCamelCase : Tuple = z_q.view(__a ) # reshape back to match original input shape _UpperCamelCase : Tuple = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , __a : List[str] , __a : Optional[Any]=False ) -> int: _UpperCamelCase : Dict = parameters _UpperCamelCase, _UpperCamelCase : str = torch.chunk(__a , 2 , dim=1 ) _UpperCamelCase : Tuple = torch.clamp(self.logvar , -30.0 , 20.0 ) _UpperCamelCase : Union[str, Any] = deterministic _UpperCamelCase : Dict = torch.exp(0.5 * self.logvar ) _UpperCamelCase : Any = torch.exp(self.logvar ) if self.deterministic: _UpperCamelCase : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype _UpperCamelCase : List[Any] = randn_tensor( self.mean.shape , generator=__a , device=self.parameters.device , dtype=self.parameters.dtype ) _UpperCamelCase : List[Any] = self.mean + self.std * sample return x def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[str]=None ) -> List[Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple , __a : List[str]=[1, 2, 3] ) -> int: if self.deterministic: return torch.Tensor([0.0] ) _UpperCamelCase : List[str] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: return self.mean
51
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _A : int = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple = ["""GLPNFeatureExtractor"""] _A : List[str] = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[Any] = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys _A : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
100
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case : Dict = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : str = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[Any] = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys snake_case : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
0
'''simple docstring''' a = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_9344, "knot": 1.852, } a = { "km/h": 1.0, "m/s": 0.2_7777_7778, "mph": 0.6_2137_1192, "knot": 0.5_3995_6803, } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __SCREAMING_SNAKE_CASE = ( f"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n""" f"""Valid values are: {', '.join(__UpperCAmelCase )}""" ) raise ValueError(__UpperCAmelCase ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = logging.get_logger(__name__) a = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class __a ( _snake_case ): __UpperCamelCase : Dict = 'deta' __UpperCamelCase : List[str] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Tuple ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Any=900 ,lowerCamelCase : int=2048 ,lowerCamelCase : Any=6 ,lowerCamelCase : Optional[Any]=2048 ,lowerCamelCase : str=8 ,lowerCamelCase : Union[str, Any]=6 ,lowerCamelCase : List[str]=1024 ,lowerCamelCase : int=8 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Any=True ,lowerCamelCase : Optional[int]="relu" ,lowerCamelCase : int=256 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Optional[Any]=0.0 ,lowerCamelCase : Tuple=0.0 ,lowerCamelCase : List[str]=0.02 ,lowerCamelCase : Any=1.0 ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=False ,lowerCamelCase : Optional[Any]="sine" ,lowerCamelCase : Dict=5 ,lowerCamelCase : List[Any]=4 ,lowerCamelCase : Optional[Any]=4 ,lowerCamelCase : Any=True ,lowerCamelCase : int=300 ,lowerCamelCase : Any=True ,lowerCamelCase : Tuple=True ,lowerCamelCase : int=1 ,lowerCamelCase : Tuple=5 ,lowerCamelCase : Union[str, Any]=2 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : int=1 ,lowerCamelCase : str=5 ,lowerCamelCase : Optional[Any]=2 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.25 ,**lowerCamelCase : int ,): '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = backbone_config.pop("""model_type""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE = config_class.from_dict(lowerCamelCase ) __SCREAMING_SNAKE_CASE = backbone_config __SCREAMING_SNAKE_CASE = num_queries __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = init_xavier_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = auxiliary_loss __SCREAMING_SNAKE_CASE = position_embedding_type # deformable attributes __SCREAMING_SNAKE_CASE = num_feature_levels __SCREAMING_SNAKE_CASE = encoder_n_points __SCREAMING_SNAKE_CASE = decoder_n_points __SCREAMING_SNAKE_CASE = two_stage __SCREAMING_SNAKE_CASE = two_stage_num_proposals __SCREAMING_SNAKE_CASE = with_box_refine __SCREAMING_SNAKE_CASE = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher __SCREAMING_SNAKE_CASE = class_cost __SCREAMING_SNAKE_CASE = bbox_cost __SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients __SCREAMING_SNAKE_CASE = mask_loss_coefficient __SCREAMING_SNAKE_CASE = dice_loss_coefficient __SCREAMING_SNAKE_CASE = bbox_loss_coefficient __SCREAMING_SNAKE_CASE = giou_loss_coefficient __SCREAMING_SNAKE_CASE = eos_coefficient __SCREAMING_SNAKE_CASE = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase ,**lowerCamelCase ) @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.d_model def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
13
1
import unittest from transformers import DonutProcessor __lowerCAmelCase = """naver-clova-ix/donut-base""" class lowerCamelCase_ ( unittest.TestCase ): def lowercase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase = DonutProcessor.from_pretrained(lowerCamelCase_ ) def lowercase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase = { "name": "John Doe", "age": "99", "city": "Atlanta", "state": "GA", "zip": "30301", "phone": "123-4567", "nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}], } _UpperCamelCase = ( "<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>" "<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>" "<s_nicknames><s_nickname>Johnny</s_nickname>" "<sep/><s_nickname>JD</s_nickname></s_nicknames>" ) _UpperCamelCase = self.processor.tokenajson(lowerCamelCase_ ) self.assertDictEqual(lowerCamelCase_ , lowerCamelCase_ )
147
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): def lowercase ( self ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase ( self ) -> Dict: """simple docstring""" _UpperCamelCase = 1 _UpperCamelCase = 3 _UpperCamelCase = (32, 32) _UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def lowercase ( self ) -> str: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=lowerCamelCase_ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def lowercase ( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowercase ( self ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) return CLIPTextModel(lowerCamelCase_ ) def lowercase ( self ) -> Dict: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.dummy_cond_unet_upscale _UpperCamelCase = DDPMScheduler() _UpperCamelCase = DDIMScheduler(prediction_type="v_prediction" ) _UpperCamelCase = self.dummy_vae _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _UpperCamelCase = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=3_50 , ) _UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCamelCase = "A painting of a squirrel eating a burger" _UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCamelCase = output.images _UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=lowerCamelCase_ , )[0] _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] _UpperCamelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _UpperCamelCase = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.dummy_cond_unet_upscale _UpperCamelCase = DDPMScheduler() _UpperCamelCase = DDIMScheduler(prediction_type="v_prediction" ) _UpperCamelCase = self.dummy_vae _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _UpperCamelCase = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=3_50 , ) _UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCamelCase = "A painting of a squirrel eating a burger" _UpperCamelCase = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCamelCase = output.images assert image.shape[0] == 2 _UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCamelCase = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowercase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase = self.dummy_cond_unet_upscale _UpperCamelCase = DDPMScheduler() _UpperCamelCase = DDIMScheduler(prediction_type="v_prediction" ) _UpperCamelCase = self.dummy_vae _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _UpperCamelCase = unet.half() _UpperCamelCase = text_encoder.half() # make sure here that pndm scheduler skips prk _UpperCamelCase = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=3_50 , ) _UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCamelCase = "A painting of a squirrel eating a burger" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type="np" , ).images _UpperCamelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase ( self ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) _UpperCamelCase = "stabilityai/stable-diffusion-x4-upscaler" _UpperCamelCase = StableDiffusionUpscalePipeline.from_pretrained(lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _UpperCamelCase = "a cat sitting on a park bench" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type="np" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def lowercase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) _UpperCamelCase = "stabilityai/stable-diffusion-x4-upscaler" _UpperCamelCase = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _UpperCamelCase = "a cat sitting on a park bench" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type="np" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowercase ( self ) -> str: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCamelCase = "stabilityai/stable-diffusion-x4-upscaler" _UpperCamelCase = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCamelCase = "a cat sitting on a park bench" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=5 , output_type="np" , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
147
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) lowerCAmelCase = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __A ( a_ : Any=None ,a_ : List[Any]=None ): return field(default_factory=lambda: default ,metadata=a_ ) @dataclass class lowerCamelCase : snake_case_ = field( metadata={"help": "The csv file to plot."} , ) snake_case_ = field( default=_A , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) snake_case_ = field( default=_A , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) snake_case_ = field( default=_A , metadata={"help": "Disable logarithmic scale when plotting"} , ) snake_case_ = field( default=_A , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) snake_case_ = field( default=_A , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) snake_case_ = list_field( default=_A , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def __A ( a_ : Tuple ): try: int(a_ ) return True except ValueError: return False def __A ( a_ : int ): try: float(a_ ) return True except ValueError: return False class lowerCamelCase : def __init__( self , a_ ): lowerCAmelCase : Optional[Any] = args lowerCAmelCase : List[str] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="" ) as csv_file: lowerCAmelCase : str = csv.DictReader(a_ ) for row in reader: lowerCAmelCase : Tuple = row["model"] self.result_dict[model_name]["bsz"].append(int(row["batch_size"] ) ) self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"] ) ) if can_convert_to_int(row["result"] ): # value is not None lowerCAmelCase : Union[str, Any] = int(row["result"] ) elif can_convert_to_float(row["result"] ): # value is not None lowerCAmelCase : Optional[int] = float(row["result"] ) def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : Any = plt.subplots() lowerCAmelCase : int = "Time usage" if self.args.is_time else "Memory usage" lowerCAmelCase : List[Any] = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("log" ) ax.set_yscale("log" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): lowerCAmelCase : str = sorted(set(self.result_dict[model_name]["bsz"] ) ) lowerCAmelCase : List[str] = sorted(set(self.result_dict[model_name]["seq_len"] ) ) lowerCAmelCase : Union[str, Any] = self.result_dict[model_name]["result"] ((lowerCAmelCase) , (lowerCAmelCase)) : str = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) lowerCAmelCase : Union[str, Any] = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: lowerCAmelCase : int = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a_ , ) else: lowerCAmelCase : Any = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((lowerCAmelCase) , (lowerCAmelCase)) : Any = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) lowerCAmelCase : Union[str, Any] = np.asarray(a_ , a_ )[: len(a_ )] plt.scatter( a_ , a_ , label=F'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(a_ , a_ , "--" ) title_str += F''' {label_model_name} vs.''' lowerCAmelCase : List[str] = title_str[:-4] lowerCAmelCase : List[Any] = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(a_ ) plt.xlabel(a_ ) plt.ylabel(a_ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __A ( ): lowerCAmelCase : Optional[Any] = HfArgumentParser(a_ ) lowerCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase : str = Plot(args=a_ ) plot.plot() if __name__ == "__main__": main()
551
0
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _lowerCAmelCase ( UpperCamelCase__: List[str] ) -> Optional[Any]: """simple docstring""" A = int(number**0.5 ) return number == sq * sq def _lowerCAmelCase ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str] , UpperCamelCase__: int , UpperCamelCase__: Any , UpperCamelCase__: List[str] , UpperCamelCase__: List[str] ) -> List[str]: """simple docstring""" A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den A = x_den * y_den * z_den A = gcd(_lowercase , _lowercase ) top //= hcf bottom //= hcf return top, bottom def _lowerCAmelCase ( UpperCamelCase__: Dict = 35 ) -> List[Any]: """simple docstring""" A = set() A = 42 A = Fraction(0 ) A = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 A = x_num * y_den + x_den * y_num A = x_den * y_den A = gcd(_lowercase , _lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A = add_three( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) unique_s.add(_lowercase ) # n=2 A = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) A = x_den * x_den * y_den * y_den if is_sq(_lowercase ) and is_sq(_lowercase ): A = int(sqrt(_lowercase ) ) A = int(sqrt(_lowercase ) ) A = gcd(_lowercase , _lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A = add_three( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) unique_s.add(_lowercase ) # n=-1 A = x_num * y_num A = x_den * y_num + x_num * y_den A = gcd(_lowercase , _lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A = add_three( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) unique_s.add(_lowercase ) # n=2 A = x_num * x_num * y_num * y_num A = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_lowercase ) and is_sq(_lowercase ): A = int(sqrt(_lowercase ) ) A = int(sqrt(_lowercase ) ) A = gcd(_lowercase , _lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A = add_three( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) unique_s.add(_lowercase ) for num, den in unique_s: total += Fraction(_lowercase , _lowercase ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
641
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
484
0
'''simple docstring''' UpperCAmelCase_ : Any = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' UpperCAmelCase_ : Optional[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] UpperCAmelCase_ : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
540
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case__ ( self ): """simple docstring""" torch.manual_seed(0 ) __A : Optional[int] = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def snake_case__ ( self ): """simple docstring""" torch.manual_seed(0 ) __A : Dict = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , ) return model @property def snake_case__ ( self ): """simple docstring""" torch.manual_seed(0 ) __A : Union[str, Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) __A : Union[str, Any] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def snake_case__ ( self ): """simple docstring""" __A : str = 'cpu' # ensure determinism for the device-dependent torch.Generator __A : int = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) __A : Tuple = DDPMScheduler() __A : Optional[int] = AudioDiffusionPipeline(vqvae=__lowercase , unet=self.dummy_unet , mel=__lowercase , scheduler=__lowercase ) __A : Dict = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __A : Tuple = torch.Generator(device=__lowercase ).manual_seed(42 ) __A : Tuple = pipe(generator=__lowercase , steps=4 ) __A : Union[str, Any] = output.audios[0] __A : Dict = output.images[0] __A : Optional[Any] = torch.Generator(device=__lowercase ).manual_seed(42 ) __A : Optional[int] = pipe(generator=__lowercase , steps=4 , return_dict=__lowercase ) __A : int = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) __A : Optional[int] = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] __A : List[Any] = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:10] __A : Optional[Any] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 __A : Optional[int] = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) __A : Optional[Any] = DDIMScheduler() __A : List[Any] = self.dummy_vqvae_and_unet __A : int = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__lowercase , scheduler=__lowercase ) __A : Dict = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) np.random.seed(0 ) __A : Dict = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) __A : Dict = torch.Generator(device=__lowercase ).manual_seed(42 ) __A : List[Any] = pipe(raw_audio=__lowercase , generator=__lowercase , start_step=5 , steps=10 ) __A : Tuple = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) __A : int = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] __A : List[str] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 __A : Any = self.dummy_unet_condition __A : Optional[int] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__lowercase , mel=__lowercase , scheduler=__lowercase ) __A : Union[str, Any] = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) np.random.seed(0 ) __A : Dict = torch.rand((1, 1, 10) ) __A : Any = pipe(generator=__lowercase , encoding=__lowercase ) __A : Union[str, Any] = output.images[0] __A : List[Any] = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] __A : int = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ): """simple docstring""" __A : Union[str, Any] = torch_device __A : Union[str, Any] = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) __A : Dict = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __A : Any = torch.Generator(device=__lowercase ).manual_seed(42 ) __A : Optional[Any] = pipe(generator=__lowercase ) __A : Union[str, Any] = output.audios[0] __A : List[Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] __A : Union[str, Any] = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] __A : Optional[Any] = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
540
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available _lowerCamelCase = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
114
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def __UpperCAmelCase( lowercase_ ): # vision encoder if "img_encoder.pos_embed" in name: _lowerCamelCase : Tuple = name.replace('''img_encoder.pos_embed''' , '''vision_model.embeddings.position_embeddings''' ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : List[str] = name.replace('''img_encoder.patch_embed.proj''' , '''vision_model.embeddings.patch_embeddings.projection''' ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Dict = name.replace('''img_encoder.patch_embed.norm''' , '''vision_model.embeddings.layernorm''' ) if "img_encoder.layers" in name: _lowerCamelCase : Dict = name.replace('''img_encoder.layers''' , '''vision_model.encoder.stages''' ) if "blocks" in name and "res" not in name: _lowerCamelCase : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : Tuple = name.replace('''attn''' , '''self_attn''' ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Optional[int] = name.replace('''proj''' , '''out_proj''' ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : List[Any] = name.replace('''pre_assign_attn.attn.proj''' , '''pre_assign_attn.attn.out_proj''' ) if "norm1" in name: _lowerCamelCase : int = name.replace('''norm1''' , '''layer_norm1''' ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace('''norm2''' , '''layer_norm2''' ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace('''img_encoder.norm''' , '''vision_model.layernorm''' ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[Any] = name.replace('''text_encoder.token_embedding''' , '''text_model.embeddings.token_embedding''' ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace('''text_encoder.positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Dict = name.replace('''text_encoder.transformer.resblocks.''' , '''text_model.encoder.layers.''' ) if "ln_1" in name: _lowerCamelCase : Tuple = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: _lowerCamelCase : List[str] = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: _lowerCamelCase : List[str] = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: _lowerCamelCase : str = name.replace('''c_proj''' , '''fc2''' ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace('''text_encoder''' , '''text_model''' ) if "ln_final" in name: _lowerCamelCase : str = name.replace('''ln_final''' , '''final_layer_norm''' ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : str = name.replace('''img_projector.linear_hidden.''' , '''visual_projection.''' ) if "img_projector.linear_out." in name: _lowerCamelCase : Union[str, Any] = name.replace('''img_projector.linear_out.''' , '''visual_projection.3.''' ) if "text_projector.linear_hidden" in name: _lowerCamelCase : List[str] = name.replace('''text_projector.linear_hidden''' , '''text_projection''' ) if "text_projector.linear_out" in name: _lowerCamelCase : Any = name.replace('''text_projector.linear_out''' , '''text_projection.3''' ) return name def __UpperCAmelCase( lowercase_ , lowercase_ ): for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(lowercase_ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Tuple = key.split('''.''' ) _lowerCamelCase, _lowerCamelCase : Dict = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : Optional[int] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : List[Any] = val[dim : dim * 2, :] _lowerCamelCase : Optional[Any] = val[-dim:, :] else: _lowerCamelCase : Union[str, Any] = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Any = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[int] = key.split('''.''' ) _lowerCamelCase : Optional[Any] = int(key_split[3] ) _lowerCamelCase : Union[str, Any] = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : Any = val[:dim, :] _lowerCamelCase : Optional[Any] = val[ dim : dim * 2, : ] _lowerCamelCase : Dict = val[-dim:, :] else: _lowerCamelCase : List[Any] = val[:dim] _lowerCamelCase : Tuple = val[dim : dim * 2] _lowerCamelCase : str = val[-dim:] else: _lowerCamelCase : Optional[Any] = rename_key(lowercase_ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : List[str] = val.squeeze_() else: _lowerCamelCase : Tuple = val return orig_state_dict def __UpperCAmelCase( ): _lowerCamelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __UpperCAmelCase( lowercase_ , lowercase_ , lowercase_="groupvit-gcc-yfcc" , lowercase_=False ): _lowerCamelCase : Optional[Any] = GroupViTConfig() _lowerCamelCase : Any = GroupViTModel(lowercase_ ).eval() _lowerCamelCase : Optional[Any] = torch.load(lowercase_ , map_location='''cpu''' )['''model'''] _lowerCamelCase : List[str] = convert_state_dict(lowercase_ , lowercase_ ) _lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(lowercase_ , strict=lowercase_ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase_ ) == 0) # verify result _lowerCamelCase : Optional[Any] = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) _lowerCamelCase : Dict = prepare_img() _lowerCamelCase : str = processor(text=['''a photo of a cat''', '''a photo of a dog'''] , images=lowercase_ , padding=lowercase_ , return_tensors='''pt''' ) with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**lowercase_ ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : Dict = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Tuple = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , lowercase_ , atol=1e-3 ) processor.save_pretrained(lowercase_ ) model.save_pretrained(lowercase_ ) print('''Successfully saved processor and model to''' , lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) processor.push_to_hub(lowercase_ , organization='''nielsr''' ) model.push_to_hub(lowercase_ , organization='''nielsr''' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) _lowerCamelCase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
114
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ = 256 class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Optional[Any] = ["""melgan"""] def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): super().__init__() # From MELGAN UpperCamelCase__ = math.log(1E-5 ) # Matches MelGAN training. UpperCamelCase__ = 4.0 # Largest value for most examples UpperCamelCase__ = 128 self.register_modules( notes_encoder=__lowerCAmelCase , continuous_encoder=__lowerCAmelCase , decoder=__lowerCAmelCase , scheduler=__lowerCAmelCase , melgan=__lowerCAmelCase , ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=(-1.0, 1.0) , __lowerCAmelCase=False ): UpperCamelCase__ , UpperCamelCase__ = output_range if clip: UpperCamelCase__ = torch.clip(__lowerCAmelCase , self.min_value , self.max_value ) # Scale to [0, 1]. UpperCamelCase__ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=(-1.0, 1.0) , __lowerCAmelCase=False ): UpperCamelCase__ , UpperCamelCase__ = input_range UpperCamelCase__ = torch.clip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if clip else outputs # Scale to [0, 1]. UpperCamelCase__ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = input_tokens > 0 UpperCamelCase__ , UpperCamelCase__ = self.notes_encoder( encoder_input_tokens=__lowerCAmelCase , encoder_inputs_mask=__lowerCAmelCase ) UpperCamelCase__ , UpperCamelCase__ = self.continuous_encoder( encoder_inputs=__lowerCAmelCase , encoder_inputs_mask=__lowerCAmelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = noise_time if not torch.is_tensor(__lowerCAmelCase ): UpperCamelCase__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(__lowerCAmelCase ) and len(timesteps.shape ) == 0: UpperCamelCase__ = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) UpperCamelCase__ = self.decoder( encodings_and_masks=__lowerCAmelCase , decoder_input_tokens=__lowerCAmelCase , decoder_noise_time=__lowerCAmelCase ) return logits @torch.no_grad() def __call__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = 100 , __lowerCAmelCase = True , __lowerCAmelCase = "numpy" , __lowerCAmelCase = None , __lowerCAmelCase = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__lowerCAmelCase )}.""" ) UpperCamelCase__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) UpperCamelCase__ = np.zeros([1, 0, self.n_dims] , np.floataa ) UpperCamelCase__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__lowerCAmelCase , device=self.device ) for i, encoder_input_tokens in enumerate(__lowerCAmelCase ): if i == 0: UpperCamelCase__ = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. UpperCamelCase__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__lowerCAmelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. UpperCamelCase__ = ones UpperCamelCase__ = self.scale_features( __lowerCAmelCase , output_range=[-1.0, 1.0] , clip=__lowerCAmelCase ) UpperCamelCase__ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=__lowerCAmelCase , continuous_mask=__lowerCAmelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop UpperCamelCase__ = randn_tensor( shape=encoder_continuous_inputs.shape , generator=__lowerCAmelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(__lowerCAmelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCamelCase__ = self.decode( encodings_and_masks=__lowerCAmelCase , input_tokens=__lowerCAmelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample UpperCamelCase__ = self.scale_to_features(__lowerCAmelCase , input_range=[-1.0, 1.0] ) UpperCamelCase__ = mel[:1] UpperCamelCase__ = mel.cpu().float().numpy() UpperCamelCase__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCAmelCase , __lowerCAmelCase ) logger.info("""Generated segment""" , __lowerCAmelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""" ) elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""" ) if output_type == "numpy": UpperCamelCase__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: UpperCamelCase__ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__lowerCAmelCase )
548
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCamelCase__ = CLIPImageProcessor() UpperCamelCase__ = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") UpperCamelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
548
1
'''simple docstring''' import math class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase=0 ) -> str: # a graph with Node 0,1,...,N-1 _lowerCAmelCase = n _lowerCAmelCase = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # adjacency matrix for weight _lowerCAmelCase = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # dp[i][j] stores minimum distance from i to j def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = w def _snake_case ( self ) -> Optional[Any]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _lowerCAmelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Any: return self.dp[u][v] if __name__ == "__main__": _SCREAMING_SNAKE_CASE = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
18
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Any = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """bert""" def __init__( self :Any , lowerCamelCase_ :List[Any]=3_05_22 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :int=5_12 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :int="absolute" , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :List[Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
698
0
'''simple docstring''' from __future__ import annotations import queue class SCREAMING_SNAKE_CASE__ : def __init__( self : Union[str, Any] , __lowerCAmelCase : str) -> Optional[int]: lowercase_ = data lowercase_ = None lowercase_ = None def __a ( ) -> int: '''simple docstring''' print("\n********Press N to stop entering at any point of time********\n" ) lowercase_ = input("Enter the value of the root node: " ).strip().lower() lowercase_ = queue.Queue() lowercase_ = TreeNode(int(lowerCAmelCase__ ) ) q.put(lowerCAmelCase__ ) while not q.empty(): lowercase_ = q.get() lowercase_ = f'Enter the left node of {node_found.data}: ' lowercase_ = input(lowerCAmelCase__ ).strip().lower() or "n" if check == "n": return tree_node lowercase_ = TreeNode(int(lowerCAmelCase__ ) ) lowercase_ = left_node q.put(lowerCAmelCase__ ) lowercase_ = f'Enter the right node of {node_found.data}: ' lowercase_ = input(lowerCAmelCase__ ).strip().lower() or "n" if check == "n": return tree_node lowercase_ = TreeNode(int(lowerCAmelCase__ ) ) lowercase_ = right_node q.put(lowerCAmelCase__ ) raise def __a ( __lowerCamelCase : Dict ) -> Optional[int]: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not node: return print(node.data , end="," ) pre_order(node.left ) pre_order(node.right ) def __a ( __lowerCamelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not node: return in_order(node.left ) print(node.data , end="," ) in_order(node.right ) def __a ( __lowerCamelCase : Any ) -> Optional[int]: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end="," ) def __a ( __lowerCamelCase : List[str] ) -> str: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not node: return lowercase_ = queue.Queue() q.put(lowerCAmelCase__ ) while not q.empty(): lowercase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __a ( __lowerCamelCase : str ) -> List[str]: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not node: return lowercase_ = queue.Queue() q.put(lowerCAmelCase__ ) while not q.empty(): lowercase_ = [] while not q.empty(): lowercase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(lowerCAmelCase__ ) def __a ( __lowerCamelCase : Tuple ) -> Optional[int]: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not node: return lowercase_ = [] lowercase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end="," ) stack.append(lowerCAmelCase__ ) lowercase_ = n.left # end of while means current node doesn't have left child lowercase_ = stack.pop() # start to traverse its right child lowercase_ = n.right def __a ( __lowerCamelCase : int ) -> int: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not node: return lowercase_ = [] lowercase_ = node while n or stack: while n: stack.append(lowerCAmelCase__ ) lowercase_ = n.left lowercase_ = stack.pop() print(n.data , end="," ) lowercase_ = n.right def __a ( __lowerCamelCase : Dict ) -> Dict: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not node: return lowercase_ , lowercase_ = [], [] lowercase_ = node stacka.append(lowerCAmelCase__ ) while stacka: # to find the reversed order of post order, store it in stack2 lowercase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(lowerCAmelCase__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end="," ) def __a ( __lowerCamelCase : Any = "" , __lowerCamelCase : str=50 , __lowerCamelCase : Any="*" ) -> Optional[int]: '''simple docstring''' if not s: return "\n" + width * char lowercase_ , lowercase_ = divmod(width - len(lowerCAmelCase__ ) - 2 , 2 ) return f'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) lowerCAmelCase_ : Optional[Any] = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
714
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ : Any = logging.get_logger(__name__) class lowercase ( __lowerCamelCase ): lowerCamelCase_ =['pixel_values'] def __init__( self : Optional[int] , __lowerCAmelCase : bool = True , __lowerCAmelCase : int = 32 , __lowerCAmelCase : List[str]=PILImageResampling.BILINEAR , __lowerCAmelCase : bool = True , **__lowerCAmelCase : Union[str, Any] , ) -> None: lowercase_ = do_resize lowercase_ = do_rescale lowercase_ = size_divisor lowercase_ = resample super().__init__(**__lowerCAmelCase) def __UpperCAmelCase ( self : List[str] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[ChannelDimension] = None , **__lowerCAmelCase : Any) -> np.ndarray: lowercase_ , lowercase_ = get_image_size(__lowerCAmelCase) # Rounds the height and width down to the closest multiple of size_divisor lowercase_ = height // size_divisor * size_divisor lowercase_ = width // size_divisor * size_divisor lowercase_ = resize(__lowerCAmelCase , (new_h, new_w) , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase) return image def __UpperCAmelCase ( self : str , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : float , __lowerCAmelCase : Optional[ChannelDimension] = None , **__lowerCAmelCase : int) -> np.ndarray: return rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase) def __UpperCAmelCase ( self : Optional[Any] , __lowerCAmelCase : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : str=None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[Union[TensorType, str]] = None , __lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCAmelCase : List[str] , ) -> BatchFeature: lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = size_divisor if size_divisor is not None else self.size_divisor lowercase_ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("size_divisor is required for resizing") lowercase_ = make_list_of_images(__lowerCAmelCase) if not valid_images(__lowerCAmelCase): raise ValueError("Invalid image(s)") # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(__lowerCAmelCase) for img in images] if do_resize: lowercase_ = [self.resize(__lowerCAmelCase , size_divisor=__lowerCAmelCase , resample=__lowerCAmelCase) for image in images] if do_rescale: lowercase_ = [self.rescale(__lowerCAmelCase , scale=1 / 255) for image in images] lowercase_ = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase) for image in images] lowercase_ = {"pixel_values": images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase)
461
0
def lowerCAmelCase_ (lowercase__ : List[str] , lowercase__ : Any ) -> str: '''simple docstring''' lowerCAmelCase__ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCAmelCase_ (lowercase__ : Optional[Any] , lowercase__ : str , lowercase__ : List[str] ) -> int: '''simple docstring''' lowerCAmelCase__ = 0 while b > 0: if b & 1: lowerCAmelCase__ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
668
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = 5000_0000 ): lowercase__ = set() lowercase__ = int((limit - 24) ** (1 / 2) ) lowercase__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE_ ) ) ) for primea in primes: lowercase__ = primea * primea for primea in primes: lowercase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowercase__ = primea * primea * primea * primea lowercase__ = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(F'{solution() = }')
413
0
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class a : def __init__( self , __magic_name__ ) -> Tuple: _a = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _a = len(UpperCamelCase__ ) - 1 def __UpperCAmelCase ( self , __magic_name__ ) -> List[str]: assert 0 <= t <= 1, "Time t must be between 0 and 1." _a = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , UpperCamelCase__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(UpperCamelCase__ ) , 5 ) == 1 return output_values def __UpperCAmelCase ( self , __magic_name__ ) -> List[Any]: assert 0 <= t <= 1, "Time t must be between 0 and 1." _a = self.basis_function(UpperCamelCase__ ) _a = 0.0 _a = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __UpperCAmelCase ( self , __magic_name__ = 0.0_1 ) -> Tuple: from matplotlib import pyplot as plt # type: ignore _a = [] # x coordinates of points to plot _a = [] # y coordinates of points to plot _a = 0.0 while t <= 1: _a = self.bezier_curve_function(UpperCamelCase__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _a = [i[0] for i in self.list_of_points] _a = [i[1] for i in self.list_of_points] plt.plot( UpperCamelCase__ , UpperCamelCase__ , color='blue' , label='Curve of Degree ' + str(self.degree ) , ) plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color='red' , label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
712
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : def __init__( self , __magic_name__ , __magic_name__=13 , __magic_name__=32 , __magic_name__=2 , __magic_name__=3 , __magic_name__=16 , __magic_name__=[1, 2, 1] , __magic_name__=[2, 2, 4] , __magic_name__=2 , __magic_name__=2.0 , __magic_name__=True , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.1 , __magic_name__="gelu" , __magic_name__=False , __magic_name__=True , __magic_name__=0.0_2 , __magic_name__=1e-5 , __magic_name__=True , __magic_name__=None , __magic_name__=True , __magic_name__=10 , __magic_name__=8 , ) -> Optional[int]: _a = parent _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = embed_dim _a = depths _a = num_heads _a = window_size _a = mlp_ratio _a = qkv_bias _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = drop_path_rate _a = hidden_act _a = use_absolute_embeddings _a = patch_norm _a = layer_norm_eps _a = initializer_range _a = is_training _a = scope _a = use_labels _a = type_sequence_label_size _a = encoder_stride def __UpperCAmelCase ( self ) -> List[Any]: _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ) -> int: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: _a = SwinvaModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ ) _a = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _a = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: _a = SwinvaForMaskedImageModeling(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _a = 1 _a = SwinvaForMaskedImageModeling(__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: _a = self.type_sequence_label_size _a = SwinvaForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCAmelCase ( self ) -> List[str]: _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCAmelCase = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _lowerCAmelCase = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __UpperCAmelCase ( self ) -> List[str]: _a = SwinvaModelTester(self ) _a = ConfigTester(self , config_class=__magic_name__ , embed_dim=37 ) def __UpperCAmelCase ( self ) -> int: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self ) -> Optional[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def __UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def __UpperCAmelCase ( self ) -> Tuple: pass def __UpperCAmelCase ( self ) -> str: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def __UpperCAmelCase ( self ) -> Any: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__magic_name__ ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['pixel_values'] self.assertListEqual(arg_names[:1] , __magic_name__ ) def __UpperCAmelCase ( self ) -> Union[str, Any]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _a = outputs.attentions _a = len(self.model_tester.depths ) self.assertEqual(len(__magic_name__ ) , __magic_name__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = config.window_size**2 _a = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _a = outputs.attentions self.assertEqual(len(__magic_name__ ) , __magic_name__ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _a = len(__magic_name__ ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): _a = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _a = 2 self.assertEqual(out_len + added_hidden_states , len(__magic_name__ ) ) _a = outputs.attentions self.assertEqual(len(__magic_name__ ) , __magic_name__ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[Any]: _a = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _a = outputs.hidden_states _a = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__magic_name__ ) , __magic_name__ ) # Swinv2 has a different seq_length _a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _a = outputs.reshaped_hidden_states self.assertEqual(len(__magic_name__ ) , __magic_name__ ) _a , _a , _a , _a = reshaped_hidden_states[0].shape _a = ( reshaped_hidden_states[0].view(__magic_name__ , __magic_name__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __UpperCAmelCase ( self ) -> Union[str, Any]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _a = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def __UpperCAmelCase ( self ) -> Optional[Any]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _a = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _a = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) ) def __UpperCAmelCase ( self ) -> Tuple: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__magic_name__ ) def __UpperCAmelCase ( self ) -> str: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @slow def __UpperCAmelCase ( self ) -> str: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = SwinvaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def __UpperCAmelCase ( self ) -> Optional[int]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = _config_zero_init(__magic_name__ ) for model_class in self.all_model_classes: _a = model_class(config=__magic_name__ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class a ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ) -> Optional[int]: return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ) -> Optional[int]: _a = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( __magic_name__ ) _a = self.default_image_processor _a = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _a = image_processor(images=__magic_name__ , return_tensors='pt' ).to(__magic_name__ ) # forward pass with torch.no_grad(): _a = model(**__magic_name__ ) # verify the logits _a = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) _a = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 ) )
532
0
'''simple docstring''' import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __lowerCamelCase ( A__ , A__=False ) -> Optional[Any]: """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(A__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value _lowerCamelCase : Dict = parse_flag_from_env("RUN_SLOW", default=False) def __lowerCamelCase ( A__ ) -> List[str]: """simple docstring""" return unittest.skip('Test was skipped' )(A__ ) def __lowerCamelCase ( A__ ) -> List[Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , 'test is slow' )(A__ ) def __lowerCamelCase ( A__ ) -> str: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(A__ ) def __lowerCamelCase ( A__ ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(A__ ) def __lowerCamelCase ( A__ ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(A__ ) def __lowerCamelCase ( A__ ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(A__ ) def __lowerCamelCase ( A__ ) -> Tuple: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(A__ ) def __lowerCamelCase ( A__ ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(A__ ) def __lowerCamelCase ( A__ ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(A__ ) def __lowerCamelCase ( A__ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(A__ ) def __lowerCamelCase ( A__ ) -> int: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(A__ ) def __lowerCamelCase ( A__ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(A__ ) def __lowerCamelCase ( A__ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(A__ ) def __lowerCamelCase ( A__ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(A__ ) def __lowerCamelCase ( A__ ) -> int: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(A__ ) def __lowerCamelCase ( A__ ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(A__ ) def __lowerCamelCase ( A__=None , A__=None ) -> Dict: """simple docstring""" if test_case is None: return partial(A__ , version=A__ ) return unittest.skipUnless(is_torch_version('>=' , A__ ) , F"""test requires torch version >= {version}""" )(A__ ) def __lowerCamelCase ( A__ ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(A__ ) def __lowerCamelCase ( A__ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(A__ ) def __lowerCamelCase ( A__ ) -> str: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(A__ ) _lowerCamelCase : Dict = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __lowerCamelCase ( A__ ) -> Any: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(A__ ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = True @classmethod def A ( cls : Union[str, Any] ): """simple docstring""" UpperCamelCase = tempfile.mkdtemp() @classmethod def A ( cls : Tuple ): """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def A ( self : Optional[int] ): """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase__ ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : Optional[int] ): """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : int , UpperCamelCase__ : Union[mock.Mock, List[mock.Mock]] ): """simple docstring""" UpperCamelCase = mocks if isinstance(UpperCamelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def __lowerCamelCase ( A__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = AcceleratorState() UpperCamelCase = tensor[None].clone().to(state.device ) UpperCamelCase = gather(A__ ).cpu() UpperCamelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , A__ ): return False return True class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __lowerCamelCase ( A__ , A__ ) -> List[str]: """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(A__ ) else: break async def __lowerCamelCase ( A__ , A__=None , A__=None , A__=None , A__=False , A__=False ) -> _RunOutput: """simple docstring""" if echo: print('\nRunning: ' , ' '.join(A__ ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=A__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=A__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(A__ , A__ , A__ , A__="" ): UpperCamelCase = line.decode('utf-8' ).rstrip() sink.append(A__ ) if not quiet: print(A__ , A__ , file=A__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda A__ : tee(A__ , A__ , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda A__ : tee(A__ , A__ , sys.stderr , label='stderr:' ) ) ), ] , timeout=A__ , ) return _RunOutput(await p.wait() , A__ , A__ ) def __lowerCamelCase ( A__ , A__=None , A__=None , A__=180 , A__=False , A__=True ) -> _RunOutput: """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(A__ , env=A__ , stdin=A__ , timeout=A__ , quiet=A__ , echo=A__ ) ) UpperCamelCase = ' '.join(A__ ) if result.returncode > 0: UpperCamelCase = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) return result class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" pass def __lowerCamelCase ( A__ , A__=False ) -> Union[str, Any]: """simple docstring""" try: UpperCamelCase = subprocess.check_output(A__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(A__ , 'decode' ): UpperCamelCase = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{' '.join(A__ )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
430
'''simple docstring''' from collections import deque class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" UpperCamelCase = process_name # process name UpperCamelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time UpperCamelCase = arrival_time UpperCamelCase = burst_time # remaining burst time UpperCamelCase = 0 # total time of the process wait in ready queue UpperCamelCase = 0 # time from arrival time to completion time class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : str , UpperCamelCase__ : int , UpperCamelCase__ : list[int] , UpperCamelCase__ : deque[Process] , UpperCamelCase__ : int , ): """simple docstring""" UpperCamelCase = number_of_queues # time slice of queues that round robin algorithm applied UpperCamelCase = time_slices # unfinished process is in this ready_queue UpperCamelCase = queue # current time UpperCamelCase = current_time # finished process is in this sequence queue UpperCamelCase = deque() def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def A ( self : Optional[Any] , UpperCamelCase__ : list[Process] ): """simple docstring""" UpperCamelCase = [] for i in range(len(UpperCamelCase__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def A ( self : Dict , UpperCamelCase__ : list[Process] ): """simple docstring""" UpperCamelCase = [] for i in range(len(UpperCamelCase__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def A ( self : int , UpperCamelCase__ : list[Process] ): """simple docstring""" UpperCamelCase = [] for i in range(len(UpperCamelCase__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def A ( self : Optional[int] , UpperCamelCase__ : deque[Process] ): """simple docstring""" return [q.burst_time for q in queue] def A ( self : Any , UpperCamelCase__ : Process ): """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def A ( self : Union[str, Any] , UpperCamelCase__ : deque[Process] ): """simple docstring""" UpperCamelCase = deque() # sequence deque of finished process while len(UpperCamelCase__ ) != 0: UpperCamelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(UpperCamelCase__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 UpperCamelCase = 0 # set the process's turnaround time because it is finished UpperCamelCase = self.current_time - cp.arrival_time # set the completion time UpperCamelCase = self.current_time # add the process to queue that has finished queue finished.append(UpperCamelCase__ ) self.finish_queue.extend(UpperCamelCase__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def A ( self : Union[str, Any] , UpperCamelCase__ : deque[Process] , UpperCamelCase__ : int ): """simple docstring""" UpperCamelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(UpperCamelCase__ ) ): UpperCamelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(UpperCamelCase__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time UpperCamelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(UpperCamelCase__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished UpperCamelCase = 0 # set the finish time UpperCamelCase = self.current_time # update the process' turnaround time because it is finished UpperCamelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(UpperCamelCase__ ) self.finish_queue.extend(UpperCamelCase__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def A ( self : Any ): """simple docstring""" for i in range(self.number_of_queues - 1 ): UpperCamelCase , UpperCamelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _lowerCamelCase : Optional[Any] = Process("P1", 0, 53) _lowerCamelCase : List[str] = Process("P2", 0, 17) _lowerCamelCase : Optional[int] = Process("P3", 0, 68) _lowerCamelCase : Dict = Process("P4", 0, 24) _lowerCamelCase : Union[str, Any] = 3 _lowerCamelCase : int = [17, 25] _lowerCamelCase : List[Any] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) _lowerCamelCase : Dict = Process("P1", 0, 53) _lowerCamelCase : int = Process("P2", 0, 17) _lowerCamelCase : Union[str, Any] = Process("P3", 0, 68) _lowerCamelCase : str = Process("P4", 0, 24) _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Any = [17, 25] _lowerCamelCase : str = deque([Pa, Pa, Pa, Pa]) _lowerCamelCase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0) _lowerCamelCase : int = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( f'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( f'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
430
1
from typing import Dict from .base import GenericTensor, Pipeline class _UpperCamelCase (a_ ): def __UpperCAmelCase ( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase )-> Union[str, Any]: if tokenize_kwargs is None: __lowerCAmelCase = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( "truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)" ) __lowerCAmelCase = truncation __lowerCAmelCase = tokenize_kwargs __lowerCAmelCase = {} if return_tensors is not None: __lowerCAmelCase = return_tensors return preprocess_params, {}, postprocess_params def __UpperCAmelCase ( self , __UpperCamelCase , **__UpperCamelCase )-> Dict[str, GenericTensor]: __lowerCAmelCase = self.framework __lowerCAmelCase = self.tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) return model_inputs def __UpperCAmelCase ( self , __UpperCamelCase )-> Tuple: __lowerCAmelCase = self.model(**__UpperCamelCase ) return model_outputs def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase=False )-> Optional[int]: # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *__UpperCamelCase , **__UpperCamelCase )-> List[Any]: return super().__call__(*__UpperCamelCase , **__UpperCamelCase )
719
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class _UpperCamelCase (a_ ): snake_case_ = """swin2sr""" snake_case_ = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , __UpperCamelCase=6_4 , __UpperCamelCase=1 , __UpperCamelCase=3 , __UpperCamelCase=1_8_0 , __UpperCamelCase=[6, 6, 6, 6, 6, 6] , __UpperCamelCase=[6, 6, 6, 6, 6, 6] , __UpperCamelCase=8 , __UpperCamelCase=2.0 , __UpperCamelCase=True , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.1 , __UpperCamelCase="gelu" , __UpperCamelCase=False , __UpperCamelCase=0.0_2 , __UpperCamelCase=1e-5 , __UpperCamelCase=2 , __UpperCamelCase=1.0 , __UpperCamelCase="1conv" , __UpperCamelCase="pixelshuffle" , **__UpperCamelCase , )-> Tuple: super().__init__(**__UpperCamelCase ) __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = embed_dim __lowerCAmelCase = depths __lowerCAmelCase = len(__UpperCamelCase ) __lowerCAmelCase = num_heads __lowerCAmelCase = window_size __lowerCAmelCase = mlp_ratio __lowerCAmelCase = qkv_bias __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = drop_path_rate __lowerCAmelCase = hidden_act __lowerCAmelCase = use_absolute_embeddings __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range __lowerCAmelCase = upscale __lowerCAmelCase = img_range __lowerCAmelCase = resi_connection __lowerCAmelCase = upsampler
290
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): @staticmethod @abstractmethod def UpperCamelCase_ ( __lowercase : ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self : str ): '''simple docstring''' raise NotImplementedError()
225
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : torch.FloatTensor __lowerCamelCase : torch.FloatTensor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase : Dict =1 @register_to_config def __init__( self : List[Any] , __lowercase : int = 2000 , __lowercase : float = 0.15 , __lowercase : float = 0.01 , __lowercase : float = 1348.0 , __lowercase : float = 1E-5 , __lowercase : int = 1 , ): '''simple docstring''' # standard deviation of the initial noise distribution __a = sigma_max # setable values __a = None self.set_sigmas(__lowercase , __lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : List[str] , __lowercase : torch.FloatTensor , __lowercase : Optional[int] = None ): '''simple docstring''' return sample def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : int , __lowercase : float = None , __lowercase : Union[str, torch.device] = None ): '''simple docstring''' __a = sampling_eps if sampling_eps is not None else self.config.sampling_eps __a = torch.linspace(1 , __lowercase , __lowercase , device=__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : int , __lowercase : float = None , __lowercase : float = None , __lowercase : float = None ): '''simple docstring''' __a = sigma_min if sigma_min is not None else self.config.sigma_min __a = sigma_max if sigma_max is not None else self.config.sigma_max __a = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__lowercase , __lowercase ) __a = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __a = torch.exp(torch.linspace(math.log(__lowercase ) , math.log(__lowercase ) , __lowercase ) ) __a = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def UpperCamelCase_ ( self : Dict , __lowercase : Any , __lowercase : Optional[Any] ): '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : torch.FloatTensor , __lowercase : int , __lowercase : torch.FloatTensor , __lowercase : Optional[torch.Generator] = None , __lowercase : bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) __a = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __a = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __a = timesteps.to(self.discrete_sigmas.device ) __a = self.discrete_sigmas[timesteps].to(sample.device ) __a = self.get_adjacent_sigma(__lowercase , __lowercase ).to(sample.device ) __a = torch.zeros_like(__lowercase ) __a = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __a = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __a = diffusion.unsqueeze(-1 ) __a = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __a = randn_tensor( sample.shape , layout=sample.layout , generator=__lowercase , device=sample.device , dtype=sample.dtype ) __a = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __a = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__lowercase , prev_sample_mean=__lowercase ) def UpperCamelCase_ ( self : List[str] , __lowercase : torch.FloatTensor , __lowercase : torch.FloatTensor , __lowercase : Optional[torch.Generator] = None , __lowercase : bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __a = randn_tensor(sample.shape , layout=sample.layout , generator=__lowercase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __a = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __a = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __a = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __a = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __a = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __a = step_size.unsqueeze(-1 ) __a = sample + step_size * model_output __a = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowercase ) def UpperCamelCase_ ( self : int , __lowercase : torch.FloatTensor , __lowercase : torch.FloatTensor , __lowercase : torch.FloatTensor , ): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples __a = timesteps.to(original_samples.device ) __a = self.discrete_sigmas.to(original_samples.device )[timesteps] __a = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__lowercase ) * sigmas[:, None, None, None] ) __a = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
225
1
'''simple docstring''' import argparse A : Dict = """docs/source/_static/js/custom.js""" def _a ( lowerCamelCase_ ): with open(lowerCamelCase_ , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case : Optional[Any] =f.readlines() snake_case : List[str] =0 # First let's put the right version while not lines[index].startswith('''const stableVersion =''' ): index += 1 snake_case : Any =F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('''const versionMapping = {''' ): index += 1 # We go until the end while not lines[index].startswith('''}''' ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lowerCamelCase_ ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") A : Dict = parser.parse_args() update_custom_js(args.version)
136
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Optional[Any] = logging.get_logger(__name__) A : Any = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class lowerCAmelCase_ ( a_ ): __UpperCAmelCase = 'distilbert' __UpperCAmelCase = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self : Optional[Any], _snake_case : Optional[int]=30_522, _snake_case : str=512, _snake_case : Union[str, Any]=False, _snake_case : Any=6, _snake_case : List[Any]=12, _snake_case : Union[str, Any]=768, _snake_case : int=4 * 768, _snake_case : List[str]=0.1, _snake_case : str=0.1, _snake_case : Any="gelu", _snake_case : Dict=0.02, _snake_case : Any=0.1, _snake_case : int=0.2, _snake_case : List[Any]=0, **_snake_case : str, ): '''simple docstring''' snake_case : int =vocab_size snake_case : Dict =max_position_embeddings snake_case : Any =sinusoidal_pos_embds snake_case : List[Any] =n_layers snake_case : Optional[Any] =n_heads snake_case : Optional[int] =dim snake_case : int =hidden_dim snake_case : Tuple =dropout snake_case : Dict =attention_dropout snake_case : List[str] =activation snake_case : Tuple =initializer_range snake_case : str =qa_dropout snake_case : str =seq_classif_dropout super().__init__(**_snake_case, pad_token_id=_snake_case ) class lowerCAmelCase_ ( a_ ): @property def __snake_case ( self : Union[str, Any] ): '''simple docstring''' if self.task == "multiple-choice": snake_case : int ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case : List[Any] ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
136
1
from __future__ import annotations import pandas as pd def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): A_ = [0] * no_of_processes A_ = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__snake_case ): A_ = burst_time[i] A_ = 0 A_ = 0 A_ = 9_99_99_99_99 A_ = 0 A_ = False # Process until all processes are completed while complete != no_of_processes: for j in range(__snake_case ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: A_ = remaining_time[j] A_ = j A_ = True if not check: increment_time += 1 continue remaining_time[short] -= 1 A_ = remaining_time[short] if minm == 0: A_ = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 A_ = False # Find finish time of current process A_ = increment_time + 1 # Calculate waiting time A_ = finish_time - arrival_time[short] A_ = finar - burst_time[short] if waiting_time[short] < 0: A_ = 0 # Increment time increment_time += 1 return waiting_time def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): A_ = [0] * no_of_processes for i in range(__snake_case ): A_ = burst_time[i] + waiting_time[i] return turn_around_time def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): A_ = 0 A_ = 0 for i in range(__snake_case ): A_ = total_waiting_time + waiting_time[i] A_ = total_turn_around_time + turn_around_time[i] print(F"Average waiting time = {total_waiting_time / no_of_processes:.5f}" ) print('''Average turn around time =''' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("Enter how many process you want to analyze") SCREAMING_SNAKE_CASE : Tuple = int(input()) SCREAMING_SNAKE_CASE : Any = [0] * no_of_processes SCREAMING_SNAKE_CASE : Union[str, Any] = [0] * no_of_processes SCREAMING_SNAKE_CASE : Optional[Any] = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("Enter the arrival time and burst time for process:--" + str(i + 1)) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = map(int, input().split()) SCREAMING_SNAKE_CASE : Union[str, Any] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE : Optional[Any] = burst_time SCREAMING_SNAKE_CASE : Dict = no_of_processes SCREAMING_SNAKE_CASE : Union[str, Any] = waiting_time SCREAMING_SNAKE_CASE : Union[str, Any] = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) SCREAMING_SNAKE_CASE : Union[str, Any] = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ "Process", "BurstTime", "ArrivalTime", "WaitingTime", "TurnAroundTime", ], ) # Printing the dataFrame pd.set_option("display.max_rows", fcfs.shape[0] + 1) print(fcfs)
141
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __lowerCamelCase = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _snake_case ( lowerCamelCase ): """simple docstring""" lowerCamelCase_ = field(default=lowerCamelCase ,metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCamelCase_ = field( default=lowerCamelCase ,metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCamelCase_ = field( default=lowerCamelCase ,metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } ,) lowerCamelCase_ = field( default=lowerCamelCase ,metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } ,) lowerCamelCase_ = field( default=lowerCamelCase ,metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } ,) def lowercase_ ( self ) -> str: """simple docstring""" _A = super().to_dict() for k, v in d.items(): if isinstance(a , a ): _A = v.to_dict() return d
317
0
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE =DebertaTokenizer _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =DebertaTokenizerFast def lowercase ( self: int ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a__ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] a__ = dict(zip(__A , range(len(__A ) ) ) ) a__ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a__ = {'''unk_token''': '''[UNK]'''} a__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__A ) ) def lowercase ( self: List[str] , **__A: Dict ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__A ) def lowercase ( self: Any , __A: Any ): '''simple docstring''' a__ = '''lower newer''' a__ = '''lower newer''' return input_text, output_text def lowercase ( self: Any ): '''simple docstring''' a__ = self.get_tokenizer() a__ = '''lower newer''' a__ = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] a__ = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) a__ = tokens + [tokenizer.unk_token] a__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) def lowercase ( self: Optional[Any] ): '''simple docstring''' a__ = self.get_tokenizer() a__ = tokenizer('''Hello''' , '''World''' ) a__ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __A ) @slow def lowercase ( self: List[str] ): '''simple docstring''' a__ = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) a__ = tokenizer.encode('''sequence builders''' , add_special_tokens=__A ) a__ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__A ) a__ = tokenizer.encode( '''sequence builders''' , add_special_tokens=__A , add_prefix_space=__A ) a__ = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__A , add_prefix_space=__A ) a__ = tokenizer.build_inputs_with_special_tokens(__A ) a__ = tokenizer.build_inputs_with_special_tokens(__A , __A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowercase ( self: Tuple ): '''simple docstring''' a__ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: a__ = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) a__ = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] a__ = tokenizer(__A , padding=__A ) a__ = [tokenizer.decode(__A , skip_special_tokens=__A ) for seq in encoding['''input_ids''']] # fmt: off a__ = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on a__ = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __A ) for expected, decoded in zip(__A , __A ): self.assertEqual(__A , __A )
706
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __a : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=False): a__ = '''backbone.''' if is_semantic else '''''' a__ = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'{prefix}blocks.{i}.norm1.weight', f'beit.encoder.layer.{i}.layernorm_before.weight')) rename_keys.append((f'{prefix}blocks.{i}.norm1.bias', f'beit.encoder.layer.{i}.layernorm_before.bias')) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.weight', f'beit.encoder.layer.{i}.attention.output.dense.weight')) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.bias', f'beit.encoder.layer.{i}.attention.output.dense.bias')) rename_keys.append((f'{prefix}blocks.{i}.norm2.weight', f'beit.encoder.layer.{i}.layernorm_after.weight')) rename_keys.append((f'{prefix}blocks.{i}.norm2.bias', f'beit.encoder.layer.{i}.layernorm_after.bias')) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.weight', f'beit.encoder.layer.{i}.intermediate.dense.weight')) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.bias', f'beit.encoder.layer.{i}.intermediate.dense.bias')) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.weight', f'beit.encoder.layer.{i}.output.dense.weight')) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.bias', f'beit.encoder.layer.{i}.output.dense.bias')) # projection layer + position embeddings rename_keys.extend( [ (f'{prefix}cls_token', '''beit.embeddings.cls_token'''), (f'{prefix}patch_embed.proj.weight', '''beit.embeddings.patch_embeddings.projection.weight'''), (f'{prefix}patch_embed.proj.bias', '''beit.embeddings.patch_embeddings.projection.bias'''), (f'{prefix}pos_embed', '''beit.embeddings.position_embeddings'''), ]) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ]) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) return rename_keys def SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=False): for i in range(config.num_hidden_layers): a__ = '''backbone.''' if is_semantic else '''''' # queries, keys and values a__ = state_dict.pop(f'{prefix}blocks.{i}.attn.qkv.weight') a__ = state_dict.pop(f'{prefix}blocks.{i}.attn.q_bias') a__ = state_dict.pop(f'{prefix}blocks.{i}.attn.v_bias') a__ = in_proj_weight[ : config.hidden_size, : ] a__ = q_bias a__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__ = in_proj_weight[ -config.hidden_size :, : ] a__ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained a__ = state_dict.pop(f'{prefix}blocks.{i}.gamma_1') a__ = state_dict.pop(f'{prefix}blocks.{i}.gamma_2') a__ = gamma_a a__ = gamma_a def SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): a__ = dct.pop(lowerCamelCase_) a__ = val def SCREAMING_SNAKE_CASE ( ): a__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False): a__ = False if '''rvlcdip''' in checkpoint_url else True a__ = BeitConfig(use_absolute_position_embeddings=lowerCamelCase_ , use_mask_token=lowerCamelCase_) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: a__ = 1024 a__ = 4096 a__ = 24 a__ = 16 # labels if "rvlcdip" in checkpoint_url: a__ = 16 a__ = '''huggingface/label-files''' a__ = '''rvlcdip-id2label.json''' a__ = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='''dataset''') , '''r''')) a__ = {int(lowerCamelCase_): v for k, v in idalabel.items()} a__ = idalabel a__ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys a__ = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='''cpu''')['''model'''] a__ = create_rename_keys(lowerCamelCase_ , has_lm_head=lowerCamelCase_) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_ , has_lm_head=lowerCamelCase_) # load HuggingFace model a__ = BeitForMaskedImageModeling(lowerCamelCase_) if has_lm_head else BeitForImageClassification(lowerCamelCase_) model.eval() model.load_state_dict(lowerCamelCase_) # Check outputs on an image a__ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCamelCase_) a__ = prepare_img() a__ = image_processor(images=lowerCamelCase_ , return_tensors='''pt''') a__ = encoding['''pixel_values'''] a__ = model(lowerCamelCase_) a__ = outputs.logits # verify logits a__ = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCamelCase_), "Shape of logits not as expected" Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: if has_lm_head: a__ = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: a__ = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=lowerCamelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": __a : Dict = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', ) __a : List[Any] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
200
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Tuple = logging.get_logger(__name__) a_ : Optional[int] = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class _snake_case ( A__ ): _lowercase : Union[str, Any] = '''wav2vec2''' def __init__( self , a=32 , a=768 , a=12 , a=12 , a=3072 , a="gelu" , a=0.1 , a=0.1 , a=0.1 , a=0.0 , a=0.0 , a=0.1 , a=0.1 , a=0.02 , a=1E-5 , a="group" , a="gelu" , a=(512, 512, 512, 512, 512, 512, 512) , a=(5, 2, 2, 2, 2, 2, 2) , a=(10, 3, 3, 3, 3, 2, 2) , a=False , a=128 , a=16 , a=False , a=True , a=0.05 , a=10 , a=2 , a=0.0 , a=10 , a=0 , a=320 , a=2 , a=0.1 , a=100 , a=256 , a=256 , a=0.1 , a="sum" , a=False , a=False , a=256 , a=(512, 512, 512, 512, 1500) , a=(5, 3, 3, 1, 1) , a=(1, 2, 3, 1, 1) , a=512 , a=0 , a=1 , a=2 , a=False , a=3 , a=2 , a=3 , a=None , a=None , **a , ) -> Tuple: super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = feat_extract_norm SCREAMING_SNAKE_CASE = feat_extract_activation SCREAMING_SNAKE_CASE = list(a) SCREAMING_SNAKE_CASE = list(a) SCREAMING_SNAKE_CASE = list(a) SCREAMING_SNAKE_CASE = conv_bias SCREAMING_SNAKE_CASE = num_conv_pos_embeddings SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE = len(self.conv_dim) SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = feat_proj_dropout SCREAMING_SNAKE_CASE = final_dropout SCREAMING_SNAKE_CASE = layerdrop SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = do_stable_layer_norm SCREAMING_SNAKE_CASE = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE = apply_spec_augment SCREAMING_SNAKE_CASE = mask_time_prob SCREAMING_SNAKE_CASE = mask_time_length SCREAMING_SNAKE_CASE = mask_time_min_masks SCREAMING_SNAKE_CASE = mask_feature_prob SCREAMING_SNAKE_CASE = mask_feature_length SCREAMING_SNAKE_CASE = mask_feature_min_masks # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE = num_codevectors_per_group SCREAMING_SNAKE_CASE = num_codevector_groups SCREAMING_SNAKE_CASE = contrastive_logits_temperature SCREAMING_SNAKE_CASE = feat_quantizer_dropout SCREAMING_SNAKE_CASE = num_negatives SCREAMING_SNAKE_CASE = codevector_dim SCREAMING_SNAKE_CASE = proj_codevector_dim SCREAMING_SNAKE_CASE = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE = ctc_loss_reduction SCREAMING_SNAKE_CASE = ctc_zero_infinity # adapter SCREAMING_SNAKE_CASE = add_adapter SCREAMING_SNAKE_CASE = adapter_kernel_size SCREAMING_SNAKE_CASE = adapter_stride SCREAMING_SNAKE_CASE = num_adapter_layers SCREAMING_SNAKE_CASE = output_hidden_size or hidden_size SCREAMING_SNAKE_CASE = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE = list(a) SCREAMING_SNAKE_CASE = list(a) SCREAMING_SNAKE_CASE = list(a) SCREAMING_SNAKE_CASE = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: return functools.reduce(operator.mul , self.conv_stride , 1)
73
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __magic_name__ : Optional[int] = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Optional[int] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __magic_name__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = 256 class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = ['melgan'] def __init__( self: Tuple , UpperCamelCase_: SpectrogramNotesEncoder , UpperCamelCase_: SpectrogramContEncoder , UpperCamelCase_: TaFilmDecoder , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: OnnxRuntimeModel if is_onnx_available() else Any , ): super().__init__() # From MELGAN __lowerCamelCase = math.log(1E-5 ) # Matches MelGAN training. __lowerCamelCase = 4.0 # Largest value for most examples __lowerCamelCase = 1_28 self.register_modules( notes_encoder=UpperCamelCase_ , continuous_encoder=UpperCamelCase_ , decoder=UpperCamelCase_ , scheduler=UpperCamelCase_ , melgan=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: List[Any] , UpperCamelCase_: Any=(-1.0, 1.0) , UpperCamelCase_: Optional[int]=False ): __lowerCamelCase, __lowerCamelCase = output_range if clip: __lowerCamelCase = torch.clip(UpperCamelCase_ , self.min_value , self.max_value ) # Scale to [0, 1]. __lowerCamelCase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Any , UpperCamelCase_: Any=(-1.0, 1.0) , UpperCamelCase_: Optional[Any]=False ): __lowerCamelCase, __lowerCamelCase = input_range __lowerCamelCase = torch.clip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if clip else outputs # Scale to [0, 1]. __lowerCamelCase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def lowerCAmelCase__ ( self: str , UpperCamelCase_: Dict , UpperCamelCase_: int , UpperCamelCase_: Dict ): __lowerCamelCase = input_tokens > 0 __lowerCamelCase, __lowerCamelCase = self.notes_encoder( encoder_input_tokens=UpperCamelCase_ , encoder_inputs_mask=UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase = self.continuous_encoder( encoder_inputs=UpperCamelCase_ , encoder_inputs_mask=UpperCamelCase_ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: str , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = noise_time if not torch.is_tensor(UpperCamelCase_ ): __lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(UpperCamelCase_ ) and len(timesteps.shape ) == 0: __lowerCamelCase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __lowerCamelCase = self.decoder( encodings_and_masks=UpperCamelCase_ , decoder_input_tokens=UpperCamelCase_ , decoder_noise_time=UpperCamelCase_ ) return logits @torch.no_grad() def __call__( self: Optional[int] , UpperCamelCase_: List[List[int]] , UpperCamelCase_: Optional[torch.Generator] = None , UpperCamelCase_: int = 1_00 , UpperCamelCase_: bool = True , UpperCamelCase_: str = "numpy" , UpperCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_: int = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(UpperCamelCase_ )}.' ) __lowerCamelCase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __lowerCamelCase = np.zeros([1, 0, self.n_dims] , np.floataa ) __lowerCamelCase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=UpperCamelCase_ , device=self.device ) for i, encoder_input_tokens in enumerate(UpperCamelCase_ ): if i == 0: __lowerCamelCase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __lowerCamelCase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=UpperCamelCase_ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __lowerCamelCase = ones __lowerCamelCase = self.scale_features( UpperCamelCase_ , output_range=[-1.0, 1.0] , clip=UpperCamelCase_ ) __lowerCamelCase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=UpperCamelCase_ , continuous_mask=UpperCamelCase_ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __lowerCamelCase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=UpperCamelCase_ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __lowerCamelCase = self.decode( encodings_and_masks=UpperCamelCase_ , input_tokens=UpperCamelCase_ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample __lowerCamelCase = self.scale_to_features(UpperCamelCase_ , input_range=[-1.0, 1.0] ) __lowerCamelCase = mel[:1] __lowerCamelCase = mel.cpu().float().numpy() __lowerCamelCase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase_ , UpperCamelCase_ ) logger.info("""Generated segment""" , UpperCamelCase_ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""" ) elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""" ) if output_type == "numpy": __lowerCamelCase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __lowerCamelCase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=UpperCamelCase_ )
80
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = DPTConfig() if "large" in checkpoint_url: __lowerCamelCase = 1024 __lowerCamelCase = 4096 __lowerCamelCase = 24 __lowerCamelCase = 16 __lowerCamelCase = [5, 11, 17, 23] __lowerCamelCase = [256, 512, 1024, 1024] __lowerCamelCase = (1, 384, 384) if "ade" in checkpoint_url: __lowerCamelCase = True __lowerCamelCase = 150 __lowerCamelCase = """huggingface/label-files""" __lowerCamelCase = """ade20k-id2label.json""" __lowerCamelCase = json.load(open(cached_download(hf_hub_url(A__ , A__ , repo_type="""dataset""" ) ) , """r""" ) ) __lowerCamelCase = {int(A__ ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = [1, 150, 480, 480] return config, expected_shape def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' __lowerCamelCase = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(A__ , A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __lowerCamelCase = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: __lowerCamelCase = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: __lowerCamelCase = name.replace("""patch_embed""" , """patch_embeddings""" ) if "pos_embed" in name: __lowerCamelCase = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: __lowerCamelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: __lowerCamelCase = name.replace("""proj""" , """projection""" ) if "blocks" in name: __lowerCamelCase = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: __lowerCamelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCamelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name: __lowerCamelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCamelCase = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: __lowerCamelCase = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: __lowerCamelCase = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: __lowerCamelCase = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: __lowerCamelCase = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: __lowerCamelCase = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: __lowerCamelCase = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: __lowerCamelCase = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __lowerCamelCase = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: __lowerCamelCase = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: __lowerCamelCase = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: __lowerCamelCase = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: __lowerCamelCase = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: __lowerCamelCase = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: __lowerCamelCase = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: __lowerCamelCase = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: __lowerCamelCase = name.replace("""bn""" , """batch_norm""" ) if "head" in name: __lowerCamelCase = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: __lowerCamelCase = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: __lowerCamelCase = name.replace("""auxlayer""" , """auxiliary_head.head""" ) return name def lowerCamelCase__ ( A__ : Tuple , A__ : Any ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCamelCase = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) __lowerCamelCase = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[: config.hidden_size, :] __lowerCamelCase = in_proj_bias[: config.hidden_size] __lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCamelCase = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCamelCase = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( A__ : Optional[int] , A__ : Union[str, Any] , A__ : List[str] , A__ : Union[str, Any] ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = get_dpt_config(A__ ) # load original state_dict from URL __lowerCamelCase = torch.hub.load_state_dict_from_url(A__ , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(A__ ) # rename keys for key in state_dict.copy().keys(): __lowerCamelCase = state_dict.pop(A__ ) __lowerCamelCase = val # read in qkv matrices read_in_q_k_v(A__ , A__ ) # load HuggingFace model __lowerCamelCase = DPTForSemanticSegmentation(A__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(A__ ) model.load_state_dict(A__ ) model.eval() # Check outputs on an image __lowerCamelCase = 480 if """ade""" in checkpoint_url else 384 __lowerCamelCase = DPTImageProcessor(size=A__ ) __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(A__ , return_tensors="""pt""" ) # forward pass __lowerCamelCase = model(**A__ ).logits if """ade""" in checkpoint_url else model(**A__ ).predicted_depth # Assert logits __lowerCamelCase = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]] ) if "ade" in checkpoint_url: __lowerCamelCase = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]] ) assert outputs.shape == torch.Size(A__ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , A__ , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , A__ ) ) Path(A__ ).mkdir(exist_ok=A__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(A__ ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(A__ , A__ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=A__ , ) image_processor.push_to_hub( repo_path_or_name=Path(A__ , A__ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=A__ , ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) UpperCAmelCase_ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
80
1
from typing import TYPE_CHECKING from ....utils import _LazyModule a_ = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
339
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =FunnelTokenizer a_ =FunnelTokenizerFast a_ =True a_ =True def UpperCAmelCase ( self )-> str: '''simple docstring''' super().setUp() lowerCAmelCase__ = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Any: '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = "UNwant\u00E9d,running" lowerCAmelCase__ = "unwanted, running" return input_text, output_text def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizers(do_lower_case=__UpperCAmelCase ) for tokenizer in tokenizers: lowerCAmelCase__ = tokenizer("UNwant\u00E9d,running" ) lowerCAmelCase__ = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) lowerCAmelCase__ = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
339
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCamelCase : int = 1_6 lowerCamelCase : Tuple = 3_2 def lowercase__( A , A = 1_6 , A = "bert-base-cased" ): snake_case__ : List[Any] = AutoTokenizer.from_pretrained(A ) snake_case__ : Tuple = load_dataset('glue' , 'mrpc' ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Optional[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ : Optional[Any] = datasets.map( A , batched=A , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : str = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return tokenizer.pad(A , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. snake_case__ : int = DataLoader( tokenized_datasets['train'] , shuffle=A , collate_fn=A , batch_size=A ) snake_case__ : List[Any] = DataLoader( tokenized_datasets['validation'] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader def lowercase__( A , A , A , A ): model.eval() snake_case__ : List[str] = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : List[str] = model(**A ) snake_case__ : int = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__ : str = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A ) - 1: snake_case__ : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ : Union[str, Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A , references=A , ) snake_case__ : Optional[Any] = metric.compute() return eval_metric["accuracy"] def lowercase__( A , A ): # Initialize accelerator snake_case__ : Union[str, Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : Any = config['lr'] snake_case__ : Dict = int(config['num_epochs'] ) snake_case__ : Dict = int(config['seed'] ) snake_case__ : Any = int(config['batch_size'] ) snake_case__ : List[Any] = args.model_name_or_path set_seed(A ) snake_case__ : Optional[int] = get_dataloaders(A , A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A ) # Instantiate optimizer snake_case__ : Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ : List[Any] = optimizer_cls(params=model.parameters() , lr=A ) if accelerator.state.deepspeed_plugin is not None: snake_case__ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: snake_case__ : Any = 1 snake_case__ : Tuple = (len(A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=0 , num_training_steps=A , ) else: snake_case__ : int = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ : Union[str, Any] = accelerator.prepare( A , A , A , A , A ) # We need to keep track of how many total steps we have iterated over snake_case__ : Dict = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ : Tuple = 0 snake_case__ : List[str] = evaluate.load('glue' , 'mrpc' ) snake_case__ : List[Any] = num_epochs if args.partial_train_epoch is not None: snake_case__ : Dict = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case__ : Dict = args.resume_from_checkpoint.split('epoch_' )[1] snake_case__ : List[str] = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case__ : Optional[int] = int(A ) + 1 snake_case__ : Union[str, Any] = evaluation_loop(A , A , A , A ) accelerator.print('resumed checkpoint performance:' , A ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , f'''state_{starting_epoch-1}.json''' ) , 'r' ) as f: snake_case__ : int = json.load(A ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case__ : Any = {} for epoch in range(A , A ): model.train() for step, batch in enumerate(A ): snake_case__ : str = model(**A ) snake_case__ : Optional[int] = outputs.loss snake_case__ : str = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case__ : Optional[Any] = f'''epoch_{epoch}''' snake_case__ : Optional[int] = os.path.join(args.output_dir , A ) accelerator.save_state(A ) snake_case__ : int = evaluation_loop(A , A , A , A ) snake_case__ : Union[str, Any] = accuracy snake_case__ : Dict = lr_scheduler.get_lr()[0] snake_case__ : Dict = optimizer.param_groups[0]['lr'] snake_case__ : Optional[Any] = epoch snake_case__ : Union[str, Any] = overall_step accelerator.print(f'''epoch {epoch}:''' , A ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'''state_{epoch}.json''' ) , 'w' ) as f: json.dump(A , A ) def lowercase__( ): snake_case__ : str = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=A , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=A , ) parser.add_argument( '--output_dir' , type=A , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=A , default=A , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=A , default=A , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=A , default=2 , help='Number of train epochs.' , ) snake_case__ : Optional[Any] = parser.parse_args() snake_case__ : Tuple = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 4_2, 'batch_size': 1_6} training_function(A , A ) if __name__ == "__main__": main()
714
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowerCamelCase : Optional[Any] = 1_0 def lowercase__( A , A , A , A ): for i in range(A , A ): if array[i] == target: return i return -1 def lowercase__( A , A ): snake_case__ : int = 0 snake_case__ : List[Any] = len(A ) while left <= right: if right - left < precision: return lin_search(A , A , A , A ) snake_case__ : Tuple = (left + right) // 3 + 1 snake_case__ : str = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: snake_case__ : Any = one_third - 1 elif array[two_third] < target: snake_case__ : Any = two_third + 1 else: snake_case__ : Optional[int] = one_third + 1 snake_case__ : Any = two_third - 1 else: return -1 def lowercase__( A , A , A , A ): if left < right: if right - left < precision: return lin_search(A , A , A , A ) snake_case__ : Optional[int] = (left + right) // 3 + 1 snake_case__ : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(A , one_third - 1 , A , A ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , A , A , A ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , A , A ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Dict = input('Enter numbers separated by comma:\n').strip() lowerCamelCase : Dict = [int(item.strip()) for item in user_input.split(',')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." lowerCamelCase : List[str] = int(input('Enter the number to be found in the list:\n').strip()) lowerCamelCase : int = ite_ternary_search(collection, target) lowerCamelCase : List[str] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print('Not found')
303
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowercase : Optional[Any] = logging.get_logger(__name__) @dataclass class lowerCamelCase__ : '''simple docstring''' def __init__( self :Optional[int] , a :Tuple=False , a :Optional[Any]=False , a :Union[str, Any]=6.0 , a :Optional[Any]=None , a :int=False , a :str=False , a :Tuple=None , a :List[str]="fp4" , a :Tuple=False , **a :int , ) -> List[str]: __UpperCamelCase : Optional[Any] = load_in_abit __UpperCamelCase : Optional[int] = load_in_abit __UpperCamelCase : List[str] = llm_inta_threshold __UpperCamelCase : List[str] = llm_inta_skip_modules __UpperCamelCase : Dict = llm_inta_enable_fpaa_cpu_offload __UpperCamelCase : Union[str, Any] = llm_inta_has_fpaa_weight __UpperCamelCase : Any = bnb_abit_quant_type __UpperCamelCase : Tuple = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: __UpperCamelCase : int = torch.floataa elif isinstance(a , a ): __UpperCamelCase : Tuple = getattr(a , a ) elif isinstance(a , torch.dtype ): __UpperCamelCase : List[str] = bnb_abit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype" ) self.post_init() def _lowerCamelCase ( self :int ) -> List[str]: if not isinstance(self.llm_inta_threshold , a ): raise ValueError("llm_int8_threshold must be a float" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , a ): raise ValueError("llm_int8_skip_modules must be a list of strings" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , a ): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean" ) if not isinstance(self.llm_inta_has_fpaa_weight , a ): raise ValueError("llm_int8_has_fp16_weight must be a boolean" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype" ) if not isinstance(self.bnb_abit_quant_type , a ): raise ValueError("bnb_4bit_quant_type must be a string" ) if not isinstance(self.bnb_abit_use_double_quant , a ): raise ValueError("bnb_4bit_use_double_quant must be a boolean" ) if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes" ) ) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def _lowerCamelCase ( self :Any ) -> Any: return self.load_in_abit or self.load_in_abit def _lowerCamelCase ( self :Optional[int] ) -> Optional[int]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _lowerCamelCase ( cls :Dict , a :str , a :int , **a :List[Any] ) -> str: __UpperCamelCase : List[str] = cls(**a ) __UpperCamelCase : List[str] = [] for key, value in kwargs.items(): if hasattr(a , a ): setattr(a , a , a ) to_remove.append(a ) for key in to_remove: kwargs.pop(a , a ) if return_unused_kwargs: return config, kwargs else: return config def _lowerCamelCase ( self :Optional[Any] , a :Union[str, os.PathLike] ) -> Union[str, Any]: with open(a , "w" , encoding="utf-8" ) as writer: __UpperCamelCase : Dict = self.to_dict() __UpperCamelCase : Any = json.dumps(a , indent=2 , sort_keys=a ) + "\n" writer.write(a ) def _lowerCamelCase ( self :List[Any] ) -> Dict[str, Any]: __UpperCamelCase : Any = copy.deepcopy(self.__dict__ ) __UpperCamelCase : str = str(output["bnb_4bit_compute_dtype"] ).split("." )[1] return output def __repr__( self :int ) -> Dict: return f'{self.__class__.__name__} {self.to_json_string()}' def _lowerCamelCase ( self :Optional[Any] , a :bool = True ) -> str: if use_diff is True: __UpperCamelCase : Tuple = self.to_diff_dict() else: __UpperCamelCase : List[str] = self.to_dict() return json.dumps(a , indent=2 , sort_keys=a ) + "\n" def _lowerCamelCase ( self :Dict ) -> Dict[str, Any]: __UpperCamelCase : Any = self.to_dict() # get the default config dict __UpperCamelCase : Any = BitsAndBytesConfig().to_dict() __UpperCamelCase : Tuple = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: __UpperCamelCase : int = value return serializable_config_dict
557
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
557
1
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if not len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =equationa SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =equationa # Calculate the determinants of the matrices SCREAMING_SNAKE_CASE =aa * ba - aa * ba SCREAMING_SNAKE_CASE =ca * ba - ca * ba SCREAMING_SNAKE_CASE =aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: SCREAMING_SNAKE_CASE =determinant_x / determinant SCREAMING_SNAKE_CASE =determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
705
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if not len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =equationa SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =equationa # Calculate the determinants of the matrices SCREAMING_SNAKE_CASE =aa * ba - aa * ba SCREAMING_SNAKE_CASE =ca * ba - ca * ba SCREAMING_SNAKE_CASE =aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: SCREAMING_SNAKE_CASE =determinant_x / determinant SCREAMING_SNAKE_CASE =determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
252
0
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , _lowercase ) UpperCAmelCase_ : List[Any] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: UpperCAmelCase_ : Union[str, Any] = dataset_size < in_memory_max_size else: UpperCAmelCase_ : Dict = False UpperCAmelCase_ : str = is_small_dataset(_lowercase ) assert result == expected
30
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( __lowercase , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : int = LxmertTokenizer _SCREAMING_SNAKE_CASE : int = LxmertTokenizerFast _SCREAMING_SNAKE_CASE : Tuple = True _SCREAMING_SNAKE_CASE : Any = True def snake_case__ ( self) -> Dict: """simple docstring""" super().setUp() _UpperCAmelCase : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) def snake_case__ ( self , _A) -> Dict: """simple docstring""" _UpperCAmelCase : int = '''UNwant\u00E9d,running''' _UpperCAmelCase : Union[str, Any] = '''unwanted, running''' return input_text, output_text def snake_case__ ( self) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.tokenizer_class(self.vocab_file) _UpperCAmelCase : Any = tokenizer.tokenize('''UNwant\u00E9d,running''') self.assertListEqual(_A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A) , [7, 4, 5, 10, 8, 9]) def snake_case__ ( self) -> Any: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase : List[Any] = self.get_tokenizer() _UpperCAmelCase : Dict = self.get_rust_tokenizer() _UpperCAmelCase : Dict = '''I was born in 92000, and this is falsé.''' _UpperCAmelCase : List[str] = tokenizer.tokenize(_A) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(_A) self.assertListEqual(_A , _A) _UpperCAmelCase : int = tokenizer.encode(_A , add_special_tokens=_A) _UpperCAmelCase : Dict = rust_tokenizer.encode(_A , add_special_tokens=_A) self.assertListEqual(_A , _A) _UpperCAmelCase : Tuple = self.get_rust_tokenizer() _UpperCAmelCase : List[Any] = tokenizer.encode(_A) _UpperCAmelCase : Tuple = rust_tokenizer.encode(_A) self.assertListEqual(_A , _A)
485
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
117
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata __snake_case = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class _lowerCAmelCase ( tr.AbstractTransform ): def __init__( self , UpperCamelCase__ = " " ) -> Any: '''simple docstring''' snake_case : Optional[Any] = sentence_delimiter def lowerCamelCase ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' return list(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' snake_case : Dict = [] for sent_idx, sentence in enumerate(UpperCamelCase__ ): chars.extend(self.process_string(UpperCamelCase__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(UpperCamelCase__ ) - 1: chars.append(self.sentence_delimiter ) return chars __snake_case = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __snake_case = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __snake_case = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ __snake_case = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ __snake_case = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( UpperCamelCase__ , UpperCamelCase__ , truth_transform=UpperCamelCase__ , hypothesis_transform=UpperCamelCase__ , )["wer"] snake_case : Optional[int] = 0 snake_case : int = 0 for prediction, reference in zip(UpperCamelCase__ , UpperCamelCase__ ): snake_case : Dict = jiwer.compute_measures( UpperCamelCase__ , UpperCamelCase__ , truth_transform=UpperCamelCase__ , hypothesis_transform=UpperCamelCase__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
117
1
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCamelCase__ : List[str] = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCamelCase__ : Union[str, Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCamelCase__ : List[str] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : List[str] = len([g for position, g in enumerate(_lowerCamelCase ) if g == main_target[position]] ) return (item, float(_lowerCamelCase )) def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : Tuple = random.randint(0 , len(_lowerCamelCase ) - 1 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = parent_a[:random_slice] + parent_a[random_slice:] __SCREAMING_SNAKE_CASE : int = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: list[str] ): __SCREAMING_SNAKE_CASE : Optional[Any] = list(_lowerCamelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __SCREAMING_SNAKE_CASE : Optional[Any] = random.choice(_lowerCamelCase ) return "".join(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: tuple[str, float] , _lowerCamelCase: list[tuple[str, float]] , _lowerCamelCase: list[str] , ): __SCREAMING_SNAKE_CASE : List[Any] = [] # Generate more children proportionally to the fitness score. __SCREAMING_SNAKE_CASE : Union[str, Any] = int(parent_a[1] * 1_00 ) + 1 __SCREAMING_SNAKE_CASE : Optional[int] = 10 if child_n >= 10 else child_n for _ in range(_lowerCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = population_score[random.randint(0 , _lowerCamelCase )][0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = crossover(parent_a[0] , _lowerCamelCase ) # Append new string to the population list. pop.append(mutate(_lowerCamelCase , _lowerCamelCase ) ) pop.append(mutate(_lowerCamelCase , _lowerCamelCase ) ) return pop def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: list[str] , _lowerCamelCase: bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: __SCREAMING_SNAKE_CASE : List[Any] = F"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(_lowerCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. __SCREAMING_SNAKE_CASE : Union[str, Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __SCREAMING_SNAKE_CASE : Optional[Any] = F"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(_lowerCamelCase ) # Generate random starting population. __SCREAMING_SNAKE_CASE : str = [] for _ in range(_lowerCamelCase ): population.append("""""".join([random.choice(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_lowerCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __SCREAMING_SNAKE_CASE : List[str] = [evaluate(_lowerCamelCase , _lowerCamelCase ) for item in population] # Check if there is a matching evolution. __SCREAMING_SNAKE_CASE : Union[str, Any] = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] , reverse=_lowerCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"\nGeneration: {generation}" F"\nTotal Population:{total_population}" F"\nBest score: {population_score[0][1]}" F"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __SCREAMING_SNAKE_CASE : List[Any] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_lowerCamelCase ) # Normalize population score to be between 0 and 1. __SCREAMING_SNAKE_CASE : Optional[Any] = [ (item, score / len(_lowerCamelCase )) for item, score in population_score ] # This is selection for i in range(_lowerCamelCase ): population.extend(select(population_score[int(_lowerCamelCase )] , _lowerCamelCase , _lowerCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_lowerCamelCase ) > N_POPULATION: break if __name__ == "__main__": UpperCamelCase__ : str = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) UpperCamelCase__ : List[str] = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : str = basic(target_str, genes_list) print( f"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}" )
578
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: Path , _lowerCamelCase: str = None , _lowerCamelCase: str = None , _lowerCamelCase: str = None , ): if config_name_or_path is None: __SCREAMING_SNAKE_CASE : List[str] = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: __SCREAMING_SNAKE_CASE : Union[str, Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __SCREAMING_SNAKE_CASE : Tuple = question_encoder_name_or_path __SCREAMING_SNAKE_CASE : int = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. __SCREAMING_SNAKE_CASE : List[Any] = RagConfig.from_pretrained(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = AutoConfig.from_pretrained(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = gen_config __SCREAMING_SNAKE_CASE : Union[str, Any] = question_encoder_config __SCREAMING_SNAKE_CASE : Dict = model_class.from_pretrained_question_encoder_generator( _lowerCamelCase , _lowerCamelCase , config=_lowerCamelCase ) rag_model.save_pretrained(_lowerCamelCase ) # Sanity check. model_class.from_pretrained(_lowerCamelCase ) # Save tokenizers. __SCREAMING_SNAKE_CASE : str = AutoTokenizer.from_pretrained(_lowerCamelCase ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained(_lowerCamelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) UpperCamelCase__ : Dict = parser.parse_args() UpperCamelCase__ : Any = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
578
1
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder UpperCamelCase = "__DUMMY_TRANSFORMERS_USER__" UpperCamelCase = "Dummy User" UpperCamelCase = "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" UpperCamelCase = "https://hub-ci.huggingface.co" UpperCamelCase = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" UpperCamelCase = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" UpperCamelCase = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , SCREAMING_SNAKE_CASE ) @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: monkeypatch.setattr('datasets.config.HF_ENDPOINT' , SCREAMING_SNAKE_CASE ) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , SCREAMING_SNAKE_CASE ) @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple: monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , SCREAMING_SNAKE_CASE ) @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: HfFolder.save_token(SCREAMING_SNAKE_CASE ) yield HfFolder.delete_token() @pytest.fixture(scope='session' ) def __magic_name__ ( ) -> str: return HfApi(endpoint=SCREAMING_SNAKE_CASE ) @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _lowercase : Union[str, Any] = HfFolder.get_token() HfFolder.save_token(SCREAMING_SNAKE_CASE ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(SCREAMING_SNAKE_CASE ) @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]: def _cleanup_repo(SCREAMING_SNAKE_CASE ): hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) return _cleanup_repo @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: @contextmanager def _temporary_repo(SCREAMING_SNAKE_CASE ): try: yield repo_id finally: cleanup_repo(SCREAMING_SNAKE_CASE ) return _temporary_repo @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _lowercase : Optional[Any] = F"""repo_txt_data-{int(time.time() * 10E3 )}""" _lowercase : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data/text_data.txt' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: _lowercase : Optional[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10E3 )}""" _lowercase : Union[str, Any] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data.zip' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: _lowercase : Optional[int] = F"""repo_zipped_img_data-{int(time.time() * 10E3 )}""" _lowercase : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data.zip' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: return hf_private_dataset_repo_zipped_img_data_
715
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class A__ : def __init__( self : List[str] , _a : Dict , _a : Dict=13 , _a : Union[str, Any]=7 , _a : Dict=True , _a : Any=True , _a : Optional[int]=True , _a : List[Any]=True , _a : str=99 , _a : Union[str, Any]=32 , _a : List[Any]=2 , _a : Union[str, Any]=4 , _a : Dict=37 , _a : List[str]="gelu" , _a : Tuple=0.1 , _a : Optional[Any]=0.1 , _a : List[str]=512 , _a : Optional[Any]=16 , _a : List[Any]=2 , _a : int=0.02 , _a : Optional[Any]=3 , _a : Optional[Any]=4 , _a : Optional[Any]=None , ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =13 _SCREAMING_SNAKE_CASE =7 _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =99 _SCREAMING_SNAKE_CASE =32 _SCREAMING_SNAKE_CASE =2 _SCREAMING_SNAKE_CASE =4 _SCREAMING_SNAKE_CASE =37 _SCREAMING_SNAKE_CASE ='gelu' _SCREAMING_SNAKE_CASE =0.1 _SCREAMING_SNAKE_CASE =0.1 _SCREAMING_SNAKE_CASE =512 _SCREAMING_SNAKE_CASE =16 _SCREAMING_SNAKE_CASE =2 _SCREAMING_SNAKE_CASE =0.02 _SCREAMING_SNAKE_CASE =3 _SCREAMING_SNAKE_CASE =4 _SCREAMING_SNAKE_CASE =None def A ( self : int ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE =None if self.use_input_mask: _SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE =None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Optional[int] , _a : Dict , _a : Any , _a : Union[str, Any] , _a : Union[str, Any] , _a : List[str] , _a : str , _a : Tuple ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFRoFormerModel(config=_a ) _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _SCREAMING_SNAKE_CASE =[input_ids, input_mask] _SCREAMING_SNAKE_CASE =model(_a ) _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , _a : Optional[int] , _a : Tuple , _a : Any , _a : List[str] , _a : int , _a : Dict , _a : str ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =TFRoFormerForCausalLM(config=_a ) _SCREAMING_SNAKE_CASE ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _SCREAMING_SNAKE_CASE =model(_a )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A ( self : List[str] , _a : List[Any] , _a : Any , _a : List[Any] , _a : Any , _a : List[Any] , _a : Any , _a : Union[str, Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFRoFormerForMaskedLM(config=_a ) _SCREAMING_SNAKE_CASE ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[str] , _a : List[Any] , _a : Optional[Any] , _a : Union[str, Any] , _a : Dict , _a : List[Any] , _a : str , _a : Union[str, Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =TFRoFormerForSequenceClassification(config=_a ) _SCREAMING_SNAKE_CASE ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Any , _a : int , _a : str , _a : Any , _a : Tuple , _a : int , _a : List[str] , _a : Optional[int] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_choices _SCREAMING_SNAKE_CASE =TFRoFormerForMultipleChoice(config=_a ) _SCREAMING_SNAKE_CASE =tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE =tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE =tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Tuple , _a : Dict , _a : Any , _a : Optional[Any] , _a : int , _a : Optional[int] , _a : Union[str, Any] , _a : List[str] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =TFRoFormerForTokenClassification(config=_a ) _SCREAMING_SNAKE_CASE ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Optional[Any] , _a : Tuple , _a : Tuple , _a : Tuple , _a : List[Any] , _a : Any , _a : int , _a : str ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFRoFormerForQuestionAnswering(config=_a ) _SCREAMING_SNAKE_CASE ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : List[str] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) =config_and_inputs _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A__ ( A__ , A__ , unittest.TestCase ): A__ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) A__ = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) A__ = False A__ = False def A ( self : Any , _a : int , _a : str , _a : Dict , _a : Any , _a : Any ) -> Dict: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A ( self : List[str] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFRoFormerModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_a , hidden_size=37 ) def A ( self : str ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A ( self : str ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def A ( self : Optional[Any] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def A ( self : Optional[Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*_a ) def A ( self : Dict ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_a ) def A ( self : Union[str, Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) def A ( self : str ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def A ( self : Tuple ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) @slow def A ( self : str ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(_a ) @require_tf class A__ ( unittest.TestCase ): @slow def A ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) _SCREAMING_SNAKE_CASE =tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE =model(_a )[0] # TODO Replace vocab size _SCREAMING_SNAKE_CASE =5_0000 _SCREAMING_SNAKE_CASE =[1, 6, vocab_size] self.assertEqual(output.shape , _a ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _SCREAMING_SNAKE_CASE =tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1e-4 ) @require_tf class A__ ( unittest.TestCase ): A__ = 1E-4 def A ( self : Dict ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =tf.constant([[4, 10]] ) _SCREAMING_SNAKE_CASE =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) _SCREAMING_SNAKE_CASE =emba(input_ids.shape ) _SCREAMING_SNAKE_CASE =tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(_a , _a , atol=self.tolerance ) def A ( self : Any ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) _SCREAMING_SNAKE_CASE =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) _SCREAMING_SNAKE_CASE =emba.weight[:3, :5] tf.debugging.assert_near(_a , _a , atol=self.tolerance ) @require_tf class A__ ( unittest.TestCase ): A__ = 1E-4 def A ( self : Dict ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 _SCREAMING_SNAKE_CASE =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 _SCREAMING_SNAKE_CASE =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) _SCREAMING_SNAKE_CASE =embed_positions([2, 16, 768] )[None, None, :, :] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =TFRoFormerSelfAttention.apply_rotary_position_embeddings( _a , _a , _a ) _SCREAMING_SNAKE_CASE =tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) _SCREAMING_SNAKE_CASE =tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , _a , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , _a , atol=self.tolerance )
405
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : int ) -> int: """simple docstring""" if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('Input value must be a \'int\' type' ) return bin(_UpperCamelCase ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
405
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __magic_name__ ( a__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = '''sew-d''' def __init__( self : List[str] , _lowercase : Union[str, Any]=32 , _lowercase : Any=768 , _lowercase : int=12 , _lowercase : str=12 , _lowercase : Any=3_072 , _lowercase : Tuple=2 , _lowercase : str=512 , _lowercase : Dict=256 , _lowercase : List[str]=True , _lowercase : Tuple=True , _lowercase : Dict=("p2c", "c2p") , _lowercase : List[Any]="layer_norm" , _lowercase : Union[str, Any]="gelu_python" , _lowercase : Optional[int]=0.1 , _lowercase : Any=0.1 , _lowercase : Tuple=0.1 , _lowercase : Dict=0.0 , _lowercase : str=0.1 , _lowercase : List[str]=0.02 , _lowercase : Any=1E-7 , _lowercase : Dict=1E-5 , _lowercase : Tuple="group" , _lowercase : Optional[Any]="gelu" , _lowercase : int=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _lowercase : Dict=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _lowercase : int=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _lowercase : Optional[int]=False , _lowercase : Optional[int]=128 , _lowercase : Union[str, Any]=16 , _lowercase : Tuple=True , _lowercase : int=0.05 , _lowercase : int=10 , _lowercase : str=2 , _lowercase : Optional[int]=0.0 , _lowercase : List[Any]=10 , _lowercase : Optional[Any]=0 , _lowercase : Any="mean" , _lowercase : Optional[int]=False , _lowercase : Optional[Any]=False , _lowercase : Union[str, Any]=256 , _lowercase : int=0 , _lowercase : Dict=1 , _lowercase : Tuple=2 , **_lowercase : List[str] , ): """simple docstring""" super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) _UpperCamelCase: int = hidden_size _UpperCamelCase: Any = feat_extract_norm _UpperCamelCase: Optional[int] = feat_extract_activation _UpperCamelCase: Optional[int] = list(_A ) _UpperCamelCase: List[Any] = list(_A ) _UpperCamelCase: Tuple = list(_A ) _UpperCamelCase: Dict = conv_bias _UpperCamelCase: Optional[Any] = num_conv_pos_embeddings _UpperCamelCase: str = num_conv_pos_embedding_groups _UpperCamelCase: Optional[Any] = len(self.conv_dim ) _UpperCamelCase: Union[str, Any] = num_hidden_layers _UpperCamelCase: Optional[int] = intermediate_size _UpperCamelCase: Dict = squeeze_factor _UpperCamelCase: Any = max_position_embeddings _UpperCamelCase: Optional[int] = position_buckets _UpperCamelCase: Union[str, Any] = share_att_key _UpperCamelCase: Tuple = relative_attention _UpperCamelCase: int = norm_rel_ebd _UpperCamelCase: str = list(_A ) _UpperCamelCase: str = hidden_act _UpperCamelCase: Any = num_attention_heads _UpperCamelCase: List[Any] = hidden_dropout _UpperCamelCase: Optional[Any] = attention_dropout _UpperCamelCase: List[str] = activation_dropout _UpperCamelCase: int = feat_proj_dropout _UpperCamelCase: Union[str, Any] = final_dropout _UpperCamelCase: Any = layer_norm_eps _UpperCamelCase: str = feature_layer_norm_eps _UpperCamelCase: List[str] = initializer_range _UpperCamelCase: Any = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase: Tuple = apply_spec_augment _UpperCamelCase: List[Any] = mask_time_prob _UpperCamelCase: str = mask_time_length _UpperCamelCase: Union[str, Any] = mask_time_min_masks _UpperCamelCase: Any = mask_feature_prob _UpperCamelCase: List[str] = mask_feature_length _UpperCamelCase: List[Any] = mask_feature_min_masks # ctc loss _UpperCamelCase: Optional[Any] = ctc_loss_reduction _UpperCamelCase: List[str] = ctc_zero_infinity # sequence classification _UpperCamelCase: Union[str, Any] = use_weighted_layer_sum _UpperCamelCase: str = classifier_proj_size @property def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
716
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCAmelCase_ ( lowercase: ndarray ) -> float: '''simple docstring''' return np.dot(lowercase , lowercase ) class __magic_name__ : """simple docstring""" def __init__( self : int , *, _lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ): """simple docstring""" _UpperCamelCase: int = regularization _UpperCamelCase: Optional[int] = gamma if kernel == "linear": _UpperCamelCase: Optional[Any] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) _UpperCamelCase: Optional[Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: _UpperCamelCase: Optional[int] = f"""Unknown kernel: {kernel}""" raise ValueError(_lowercase ) def lowerCAmelCase ( self : Union[str, Any] , _lowercase : ndarray , _lowercase : ndarray ): """simple docstring""" return np.dot(_lowercase , _lowercase ) def lowerCAmelCase ( self : str , _lowercase : ndarray , _lowercase : ndarray ): """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowerCAmelCase ( self : str , _lowercase : list[ndarray] , _lowercase : ndarray ): """simple docstring""" _UpperCamelCase: List[str] = observations _UpperCamelCase: Optional[int] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((_UpperCamelCase) , ): Any = np.shape(_lowercase ) def to_minimize(_lowercase : ndarray ) -> float: _UpperCamelCase: Optional[int] = 0 ((_UpperCamelCase) , ): str = np.shape(_lowercase ) for i in range(_lowercase ): for j in range(_lowercase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowercase ) _UpperCamelCase: Optional[Any] = LinearConstraint(_lowercase , 0 , 0 ) _UpperCamelCase: Optional[int] = Bounds(0 , self.regularization ) _UpperCamelCase: Dict = minimize( _lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x _UpperCamelCase: Union[str, Any] = l_star # calculating mean offset of separation plane to points _UpperCamelCase: List[str] = 0 for i in range(_lowercase ): for j in range(_lowercase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) _UpperCamelCase: str = s / n def lowerCAmelCase ( self : Optional[Any] , _lowercase : ndarray ): """simple docstring""" _UpperCamelCase: Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowercase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
264
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : List[str] = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
63
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size_divisor __A = do_rescale def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : int ): __A = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size_divisor" ) ) self.assertTrue(hasattr(A ,"resample" ) ) self.assertTrue(hasattr(A ,"do_rescale" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Optional[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _A = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
709
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class _lowerCAmelCase ( __a ): _lowercase ='''transfo-xl''' _lowercase =['''mems'''] _lowercase ={ '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _UpperCamelCase=267_735 , _UpperCamelCase=[20_000, 40_000, 200_000] , _UpperCamelCase=1_024 , _UpperCamelCase=1_024 , _UpperCamelCase=16 , _UpperCamelCase=64 , _UpperCamelCase=4_096 , _UpperCamelCase=4 , _UpperCamelCase=False , _UpperCamelCase=18 , _UpperCamelCase=1_600 , _UpperCamelCase=1_000 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0 , _UpperCamelCase=-1 , _UpperCamelCase=True , _UpperCamelCase=0.1 , _UpperCamelCase=0.0 , _UpperCamelCase=True , _UpperCamelCase="normal" , _UpperCamelCase=0.01 , _UpperCamelCase=0.01 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , **_UpperCamelCase , ) -> Dict: lowerCAmelCase_ = vocab_size lowerCAmelCase_ = [] self.cutoffs.extend(_UpperCamelCase ) if proj_share_all_but_first: lowerCAmelCase_ = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase_ = [False] + [False] * len(self.cutoffs ) lowerCAmelCase_ = d_model lowerCAmelCase_ = d_embed lowerCAmelCase_ = d_head lowerCAmelCase_ = d_inner lowerCAmelCase_ = div_val lowerCAmelCase_ = pre_lnorm lowerCAmelCase_ = n_layer lowerCAmelCase_ = n_head lowerCAmelCase_ = mem_len lowerCAmelCase_ = same_length lowerCAmelCase_ = attn_type lowerCAmelCase_ = clamp_len lowerCAmelCase_ = sample_softmax lowerCAmelCase_ = adaptive lowerCAmelCase_ = dropout lowerCAmelCase_ = dropatt lowerCAmelCase_ = untie_r lowerCAmelCase_ = init lowerCAmelCase_ = init_range lowerCAmelCase_ = proj_init_std lowerCAmelCase_ = init_std lowerCAmelCase_ = layer_norm_epsilon super().__init__(eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def __a ( self ) -> List[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def __a ( self , _UpperCamelCase ) -> str: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
279
0
import os import re import shutil import sys import tempfile import unittest import black __lowerCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __lowerCamelCase = """ \"\"\"\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n""" class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : List[str] ) -> str: '''simple docstring''' snake_case : Optional[int] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) snake_case : str = self.diffusers_dir shutil.copy( os.path.join(snake_case__ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Union[str, Any]=None ) -> Dict: '''simple docstring''' snake_case : Optional[int] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: snake_case : Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result snake_case : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) snake_case : Tuple = black.format_str(snake_case__ , mode=snake_case__ ) snake_case : Tuple = os.path.join(self.diffusers_dir , "new_code.py" ) with open(snake_case__ , "w" , newline="\n" ) as f: f.write(snake_case__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case__ ) with open(snake_case__ , "r" ) as f: self.assertTrue(f.read() , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> str: '''simple docstring''' snake_case : Dict = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , snake_case__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , snake_case__ ) , ) # Copy consistency with a really long name snake_case : str = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , snake_case__ , snake_case__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , snake_case__ , overwrite_result=re.sub("DDPM" , "Test" , snake_case__ ) , )
204
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase_ = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['LayoutLMv2FeatureExtractor'] lowercase_ = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
552
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowercase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) SCREAMING_SNAKE_CASE = "CIDAS/clipseg-rd64-refined" SCREAMING_SNAKE_CASE = "image_segmenter" SCREAMING_SNAKE_CASE = CLIPSegForImageSegmentation SCREAMING_SNAKE_CASE = ["image", "text"] SCREAMING_SNAKE_CASE = ["image"] def __init__( self : Any , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : List[Any] ): """simple docstring""" requires_backends(self , ["""vision"""] ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase_ ( self : Union[str, Any] , UpperCamelCase_ : "Image" , UpperCamelCase_ : str ): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=UpperCamelCase_ , return_tensors="""pt""" ) def lowerCAmelCase_ ( self : Union[str, Any] , UpperCamelCase_ : Dict ): """simple docstring""" with torch.no_grad(): __A = self.model(**UpperCamelCase_ ).logits return logits def lowerCAmelCase_ ( self : Dict , UpperCamelCase_ : Dict ): """simple docstring""" __A = outputs.cpu().detach().numpy() __A = 0 __A = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
199
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : '''simple docstring''' def __init__( self : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any]=13 , UpperCamelCase_ : Optional[Any]=30 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Optional[Any]=3 , UpperCamelCase_ : int=True , UpperCamelCase_ : str=True , UpperCamelCase_ : str=32 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : List[str]=37 , UpperCamelCase_ : Any="gelu" , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : str=0.02 , UpperCamelCase_ : Dict=3 , UpperCamelCase_ : int=None , ): """simple docstring""" __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __A = (image_size // patch_size) ** 2 __A = num_patches + 1 def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : int ): """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] ): """simple docstring""" __A = TFViTModel(config=UpperCamelCase_ ) __A = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. __A = self.image_size // 2 __A = pixel_values[:, :, :image_size, :image_size] __A = model(UpperCamelCase_ , interpolate_pos_encoding=UpperCamelCase_ , training=UpperCamelCase_ ) __A = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Tuple , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] ): """simple docstring""" __A = self.type_sequence_label_size __A = TFViTForImageClassification(UpperCamelCase_ ) __A = model(UpperCamelCase_ , labels=UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. __A = self.image_size // 2 __A = pixel_values[:, :, :image_size, :image_size] __A = model(UpperCamelCase_ , interpolate_pos_encoding=UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A = 1 __A = TFViTForImageClassification(UpperCamelCase_ ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __lowercase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" __A = TFViTModelTester(self ) __A = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" pass @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" pass def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(UpperCamelCase_ ) __A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : str ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @slow def lowerCAmelCase_ ( self : Any ): """simple docstring""" __A = TFViTModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(UpperCamelCase_ ) def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" __A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" __A = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=UpperCamelCase_ , return_tensors="""tf""" ) # forward pass __A = model(**UpperCamelCase_ ) # verify the logits __A = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) __A = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCamelCase_ , atol=1e-4 )
199
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _a : Tuple = logging.get_logger(__name__) _a : Any = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _a : Tuple = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } _a : str = { 'junnyu/roformer_chinese_small': 15_36, 'junnyu/roformer_chinese_base': 15_36, 'junnyu/roformer_chinese_char_small': 5_12, 'junnyu/roformer_chinese_char_base': 5_12, 'junnyu/roformer_small_discriminator': 1_28, 'junnyu/roformer_small_generator': 1_28, } _a : Tuple = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = PRETRAINED_INIT_CONFIGURATION A = RoFormerTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase="[UNK]" , UpperCAmelCase="[SEP]" , UpperCAmelCase="[PAD]" , UpperCAmelCase="[CLS]" , UpperCAmelCase="[MASK]" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) __lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case or pre_tok_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents ): __lowerCamelCase = getattr(UpperCAmelCase , pre_tok_state.pop("""type""" ) ) __lowerCamelCase = do_lower_case __lowerCamelCase = strip_accents __lowerCamelCase = pre_tok_class(**UpperCAmelCase ) __lowerCamelCase = do_lower_case def __getstate__( self ): __lowerCamelCase = self.__dict__.copy() __lowerCamelCase = BertPreTokenizer() return state def __setstate__( self , UpperCAmelCase ): __lowerCamelCase = d __lowerCamelCase = self.__dict__["""_tokenizer"""].get_vocab() __lowerCamelCase = PreTokenizer.custom(JiebaPreTokenizer(UpperCAmelCase ) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase=None ): __lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = None ): __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = None ): __lowerCamelCase = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False , **UpperCAmelCase , ): __lowerCamelCase = BertPreTokenizer() return super().save_pretrained(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
479
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int _a : Any = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCamelCase_ ( datasets.BuilderConfig ): """simple docstring""" A = None def UpperCamelCase__ ( _A: "pyspark.sql.DataFrame" , _A: List[int] , ): '''simple docstring''' import pyspark def generate_fn(): __lowerCamelCase = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: __lowerCamelCase = df_with_partition_id.select("""*""" ).where(f'''part_id = {partition_id}''' ).drop("""part_id""" ) __lowerCamelCase = partition_df.collect() __lowerCamelCase = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class UpperCamelCase_ ( _BaseExamplesIterable ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=None , ): __lowerCamelCase = df __lowerCamelCase = partition_order or range(self.df.rdd.getNumPartitions() ) __lowerCamelCase = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ): yield from self.generate_examples_fn() def lowerCamelCase_ ( self , UpperCAmelCase ): __lowerCamelCase = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCAmelCase ) return SparkExamplesIterable(self.df , partition_order=UpperCAmelCase ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = self.split_shard_indices_by_worker(UpperCAmelCase , UpperCAmelCase ) return SparkExamplesIterable(self.df , partition_order=UpperCAmelCase ) @property def lowerCamelCase_ ( self ): return len(self.partition_order ) class UpperCamelCase_ ( datasets.DatasetBuilder ): """simple docstring""" A = SparkConfig def __init__( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ): import pyspark __lowerCamelCase = pyspark.sql.SparkSession.builder.getOrCreate() __lowerCamelCase = df __lowerCamelCase = working_dir super().__init__( cache_dir=UpperCAmelCase , config_name=str(self.df.semanticHash() ) , **UpperCAmelCase , ) def lowerCamelCase_ ( self ): # Returns the path of the created file. def create_cache_and_write_probe(UpperCAmelCase ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=UpperCAmelCase ) __lowerCamelCase = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCAmelCase , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __lowerCamelCase = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(UpperCAmelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def lowerCamelCase_ ( self ): return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase_ ( self , UpperCAmelCase ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCamelCase_ ( self , UpperCAmelCase ): import pyspark def get_arrow_batch_size(UpperCAmelCase ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) __lowerCamelCase = self.df.count() __lowerCamelCase = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __lowerCamelCase = ( self.df.limit(UpperCAmelCase ) .repartition(1 ) .mapInArrow(UpperCAmelCase , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) __lowerCamelCase = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __lowerCamelCase = min(UpperCAmelCase , int(approx_total_size / max_shard_size ) ) __lowerCamelCase = self.df.repartition(UpperCAmelCase ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): import pyspark __lowerCamelCase = ParquetWriter if file_format == """parquet""" else ArrowWriter __lowerCamelCase = os.path.join(self._working_dir , os.path.basename(UpperCAmelCase ) ) if self._working_dir else fpath __lowerCamelCase = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __lowerCamelCase = self.config.features __lowerCamelCase = self._writer_batch_size __lowerCamelCase = self._fs.storage_options def write_arrow(UpperCAmelCase ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __lowerCamelCase = pyspark.TaskContext().taskAttemptId() __lowerCamelCase = next(UpperCAmelCase , UpperCAmelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) __lowerCamelCase = 0 __lowerCamelCase = writer_class( features=UpperCAmelCase , path=working_fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , writer_batch_size=UpperCAmelCase , storage_options=UpperCAmelCase , embed_local_files=UpperCAmelCase , ) __lowerCamelCase = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCAmelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __lowerCamelCase , __lowerCamelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 __lowerCamelCase = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , writer_batch_size=UpperCAmelCase , storage_options=UpperCAmelCase , embed_local_files=UpperCAmelCase , ) __lowerCamelCase = pa.Table.from_batches([batch] ) writer.write_table(UpperCAmelCase ) if writer._num_bytes > 0: __lowerCamelCase , __lowerCamelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCAmelCase ) ): __lowerCamelCase = os.path.join(os.path.dirname(UpperCAmelCase ) , os.path.basename(UpperCAmelCase ) ) shutil.move(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase = ( self.df.mapInArrow(UpperCAmelCase , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = "arrow" , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ): self._validate_cache_dir() __lowerCamelCase = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCAmelCase ) __lowerCamelCase = not is_remote_filesystem(self._fs ) __lowerCamelCase = os.path.join if is_local else posixpath.join __lowerCamelCase = """-TTTTT-SSSSS-of-NNNNN""" __lowerCamelCase = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' __lowerCamelCase = path_join(self._output_dir , UpperCAmelCase ) __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = [] __lowerCamelCase = [] for task_id, content in self._prepare_split_single(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCAmelCase ) __lowerCamelCase = total_num_examples __lowerCamelCase = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: __lowerCamelCase = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __lowerCamelCase = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): rename( UpperCAmelCase , fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , fpath.replace("""TTTTT-SSSSS""" , f'''{global_shard_id:05d}''' ).replace("""NNNNN""" , f'''{total_shards:05d}''' ) , ) __lowerCamelCase = [] __lowerCamelCase = 0 for i in range(len(UpperCAmelCase ) ): __lowerCamelCase , __lowerCamelCase = task_id_and_num_shards[i] for shard_id in range(UpperCAmelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCAmelCase , len(UpperCAmelCase ) ).map(lambda UpperCAmelCase : _rename_shard(*UpperCAmelCase ) ).collect() else: # don't use any pattern __lowerCamelCase = 0 __lowerCamelCase = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , fpath.replace(UpperCAmelCase , """""" ) , ) def lowerCamelCase_ ( self , UpperCAmelCase , ): return SparkExamplesIterable(self.df )
479
1
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) class UpperCamelCase : def __init__(self , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase=None , __UpperCamelCase=None ) -> Any: if not conversation_id: UpperCamelCase_ : Dict = uuid.uuida() if past_user_inputs is None: UpperCamelCase_ : int = [] if generated_responses is None: UpperCamelCase_ : Tuple = [] UpperCamelCase_ : Tuple = conversation_id UpperCamelCase_ : Optional[Any] = past_user_inputs UpperCamelCase_ : Optional[Any] = generated_responses UpperCamelCase_ : Union[str, Any] = text def __eq__(self , __UpperCamelCase ) -> str: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def A_ (self , __UpperCamelCase , __UpperCamelCase = False ) -> str: if self.new_user_input: if overwrite: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' f'''with: "{text}".''' ) UpperCamelCase_ : List[Any] = text else: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' f'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: UpperCamelCase_ : Optional[Any] = text def A_ (self ) -> Union[str, Any]: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) UpperCamelCase_ : Any = None def A_ (self , __UpperCamelCase ) -> Any: self.generated_responses.append(UpperCamelCase_ ) def A_ (self ) -> int: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__(self ) -> Union[str, Any]: UpperCamelCase_ : str = f'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): UpperCamelCase_ : Union[str, Any] = """user""" if is_user else """bot""" output += f'''{name} >> {text} \n''' return output @add_end_docstrings( __lowerCamelCase , r'''\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ''' , ) class UpperCamelCase ( __lowerCamelCase ): def __init__(self , *__UpperCamelCase , **__UpperCamelCase ) -> Dict: super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) if self.tokenizer.pad_token_id is None: UpperCamelCase_ : Dict = self.tokenizer.eos_token def A_ (self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase ) -> str: UpperCamelCase_ : List[str] = {} UpperCamelCase_ : Any = {} UpperCamelCase_ : Any = {} if min_length_for_response is not None: UpperCamelCase_ : List[Any] = min_length_for_response if minimum_tokens is not None: UpperCamelCase_ : Any = minimum_tokens if "max_length" in generate_kwargs: UpperCamelCase_ : Union[str, Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: UpperCamelCase_ : Any = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(UpperCamelCase_ ) return preprocess_params, forward_params, postprocess_params def __call__(self , __UpperCamelCase , __UpperCamelCase=0 , **__UpperCamelCase ) -> Optional[Any]: UpperCamelCase_ : int = super().__call__(UpperCamelCase_ , num_workers=UpperCamelCase_ , **UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) == 1: return outputs[0] return outputs def A_ (self , __UpperCamelCase , __UpperCamelCase=32 ) -> str: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( f'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): UpperCamelCase_ : int = self.tokenizer._build_conversation_input_ids(UpperCamelCase_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version UpperCamelCase_ : List[str] = self._legacy_parse_and_tokenize(UpperCamelCase_ ) if self.framework == "pt": UpperCamelCase_ : Dict = torch.LongTensor([input_ids] ) elif self.framework == "tf": UpperCamelCase_ : int = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def A_ (self , __UpperCamelCase , __UpperCamelCase=10 , **__UpperCamelCase ) -> List[Any]: UpperCamelCase_ : Any = generate_kwargs.get("""max_length""" , self.model.config.max_length ) UpperCamelCase_ : Tuple = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(f'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) UpperCamelCase_ : Dict = max_length - minimum_tokens UpperCamelCase_ : Any = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: UpperCamelCase_ : int = model_inputs["""attention_mask"""][:, -trim:] UpperCamelCase_ : str = model_inputs.pop("""conversation""" ) UpperCamelCase_ : Optional[int] = max_length UpperCamelCase_ : List[str] = self.model.generate(**UpperCamelCase_ , **UpperCamelCase_ ) if self.model.config.is_encoder_decoder: UpperCamelCase_ : int = 1 else: UpperCamelCase_ : Optional[int] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def A_ (self , __UpperCamelCase , __UpperCamelCase=True ) -> str: UpperCamelCase_ : Any = model_outputs["""output_ids"""] UpperCamelCase_ : Optional[Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , ) UpperCamelCase_ : List[Any] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(UpperCamelCase_ ) return conversation def A_ (self , __UpperCamelCase ) -> Union[str, Any]: UpperCamelCase_ : Optional[Any] = self.tokenizer.eos_token_id UpperCamelCase_ : int = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) ) if len(UpperCamelCase_ ) > self.tokenizer.model_max_length: UpperCamelCase_ : List[str] = input_ids[-self.tokenizer.model_max_length :] return input_ids
714
from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase ( __a ): @staticmethod def A_ (__UpperCamelCase ) -> str: UpperCamelCase_ : int = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__UpperCamelCase , help="""Name of the model to download""" ) download_parser.set_defaults(func=__UpperCamelCase ) def __init__(self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: UpperCamelCase_ : Dict = model UpperCamelCase_ : Tuple = cache UpperCamelCase_ : int = force UpperCamelCase_ : Optional[int] = trust_remote_code def A_ (self ) -> Any: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
138
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _A ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = AltDiffusionPipeline lowercase__: Tuple = TEXT_TO_IMAGE_PARAMS lowercase__: List[str] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase__: List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase__: List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) __snake_case : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __snake_case : Any = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) torch.manual_seed(0 ) __snake_case : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) __snake_case : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_02 , ) __snake_case : Dict = CLIPTextModel(__magic_name__ ) __snake_case : Optional[int] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) __snake_case : str = 77 __snake_case : List[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Any=0 ) -> Optional[int]: """simple docstring""" if str(__magic_name__ ).startswith("""mps""" ): __snake_case : int = torch.manual_seed(__magic_name__ ) else: __snake_case : Optional[Any] = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : List[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowercase__ ( self : Dict ) -> List[Any]: """simple docstring""" __snake_case : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator __snake_case : Optional[Any] = self.get_dummy_components() torch.manual_seed(0 ) __snake_case : str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder __snake_case : Optional[int] = RobertaSeriesModelWithTransformation(__magic_name__ ) __snake_case : Optional[Any] = text_encoder __snake_case : Any = AltDiffusionPipeline(**__magic_name__ ) __snake_case : Any = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : int = self.get_dummy_inputs(__magic_name__ ) __snake_case : Union[str, Any] = """A photo of an astronaut""" __snake_case : Any = alt_pipe(**__magic_name__ ) __snake_case : List[Any] = output.images __snake_case : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __snake_case : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator __snake_case : Any = self.get_dummy_components() __snake_case : List[Any] = PNDMScheduler(skip_prk_steps=__magic_name__ ) torch.manual_seed(0 ) __snake_case : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder __snake_case : Dict = RobertaSeriesModelWithTransformation(__magic_name__ ) __snake_case : Tuple = text_encoder __snake_case : Optional[Any] = AltDiffusionPipeline(**__magic_name__ ) __snake_case : Optional[int] = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : Dict = self.get_dummy_inputs(__magic_name__ ) __snake_case : List[Any] = alt_pipe(**__magic_name__ ) __snake_case : Dict = output.images __snake_case : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : str = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=__magic_name__ ) __snake_case : List[str] = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : int = """A painting of a squirrel eating a burger""" __snake_case : Tuple = torch.manual_seed(0 ) __snake_case : Dict = alt_pipe([prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=20 , output_type="""np""" ) __snake_case : Optional[Any] = output.images __snake_case : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __snake_case : str = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __snake_case : Union[str, Any] = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" ) __snake_case : Dict = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=__magic_name__ , safety_checker=__magic_name__ ) __snake_case : List[str] = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : Dict = """A painting of a squirrel eating a burger""" __snake_case : Dict = torch.manual_seed(0 ) __snake_case : Any = alt_pipe([prompt] , generator=__magic_name__ , num_inference_steps=2 , output_type="""numpy""" ) __snake_case : List[Any] = output.images __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __snake_case : Union[str, Any] = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
26
def __lowerCamelCase ( A__ : float , A__ : float , A__ : float , A__ : float , A__ : float , ) -> float: lowerCamelCase_ : List[str] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: lowerCamelCase_ : Union[str, Any] = 1 - (matter_density + radiation_density + dark_energy) lowerCamelCase_ : int = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowerCamelCase_ : Dict = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation snake_case__ : str = 0.3 print( hubble_parameter( hubble_constant=6_8.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
278
0
'''simple docstring''' def lowercase_ ( lowercase__ ) ->float: if not nums: # Makes sure that the list is not empty raise ValueError('List is empty' ) _snake_case: Any = sum(lowercase__ ) / len(lowercase__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
273
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A : Tuple = logging.get_logger(__name__) A : Any = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class lowerCamelCase ( __UpperCAmelCase ): _SCREAMING_SNAKE_CASE = "biogpt" def __init__( self : Union[str, Any] , __snake_case : Tuple=4_23_84 , __snake_case : Any=10_24 , __snake_case : Optional[int]=24 , __snake_case : int=16 , __snake_case : str=40_96 , __snake_case : Dict="gelu" , __snake_case : List[str]=0.1 , __snake_case : List[Any]=0.1 , __snake_case : List[Any]=10_24 , __snake_case : Optional[int]=0.02 , __snake_case : Union[str, Any]=1e-12 , __snake_case : List[Any]=True , __snake_case : Union[str, Any]=True , __snake_case : Any=0.0 , __snake_case : int=0.0 , __snake_case : Dict=1 , __snake_case : str=0 , __snake_case : List[str]=2 , **__snake_case : Optional[int] , ): '''simple docstring''' _snake_case: List[str] = vocab_size _snake_case: Optional[int] = max_position_embeddings _snake_case: Dict = hidden_size _snake_case: Union[str, Any] = num_hidden_layers _snake_case: str = num_attention_heads _snake_case: Any = intermediate_size _snake_case: List[Any] = hidden_act _snake_case: int = hidden_dropout_prob _snake_case: List[str] = attention_probs_dropout_prob _snake_case: Optional[Any] = initializer_range _snake_case: Union[str, Any] = layer_norm_eps _snake_case: Dict = scale_embedding _snake_case: Dict = use_cache _snake_case: List[Any] = layerdrop _snake_case: int = activation_dropout super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
273
1
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase_ (self ) -> str: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = ort.SessionOptions() __UpperCAmelCase = False return options def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy''' ) # using the PNDM scheduler by default __UpperCAmelCase = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase__ ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=lowercase__ , image=lowercase__ , mask_image=lowercase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=lowercase__ , output_type='''np''' , ) __UpperCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
303
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = 0 while b > 0: if b & 1: __UpperCAmelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
303
1
"""simple docstring""" import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets UpperCAmelCase__ : Optional[Any] = datasets.logging.get_logger(__name__) UpperCAmelCase__ : int = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' UpperCAmelCase__ : str = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' UpperCAmelCase__ : List[Any] = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' UpperCAmelCase__ : List[Any] = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ (datasets.Metric ): """simple docstring""" def __magic_name__ (self ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/google-research/bleurt""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/bleurt"""] , reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" if self.config_name == "default": logger.warning( """Using default BLEURT-Base checkpoint for sequence maximum length 128. """ """You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').""" ) SCREAMING_SNAKE_CASE__ : Any = """bleurt-base-128""" if self.config_name.lower() in CHECKPOINT_URLS: SCREAMING_SNAKE_CASE__ : Any = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: SCREAMING_SNAKE_CASE__ : int = self.config_name.upper() else: raise KeyError( F'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''' ) # download the model checkpoint specified by self.config_name and set up the scorer SCREAMING_SNAKE_CASE__ : Any = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) SCREAMING_SNAKE_CASE__ : Optional[int] = score.BleurtScorer(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.scorer.score(references=SCREAMING_SNAKE_CASE__ , candidates=SCREAMING_SNAKE_CASE__ ) return {"scores": scores}
545
"""simple docstring""" UpperCAmelCase__ : Dict = [ (1_0_0_0, 'M'), (9_0_0, 'CM'), (5_0_0, 'D'), (4_0_0, 'CD'), (1_0_0, 'C'), (9_0, 'XC'), (5_0, 'L'), (4_0, 'XL'), (1_0, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 while place < len(_snake_case ): if (place + 1 < len(_snake_case )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for arabic, roman in ROMAN: ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : List[Any] = divmod(_snake_case ,_snake_case ) result.append(roman * factor ) if number == 0: break return "".join(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
545
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=_SCREAMING_SNAKE_CASE ) class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : str = field(default="text-classification", metadata={"include_in_asdict_even_if_is_default": True} ) A__ : ClassVar[Features] = Features({"text": Value("string" )} ) A__ : ClassVar[Features] = Features({"labels": ClassLabel} ) A__ : str = "text" A__ : str = "labels" def __A ( self , snake_case_ ) -> Tuple: if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , UpperCamelCase__ ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) _UpperCAmelCase = copy.deepcopy(self ) _UpperCAmelCase = self.label_schema.copy() _UpperCAmelCase = features[self.label_column] _UpperCAmelCase = label_schema return task_template @property def __A ( self ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
426
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path __lowercase : Dict = """src/transformers""" # Matches is_xxx_available() __lowercase : Tuple = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} __lowercase : Dict = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __lowercase : List[str] = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available __lowercase : Tuple = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") __lowercase : List[str] = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __lowercase : str = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", __lowercase : Union[str, Any] = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], __lowercase : Union[str, Any] = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo __lowercase : Optional[Any] = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: __lowercase : Optional[int] = re.compile(r"""^\s*try:""") # Catches a line with else: __lowercase : Union[str, Any] = re.compile(r"""^\s*else:""") def lowerCamelCase_ ( _lowerCamelCase : Dict ): if _re_test_backend.search(_lowerCamelCase ) is None: return None lowerCamelCase_ = [b[0] for b in _re_backend.findall(_lowerCamelCase )] backends.sort() return "_and_".join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase : Tuple ): with open(_lowerCamelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ = f.readlines() lowerCamelCase_ = 0 while line_index < len(_lowerCamelCase ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_lowerCamelCase ): return None # First grab the objects without a specific backend in _import_structure lowerCamelCase_ = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCamelCase_ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_lowerCamelCase ): lowerCamelCase_ = _re_one_line_import_struct.search(_lowerCamelCase ).groups()[0] lowerCamelCase_ = re.findall('''\[([^\]]+)\]''' , _lowerCamelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCamelCase_ = _re_import_struct_key_value.search(_lowerCamelCase ) if single_line_import_search is not None: lowerCamelCase_ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_lowerCamelCase ) > 0] objects.extend(_lowerCamelCase ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCamelCase_ = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCamelCase_ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCamelCase_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCamelCase_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCamelCase_ = lines[line_index] if _re_import_struct_add_one.search(_lowerCamelCase ) is not None: objects.append(_re_import_struct_add_one.search(_lowerCamelCase ).groups()[0] ) elif _re_import_struct_add_many.search(_lowerCamelCase ) is not None: lowerCamelCase_ = _re_import_struct_add_many.search(_lowerCamelCase ).groups()[0].split(''', ''' ) lowerCamelCase_ = [obj[1:-1] for obj in imports if len(_lowerCamelCase ) > 0] objects.extend(_lowerCamelCase ) elif _re_between_brackets.search(_lowerCamelCase ) is not None: lowerCamelCase_ = _re_between_brackets.search(_lowerCamelCase ).groups()[0].split(''', ''' ) lowerCamelCase_ = [obj[1:-1] for obj in imports if len(_lowerCamelCase ) > 0] objects.extend(_lowerCamelCase ) elif _re_quote_object.search(_lowerCamelCase ) is not None: objects.append(_re_quote_object.search(_lowerCamelCase ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 1_2 + '''"''' ): objects.append(line[1_3:-3] ) line_index += 1 lowerCamelCase_ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCamelCase_ = [] while ( line_index < len(_lowerCamelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCamelCase_ = lines[line_index] lowerCamelCase_ = _re_import.search(_lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCamelCase_ = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_lowerCamelCase ): # If the line is an if is_backend_available, we grab all objects associated. lowerCamelCase_ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCamelCase_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCamelCase_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCamelCase_ = lines[line_index] lowerCamelCase_ = _re_import.search(_lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 lowerCamelCase_ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowerCamelCase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : int ): def find_duplicates(_lowerCamelCase : List[Any] ): return [k for k, v in collections.Counter(_lowerCamelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCamelCase_ = [] for key in import_dict_objects.keys(): lowerCamelCase_ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) lowerCamelCase_ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCamelCase_ = '''base imports''' if key == '''none''' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def lowerCamelCase_ ( ): lowerCamelCase_ = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: lowerCamelCase_ = os.path.join(_lowerCamelCase , '''__init__.py''' ) lowerCamelCase_ = parse_init(_lowerCamelCase ) if objects is not None: lowerCamelCase_ = analyze_results(*_lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase_ = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('''\n'''.join(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: raise ValueError('''\n\n'''.join(_lowerCamelCase ) ) def lowerCamelCase_ ( ): lowerCamelCase_ = [] for path, directories, files in os.walk(_lowerCamelCase ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_lowerCamelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_lowerCamelCase ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCamelCase_ = str((Path(_lowerCamelCase ) / folder).relative_to(_lowerCamelCase ) ) lowerCamelCase_ = short_path.replace(os.path.sep , '''.''' ) submodules.append(_lowerCamelCase ) for fname in files: if fname == "__init__.py": continue lowerCamelCase_ = str((Path(_lowerCamelCase ) / fname).relative_to(_lowerCamelCase ) ) lowerCamelCase_ = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_lowerCamelCase ) return submodules __lowercase : int = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def lowerCamelCase_ ( ): # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase_ = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(_lowerCamelCase , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCamelCase_ = spec.loader.load_module() lowerCamelCase_ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_lowerCamelCase ) > 0: lowerCamelCase_ = '''\n'''.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' F"""{list_of_modules}\n""" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
142
0
from math import isclose, sqrt def UpperCamelCase ( snake_case__ : Optional[int] ,snake_case__ : List[Any] ,snake_case__ : Tuple ): '''simple docstring''' __snake_case :Dict = point_y / 4 / point_x __snake_case :List[str] = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) __snake_case :List[Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __snake_case :Union[str, Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __snake_case :Tuple = outgoing_gradient**2 + 4 __snake_case :Optional[int] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __snake_case :Optional[int] = (point_y - outgoing_gradient * point_x) ** 2 - 100 __snake_case :str = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __snake_case :Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __snake_case :List[str] = x_minus if isclose(__lowerCAmelCase ,__lowerCAmelCase ) else x_plus __snake_case :Tuple = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def UpperCamelCase ( snake_case__ : Union[str, Any] = 1.4 ,snake_case__ : List[str] = -9.6 ): '''simple docstring''' __snake_case :int = 0 __snake_case :float = first_x_coord __snake_case :float = first_y_coord __snake_case :float = (10.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): __snake_case :str = next_point(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
718
def UpperCamelCase ( snake_case__ : str ,snake_case__ : int ): '''simple docstring''' __snake_case :list[list[str]] = [[] for _ in range(snake_case__ )] __snake_case :Union[str, Any] = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1 or len(snake_case__ ) <= key: return input_string for position, character in enumerate(snake_case__ ): __snake_case :Any = position % (lowest * 2) # puts it in bounds __snake_case :Optional[int] = min(snake_case__ ,lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(snake_case__ ) __snake_case :List[Any] = ["""""".join(snake_case__ ) for row in temp_grid] __snake_case :Any = """""".join(snake_case__ ) return output_string def UpperCamelCase ( snake_case__ : str ,snake_case__ : int ): '''simple docstring''' __snake_case :Union[str, Any] = [] __snake_case :Optional[int] = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1: return input_string __snake_case :list[list[str]] = [[] for _ in range(snake_case__ )] # generates template for position in range(len(snake_case__ ) ): __snake_case :List[str] = position % (lowest * 2) # puts it in bounds __snake_case :int = min(snake_case__ ,lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) __snake_case :str = 0 for row in temp_grid: # fills in the characters __snake_case :str = input_string[counter : counter + len(snake_case__ )] grid.append(list(snake_case__ ) ) counter += len(snake_case__ ) __snake_case :Any = """""" # reads as zigzag for position in range(len(snake_case__ ) ): __snake_case :Optional[int] = position % (lowest * 2) # puts it in bounds __snake_case :int = min(snake_case__ ,lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def UpperCamelCase ( snake_case__ : str ): '''simple docstring''' __snake_case :Optional[Any] = {} for key_guess in range(1 ,len(snake_case__ ) ): # tries every key __snake_case :Dict = decrypt(snake_case__ ,snake_case__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
291
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" snake_case = ["""pixel_values"""] def __init__( self , UpperCAmelCase_ = True , UpperCAmelCase_ = None , UpperCAmelCase_ = PILImageResampling.BICUBIC , UpperCAmelCase_ = True , UpperCAmelCase_ = True , UpperCAmelCase_ = 1 / 2_55 , UpperCAmelCase_ = None , UpperCAmelCase_ = True , UpperCAmelCase_ = None , UpperCAmelCase_ = None , **UpperCAmelCase_ , ): super().__init__(**UpperCAmelCase_ ) snake_case_ = size if size is not None else {"height": 2_24, "width": 2_24} snake_case_ = get_size_dict(UpperCAmelCase_ ) snake_case_ = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} snake_case_ = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ , param_name="crop_size" ) snake_case_ = do_resize snake_case_ = do_rescale snake_case_ = do_normalize snake_case_ = do_center_crop snake_case_ = crop_size snake_case_ = size snake_case_ = resample snake_case_ = rescale_factor snake_case_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = PILImageResampling.BILINEAR , UpperCAmelCase_ = None , **UpperCAmelCase_ , ): snake_case_ = get_size_dict(UpperCAmelCase_ ) if "shortest_edge" in size: snake_case_ = get_resize_output_image_size(UpperCAmelCase_ , size=size["shortest_edge"] , default_to_square=UpperCAmelCase_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: snake_case_ = (size["height"], size["width"]) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None , **UpperCAmelCase_ , ): snake_case_ = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(UpperCAmelCase_ , size=(size["height"], size["width"]) , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None , **UpperCAmelCase_ ): return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None , **UpperCAmelCase_ , ): return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = ChannelDimension.FIRST , **UpperCAmelCase_ , ): snake_case_ = do_resize if do_resize is not None else self.do_resize snake_case_ = do_rescale if do_rescale is not None else self.do_rescale snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ = crop_size if crop_size is not None else self.crop_size snake_case_ = get_size_dict(UpperCAmelCase_ , param_name="crop_size" , default_to_square=UpperCAmelCase_ ) snake_case_ = resample if resample is not None else self.resample snake_case_ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ = image_mean if image_mean is not None else self.image_mean snake_case_ = image_std if image_std is not None else self.image_std snake_case_ = size if size is not None else self.size snake_case_ = get_size_dict(UpperCAmelCase_ ) if not is_batched(UpperCAmelCase_ ): snake_case_ = [images] if not valid_images(UpperCAmelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: snake_case_ = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ ) for image in images] if do_center_crop: snake_case_ = [self.center_crop(image=UpperCAmelCase_ , size=UpperCAmelCase_ ) for image in images] if do_rescale: snake_case_ = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ ) for image in images] if do_normalize: snake_case_ = [self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ ) for image in images] snake_case_ = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images] snake_case_ = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ )
508
'''simple docstring''' import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=7_68 ): super().__init__(UpperCAmelCase_ ) snake_case_ = proj_size snake_case_ = CLIPVisionModel(UpperCAmelCase_ ) snake_case_ = PaintByExampleMapper(UpperCAmelCase_ ) snake_case_ = nn.LayerNorm(config.hidden_size ) snake_case_ = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling snake_case_ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_=False ): snake_case_ = self.model(pixel_values=UpperCAmelCase_ ) snake_case_ = clip_output.pooler_output snake_case_ = self.mapper(latent_states[:, None] ) snake_case_ = self.final_layer_norm(UpperCAmelCase_ ) snake_case_ = self.proj_out(UpperCAmelCase_ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase_ ): super().__init__() snake_case_ = (config.num_hidden_layers + 1) // 5 snake_case_ = config.hidden_size snake_case_ = 1 snake_case_ = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , activation_fn="gelu" , attention_bias=UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ) ] ) def _lowercase ( self , UpperCAmelCase_ ): for block in self.blocks: snake_case_ = block(UpperCAmelCase_ ) return hidden_states
508
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE__ : int =logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int ={ 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class SCREAMING_SNAKE_CASE ( a_ , a_ ): """simple docstring""" __snake_case = """bit""" __snake_case = ["""preactivation""", """bottleneck"""] __snake_case = ["""SAME""", """VALID"""] def __init__( self , _lowercase=3 , _lowercase=64 , _lowercase=[256, 512, 1024, 2048] , _lowercase=[3, 4, 6, 3] , _lowercase="preactivation" , _lowercase="relu" , _lowercase=None , _lowercase=32 , _lowercase=0.0 , _lowercase=False , _lowercase=32 , _lowercase=1 , _lowercase=None , _lowercase=None , **_lowercase , ) -> str: super().__init__(**_lowercase ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCamelCase : int = global_padding.upper() else: raise ValueError(F'''Padding strategy {global_padding} not supported''' ) _lowerCamelCase : Dict = num_channels _lowerCamelCase : Optional[int] = embedding_size _lowerCamelCase : int = hidden_sizes _lowerCamelCase : Optional[int] = depths _lowerCamelCase : Optional[int] = layer_type _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : List[Any] = global_padding _lowerCamelCase : Tuple = num_groups _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : Tuple = embedding_dynamic_padding _lowerCamelCase : List[str] = output_stride _lowerCamelCase : Union[str, Any] = width_factor _lowerCamelCase : List[Any] = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(_lowercase ) + 1 )] _lowerCamelCase : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
714
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[Any]: _lowerCamelCase : str = parent _lowerCamelCase : Dict = batch_size _lowerCamelCase : Optional[Any] = seq_length _lowerCamelCase : List[str] = is_training _lowerCamelCase : Dict = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : Tuple = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Tuple = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : List[str] = type_sequence_label_size _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : str = num_choices def a__ ( self ) -> Dict: _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : List[Any] = None if self.use_attention_mask: _lowerCamelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[Any] = None if self.use_token_type_ids: _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ ( self ) -> int: _lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs _lowerCamelCase : Tuple = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class _UpperCAmelCase ( a_ , unittest.TestCase ): """simple docstring""" __snake_case = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def a__ ( self ) -> Any: _lowerCamelCase : Union[str, Any] = FlaxAlbertModelTester(self ) @slow def a__ ( self ) -> int: for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained('''albert-base-v2''' ) _lowerCamelCase : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def a__ ( self ) -> Optional[int]: _lowerCamelCase : Tuple = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _lowerCamelCase : List[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _lowerCamelCase : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : str = model(_lowercase , attention_mask=_lowercase )[0] _lowerCamelCase : List[str] = (1, 11, 768) self.assertEqual(output.shape , _lowercase ) _lowerCamelCase : Dict = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1E-4 ) )
558
0
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal SCREAMING_SNAKE_CASE: Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE: List[Any] = TypeVar('''DatasetType''', Dataset, IterableDataset) def _a ( lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "first_exhausted" , )-> DatasetType: from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(lowerCAmelCase ): if not isinstance(lowerCAmelCase , (Dataset, IterableDataset) ): if isinstance(lowerCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' 'is an empty dataset dictionary.' ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(lowerCAmelCase )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(lowerCAmelCase ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCAmelCase ).__name__}.''' ) if i == 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( (Dataset, IterableDataset) if isinstance(lowerCAmelCase , lowerCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , info=lowerCAmelCase , split=lowerCAmelCase , stopping_strategy=lowerCAmelCase ) else: return _interleave_iterable_datasets( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , info=lowerCAmelCase , split=lowerCAmelCase , stopping_strategy=lowerCAmelCase ) def _a ( lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = 0 , )-> DatasetType: if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(lowerCAmelCase ): if not isinstance(lowerCAmelCase , (Dataset, IterableDataset) ): if isinstance(lowerCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' 'is an empty dataset dictionary.' ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(lowerCAmelCase )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(lowerCAmelCase ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCAmelCase ).__name__}.''' ) if i == 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( (Dataset, IterableDataset) if isinstance(lowerCAmelCase , lowerCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowerCAmelCase , info=lowerCAmelCase , split=lowerCAmelCase , axis=lowerCAmelCase ) else: return _concatenate_iterable_datasets(lowerCAmelCase , info=lowerCAmelCase , split=lowerCAmelCase , axis=lowerCAmelCase )
360
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) SCREAMING_SNAKE_CASE: Optional[int] = 2_9_9_7_9_2_4_5_8 # Symbols SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE: Tuple = symbols('''ct x y z''') def _a ( lowerCAmelCase )-> float: if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def _a ( lowerCAmelCase )-> float: return 1 / sqrt(1 - beta(lowerCAmelCase ) ** 2 ) def _a ( lowerCAmelCase )-> np.ndarray: return np.array( [ [gamma(lowerCAmelCase ), -gamma(lowerCAmelCase ) * beta(lowerCAmelCase ), 0, 0], [-gamma(lowerCAmelCase ) * beta(lowerCAmelCase ), gamma(lowerCAmelCase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def _a ( lowerCAmelCase , lowerCAmelCase = None )-> np.ndarray: # Ensure event is not empty if event is None: SCREAMING_SNAKE_CASE_ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(lowerCAmelCase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: SCREAMING_SNAKE_CASE: int = transform(2_9_9_7_9_2_4_5) print('''Example of four vector: ''') print(f"""ct' = {four_vector[0]}""") print(f"""x' = {four_vector[1]}""") print(f"""y' = {four_vector[2]}""") print(f"""z' = {four_vector[3]}""") # Substitute symbols with numerical values SCREAMING_SNAKE_CASE: List[Any] = {ct: c, x: 1, y: 1, z: 1} SCREAMING_SNAKE_CASE: Optional[Any] = [four_vector[i].subs(sub_dict) for i in range(4)] print(f"""\n{numerical_vector}""")
360
1
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging _lowercase = logging.get_logger(__name__) def A (): _lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. _lowerCAmelCase = json.loads(_lowerCamelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. _lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". _lowerCAmelCase = json.loads(_lowerCamelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCamelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class UpperCAmelCase_ ( __lowercase ): '''simple docstring''' _lowercase : Optional[int] = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def _lowercase ( self ): """simple docstring""" super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , _lowercase , ) @cached_property def _lowercase ( self ): """simple docstring""" logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: _lowerCAmelCase = torch.device("""cpu""" ) _lowerCAmelCase = 0 elif is_sagemaker_model_parallel_available(): _lowerCAmelCase = smp.local_rank() _lowerCAmelCase = torch.device("""cuda""" , _lowercase ) _lowerCAmelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) _lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) _lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) _lowerCAmelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 _lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. _lowerCAmelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) _lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) _lowerCAmelCase = 1 if device.type == "cuda": torch.cuda.set_device(_lowercase ) return device @property def _lowercase ( self ): """simple docstring""" if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def _lowercase ( self ): """simple docstring""" return not is_sagemaker_model_parallel_available() @property def _lowercase ( self ): """simple docstring""" return False
706
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants _lowercase = 300 # TEMPERATURE (unit = K) def A (__lowerCamelCase :float , __lowerCamelCase :float , __lowerCamelCase :float , ): if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
162
0
"""simple docstring""" import os import time import numpy as np import onnxruntime as ort _lowerCAmelCase = """1""" _lowerCAmelCase = """0""" _lowerCAmelCase = """1""" _lowerCAmelCase = ort.SessionOptions() _lowerCAmelCase = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("""Create inference session...""") _lowerCAmelCase = ["""TensorrtExecutionProvider""", """CUDAExecutionProvider"""] _lowerCAmelCase = ort.InferenceSession("""model.onnx""", sess_options=sess_opt, providers=execution_provider) _lowerCAmelCase = ort.RunOptions() _lowerCAmelCase = 1_2_8 _lowerCAmelCase = 1 _lowerCAmelCase = np.ones((batch, sequence), dtype=np.intaa) _lowerCAmelCase = np.ones((batch, sequence), dtype=np.intaa) _lowerCAmelCase = np.ones((batch, sequence), dtype=np.intaa) print("""Warm up phase...""") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Start inference...""") _lowerCAmelCase = time.time() _lowerCAmelCase = 2_0_0_0 _lowerCAmelCase = {} for iter in range(max_iters): _lowerCAmelCase = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Average Inference Time = {:.3f} ms""".format((time.time() - start_time) * 1_0_0_0 / max_iters))
259
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device lowerCAmelCase__ = False class __snake_case ( unittest.TestCase): pass @nightly @require_torch_gpu class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : int = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : str = '''A painting of a squirrel eating a burger ''' _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : List[Any] = pipe( prompt=__lowerCAmelCase , generator=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : Tuple = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : int = generator.manual_seed(0 ) _lowerCamelCase : List[str] = pipe( prompt=__lowerCAmelCase , generator=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Optional[int] = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = '''A painting of a squirrel eating a burger ''' _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) _lowerCamelCase : int = pipe( prompt=__lowerCAmelCase , generator=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''' ).images _lowerCamelCase : List[str] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Dict = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
83
0
import math def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int ) -> int: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE_ : Any =f'Input value of [number={number}] must be an integer' raise TypeError(UpperCAmelCase_ ) if number < 1: SCREAMING_SNAKE_CASE_ : Optional[int] =f'Input value of [number={number}] must be > 0' raise ValueError(UpperCAmelCase_ ) elif number == 1: return 3 elif number == 2: return 5 else: SCREAMING_SNAKE_CASE_ : List[Any] =int(math.log(number // 3 , 2 ) ) + 2 SCREAMING_SNAKE_CASE_ : Dict =[3, 5] SCREAMING_SNAKE_CASE_ : Optional[Any] =2 SCREAMING_SNAKE_CASE_ : Tuple =3 for block in range(1 , UpperCAmelCase_ ): for _ in range(UpperCAmelCase_ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): _lowercase = 0 try: _lowercase = proth(number) except ValueError: print(F"ValueError: there is no {number}th Proth number") continue print(F"The {number}th Proth number: {value}")
431
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Union[str, Any] ) -> Optional[int]: config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] ) -> List[str]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Dict ) -> Optional[int]: from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE_ : List[Any] =terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] ) -> int: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: SCREAMING_SNAKE_CASE_ : Union[str, Any] =0 # Doctest custom flag to ignore output. _lowercase = doctest.register_optionflag("""IGNORE_RESULT""") _lowercase = doctest.OutputChecker class lowercase_ ( A ): def _snake_case ( self , __A , __A , __A ) -> List[Any]: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __A , __A , __A ) _lowercase = CustomOutputChecker _lowercase = HfDoctestModule _lowercase = HfDocTestParser
431
1
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class snake_case ( tf.keras.layers.Layer ): def __init__( self : Dict , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int = None , UpperCamelCase__ : int = None)-> List[Any]: '''simple docstring''' super().__init__() __lowerCAmelCase: List[str] = pad_token_id __lowerCAmelCase: Any = max_length __lowerCAmelCase: Tuple = vocab __lowerCAmelCase: Tuple = merges __lowerCAmelCase: List[str] = BytePairTokenizer(UpperCamelCase__ , UpperCamelCase__ , sequence_length=UpperCamelCase__) @classmethod def lowercase_ ( cls : Optional[int] , UpperCamelCase__ : GPTaTokenizer , *UpperCamelCase__ : int , **UpperCamelCase__ : List[Any])-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Optional[int] = [" ".join(UpperCamelCase__) for m in tokenizer.bpe_ranks.keys()] __lowerCAmelCase: str = tokenizer.get_vocab() return cls(UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__) @classmethod def lowercase_ ( cls : Any , UpperCamelCase__ : Union[str, os.PathLike] , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : Union[str, Any])-> str: '''simple docstring''' __lowerCAmelCase: Optional[Any] = GPTaTokenizer.from_pretrained(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__) return cls.from_tokenizer(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__) @classmethod def lowercase_ ( cls : Optional[Any] , UpperCamelCase__ : Optional[int])-> Tuple: '''simple docstring''' return cls(**UpperCamelCase__) def lowercase_ ( self : Optional[int])-> str: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int = None)-> Tuple: '''simple docstring''' __lowerCAmelCase: List[Any] = self.tf_tokenizer(UpperCamelCase__) __lowerCAmelCase: List[Any] = tf.ones_like(UpperCamelCase__) if self.pad_token_id is not None: # pad the tokens up to max length __lowerCAmelCase: Tuple = max_length if max_length is not None else self.max_length if max_length is not None: __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = pad_model_inputs( UpperCamelCase__ , max_seq_length=UpperCamelCase__ , pad_value=self.pad_token_id) return {"attention_mask": attention_mask, "input_ids": input_ids}
346
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __A = object() # For specifying empty leaf dict `{}` __A = object() def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict: __lowerCAmelCase: Dict = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__SCREAMING_SNAKE_CASE ) - len(__SCREAMING_SNAKE_CASE ) + 1 ): __lowerCAmelCase: Tuple = [x.match(__SCREAMING_SNAKE_CASE ) for x, y in zip(__SCREAMING_SNAKE_CASE , ks[i:] )] if matches and all(__SCREAMING_SNAKE_CASE ): return True return False def a__ ( __SCREAMING_SNAKE_CASE ) -> List[Any]: def replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for rule, replacement in rules: if _match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return replacement return val return replace def a__ ( ) -> str: return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , __SCREAMING_SNAKE_CASE )), (("transformer", "wte", "embedding"), P("mp" , __SCREAMING_SNAKE_CASE )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__SCREAMING_SNAKE_CASE , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , __SCREAMING_SNAKE_CASE )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__SCREAMING_SNAKE_CASE , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , __SCREAMING_SNAKE_CASE )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a__ ( __SCREAMING_SNAKE_CASE ) -> List[str]: __lowerCAmelCase: Any = _get_partition_rules() __lowerCAmelCase: List[Any] = _replacement_rules(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Tuple = {k: _unmatched for k in flatten_dict(__SCREAMING_SNAKE_CASE )} __lowerCAmelCase: Any = {k: replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__SCREAMING_SNAKE_CASE ) )
346
1
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(__UpperCamelCase ,2 ) - pow(__UpperCamelCase ,2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__UpperCamelCase ,2 ) - pow(__UpperCamelCase ,2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__UpperCamelCase ,2 ) + pow(__UpperCamelCase ,2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
384
'''simple docstring''' A_ = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} A_ = ["a", "b", "c", "d", "e"] def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[str]: lowerCamelCase_ = start # add current to visited visited.append(__UpperCamelCase ) lowerCamelCase_ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowerCamelCase_ = topological_sort(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # if all neighbors visited add current to sort sort.append(__UpperCamelCase ) # if all vertices haven't been visited select a new one to visit if len(__UpperCamelCase ) != len(__UpperCamelCase ): for vertice in vertices: if vertice not in visited: lowerCamelCase_ = topological_sort(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # return sort return sort if __name__ == "__main__": A_ = topological_sort("a", [], []) print(sort)
384
1
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[float('''inf''' ) for _ in range(SCREAMING_SNAKE_CASE )] for _ in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowercase__ = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowercase__ = dist[i][k] + dist[k][j] _print_dist(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": lowerCAmelCase = int(input('Enter number of vertices: ')) lowerCAmelCase = int(input('Enter number of edges: ')) lowerCAmelCase = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) lowerCAmelCase = int(input('Enter source:')) lowerCAmelCase = int(input('Enter destination:')) lowerCAmelCase = float(input('Enter weight:')) lowerCAmelCase = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
43
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def a ( snake_case__: Any ): '''simple docstring''' lowercase_ = filter(lambda snake_case__ : p.requires_grad , model.parameters() ) lowercase_ = sum([np.prod(p.size() ) for p in model_parameters] ) return params __a = logging.getLogger(__name__) def a ( snake_case__: int , snake_case__: Any ): '''simple docstring''' if metric == "rouge2": lowercase_ = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": lowercase_ = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": lowercase_ = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": lowercase_ = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ''' function.''' ) lowercase_ = ModelCheckpoint( dirpath=snake_case__ , filename=snake_case__ , monitor=F'''val_{metric}''' , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def a ( snake_case__: str , snake_case__: List[str] ): '''simple docstring''' return EarlyStopping( monitor=F'''val_{metric}''' , mode='''min''' if '''loss''' in metric else '''max''' , patience=snake_case__ , verbose=snake_case__ , ) class lowercase__( pl.Callback ): """simple docstring""" def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: lowercase_ = {f'''lr_group_{i}''': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE_ ) @rank_zero_only def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : pl.Trainer , SCREAMING_SNAKE_CASE_ : pl.LightningModule , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple=True ) -> None: logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) lowercase_ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results lowercase_ = Path(pl_module.hparams.output_dir ) if type_path == "test": lowercase_ = od / '''test_results.txt''' lowercase_ = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. lowercase_ = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' lowercase_ = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) generations_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , '''a+''' ) as writer: for key in sorted(SCREAMING_SNAKE_CASE_ ): if key in ["log", "progress_bar", "preds"]: continue lowercase_ = metrics[key] if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): lowercase_ = val.item() lowercase_ = f'''{key}: {val:.6f}\n''' writer.write(SCREAMING_SNAKE_CASE_ ) if not save_generations: return if "preds" in metrics: lowercase_ = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(SCREAMING_SNAKE_CASE_ ) @rank_zero_only def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: try: lowercase_ = pl_module.model.model.num_parameters() except AttributeError: lowercase_ = pl_module.model.num_parameters() lowercase_ = count_trainable_parameters(SCREAMING_SNAKE_CASE_ ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : pl.Trainer , SCREAMING_SNAKE_CASE_ : pl.LightningModule ) -> Any: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''test''' ) @rank_zero_only def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : pl.Trainer , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
97
0
"""simple docstring""" from sklearn.metrics import recall_score import datasets lowerCAmelCase__ ="\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" lowerCAmelCase__ ="\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" lowerCAmelCase__ ="\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__( datasets.Metric ): def _a ( self : Any ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Optional[Any]="binary" , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : List[Any]="warn" , ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = recall_score( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , pos_label=__SCREAMING_SNAKE_CASE , average=__SCREAMING_SNAKE_CASE , sample_weight=__SCREAMING_SNAKE_CASE , zero_division=__SCREAMING_SNAKE_CASE , ) return {"recall": float(__SCREAMING_SNAKE_CASE ) if score.size == 1 else score}
690
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ ={"configuration_timm_backbone": ["TimmBackboneConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ =["TimmBackbone"] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys lowerCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
1
"""simple docstring""" from math import factorial A = {str(digit): factorial(digit) for digit in range(10)} def __A ( a_ :int) -> int: if not isinstance(a_ , a_): raise TypeError('''Parameter number must be int''') if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''') # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(a_)) def __A ( a_ :int = 60 , a_ :int = 1_00_00_00) -> int: if not isinstance(a_ , a_) or not isinstance(a_ , a_): raise TypeError('''Parameters chain_length and number_limit must be int''') if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''') # the counter for the chains with the exact desired length __a : int = 0 # the cached sizes of the previous chains __a : dict[int, int] = {} for start_chain_element in range(1 , a_): # The temporary set will contain the elements of the chain __a : Tuple = set() __a : Union[str, Any] = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. __a : str = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(a_) chain_set_length += 1 __a : Optional[int] = digit_factorial_sum(a_) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] __a : Optional[int] = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution()}')
52
"""simple docstring""" import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput __lowerCAmelCase : Tuple = '''scheduler_config.json''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 1 _lowerCamelCase = 2 _lowerCamelCase = 3 _lowerCamelCase = 4 _lowerCamelCase = 5 @dataclass class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = SCHEDULER_CONFIG_NAME _lowerCamelCase = ['''dtype'''] _lowerCamelCase = [] _lowerCamelCase = True @classmethod def UpperCAmelCase__ ( cls , _lowercase = None , _lowercase = None , _lowercase=False , **_lowercase , ) -> Any: '''simple docstring''' snake_case_ , snake_case_ : int = cls.load_config( pretrained_model_name_or_path=_lowercase , subfolder=_lowercase , return_unused_kwargs=_lowercase , **_lowercase , ) snake_case_ , snake_case_ : Dict = cls.from_config(_lowercase , return_unused_kwargs=_lowercase , **_lowercase ) if hasattr(_lowercase , """create_state""" ) and getattr(_lowercase , """has_state""" , _lowercase ): snake_case_ : Any = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase__ ( self , _lowercase , _lowercase = False , **_lowercase ) -> Optional[Any]: '''simple docstring''' self.save_config(save_directory=_lowercase , push_to_hub=_lowercase , **_lowercase ) @property def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return self._get_compatibles() @classmethod def UpperCAmelCase__ ( cls ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = list(set([cls.__name__] + cls._compatibles ) ) snake_case_ : str = importlib.import_module(__name__.split(""".""" )[0] ) snake_case_ : Optional[int] = [ getattr(_lowercase , _lowercase ) for c in compatible_classes_str if hasattr(_lowercase , _lowercase ) ] return compatible_classes def __lowerCAmelCase ( __UpperCamelCase : jnp.ndarray , __UpperCamelCase : Tuple[int] ): '''simple docstring''' assert len(__UpperCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__UpperCamelCase ) - x.ndim) ) , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Any=0.999 , __UpperCamelCase : Optional[int]=jnp.floataa ): '''simple docstring''' def alpha_bar(__UpperCamelCase : Optional[int] ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 snake_case_ : Optional[Any] = [] for i in range(__UpperCamelCase ): snake_case_ : Dict = i / num_diffusion_timesteps snake_case_ : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(__UpperCamelCase ) / alpha_bar(__UpperCamelCase ) , __UpperCamelCase ) ) return jnp.array(__UpperCamelCase , dtype=__UpperCamelCase ) @flax.struct.dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 @classmethod def UpperCAmelCase__ ( cls , _lowercase ) -> int: '''simple docstring''' snake_case_ : Any = scheduler.config if config.trained_betas is not None: snake_case_ : Optional[Any] = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": snake_case_ : int = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case_ : str = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case_ : int = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) snake_case_ : Optional[Any] = 1.0 - betas snake_case_ : Any = jnp.cumprod(_lowercase , axis=0 ) return cls( alphas=_lowercase , betas=_lowercase , alphas_cumprod=_lowercase , ) def __lowerCAmelCase ( __UpperCamelCase : CommonSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray ): '''simple docstring''' snake_case_ : Tuple = state.alphas_cumprod snake_case_ : Optional[int] = alphas_cumprod[timesteps] ** 0.5 snake_case_ : Dict = sqrt_alpha_prod.flatten() snake_case_ : int = broadcast_to_shape_from_left(__UpperCamelCase , original_samples.shape ) snake_case_ : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 snake_case_ : Dict = sqrt_one_minus_alpha_prod.flatten() snake_case_ : Tuple = broadcast_to_shape_from_left(__UpperCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __lowerCAmelCase ( __UpperCamelCase : CommonSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray ): '''simple docstring''' snake_case_ , snake_case_ : str = get_sqrt_alpha_prod(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __lowerCAmelCase ( __UpperCamelCase : CommonSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = get_sqrt_alpha_prod(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : Any = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
58
0
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase : int = logging.get_logger(__name__) @add_end_docstrings(__snake_case ) class A ( __snake_case ): def __init__( self , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" A : Union[str, Any] = {} if "candidate_labels" in kwargs: A : Dict = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: A : Dict = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="This is a sound of {}." ) -> Optional[int]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png A : str = requests.get(SCREAMING_SNAKE_CASE ).content else: with open(SCREAMING_SNAKE_CASE , '''rb''' ) as f: A : Tuple = f.read() if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : List[Any] = ffmpeg_read(SCREAMING_SNAKE_CASE , self.feature_extractor.sampling_rate ) if not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) A : List[Any] = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) A : Any = candidate_labels A : Any = [hypothesis_template.format(SCREAMING_SNAKE_CASE ) for x in candidate_labels] A : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE ) A : Union[str, Any] = [text_inputs] return inputs def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : Optional[Any] = model_inputs.pop('''candidate_labels''' ) A : Optional[Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , SCREAMING_SNAKE_CASE ): A : List[Any] = text_inputs[0] else: # Batching case. A : Dict = text_inputs[0][0] A : Optional[Any] = self.model(**SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : List[Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" A : Any = model_outputs.pop('''candidate_labels''' ) A : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": A : Union[str, Any] = logits.softmax(dim=0 ) A : Dict = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) A : Dict = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , key=lambda SCREAMING_SNAKE_CASE : -x[0] ) ] return result
343
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class A ( __snake_case , unittest.TestCase ): __magic_name__ = CpmAntTokenizer __magic_name__ = False def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" super().setUp() A : Optional[int] = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Union[str, Any] = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) A : List[str] = '''今天天气真好!''' A : Union[str, Any] = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] A : List[str] = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = '''今天天气真好!''' A : List[str] = [tokenizer.bos_token] + tokens A : int = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) A : str = tokenizer.decode(SCREAMING_SNAKE_CASE ) self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
343
1
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _lowercase: List[Any] = logging.get_logger(__name__) _lowercase: Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED _lowercase: List[Any] = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } _lowercase: Dict = { '''allenai/led-base-16384''': 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _lowerCamelCase ( ): _lowerCAmelCase = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _lowerCAmelCase = bs[:] _lowerCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case ) cs.append(2**8 + n ) n += 1 _lowerCAmelCase = [chr(snake_case ) for n in cs] return dict(zip(snake_case , snake_case ) ) def _lowerCamelCase ( snake_case ): _lowerCAmelCase = set() _lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase = char return pairs class lowerCamelCase__ ( UpperCAmelCase ): UpperCamelCase__ =VOCAB_FILES_NAMES UpperCamelCase__ =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ =["input_ids", "attention_mask"] def __init__( self : str , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : List[str]="replace" , lowercase__ : List[str]="<s>" , lowercase__ : Optional[Any]="</s>" , lowercase__ : Any="</s>" , lowercase__ : List[Any]="<s>" , lowercase__ : Union[str, Any]="<unk>" , lowercase__ : str="<pad>" , lowercase__ : Any="<mask>" , lowercase__ : List[str]=False , **lowercase__ : Tuple , ): _lowerCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else bos_token _lowerCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else eos_token _lowerCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else sep_token _lowerCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else cls_token _lowerCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else unk_token _lowerCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( errors=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) with open(lowercase__ , encoding='utf-8' ) as vocab_handle: _lowerCAmelCase = json.load(lowercase__ ) _lowerCAmelCase = {v: k for k, v in self.encoder.items()} _lowerCAmelCase = errors # how to handle errors in decoding _lowerCAmelCase = bytes_to_unicode() _lowerCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowercase__ , encoding='utf-8' ) as merges_handle: _lowerCAmelCase = merges_handle.read().split('\n' )[1:-1] _lowerCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] _lowerCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) _lowerCAmelCase = {} _lowerCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCAmelCase = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def SCREAMING_SNAKE_CASE__ ( self : Tuple ): return len(self.encoder ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : List[str] ): if token in self.cache: return self.cache[token] _lowerCAmelCase = tuple(lowercase__ ) _lowerCAmelCase = get_pairs(lowercase__ ) if not pairs: return token while True: _lowerCAmelCase = min(lowercase__ , key=lambda lowercase__ : self.bpe_ranks.get(lowercase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase , _lowerCAmelCase = bigram _lowerCAmelCase = [] _lowerCAmelCase = 0 while i < len(lowercase__ ): try: _lowerCAmelCase = word.index(lowercase__ , lowercase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase = j if word[i] == first and i < len(lowercase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase = tuple(lowercase__ ) _lowerCAmelCase = new_word if len(lowercase__ ) == 1: break else: _lowerCAmelCase = get_pairs(lowercase__ ) _lowerCAmelCase = ' '.join(lowercase__ ) _lowerCAmelCase = word return word def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Tuple ): _lowerCAmelCase = [] for token in re.findall(self.pat , lowercase__ ): _lowerCAmelCase = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase__ ).split(' ' ) ) return bpe_tokens def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : str ): return self.encoder.get(lowercase__ , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : List[Any] ): return self.decoder.get(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , lowercase__ : str ): _lowerCAmelCase = ''.join(lowercase__ ) _lowerCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : str , lowercase__ : Optional[str] = None ): if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCAmelCase = os.path.join( lowercase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase = os.path.join( lowercase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase__ , ensure_ascii=lowercase__ ) + '\n' ) _lowerCAmelCase = 0 with open(lowercase__ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase__ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase = token_index writer.write(' '.join(lowercase__ ) + '\n' ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE__ ( self : Dict , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] _lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None , lowercase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) if token_ids_a is None: return [1] + ([0] * len(lowercase__ )) + [1] return [1] + ([0] * len(lowercase__ )) + [1, 1] + ([0] * len(lowercase__ )) + [1] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None ): _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self : Dict , lowercase__ : List[Any] , lowercase__ : Optional[Any]=False , **lowercase__ : Union[str, Any] ): _lowerCAmelCase = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowercase__ ) > 0 and not text[0].isspace()): _lowerCAmelCase = ' ' + text return (text, kwargs) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , lowercase__ : Union[Dict[str, EncodedInput], BatchEncoding] , lowercase__ : Optional[int] = None , lowercase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowercase__ : Optional[int] = None , lowercase__ : Optional[bool] = None , ): _lowerCAmelCase = super()._pad( encoded_inputs=lowercase__ , max_length=lowercase__ , padding_strategy=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , ) # Load from model defaults if return_attention_mask is None: _lowerCAmelCase = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCAmelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCAmelCase = len(encoded_inputs['global_attention_mask'] ) != len(lowercase__ ) if needs_to_be_padded: _lowerCAmelCase = len(lowercase__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCAmelCase = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": _lowerCAmelCase = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
192
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , lowercase__ : Any , lowercase__ : List[Any]=7 , lowercase__ : List[str]=3 , lowercase__ : str=18 , lowercase__ : List[Any]=30 , lowercase__ : Optional[int]=4_00 , lowercase__ : Dict=True , lowercase__ : List[str]=None , lowercase__ : int=True , lowercase__ : Tuple=None , lowercase__ : int=True , lowercase__ : Tuple=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowercase__ : Optional[int]=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowercase__ : Any=True , ): _lowerCAmelCase = size if size is not None else {'height': 2_24, 'width': 2_24} _lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = do_convert_rgb def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Tuple=False , lowercase__ : List[Any]=False , lowercase__ : str=False ): assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: _lowerCAmelCase = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_55 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: _lowerCAmelCase = [] for i in range(self.batch_size ): _lowerCAmelCase , _lowerCAmelCase = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(2_55 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension _lowerCAmelCase = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs] if torchify: _lowerCAmelCase = [torch.from_numpy(lowercase__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = ChineseCLIPImageProcessingTester(self , do_center_crop=lowercase__ ) @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowercase__ , 'size' ) ) self.assertTrue(hasattr(lowercase__ , 'do_center_crop' ) ) self.assertTrue(hasattr(lowercase__ , 'center_crop' ) ) self.assertTrue(hasattr(lowercase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase__ , 'image_mean' ) ) self.assertTrue(hasattr(lowercase__ , 'image_std' ) ) self.assertTrue(hasattr(lowercase__ , 'do_convert_rgb' ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 2_24, 'width': 2_24} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self : str ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self : Any ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ , numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self : int ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ , torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): _lowerCAmelCase = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=lowercase__ ) _lowerCAmelCase = 3 @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowercase__ , 'size' ) ) self.assertTrue(hasattr(lowercase__ , 'do_center_crop' ) ) self.assertTrue(hasattr(lowercase__ , 'center_crop' ) ) self.assertTrue(hasattr(lowercase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase__ , 'image_mean' ) ) self.assertTrue(hasattr(lowercase__ , 'image_std' ) ) self.assertTrue(hasattr(lowercase__ , 'do_convert_rgb' ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): pass def SCREAMING_SNAKE_CASE__ ( self : Dict ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
192
1
'''simple docstring''' import argparse import datetime def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Dict ={ """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } __magic_name__ : Union[str, Any] ={0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month __magic_name__ : int =int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) __magic_name__ : str =date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day __magic_name__ : int =int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator __magic_name__ : str =date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year __magic_name__ : int =int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation __magic_name__ : Optional[Any] =datetime.date(int(lowerCamelCase ) , int(lowerCamelCase ) , int(lowerCamelCase ) ) # Start math if m <= 2: __magic_name__ : int =y - 1 __magic_name__ : Union[str, Any] =m + 12 # maths var __magic_name__ : int =int(str(lowerCamelCase )[:2] ) __magic_name__ : int =int(str(lowerCamelCase )[2:] ) __magic_name__ : int =int(2.6 * m - 5.3_9 ) __magic_name__ : int =int(c / 4 ) __magic_name__ : int =int(k / 4 ) __magic_name__ : int =int(d + k ) __magic_name__ : int =int(t + u + v + x ) __magic_name__ : int =int(z - (2 * c) ) __magic_name__ : int =round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response __magic_name__ : str =F"Your date {date_input}, is a {days[str(lowerCamelCase )]}!" return response if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser( description=( "Find out what day of the week nearly any date is or was. Enter " "date as a string in the mm-dd-yyyy or mm/dd/yyyy format" ) ) parser.add_argument( "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" ) UpperCAmelCase_ : str = parser.parse_args() zeller(args.date_input)
713
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowerCAmelCase_ ( *lowerCamelCase , lowerCamelCase = None , lowerCamelCase=True , lowerCamelCase=2 ): from .. import __version__ __magic_name__ : Optional[int] =take_from __magic_name__ : Tuple =() if not isinstance(args[0] , lowerCamelCase ): __magic_name__ : List[Any] =(args,) for attribute, version_name, message in args: if version.parse(version.parse(lowerCamelCase ).base_version ) >= version.parse(lowerCamelCase ): raise ValueError( F"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" F" version {__version__} is >= {version_name}" ) __magic_name__ : List[str] =None if isinstance(lowerCamelCase , lowerCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowerCamelCase ),) __magic_name__ : List[str] =F"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(lowerCamelCase , lowerCamelCase ): values += (getattr(lowerCamelCase , lowerCamelCase ),) __magic_name__ : List[str] =F"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: __magic_name__ : List[str] =F"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: __magic_name__ : List[Any] =warning + """ """ if standard_warn else """""" warnings.warn(warning + message , lowerCamelCase , stacklevel=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) and len(lowerCamelCase ) > 0: __magic_name__ : List[Any] =inspect.getouterframes(inspect.currentframe() )[1] __magic_name__ : Optional[int] =call_frame.filename __magic_name__ : Tuple =call_frame.lineno __magic_name__ : str =call_frame.function __magic_name__ , __magic_name__ : Optional[int] =next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(lowerCamelCase ) == 0: return elif len(lowerCamelCase ) == 1: return values[0] return values
367
0
def lowercase__( A ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def lowercase__( A ): snake_case__ : Any = 0 snake_case__ : int = len(A ) # No of vertices in graph snake_case__ : Dict = [0] * n snake_case__ : Optional[int] = [False] * n def dfs(A , A , A , A ): snake_case__ : Tuple = True snake_case__ : List[Any] = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(A , A , A , id_ ) snake_case__ : int = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge snake_case__ : Optional[int] = min(low[at] , low[to] ) snake_case__ : list[tuple[int, int]] = [] for i in range(A ): if not visited[i]: dfs(A , -1 , A , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
170
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCamelCase : Optional[int] = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class snake_case__ ( unittest.TestCase ): _lowerCAmelCase =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCAmelCase =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _lowerCAmelCase ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _lowerCAmelCase ={ config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCAmelCase__ ( self : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] ): snake_case__ : List[str] = ZeroShotClassificationPipeline( model=_lowerCamelCase , tokenizer=_lowerCamelCase , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCAmelCase__ ( self : Any , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] ): snake_case__ : Any = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(_lowerCamelCase , {'sequence': ANY(_lowerCamelCase ), 'labels': [ANY(_lowerCamelCase )], 'scores': [ANY(_lowerCamelCase )]} ) # No kwarg snake_case__ : Any = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(_lowerCamelCase , {'sequence': ANY(_lowerCamelCase ), 'labels': [ANY(_lowerCamelCase )], 'scores': [ANY(_lowerCamelCase )]} ) snake_case__ : str = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(_lowerCamelCase , {'sequence': ANY(_lowerCamelCase ), 'labels': [ANY(_lowerCamelCase )], 'scores': [ANY(_lowerCamelCase )]} ) snake_case__ : Any = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( _lowerCamelCase , {'sequence': ANY(_lowerCamelCase ), 'labels': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], 'scores': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) snake_case__ : Optional[int] = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( _lowerCamelCase , {'sequence': ANY(_lowerCamelCase ), 'labels': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], 'scores': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) snake_case__ : Optional[Any] = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(_lowerCamelCase , {'sequence': ANY(_lowerCamelCase ), 'labels': [ANY(_lowerCamelCase )], 'scores': [ANY(_lowerCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 snake_case__ : List[str] = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( _lowerCamelCase , [ {'sequence': ANY(_lowerCamelCase ), 'labels': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], 'scores': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} for i in range(1 ) ] , ) snake_case__ : int = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( _lowerCamelCase , [ {'sequence': ANY(_lowerCamelCase ), 'labels': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], 'scores': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(_lowerCamelCase ): classifier('' , candidate_labels='politics' ) with self.assertRaises(_lowerCamelCase ): classifier(_lowerCamelCase , candidate_labels='politics' ) with self.assertRaises(_lowerCamelCase ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(_lowerCamelCase ): classifier('Who are you voting for in 2020?' , candidate_labels=_lowerCamelCase ) with self.assertRaises(_lowerCamelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(_lowerCamelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=_lowerCamelCase , ) self.run_entailment_id(_lowerCamelCase ) def UpperCAmelCase__ ( self : Any , _lowerCamelCase : Pipeline ): snake_case__ : List[str] = zero_shot_classifier.model.config snake_case__ : Union[str, Any] = config.labelaid snake_case__ : Dict = zero_shot_classifier.entailment_id snake_case__ : List[str] = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) snake_case__ : List[Any] = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case__ : Dict = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) snake_case__ : List[str] = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) snake_case__ : Optional[int] = original_labelaid self.assertEqual(_lowerCamelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCAmelCase__ ( self : int ): snake_case__ : List[str] = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 1_0_0 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def UpperCAmelCase__ ( self : Optional[int] ): snake_case__ : List[Any] = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) snake_case__ : Optional[Any] = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @require_tf def UpperCAmelCase__ ( self : Optional[Any] ): snake_case__ : str = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) snake_case__ : str = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @slow @require_torch def UpperCAmelCase__ ( self : int ): snake_case__ : Optional[Any] = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) snake_case__ : int = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) snake_case__ : Union[str, Any] = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=_lowerCamelCase , ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def UpperCAmelCase__ ( self : List[Any] ): snake_case__ : List[Any] = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) snake_case__ : int = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) snake_case__ : List[str] = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=_lowerCamelCase , ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , )
170
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Any = logging.get_logger(__name__) a__ : List[Any] = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase ( UpperCAmelCase_ ): """simple docstring""" snake_case_ = 'rwkv' snake_case_ = {'max_position_embeddings': 'context_length'} def __init__( self : Union[str, Any] , a_ : List[str]=5_02_77 , a_ : Any=10_24 , a_ : List[Any]=40_96 , a_ : Optional[Any]=32 , a_ : Dict=None , a_ : Dict=None , a_ : Optional[Any]=1e-5 , a_ : Optional[int]=0 , a_ : Union[str, Any]=0 , a_ : Optional[int]=6 , a_ : Optional[int]=False , a_ : Union[str, Any]=True , **a_ : Dict , ): """simple docstring""" lowerCamelCase__ = vocab_size lowerCamelCase__ = context_length lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = attention_hidden_size if attention_hidden_size is not None else hidden_size lowerCamelCase__ = intermediate_size if intermediate_size is not None else 4 * hidden_size lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = rescale_every lowerCamelCase__ = use_cache lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id super().__init__( tie_word_embeddings=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ )
702
import collections import importlib.util import os import re from pathlib import Path a__ : str = """src/transformers""" # Matches is_xxx_available() a__ : Any = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} a__ : List[str] = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a__ : Dict = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available a__ : int = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") a__ : Optional[int] = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a__ : Optional[Any] = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", a__ : Union[str, Any] = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], a__ : List[str] = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo a__ : Dict = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: a__ : int = re.compile(r"""^\s*try:""") # Catches a line with else: a__ : List[str] = re.compile(r"""^\s*else:""") def snake_case (UpperCamelCase : Tuple ): '''simple docstring''' if _re_test_backend.search(UpperCamelCase ) is None: return None lowerCamelCase__ = [b[0] for b in _re_backend.findall(UpperCamelCase )] backends.sort() return "_and_".join(UpperCamelCase ) def snake_case (UpperCamelCase : Tuple ): '''simple docstring''' with open(UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.readlines() lowerCamelCase__ = 0 while line_index < len(UpperCamelCase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCamelCase ): return None # First grab the objects without a specific backend in _import_structure lowerCamelCase__ = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: lowerCamelCase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCamelCase ): lowerCamelCase__ = _re_one_line_import_struct.search(UpperCamelCase ).groups()[0] lowerCamelCase__ = re.findall("""\[([^\]]+)\]""" , UpperCamelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue lowerCamelCase__ = _re_import_struct_key_value.search(UpperCamelCase ) if single_line_import_search is not None: lowerCamelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(UpperCamelCase ) > 0] objects.extend(UpperCamelCase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 lowerCamelCase__ = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCamelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCamelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCamelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): lowerCamelCase__ = lines[line_index] if _re_import_struct_add_one.search(UpperCamelCase ) is not None: objects.append(_re_import_struct_add_one.search(UpperCamelCase ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCamelCase ) is not None: lowerCamelCase__ = _re_import_struct_add_many.search(UpperCamelCase ).groups()[0].split(""", """ ) lowerCamelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase ) > 0] objects.extend(UpperCamelCase ) elif _re_between_brackets.search(UpperCamelCase ) is not None: lowerCamelCase__ = _re_between_brackets.search(UpperCamelCase ).groups()[0].split(""", """ ) lowerCamelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase ) > 0] objects.extend(UpperCamelCase ) elif _re_quote_object.search(UpperCamelCase ) is not None: objects.append(_re_quote_object.search(UpperCamelCase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 lowerCamelCase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCamelCase__ = [] while ( line_index < len(UpperCamelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): lowerCamelCase__ = lines[line_index] lowerCamelCase__ = _re_import.search(UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCamelCase__ = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(UpperCamelCase ): # If the line is an if is_backend_available, we grab all objects associated. lowerCamelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCamelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCamelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): lowerCamelCase__ = lines[line_index] lowerCamelCase__ = _re_import.search(UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCamelCase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def snake_case (UpperCamelCase : Any , UpperCamelCase : List[str] ): '''simple docstring''' def find_duplicates(UpperCamelCase : Union[str, Any] ): return [k for k, v in collections.Counter(UpperCamelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCamelCase__ = [] for key in import_dict_objects.keys(): lowerCamelCase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCamelCase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCamelCase__ = """base imports""" if key == """none""" else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def snake_case (): '''simple docstring''' lowerCamelCase__ = [] for root, _, files in os.walk(UpperCamelCase ): if "__init__.py" in files: lowerCamelCase__ = os.path.join(UpperCamelCase , """__init__.py""" ) lowerCamelCase__ = parse_init(UpperCamelCase ) if objects is not None: lowerCamelCase__ = analyze_results(*UpperCamelCase ) if len(UpperCamelCase ) > 0: lowerCamelCase__ = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(UpperCamelCase ) ) if len(UpperCamelCase ) > 0: raise ValueError("""\n\n""".join(UpperCamelCase ) ) def snake_case (): '''simple docstring''' lowerCamelCase__ = [] for path, directories, files in os.walk(UpperCamelCase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(UpperCamelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCamelCase ) / folder).glob("""*.py""" ) ) ) == 0: continue lowerCamelCase__ = str((Path(UpperCamelCase ) / folder).relative_to(UpperCamelCase ) ) lowerCamelCase__ = short_path.replace(os.path.sep , """.""" ) submodules.append(UpperCamelCase ) for fname in files: if fname == "__init__.py": continue lowerCamelCase__ = str((Path(UpperCamelCase ) / fname).relative_to(UpperCamelCase ) ) lowerCamelCase__ = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(UpperCamelCase ) return submodules a__ : Optional[Any] = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def snake_case (): '''simple docstring''' lowerCamelCase__ = importlib.util.spec_from_file_location( """transformers""" , os.path.join(UpperCamelCase , """__init__.py""" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCamelCase__ = spec.loader.load_module() lowerCamelCase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(UpperCamelCase ) > 0: lowerCamelCase__ = """\n""".join(f'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" f'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
235
0
"""simple docstring""" import math def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase ( SCREAMING_SNAKE_CASE_ = 1_0001 ) ->int: try: _lowerCamelCase : List[Any] = int(SCREAMING_SNAKE_CASE_ ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) _lowerCamelCase : list[int] = [] _lowerCamelCase : List[Any] = 2 while len(SCREAMING_SNAKE_CASE_ ) < nth: if is_prime(SCREAMING_SNAKE_CASE_ ): primes.append(SCREAMING_SNAKE_CASE_ ) num += 1 else: num += 1 return primes[len(SCREAMING_SNAKE_CASE_ ) - 1] if __name__ == "__main__": print(F"""{solution() = }""")
434
"""simple docstring""" from jiwer import compute_measures import datasets SCREAMING_SNAKE_CASE__ : Dict ='\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE__ : Dict ='\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE__ : Dict ='\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): """simple docstring""" def a__ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def a__ ( self , _lowercase=None , _lowercase=None , _lowercase=False ) -> Dict: if concatenate_texts: return compute_measures(_lowercase , _lowercase )["wer"] else: _lowerCamelCase : Any = 0 _lowerCamelCase : Tuple = 0 for prediction, reference in zip(_lowercase , _lowercase ): _lowerCamelCase : Any = compute_measures(_lowercase , _lowercase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
434
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowerCAmelCase__ = { "gpt-neox-20b": 2_0_4_8, } class _a ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_="<|endoftext|>" , lowerCAmelCase_="<|endoftext|>" , lowerCAmelCase_="<|endoftext|>" , lowerCAmelCase_=False , **lowerCAmelCase_ , ): super().__init__( lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , **lowerCAmelCase_ , ) _lowercase =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCAmelCase_ ) != add_prefix_space: _lowercase =getattr(lowerCAmelCase_ , pre_tok_state.pop("type" ) ) _lowercase =add_prefix_space _lowercase =pre_tok_class(**lowerCAmelCase_ ) _lowercase =add_prefix_space def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): _lowercase =self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ ) def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) + [self.eos_token_id] ) if len(lowerCAmelCase_ ) > self.model_max_length: _lowercase =input_ids[-self.model_max_length :] return input_ids
594
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class _a ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = 1 @register_to_config def __init__( self , lowerCAmelCase_=2000 , lowerCAmelCase_=0.1 , lowerCAmelCase_=20 , lowerCAmelCase_=1e-3 ): _lowercase =None _lowercase =None _lowercase =None def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): _lowercase =torch.linspace(1 , self.config.sampling_eps , lowerCAmelCase_ , device=lowerCAmelCase_ ) def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ): if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowercase =( -0.2_5 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowercase =std.flatten() while len(std.shape ) < len(score.shape ): _lowercase =std.unsqueeze(-1 ) _lowercase =-score / std # compute _lowercase =-1.0 / len(self.timesteps ) _lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowercase =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowercase =beta_t.unsqueeze(-1 ) _lowercase =-0.5 * beta_t * x _lowercase =torch.sqrt(lowerCAmelCase_ ) _lowercase =drift - diffusion**2 * score _lowercase =x + drift * dt # add noise _lowercase =randn_tensor(x.shape , layout=x.layout , generator=lowerCAmelCase_ , device=x.device , dtype=x.dtype ) _lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ): return self.config.num_train_timesteps
594
1
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> list: if len(lowerCAmelCase__ ) <= 1: return [tuple(lowerCAmelCase__ )] UpperCAmelCase__ : int = [] def generate(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : int = [0] * n res.append(tuple(lowerCAmelCase__ ) ) UpperCAmelCase__ : Any = 0 while i < n: if c[i] < i: if i % 2 == 0: UpperCAmelCase__ , UpperCAmelCase__ : str = arr[i], arr[0] else: UpperCAmelCase__ , UpperCAmelCase__ : int = arr[i], arr[c[i]] res.append(tuple(lowerCAmelCase__ ) ) c[i] += 1 UpperCAmelCase__ : List[Any] = 0 else: UpperCAmelCase__ : Optional[Any] = 0 i += 1 generate(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) return res if __name__ == "__main__": UpperCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
75
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> np.ndarray: UpperCAmelCase__ : List[str] = cva.getAffineTransform(lowerCAmelCase__ , lowerCAmelCase__ ) return cva.warpAffine(lowerCAmelCase__ , lowerCAmelCase__ , (rows, cols) ) if __name__ == "__main__": # read original image UpperCamelCase__ = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value UpperCamelCase__ = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape UpperCamelCase__ , UpperCamelCase__ = gray_img.shape # set different points to rotate image UpperCamelCase__ = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) UpperCamelCase__ = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) UpperCamelCase__ = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) UpperCamelCase__ = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list UpperCamelCase__ = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations UpperCamelCase__ = plt.figure(1) UpperCamelCase__ = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
75
1
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: lowercase_ : str = None lowercase_ : Dict = None lowercase_ : str = graph self._normalize_graph(_lowercase , _lowercase ) lowercase_ : List[str] = len(_lowercase ) lowercase_ : Optional[Any] = None def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> List[str]: if sources is int: lowercase_ : Tuple = [sources] if sinks is int: lowercase_ : Union[str, Any] = [sinks] if len(_lowercase ) == 0 or len(_lowercase ) == 0: return lowercase_ : Dict = sources[0] lowercase_ : Union[str, Any] = sinks[0] # make fake vertex if there are more # than one source or sink if len(_lowercase ) > 1 or len(_lowercase ) > 1: lowercase_ : str = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase_ : List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase_ : List[Any] = max_input_flow lowercase_ : List[Any] = 0 lowercase_ : Any = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase_ : str = max_input_flow lowercase_ : str = size - 1 def lowerCamelCase__ ( self ) -> int: if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCamelCase__ ( self , _lowercase ) -> Optional[Any]: lowercase_ : Union[str, Any] = algorithm(self ) class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Dict: lowercase_ : List[Any] = flow_network lowercase_ : Tuple = flow_network.verticesCount lowercase_ : str = flow_network.sourceIndex lowercase_ : Optional[int] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase_ : Dict = flow_network.graph lowercase_ : Optional[int] = False def lowerCamelCase__ ( self ) -> Optional[int]: if not self.executed: self._algorithm() lowercase_ : str = True def lowerCamelCase__ ( self ) -> Any: pass class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase ) -> int: super().__init__(_lowercase ) # use this to save your result lowercase_ : List[Any] = -1 def lowerCamelCase__ ( self ) -> Dict: if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowercase ) -> List[Any]: super().__init__(_lowercase ) lowercase_ : Union[str, Any] = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase_ : Any = [0] * self.verticies_count lowercase_ : List[Any] = [0] * self.verticies_count def lowerCamelCase__ ( self ) -> List[Any]: lowercase_ : Dict = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase_ : str = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase_ : List[Any] = 0 while i < len(_lowercase ): lowercase_ : Any = vertices_list[i] lowercase_ : Optional[Any] = self.heights[vertex_index] self.process_vertex(_lowercase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_lowercase ) ) lowercase_ : Union[str, Any] = 0 else: i += 1 lowercase_ : str = sum(self.preflow[self.source_index] ) def lowerCamelCase__ ( self , _lowercase ) -> List[Any]: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_lowercase , _lowercase ) self.relabel(_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> List[Any]: lowercase_ : List[str] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCamelCase__ ( self , _lowercase ) -> Optional[int]: lowercase_ : Union[str, Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase_ : Tuple = self.heights[to_index] if min_height is not None: lowercase_ : Union[str, Any] = min_height + 1 if __name__ == "__main__": A: str = [0] A: Dict = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] A: str = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network A: Any = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate A: Tuple = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
7
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
1
import warnings from ..trainer import Trainer from ..utils import logging __a : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , lowerCAmelCase__ , ) super().__init__(args=lowerCAmelCase__ , **lowerCAmelCase__ )
534
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __a : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCAmelCase__ , speech_processor=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ = "auto" ) -> Dict: '''simple docstring''' if slice_size == "auto": __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' self.enable_attention_slicing(lowerCAmelCase__ ) @torch.no_grad() def __call__( self , lowerCAmelCase__ , lowerCAmelCase__=1_60_00 , lowerCAmelCase__ = 5_12 , lowerCAmelCase__ = 5_12 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = 7.5 , lowerCAmelCase__ = None , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 1 , **lowerCAmelCase__ , ) -> List[str]: '''simple docstring''' __lowercase = self.speech_processor.feature_extractor( lowerCAmelCase__ , return_tensors='''pt''' , sampling_rate=lowerCAmelCase__ ).input_features.to(self.device ) __lowercase = self.speech_model.generate(lowerCAmelCase__ , max_length=48_00_00 ) __lowercase = self.speech_processor.tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , normalize=lowerCAmelCase__ )[ 0 ] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = 1 elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = len(lowerCAmelCase__ ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowerCAmelCase__ )}." ) # get prompt text embeddings __lowercase = self.tokenizer( lowerCAmelCase__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) __lowercase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowercase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __lowercase = text_input_ids[:, : self.tokenizer.model_max_length] __lowercase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __lowercase , __lowercase , __lowercase = text_embeddings.shape __lowercase = text_embeddings.repeat(1 , lowerCAmelCase__ , 1 ) __lowercase = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCAmelCase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = 42 if negative_prompt is None: __lowercase = [''''''] * batch_size elif type(lowerCAmelCase__ ) is not type(lowerCAmelCase__ ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase__ )} !=" F" {type(lowerCAmelCase__ )}." ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = [negative_prompt] elif batch_size != len(lowerCAmelCase__ ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase__ )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: __lowercase = negative_prompt __lowercase = text_input_ids.shape[-1] __lowercase = self.tokenizer( lowerCAmelCase__ , padding='''max_length''' , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='''pt''' , ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowercase = uncond_embeddings.shape[1] __lowercase = uncond_embeddings.repeat(1 , lowerCAmelCase__ , 1 ) __lowercase = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCAmelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __lowercase = torch.randn(lowerCAmelCase__ , generator=lowerCAmelCase__ , device='''cpu''' , dtype=lowerCAmelCase__ ).to( self.device ) else: __lowercase = torch.randn(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) __lowercase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __lowercase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta for i, t in enumerate(self.progress_bar(lowerCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) # predict the noise residual __lowercase = self.unet(lowerCAmelCase__ , lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ ).sample # perform guidance if do_classifier_free_guidance: __lowercase , __lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = 1 / 0.1_8215 * latents __lowercase = self.vae.decode(lowerCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCAmelCase__ , nsfw_content_detected=lowerCAmelCase__ )
534
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCamelCase__ : Dict = """\ Text data. Second line of data.""" lowerCamelCase__ : int = """file""" @pytest.fixture(scope="""session""" ) def UpperCamelCase ( lowercase_ ) -> Dict: '''simple docstring''' lowercase__ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") lowercase__ : int = bytes(lowercase_ , """utf-8""" ) with zstd.open(lowercase_ , """wb""" ) as f: f.write(lowercase_ ) return path @pytest.fixture def UpperCamelCase ( lowercase_ ) -> Dict: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , lowercase_ ) , """w""" ) as f: f.write(lowercase_ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowercase__ : List[Any] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} lowercase__ : int = input_paths[compression_format] lowercase__ : Optional[Any] = tmp_path / """cache""" lowercase__ : Tuple = DownloadConfig(cache_dir=lowercase_ , extract_compressed_file=lowercase_ ) lowercase__ : str = cached_path(lowercase_ , download_config=lowercase_ ) with open(lowercase_ ) as f: lowercase__ : Dict = f.read() with open(lowercase_ ) as f: lowercase__ : List[str] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Union[str, Any] = """custom_cache""" lowercase__ : Union[str, Any] = """custom_extracted_dir""" lowercase__ : List[Any] = tmp_path / """custom_extracted_path""" if default_extracted: lowercase__ : Dict = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , lowercase_ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(lowercase_ ) ) lowercase__ : Tuple = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowercase__ : List[str] = xz_file lowercase__ : str = ( DownloadConfig(extract_compressed_file=lowercase_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowercase_ ) ) lowercase__ : str = cached_path(lowercase_ , download_config=lowercase_ ) assert Path(lowercase_ ).parent.parts[-2:] == expected def UpperCamelCase ( lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Optional[int] = str(Path(lowercase_ ).resolve() ) assert cached_path(lowercase_ ) == text_file # relative path lowercase__ : Any = str(Path(lowercase_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowercase_ ) == text_file def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowercase__ : Optional[int] = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(lowercase_ ): cached_path(lowercase_ ) # relative path lowercase__ : Any = """./__missing_file__.txt""" with pytest.raises(lowercase_ ): cached_path(lowercase_ ) def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowercase__ : Union[str, Any] = get_from_cache(F'tmp://{tmpfs_file}' ) with open(lowercase_ ) as f: lowercase__ : Tuple = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase_ ) def UpperCamelCase ( ) -> Tuple: '''simple docstring''' with pytest.raises(lowercase_ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase_ ) def UpperCamelCase ( lowercase_ ) -> List[str]: '''simple docstring''' lowercase__ : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(lowercase_ ): http_get("""https://huggingface.co""" , temp_file=lowercase_ ) with pytest.raises(lowercase_ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase_ ) def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Any = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(lowercase_ ): ftp_get("""ftp://huggingface.co""" , temp_file=lowercase_ ) with pytest.raises(lowercase_ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase_ ) def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Any = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(lowercase_ ): fsspec_get("""s3://huggingface.co""" , temp_file=lowercase_ ) with pytest.raises(lowercase_ ): fsspec_head("""s3://huggingface.co""" )
495
from abc import ABC, abstractmethod from argparse import ArgumentParser class _snake_case ( UpperCAmelCase_ ): @staticmethod @abstractmethod def lowercase__ ( SCREAMING_SNAKE_CASE_): '''simple docstring''' raise NotImplementedError() @abstractmethod def lowercase__ ( self): '''simple docstring''' raise NotImplementedError()
495
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __A ( unittest.TestCase ): def A__ ( self :List[str] , __snake_case :List[str] ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): __magic_name__ : str =model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict ="""sshleifer/tiny-gpt2""" __magic_name__ : Optional[int] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__snake_case , multi_process=__snake_case , ) __magic_name__ : List[str] =TensorFlowBenchmark(__snake_case ) __magic_name__ : List[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[int] ="""sgugger/tiny-distilbert-classification""" __magic_name__ : List[str] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , only_pretrain_model=__snake_case , ) __magic_name__ : Dict =TensorFlowBenchmark(__snake_case ) __magic_name__ : List[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : str ="""sshleifer/tiny-gpt2""" __magic_name__ : List[Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) __magic_name__ : int =TensorFlowBenchmark(__snake_case ) __magic_name__ : List[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : int ="""sshleifer/tiny-gpt2""" __magic_name__ : Optional[int] =AutoConfig.from_pretrained(__snake_case ) __magic_name__ : Optional[int] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__snake_case , multi_process=__snake_case , ) __magic_name__ : str =TensorFlowBenchmark(__snake_case , [config] ) __magic_name__ : List[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[Any] ="""sshleifer/tiny-gpt2""" __magic_name__ : Tuple =AutoConfig.from_pretrained(__snake_case ) __magic_name__ : Dict =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) __magic_name__ : Union[str, Any] =TensorFlowBenchmark(__snake_case , [config] ) __magic_name__ : str =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Optional[int] ="""sshleifer/tiny-gpt2""" __magic_name__ : Optional[int] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) __magic_name__ : Optional[Any] =TensorFlowBenchmark(__snake_case ) __magic_name__ : Any =benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] ="""sshleifer/tiny-gpt2""" __magic_name__ : Tuple =AutoConfig.from_pretrained(__snake_case ) __magic_name__ : str =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) __magic_name__ : Optional[Any] =TensorFlowBenchmark(__snake_case , [config] ) __magic_name__ : int =benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : List[str] ="""patrickvonplaten/t5-tiny-random""" __magic_name__ : Optional[Any] =AutoConfig.from_pretrained(__snake_case ) __magic_name__ : str =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) __magic_name__ : List[Any] =TensorFlowBenchmark(__snake_case , configs=[config] ) __magic_name__ : Union[str, Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[Any] ="""sshleifer/tiny-gpt2""" __magic_name__ : List[Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__snake_case , multi_process=__snake_case , ) __magic_name__ : List[str] =TensorFlowBenchmark(__snake_case ) __magic_name__ : Optional[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : int ="""sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Tuple =TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__snake_case , save_to_csv=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__snake_case , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(__snake_case , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(__snake_case , """env.csv""" ) , multi_process=__snake_case , ) __magic_name__ : Optional[Any] =TensorFlowBenchmark(__snake_case ) benchmark.run() self.assertTrue(Path(os.path.join(__snake_case , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__snake_case , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__snake_case , """env.csv""" ) ).exists() ) def A__ ( self :str ): '''simple docstring''' __magic_name__ : int ="""sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(__snake_case :Dict ): self.assertTrue(hasattr(__snake_case , """sequential""" ) ) self.assertTrue(hasattr(__snake_case , """cumulative""" ) ) self.assertTrue(hasattr(__snake_case , """current""" ) ) self.assertTrue(hasattr(__snake_case , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : List[Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__snake_case , """log.txt""" ) , log_print=__snake_case , trace_memory_line_by_line=__snake_case , eager_mode=__snake_case , multi_process=__snake_case , ) __magic_name__ : List[Any] =TensorFlowBenchmark(__snake_case ) __magic_name__ : Optional[int] =benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__snake_case , """log.txt""" ) ).exists() )
21
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase_ : Dict = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =feature_size __magic_name__ : Union[str, Any] =sampling_rate __magic_name__ : List[Any] =padding_value __magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" ) __magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case ) super().__init__(**__snake_case ) def A__ ( self :Any , __snake_case :Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __magic_name__ : Union[str, Any] ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) __magic_name__ : int =processed_features[self.model_input_names[0]] __magic_name__ : Union[str, Any] =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: __magic_name__ : List[str] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __magic_name__ : Optional[int] =required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __magic_name__ : Optional[Any] =0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): __magic_name__ : List[str] =required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): __magic_name__ : int ="""tf""" elif is_torch_tensor(__snake_case ): __magic_name__ : str ="""pt""" elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): __magic_name__ : List[Any] ="""np""" else: raise ValueError( f"type of {first_element} unknown: {type(__snake_case )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __magic_name__ : List[str] =to_numpy(__snake_case ) else: __magic_name__ : str =[to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy __magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) __magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]] __magic_name__ : Dict =len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __magic_name__ : Optional[int] =[] for i in range(__snake_case ): __magic_name__ : Any ={k: v[i] for k, v in processed_features.items()} # truncation __magic_name__ : List[str] =self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH __magic_name__ : str ={} for i in range(__snake_case ): # padding __magic_name__ : List[str] =self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: __magic_name__ : Dict =[] if value.dtype is np.dtype(np.floataa ): __magic_name__ : Optional[int] =value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' __magic_name__ : Dict =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __magic_name__ : Any =len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: __magic_name__ : List[Any] =max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (0, difference) ) __magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __magic_name__ : str =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __magic_name__ : List[Any] =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : Any =len(__snake_case ) > max_length if needs_to_be_truncated: __magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length] return processed_features def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ): '''simple docstring''' if padding is not False: if padding is True: __magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): __magic_name__ : Optional[int] =PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): __magic_name__ : Any =padding else: __magic_name__ : Any =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
21
1
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowercase( SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : List[Any] , _lowerCAmelCase : TransformeraDModel , _lowerCAmelCase : AutoencoderKL , _lowerCAmelCase : KarrasDiffusionSchedulers , _lowerCAmelCase : Optional[Dict[int, str]] = None , ) -> int: super().__init__() self.register_modules(transformer=_lowerCAmelCase , vae=_lowerCAmelCase , scheduler=_lowerCAmelCase ) # create a imagenet -> id dictionary for easier use _lowerCAmelCase = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(',' ): _lowerCAmelCase = int(_lowerCAmelCase ) _lowerCAmelCase = dict(sorted(self.labels.items() ) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , _lowerCAmelCase : Union[str, List[str]] ) -> List[int]: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = list(_lowerCAmelCase ) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : List[Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : float = 4.0 , _lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCAmelCase : int = 50 , _lowerCAmelCase : Optional[str] = "pil" , _lowerCAmelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.transformer.config.sample_size _lowerCAmelCase = self.transformer.config.in_channels _lowerCAmelCase = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_lowerCAmelCase , device=self.device , dtype=self.transformer.dtype , ) _lowerCAmelCase = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents _lowerCAmelCase = torch.tensor(_lowerCAmelCase , device=self.device ).reshape(-1 ) _lowerCAmelCase = torch.tensor([1000] * batch_size , device=self.device ) _lowerCAmelCase = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: _lowerCAmelCase = latent_model_input[: len(_lowerCAmelCase ) // 2] _lowerCAmelCase = torch.cat([half, half] , dim=0 ) _lowerCAmelCase = self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = t if not torch.is_tensor(_lowerCAmelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) _lowerCAmelCase = latent_model_input.device.type == 'mps' if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = torch.floataa if is_mps else torch.floataa else: _lowerCAmelCase = torch.intaa if is_mps else torch.intaa _lowerCAmelCase = torch.tensor([timesteps] , dtype=_lowerCAmelCase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: _lowerCAmelCase = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output _lowerCAmelCase = self.transformer( _lowerCAmelCase , timestep=_lowerCAmelCase , class_labels=_lowerCAmelCase ).sample # perform guidance if guidance_scale > 1: _lowerCAmelCase , _lowerCAmelCase = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] _lowerCAmelCase , _lowerCAmelCase = torch.split(_lowerCAmelCase , len(_lowerCAmelCase ) // 2 , dim=0 ) _lowerCAmelCase = uncond_eps + guidance_scale * (cond_eps - uncond_eps) _lowerCAmelCase = torch.cat([half_eps, half_eps] , dim=0 ) _lowerCAmelCase = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: _lowerCAmelCase , _lowerCAmelCase = torch.split(_lowerCAmelCase , _lowerCAmelCase , dim=1 ) else: _lowerCAmelCase = noise_pred # compute previous image: x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample if guidance_scale > 1: _lowerCAmelCase , _lowerCAmelCase = latent_model_input.chunk(2 , dim=0 ) else: _lowerCAmelCase = latent_model_input _lowerCAmelCase = 1 / self.vae.config.scaling_factor * latents _lowerCAmelCase = self.vae.decode(_lowerCAmelCase ).sample _lowerCAmelCase = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_lowerCAmelCase )
585
import copy import random from transformers import CLIPTokenizer class __lowercase( SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : Optional[Any] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[int] ) -> str: super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = {} def SCREAMING_SNAKE_CASE_ ( self : List[str] , _lowerCAmelCase : List[Any] , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : List[str] ) -> List[Any]: _lowerCAmelCase = super().add_tokens(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) if num_added_tokens == 0: raise ValueError( F'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' ' `placeholder_token` that is not already in the tokenizer.' ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , _lowerCAmelCase : int , *_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=1 , **_lowerCAmelCase : Optional[Any] ) -> Optional[Any]: _lowerCAmelCase = [] if num_vec_per_token == 1: self.try_adding_tokens(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) output.append(_lowerCAmelCase ) else: _lowerCAmelCase = [] for i in range(_lowerCAmelCase ): _lowerCAmelCase = placeholder_token + F'''_{i}''' self.try_adding_tokens(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) output.append(_lowerCAmelCase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'''The tokenizer already has placeholder token {token} that can get confused with''' F''' {placeholder_token}keep placeholder tokens independent''' ) _lowerCAmelCase = output def SCREAMING_SNAKE_CASE_ ( self : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any=False , _lowerCAmelCase : int=1.0 ) -> List[str]: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = [] for i in range(len(_lowerCAmelCase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=_lowerCAmelCase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _lowerCAmelCase = self.token_map[placeholder_token] _lowerCAmelCase = tokens[: 1 + int(len(_lowerCAmelCase ) * prop_tokens_to_load )] if vector_shuffle: _lowerCAmelCase = copy.copy(_lowerCAmelCase ) random.shuffle(_lowerCAmelCase ) _lowerCAmelCase = text.replace(_lowerCAmelCase , ' '.join(_lowerCAmelCase ) ) return text def __call__( self : Any , _lowerCAmelCase : Any , *_lowerCAmelCase : str , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[int]=1.0 , **_lowerCAmelCase : int ) -> int: return super().__call__( self.replace_placeholder_tokens_in_text( _lowerCAmelCase , vector_shuffle=_lowerCAmelCase , prop_tokens_to_load=_lowerCAmelCase ) , *_lowerCAmelCase , **_lowerCAmelCase , ) def SCREAMING_SNAKE_CASE_ ( self : Any , _lowerCAmelCase : str , *_lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : List[Any]=1.0 , **_lowerCAmelCase : str ) -> List[str]: return super().encode( self.replace_placeholder_tokens_in_text( _lowerCAmelCase , vector_shuffle=_lowerCAmelCase , prop_tokens_to_load=_lowerCAmelCase ) , *_lowerCAmelCase , **_lowerCAmelCase , )
585
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" _A = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} ) _A = Features({'question': Value('string' ), 'context': Value('string' )} ) _A = Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) _A = "question" _A = "context" _A = "answers" @property def __magic_name__ ( self ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
597
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self ) -> Optional[Any]: __a : Any = tempfile.mkdtemp() __a : Union[str, Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] __a : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) __a : Optional[Any] = { 'do_resize': True, 'size': {'height': 224, 'width': 224}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], 'do_convert_rgb': True, } __a : Any = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_A , _A ) def __magic_name__ ( self , **_A ) -> str: return BertTokenizer.from_pretrained(self.tmpdirname , **_A ) def __magic_name__ ( self , **_A ) -> Dict: return BertTokenizerFast.from_pretrained(self.tmpdirname , **_A ) def __magic_name__ ( self , **_A ) -> str: return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_A ) def __magic_name__ ( self ) -> Any: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Any: __a : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __a : Union[str, Any] = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__ ( self ) -> List[str]: __a : str = self.get_tokenizer() __a : int = self.get_rust_tokenizer() __a : Any = self.get_image_processor() __a : int = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) processor_slow.save_pretrained(self.tmpdirname ) __a : Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) __a : Optional[Any] = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) processor_fast.save_pretrained(self.tmpdirname ) __a : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _A ) self.assertIsInstance(processor_fast.tokenizer , _A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _A ) self.assertIsInstance(processor_fast.image_processor , _A ) def __magic_name__ ( self ) -> Union[str, Any]: __a : int = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __a : List[str] = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) __a : Optional[Any] = self.get_image_processor(do_normalize=_A ) __a : Dict = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=_A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def __magic_name__ ( self ) -> Dict: __a : Dict = self.get_image_processor() __a : List[Any] = self.get_tokenizer() __a : Optional[int] = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __a : Optional[int] = self.prepare_image_inputs() __a : Dict = image_processor(_A , return_tensors='np' ) __a : int = processor(images=_A , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __magic_name__ ( self ) -> Tuple: __a : Union[str, Any] = self.get_image_processor() __a : Tuple = self.get_tokenizer() __a : Dict = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __a : Dict = 'Alexandra,T-shirt的价格是15便士。' __a : int = processor(text=_A ) __a : List[Any] = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __magic_name__ ( self ) -> Dict: __a : List[str] = self.get_image_processor() __a : Dict = self.get_tokenizer() __a : Tuple = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __a : str = 'Alexandra,T-shirt的价格是15便士。' __a : Union[str, Any] = self.prepare_image_inputs() __a : Union[str, Any] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def __magic_name__ ( self ) -> Tuple: __a : int = self.get_image_processor() __a : str = self.get_tokenizer() __a : Optional[int] = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __a : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __a : Union[str, Any] = processor.batch_decode(_A ) __a : Optional[Any] = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A ) def __magic_name__ ( self ) -> Any: __a : int = self.get_image_processor() __a : str = self.get_tokenizer() __a : List[str] = ChineseCLIPProcessor(tokenizer=_A , image_processor=_A ) __a : str = 'Alexandra,T-shirt的价格是15便士。' __a : Any = self.prepare_image_inputs() __a : List[str] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
597
1
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class UpperCamelCase__: __magic_name__ : CommonSchedulerState # setable values __magic_name__ : jnp.ndarray __magic_name__ : jnp.ndarray __magic_name__ : Optional[int] = None @classmethod def a__( cls : str , lowerCAmelCase : CommonSchedulerState , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : jnp.ndarray )-> List[str]: """simple docstring""" return cls(common=lowerCAmelCase , init_noise_sigma=lowerCAmelCase , timesteps=lowerCAmelCase ) @dataclass class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : DDPMSchedulerState class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase ): __magic_name__ : List[str] = [e.name for e in FlaxKarrasDiffusionSchedulers] __magic_name__ : jnp.dtype @property def a__( self : str )-> str: """simple docstring""" return True @register_to_config def __init__( self : List[Any] , lowerCAmelCase : int = 1000 , lowerCAmelCase : float = 0.0001 , lowerCAmelCase : float = 0.02 , lowerCAmelCase : str = "linear" , lowerCAmelCase : Optional[jnp.ndarray] = None , lowerCAmelCase : str = "fixed_small" , lowerCAmelCase : bool = True , lowerCAmelCase : str = "epsilon" , lowerCAmelCase : jnp.dtype = jnp.floataa , )-> Tuple: """simple docstring""" UpperCAmelCase = dtype def a__( self : Union[str, Any] , lowerCAmelCase : Optional[CommonSchedulerState] = None )-> DDPMSchedulerState: """simple docstring""" if common is None: UpperCAmelCase = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=lowerCAmelCase , init_noise_sigma=lowerCAmelCase , timesteps=lowerCAmelCase , ) def a__( self : Union[str, Any] , lowerCAmelCase : DDPMSchedulerState , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : Optional[int] = None )-> jnp.ndarray: """simple docstring""" return sample def a__( self : str , lowerCAmelCase : DDPMSchedulerState , lowerCAmelCase : int , lowerCAmelCase : Tuple = () )-> DDPMSchedulerState: """simple docstring""" UpperCAmelCase = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase = (jnp.arange(0 , lowerCAmelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=lowerCAmelCase , timesteps=lowerCAmelCase , ) def a__( self : Any , lowerCAmelCase : DDPMSchedulerState , lowerCAmelCase : str , lowerCAmelCase : Any=None , lowerCAmelCase : Any=None )-> Optional[int]: """simple docstring""" UpperCAmelCase = state.common.alphas_cumprod[t] UpperCAmelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase = jnp.clip(lowerCAmelCase , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase = jnp.log(jnp.clip(lowerCAmelCase , a_min=1E-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase = variance UpperCAmelCase = state.common.betas[t] UpperCAmelCase = (predicted_variance + 1) / 2 UpperCAmelCase = frac * max_log + (1 - frac) * min_log return variance def a__( self : List[str] , lowerCAmelCase : DDPMSchedulerState , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : int , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : Optional[jax.random.KeyArray] = None , lowerCAmelCase : bool = True , )-> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" UpperCAmelCase = timestep if key is None: UpperCAmelCase = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase , UpperCAmelCase = jnp.split(lowerCAmelCase , sample.shape[1] , axis=1 ) else: UpperCAmelCase = None # 1. compute alphas, betas UpperCAmelCase = state.common.alphas_cumprod[t] UpperCAmelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase = 1 - alpha_prod_t UpperCAmelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase = jnp.clip(lowerCAmelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase = jax.random.split(lowerCAmelCase , num=1 ) UpperCAmelCase = jax.random.normal(lowerCAmelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(lowerCAmelCase , lowerCAmelCase , predicted_variance=lowerCAmelCase ) ** 0.5) * noise UpperCAmelCase = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=lowerCAmelCase , state=lowerCAmelCase ) def a__( self : List[Any] , lowerCAmelCase : DDPMSchedulerState , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : jnp.ndarray , )-> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] , lowerCAmelCase : DDPMSchedulerState , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : jnp.ndarray , )-> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def __len__( self : str )-> str: """simple docstring""" return self.config.num_train_timesteps
50
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging snake_case_ = logging.get_logger(__name__) snake_case_ = {"""vocab_file""": """spiece.model"""} snake_case_ = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } snake_case_ = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) snake_case_ = 0 snake_case_ = 1 snake_case_ = 2 snake_case_ = 3 snake_case_ = 4 class a__ ( _lowercase ): __magic_name__ : int = VOCAB_FILES_NAMES __magic_name__ : List[str] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Tuple = "left" def __init__(self : Optional[int], __UpperCAmelCase : Optional[Any], __UpperCAmelCase : str=False, __UpperCAmelCase : List[str]=True, __UpperCAmelCase : int=False, __UpperCAmelCase : List[str]="<s>", __UpperCAmelCase : List[str]="</s>", __UpperCAmelCase : Optional[Any]="<unk>", __UpperCAmelCase : List[Any]="<sep>", __UpperCAmelCase : int="<pad>", __UpperCAmelCase : Optional[Any]="<cls>", __UpperCAmelCase : int="<mask>", __UpperCAmelCase : List[str]=["<eop>", "<eod>"], __UpperCAmelCase : Optional[Dict[str, Any]] = None, **__UpperCAmelCase : Optional[int], ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(__UpperCAmelCase, lstrip=__UpperCAmelCase, rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase, __UpperCAmelCase ) else mask_token SCREAMING_SNAKE_CASE : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase, remove_space=__UpperCAmelCase, keep_accents=__UpperCAmelCase, bos_token=__UpperCAmelCase, eos_token=__UpperCAmelCase, unk_token=__UpperCAmelCase, sep_token=__UpperCAmelCase, pad_token=__UpperCAmelCase, cls_token=__UpperCAmelCase, mask_token=__UpperCAmelCase, additional_special_tokens=__UpperCAmelCase, sp_model_kwargs=self.sp_model_kwargs, **__UpperCAmelCase, ) SCREAMING_SNAKE_CASE : List[Any] = 3 SCREAMING_SNAKE_CASE : Any = do_lower_case SCREAMING_SNAKE_CASE : Dict = remove_space SCREAMING_SNAKE_CASE : Optional[Any] = keep_accents SCREAMING_SNAKE_CASE : Optional[int] = vocab_file SCREAMING_SNAKE_CASE : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def lowercase__ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" return len(self.sp_model ) def lowercase__ (self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.__dict__.copy() SCREAMING_SNAKE_CASE : str = None return state def __setstate__(self : int, __UpperCAmelCase : List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ (self : Any, __UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" if self.remove_space: SCREAMING_SNAKE_CASE : str = ''' '''.join(inputs.strip().split() ) else: SCREAMING_SNAKE_CASE : Optional[int] = inputs SCREAMING_SNAKE_CASE : Any = outputs.replace('''``''', '''"''' ).replace('''\'\'''', '''"''' ) if not self.keep_accents: SCREAMING_SNAKE_CASE : Optional[Any] = unicodedata.normalize('''NFKD''', __UpperCAmelCase ) SCREAMING_SNAKE_CASE : str = ''''''.join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: SCREAMING_SNAKE_CASE : Dict = outputs.lower() return outputs def lowercase__ (self : int, __UpperCAmelCase : str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.preprocess_text(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = self.sp_model.encode(__UpperCAmelCase, out_type=__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): SCREAMING_SNAKE_CASE : List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase, '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: SCREAMING_SNAKE_CASE : Dict = cur_pieces[1:] else: SCREAMING_SNAKE_CASE : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def lowercase__ (self : str, __UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" return self.sp_model.PieceToId(__UpperCAmelCase ) def lowercase__ (self : List[Any], __UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" return self.sp_model.IdToPiece(__UpperCAmelCase ) def lowercase__ (self : Tuple, __UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase, ''' ''' ).strip() return out_string def lowercase__ (self : Optional[Any], __UpperCAmelCase : List[int], __UpperCAmelCase : bool = False, __UpperCAmelCase : bool = None, __UpperCAmelCase : bool = True, **__UpperCAmelCase : int, ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''use_source_tokenizer''', __UpperCAmelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.convert_ids_to_tokens(__UpperCAmelCase, skip_special_tokens=__UpperCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] sub_texts.append(__UpperCAmelCase ) else: current_sub_text.append(__UpperCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens SCREAMING_SNAKE_CASE : str = ''''''.join(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : int = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: SCREAMING_SNAKE_CASE : Optional[Any] = self.clean_up_tokenization(__UpperCAmelCase ) return clean_text else: return text def lowercase__ (self : Optional[Any], __UpperCAmelCase : List[int], __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase__ (self : Optional[Any], __UpperCAmelCase : List[int], __UpperCAmelCase : Optional[List[int]] = None, __UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase, token_ids_a=__UpperCAmelCase, already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def lowercase__ (self : Optional[Any], __UpperCAmelCase : List[int], __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase__ (self : Optional[int], __UpperCAmelCase : str, __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join( __UpperCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase, '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
507
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def __lowercase (_SCREAMING_SNAKE_CASE :List[str] ): monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' , set() ) @pytest.fixture def __lowercase (_SCREAMING_SNAKE_CASE :int ): class a__ : def __init__(self : Optional[int], __UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : str = metric_id class a__ : __magic_name__ : List[Any] = [MetricMock(_lowercase ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def lowercase__ (self : List[str] ) -> Optional[int]: """simple docstring""" return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''' , HfhMock() ) @pytest.mark.parametrize( '''func, args''' , [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def __lowercase (_SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :Tuple , _SCREAMING_SNAKE_CASE :Any , _SCREAMING_SNAKE_CASE :Optional[int] , _SCREAMING_SNAKE_CASE :int ): if "tmp_path" in args: SCREAMING_SNAKE_CASE : List[Any] = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(_SCREAMING_SNAKE_CASE , match='''https://huggingface.co/docs/evaluate''' ): func(*_SCREAMING_SNAKE_CASE )
507
1
"""simple docstring""" import pprint import requests A : Optional[int] = "https://zenquotes.io/api" def _lowerCamelCase ( ): '''simple docstring''' return requests.get(API_ENDPOINT_URL + "/today" ).json() def _lowerCamelCase ( ): '''simple docstring''' return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": A : Optional[int] = random_quotes() pprint.pprint(response)
716
"""simple docstring""" import string def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = "" for i in sequence: __lowerCAmelCase = ord(_UpperCamelCase ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = string.ascii_letters __lowerCAmelCase = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_UpperCamelCase )] if c in letters else c for c in sequence ) def _lowerCamelCase ( ): '''simple docstring''' from timeit import timeit print("Running performance benchmarks..." ) __lowerCAmelCase = "from string import printable ; from __main__ import atbash, atbash_slow" print(f"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=_UpperCamelCase )} seconds" ) print(f"> atbash(): {timeit('atbash(printable)' , setup=_UpperCamelCase )} seconds" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
282
0
from __future__ import annotations import collections import pprint from pathlib import Path def _A ( __snake_case :str ) -> str: """simple docstring""" return "".join(sorted(__snake_case ) ) def _A ( __snake_case :str ) -> list[str]: """simple docstring""" return word_by_signature[signature(__snake_case )] _snake_case : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') _snake_case : List[str] = sorted({word.strip().lower() for word in data.splitlines()}) _snake_case : Any = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _snake_case : Tuple = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
693
from __future__ import annotations _snake_case : str = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _snake_case : Optional[int] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def _A ( __snake_case :list[float] ) -> list[float]: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = len(__snake_case ) for i in range(__snake_case ): __SCREAMING_SNAKE_CASE = -1 for j in range(i + 1 , __snake_case ): if arr[i] < arr[j]: __SCREAMING_SNAKE_CASE = arr[j] break result.append(__snake_case ) return result def _A ( __snake_case :list[float] ) -> list[float]: """simple docstring""" __SCREAMING_SNAKE_CASE = [] for i, outer in enumerate(__snake_case ): __SCREAMING_SNAKE_CASE = -1 for inner in arr[i + 1 :]: if outer < inner: __SCREAMING_SNAKE_CASE = inner break result.append(__snake_case ) return result def _A ( __snake_case :list[float] ) -> list[float]: """simple docstring""" __SCREAMING_SNAKE_CASE = len(__snake_case ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [-1] * arr_size for index in reversed(range(__snake_case ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: __SCREAMING_SNAKE_CASE = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _snake_case : Optional[Any] = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
693
1
"""simple docstring""" import logging from transformers import PretrainedConfig _lowerCAmelCase = logging.getLogger(__name__) _lowerCAmelCase = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class UpperCamelCase (__snake_case ): _SCREAMING_SNAKE_CASE : Any = """bertabs""" def __init__( self :str , __magic_name__ :Optional[int]=30_522 , __magic_name__ :int=512 , __magic_name__ :Optional[Any]=6 , __magic_name__ :Optional[Any]=512 , __magic_name__ :Optional[Any]=8 , __magic_name__ :int=512 , __magic_name__ :List[Any]=0.2 , __magic_name__ :Union[str, Any]=6 , __magic_name__ :int=768 , __magic_name__ :List[str]=8 , __magic_name__ :List[Any]=2_048 , __magic_name__ :Optional[Any]=0.2 , **__magic_name__ :Dict , ) ->Optional[int]: super().__init__(**__magic_name__ ) lowercase : Optional[int] = vocab_size lowercase : List[Any] = max_pos lowercase : int = enc_layers lowercase : str = enc_hidden_size lowercase : List[str] = enc_heads lowercase : List[Any] = enc_ff_size lowercase : List[Any] = enc_dropout lowercase : Any = dec_layers lowercase : str = dec_hidden_size lowercase : List[Any] = dec_heads lowercase : Union[str, Any] = dec_ff_size lowercase : Any = dec_dropout
721
"""simple docstring""" from __future__ import annotations _lowerCAmelCase = [True] * 1_00_00_01 _lowerCAmelCase = 2 while i * i <= 1_00_00_00: if seive[i]: for j in range(i * i, 1_00_00_01, i): _lowerCAmelCase = False i += 1 def UpperCamelCase ( _A ) -> bool: return seive[n] def UpperCamelCase ( _A ) -> bool: return any(digit in """02468""" for digit in str(_A ) ) def UpperCamelCase ( _A = 1_000_000 ) -> list[int]: lowercase : Dict = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(_A ) and not contains_an_even_digit(_A ): lowercase : str = str(_A ) lowercase : int = [int(str_num[j:] + str_num[:j] ) for j in range(len(_A ) )] if all(is_prime(_A ) for i in list_nums ): result.append(_A ) return result def UpperCamelCase ( ) -> int: return len(find_circular_primes() ) if __name__ == "__main__": print(F'{len(find_circular_primes()) = }')
348
0
'''simple docstring''' from __future__ import annotations import queue class SCREAMING_SNAKE_CASE__ : def __init__( self , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = data SCREAMING_SNAKE_CASE_ : int = None SCREAMING_SNAKE_CASE_ : Tuple = None def __lowerCamelCase ( ) -> TreeNode: """simple docstring""" print("\n********Press N to stop entering at any point of time********\n" ) SCREAMING_SNAKE_CASE_ : Any = input("Enter the value of the root node: " ).strip().lower() SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue() SCREAMING_SNAKE_CASE_ : Tuple = TreeNode(int(SCREAMING_SNAKE_CASE_ ) ) q.put(SCREAMING_SNAKE_CASE_ ) while not q.empty(): SCREAMING_SNAKE_CASE_ : Any = q.get() SCREAMING_SNAKE_CASE_ : str = F"Enter the left node of {node_found.data}: " SCREAMING_SNAKE_CASE_ : int = input(SCREAMING_SNAKE_CASE_ ).strip().lower() or "n" if check == "n": return tree_node SCREAMING_SNAKE_CASE_ : List[str] = TreeNode(int(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ : Tuple = left_node q.put(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Tuple = F"Enter the right node of {node_found.data}: " SCREAMING_SNAKE_CASE_ : Union[str, Any] = input(SCREAMING_SNAKE_CASE_ ).strip().lower() or "n" if check == "n": return tree_node SCREAMING_SNAKE_CASE_ : Optional[int] = TreeNode(int(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ : Tuple = right_node q.put(SCREAMING_SNAKE_CASE_ ) raise def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : TreeNode ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return print(node.data , end="," ) pre_order(node.left ) pre_order(node.right ) def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : TreeNode ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return in_order(node.left ) print(node.data , end="," ) in_order(node.right ) def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : TreeNode ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end="," ) def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : TreeNode ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue() q.put(SCREAMING_SNAKE_CASE_ ) while not q.empty(): SCREAMING_SNAKE_CASE_ : Any = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : TreeNode ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue() q.put(SCREAMING_SNAKE_CASE_ ) while not q.empty(): SCREAMING_SNAKE_CASE_ : str = [] while not q.empty(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : TreeNode ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return SCREAMING_SNAKE_CASE_ : list[TreeNode] = [] SCREAMING_SNAKE_CASE_ : List[str] = node while n or stack: while n: # start from root node, find its left child print(n.data , end="," ) stack.append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Dict = n.left # end of while means current node doesn't have left child SCREAMING_SNAKE_CASE_ : Any = stack.pop() # start to traverse its right child SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.right def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : TreeNode ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return SCREAMING_SNAKE_CASE_ : list[TreeNode] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = node while n or stack: while n: stack.append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = n.left SCREAMING_SNAKE_CASE_ : Any = stack.pop() print(n.data , end="," ) SCREAMING_SNAKE_CASE_ : List[str] = n.right def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : TreeNode ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : str = [], [] SCREAMING_SNAKE_CASE_ : List[str] = node stacka.append(SCREAMING_SNAKE_CASE_ ) while stacka: # to find the reversed order of post order, store it in stack2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(SCREAMING_SNAKE_CASE_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end="," ) def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : str = "" , SCREAMING_SNAKE_CASE_ : Tuple=5_0 , SCREAMING_SNAKE_CASE_ : Optional[Any]="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Optional[int] = divmod(width - len(SCREAMING_SNAKE_CASE_ ) - 2 , 2 ) return F"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) snake_case_ = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 5_0 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
421
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union snake_case_ = re.compile(R'^(?P<major>\d+)' R'\.(?P<minor>\d+)' R'\.(?P<patch>\d+)$') @total_ordering @dataclass class SCREAMING_SNAKE_CASE__ : _A = 42 _A = None _A = None _A = None _A = None def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Optional[int] = _str_to_version_tuple(self.version_str ) def __repr__( self ): """simple docstring""" return F"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def __lowerCamelCase ( self ): """simple docstring""" return self.major, self.minor, self.patch def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" if isinstance(lowercase__ , lowercase__ ): return Version(lowercase__ ) elif isinstance(lowercase__ , lowercase__ ): return other raise TypeError(F"{other} (type {type(lowercase__ )}) cannot be compared to version." ) def __eq__( self , lowercase__ ): """simple docstring""" try: SCREAMING_SNAKE_CASE_ : List[Any] = self._validate_operand(lowercase__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self._validate_operand(lowercase__ ) return self.tuple < other.tuple def __hash__( self ): """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def __lowerCamelCase ( cls , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def __lowerCamelCase ( self ): """simple docstring""" return self.version_str def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = _VERSION_REG.match(SCREAMING_SNAKE_CASE_ ) if not res: raise ValueError(F"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits." ) return tuple(int(SCREAMING_SNAKE_CASE_ ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] ) def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[Any]: """simple docstring""" return ".".join(str(SCREAMING_SNAKE_CASE_ ) for v in version_tuple )
421
1
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
494
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class lowerCAmelCase ( snake_case , unittest.TestCase ): lowerCAmelCase__ = RoFormerTokenizer lowerCAmelCase__ = RoFormerTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def __A ( self ): super().setUp() def __A ( self , **a__ ): return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **a__ ) def __A ( self , **a__ ): return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **a__ ) def __A ( self ): _UpperCAmelCase = '永和服装饰品有限公司,今天天气非常好' _UpperCAmelCase = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好' return input_text, output_text def __A ( self ): _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase , _UpperCAmelCase = self.get_chinese_input_output_texts() _UpperCAmelCase = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , output_text.split() ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase , _UpperCAmelCase = self.get_chinese_input_output_texts() _UpperCAmelCase = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , output_text.split() ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): pass def __A ( self ): pass def __A ( self ): pass
494
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase__ = Lock() def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A, __A ) -> str: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0, 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase__ = min(__A, __A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase__ = max(__A, __A ) # after all swaps are performed, send the values back to main result_pipe[1].send(__A ) def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=__A, args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]), ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr for i in range(1, len(__A ) - 1 ): UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=__A, args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]), ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr process_array_.append( Process( target=__A, args=( len(__A ) - 1, arr[len(__A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__A ) - 1], ), ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0, len(__A ) ): UpperCAmelCase__ = result_pipe[p][0].recv() process_array_[p].join() return arr def lowerCAmelCase_ ( ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = list(range(10, 0, -1 ) ) print("Initial List" ) print(*__A ) UpperCAmelCase__ = odd_even_transposition(__A ) print("Sorted List\n" ) print(*__A ) if __name__ == "__main__": main()
486
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase__ = logging.get_logger(__name__) class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[str] = ['pixel_values'] def __init__(self : Optional[int] , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Dict[str, int]] = None , __UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCAmelCase : bool = True , __UpperCAmelCase : bool = True , __UpperCAmelCase : Union[int, float] = 1 / 2_5_5 , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , **__UpperCAmelCase : Optional[Any] , ) -> None: """simple docstring""" super().__init__(**__UpperCAmelCase ) UpperCAmelCase__ = size if size is not None else {"height": 2_2_4, "width": 2_2_4} UpperCAmelCase__ = get_size_dict(__UpperCAmelCase ) UpperCAmelCase__ = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} UpperCAmelCase__ = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name="crop_size" ) UpperCAmelCase__ = do_resize UpperCAmelCase__ = do_rescale UpperCAmelCase__ = do_normalize UpperCAmelCase__ = do_center_crop UpperCAmelCase__ = crop_size UpperCAmelCase__ = size UpperCAmelCase__ = resample UpperCAmelCase__ = rescale_factor UpperCAmelCase__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase_ (self : Dict , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Dict[str, int] , __UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : List[Any] , ) -> np.ndarray: """simple docstring""" UpperCAmelCase__ = get_size_dict(__UpperCAmelCase ) if "shortest_edge" in size: UpperCAmelCase__ = get_resize_output_image_size(__UpperCAmelCase , size=size["shortest_edge"] , default_to_square=__UpperCAmelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCAmelCase__ = (size["height"], size["width"]) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowercase_ (self : Tuple , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Dict[str, int] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Any , ) -> np.ndarray: """simple docstring""" UpperCAmelCase__ = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__UpperCAmelCase , size=(size["height"], size["width"]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowercase_ (self : int , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : float , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Tuple ) -> np.ndarray: """simple docstring""" return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowercase_ (self : int , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Union[float, List[float]] , __UpperCAmelCase : Union[float, List[float]] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Optional[Any] , ) -> np.ndarray: """simple docstring""" return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : ImageInput , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : PILImageResampling = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : int = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[float] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , __UpperCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCAmelCase : Any , ) -> BatchFeature: """simple docstring""" UpperCAmelCase__ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ = get_size_dict(__UpperCAmelCase , param_name="crop_size" , default_to_square=__UpperCAmelCase ) UpperCAmelCase__ = resample if resample is not None else self.resample UpperCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ = image_std if image_std is not None else self.image_std UpperCAmelCase__ = size if size is not None else self.size UpperCAmelCase__ = get_size_dict(__UpperCAmelCase ) if not is_batched(__UpperCAmelCase ): UpperCAmelCase__ = [images] if not valid_images(__UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. UpperCAmelCase__ = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase__ = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: UpperCAmelCase__ = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase__ = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: UpperCAmelCase__ = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] UpperCAmelCase__ = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] UpperCAmelCase__ = {"pixel_values": images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
486
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase: List[str] = logging.get_logger(__name__) _lowercase: Optional[Any] = { '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class lowerCamelCase__ ( UpperCAmelCase ): UpperCamelCase__ ="falcon" UpperCamelCase__ =["past_key_values"] def __init__( self : Optional[Any] , lowercase__ : List[Any]=6_50_24 , lowercase__ : Optional[Any]=45_44 , lowercase__ : int=32 , lowercase__ : List[Any]=71 , lowercase__ : Any=1e-5 , lowercase__ : Dict=0.0_2 , lowercase__ : Union[str, Any]=True , lowercase__ : Optional[Any]=0.0 , lowercase__ : int=0.0 , lowercase__ : Optional[Any]=None , lowercase__ : List[Any]=False , lowercase__ : Tuple=False , lowercase__ : int=True , lowercase__ : List[Any]=True , lowercase__ : Optional[Any]=False , lowercase__ : Optional[Any]=11 , lowercase__ : Optional[Any]=11 , **lowercase__ : Union[str, Any] , ): _lowerCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _lowerCAmelCase = kwargs.pop('n_embed' , lowercase__ ) _lowerCAmelCase = hidden_size if n_embed is None else n_embed _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = use_cache _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id _lowerCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _lowerCAmelCase = alibi _lowerCAmelCase = new_decoder_architecture _lowerCAmelCase = multi_query # Ignored when new_decoder_architecture is True _lowerCAmelCase = parallel_attn _lowerCAmelCase = bias super().__init__(bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): return self.hidden_size // self.num_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): return not self.alibi
225
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCamelCase__ ( UpperCAmelCase ): UpperCamelCase__ =(UniPCMultistepScheduler,) UpperCamelCase__ =(("num_inference_steps", 2_5),) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **lowercase__ : Dict ): _lowerCAmelCase = { 'num_train_timesteps': 10_00, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**lowercase__ ) return config def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : List[str]=0 , **lowercase__ : Union[str, Any] ): _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop('num_inference_steps' , lowercase__ ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**lowercase__ ) _lowerCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) _lowerCAmelCase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase , _lowerCAmelCase = sample, sample for t in range(lowercase__ , time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample _lowerCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , lowercase__ : Tuple=0 , **lowercase__ : List[Any] ): _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop('num_inference_steps' , lowercase__ ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) _lowerCAmelCase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample _lowerCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : int=None , **lowercase__ : List[Any] ): if scheduler is None: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**lowercase__ ) _lowerCAmelCase = scheduler_class(**lowercase__ ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**lowercase__ ) _lowerCAmelCase = scheduler_class(**lowercase__ ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(lowercase__ , lowercase__ ) _lowerCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop('num_inference_steps' , lowercase__ ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**lowercase__ ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , 'set_timesteps' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ , 'set_timesteps' ): _lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase = scheduler.timesteps[5] _lowerCAmelCase = scheduler.timesteps[6] _lowerCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample _lowerCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self : str ): # make sure that iterating over schedulers with same config names gives same results # for defaults _lowerCAmelCase = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = self.full_loop(scheduler=lowercase__ ) _lowerCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 _lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = self.full_loop(scheduler=lowercase__ ) _lowerCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): self.check_over_configs(thresholding=lowercase__ ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase__ , prediction_type=lowercase__ , sample_max_value=lowercase__ , solver_order=lowercase__ , solver_type=lowercase__ , ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase__ , solver_type=lowercase__ , prediction_type=lowercase__ , ) _lowerCAmelCase = self.full_loop( solver_order=lowercase__ , solver_type=lowercase__ , prediction_type=lowercase__ , ) assert not torch.isnan(lowercase__ ).any(), "Samples have nan numbers" def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): self.check_over_configs(lower_order_final=lowercase__ ) self.check_over_configs(lower_order_final=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowercase__ , time_step=0 ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(thresholding=lowercase__ , dynamic_thresholding_ratio=0 ) _lowerCAmelCase = scheduler_class(**lowercase__ ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(lowercase__ , lowercase__ ) _lowerCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample assert sample.dtype == torch.floataa def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , **lowercase__ : List[Any] ): for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**lowercase__ ) _lowerCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
225
1
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class snake_case ( a_ , unittest.TestCase ): lowercase_ = BertTokenizer lowercase_ = BertTokenizerFast lowercase_ = True lowercase_ = True lowercase_ = filter_non_english def __lowercase( self : Union[str, Any] )-> List[str]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ : Optional[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __lowercase( self : str , a_ : Union[str, Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE__ : Optional[int] = 'unwanted, running' return input_text, output_text def __lowercase( self : List[Any] )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE__ : str = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowerCAmelCase_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [9, 6, 7, 12, 10, 11] ) def __lowercase( self : List[str] )-> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : List[Any] = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE__ : int = tokenizer.tokenize(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : str = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : List[Any] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Tuple = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.encode(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : List[str] = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # With lower casing SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer(do_lower_case=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Dict = self.get_rust_tokenizer(do_lower_case=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : List[str] = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.tokenize(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : List[str] = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : List[Any] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Any = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.encode(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Dict = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowercase( self : List[Any] )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def __lowercase( self : Tuple )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __lowercase( self : List[Any] )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def __lowercase( self : List[str] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __lowercase( self : Optional[int] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __lowercase( self : Union[str, Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowercase( self : Optional[int] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowercase( self : Union[str, Any] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowercase( self : Union[str, Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = BasicTokenizer(do_lower_case=lowerCAmelCase_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def __lowercase( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = BasicTokenizer() SCREAMING_SNAKE_CASE__ : Union[str, Any] = 'a\n\'ll !!to?\'d of, can\'t.' SCREAMING_SNAKE_CASE__ : List[Any] = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __lowercase( self : Optional[Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] SCREAMING_SNAKE_CASE__ : List[Any] = {} for i, token in enumerate(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ : Any = i SCREAMING_SNAKE_CASE__ : List[str] = WordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def __lowercase( self : Tuple )-> Union[str, Any]: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def __lowercase( self : Dict )-> Tuple: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def __lowercase( self : int )-> Optional[int]: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def __lowercase( self : str )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Tuple = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def __lowercase( self : List[Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.tokenizer_class.from_pretrained('bert-base-uncased' ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __lowercase( self : str )-> Optional[int]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' SCREAMING_SNAKE_CASE__ : str = tokenizer_r.encode_plus( lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , ) SCREAMING_SNAKE_CASE__ : int = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase_ , 'do_lower_case' ) else False SCREAMING_SNAKE_CASE__ : int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def __lowercase( self : str )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = ['的', '人', '有'] SCREAMING_SNAKE_CASE__ : Dict = ''.join(lowerCAmelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : Optional[Any] = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Any = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Tuple = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". SCREAMING_SNAKE_CASE__ : str = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(lowerCAmelCase_ ) ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
85
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class a__ ( a_ ): '''simple docstring''' A : Union[str, Any] = '''roberta''' def __init__( self : Any , lowerCAmelCase_ : int=50_265 , lowerCAmelCase_ : int=768 , lowerCAmelCase_ : Optional[Any]=12 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Optional[int]=3_072 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : List[Any]=512 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[int]=1E-12 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Dict=0 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : List[str]="absolute" , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Dict=None , **lowerCAmelCase_ : Any , ) -> int: super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) __A= vocab_size __A= hidden_size __A= num_hidden_layers __A= num_attention_heads __A= hidden_act __A= intermediate_size __A= hidden_dropout_prob __A= attention_probs_dropout_prob __A= max_position_embeddings __A= type_vocab_size __A= initializer_range __A= layer_norm_eps __A= position_embedding_type __A= use_cache __A= classifier_dropout class a__ ( a_ ): '''simple docstring''' @property def lowerCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __A= {0: 'batch', 1: 'choice', 2: 'sequence'} else: __A= {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
186
0
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __A =logging.get_logger(__name__) def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : List[str] = R"""\w+[.]\d+""" UpperCAmelCase__ : List[Any] = re.findall(UpperCamelCase__ , UpperCamelCase__ ) for pat in pats: UpperCAmelCase__ : str = key.replace(UpperCamelCase__ , """_""".join(pat.split(""".""" ) ) ) return key def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : str = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase__ : Union[str, Any] = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase__ : str = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase__ : Union[str, Any] = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase__ : Any = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase__ : Any = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase__ : Optional[int] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": UpperCAmelCase__ : Any = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase__ : Optional[Any] = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase__ : Dict = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=4_2 ): # Step 1: Convert pytorch tensor to numpy UpperCAmelCase__ : str = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase__ : str = flax_model.init_weights(PRNGKey(UpperCamelCase__ ) ) UpperCAmelCase__ : Union[str, Any] = flatten_dict(UpperCamelCase__ ) UpperCAmelCase__ : int = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase__ : str = rename_key(UpperCamelCase__ ) UpperCAmelCase__ : Optional[Any] = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters UpperCAmelCase__ , UpperCAmelCase__ : Tuple = rename_key_and_reshape_tensor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown UpperCAmelCase__ : str = jnp.asarray(UpperCamelCase__ ) return unflatten_dict(UpperCamelCase__ )
113
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __A =numpy.array([0, 0]) __A =numpy.array([0.5, 0.8_6_6_0_2_5_4]) __A =numpy.array([1, 0]) __A =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Union[str, Any] = initial_vectors for _ in range(UpperCamelCase__ ): UpperCAmelCase__ : Dict = iteration_step(UpperCamelCase__ ) return vectors def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Optional[Any] = [] for i, start_vector in enumerate(vectors[:-1] ): UpperCAmelCase__ : Tuple = vectors[i + 1] new_vectors.append(UpperCamelCase__ ) UpperCAmelCase__ : Optional[Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Any = numpy.radians(UpperCamelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ : int = numpy.cos(UpperCamelCase__ ), numpy.sin(UpperCamelCase__ ) UpperCAmelCase__ : Dict = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCamelCase__ , UpperCamelCase__ ) def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Any = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() UpperCAmelCase__ , UpperCAmelCase__ : Tuple = zip(*UpperCamelCase__ ) plt.plot(UpperCamelCase__ , UpperCamelCase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __A =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
113
1
def lowerCAmelCase_ ( __A ) -> float: '''simple docstring''' return 10 - x * x def lowerCAmelCase_ ( __A, __A ) -> float: '''simple docstring''' if equation(__A ) * equation(__A ) >= 0: raise ValueError("Wrong space!" ) UpperCAmelCase__ = a while (b - a) >= 0.01: # Find middle point UpperCAmelCase__ = (a + b) / 2 # Check if middle point is root if equation(__A ) == 0.0: break # Decide the side to repeat the steps if equation(__A ) * equation(__A ) < 0: UpperCAmelCase__ = c else: UpperCAmelCase__ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
486
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } UpperCamelCase__ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCAmelCase_ ( __A, __A, __A, __A, __A ) -> Union[str, Any]: '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase__ = getattr(__A, __A ) if weight_type is not None: UpperCAmelCase__ = getattr(__A, __A ).shape else: UpperCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ = value elif weight_type == "weight_g": UpperCAmelCase__ = value elif weight_type == "weight_v": UpperCAmelCase__ = value elif weight_type == "bias": UpperCAmelCase__ = value elif weight_type == "running_mean": UpperCAmelCase__ = value elif weight_type == "running_var": UpperCAmelCase__ = value elif weight_type == "num_batches_tracked": UpperCAmelCase__ = value elif weight_type == "inv_freq": UpperCAmelCase__ = value else: UpperCAmelCase__ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __A, __A, __A ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = fairseq_model.state_dict() UpperCAmelCase__ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ = False if "conv_layers" in name: load_conv_layer( __A, __A, __A, __A, hf_model.config.feat_extract_norm == "group", ) UpperCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase__ = True if "*" in mapped_key: UpperCAmelCase__ = name.split(__A )[0].split("." )[-2] UpperCAmelCase__ = mapped_key.replace("*", __A ) if "pos_bias_u" in name: UpperCAmelCase__ = None elif "pos_bias_v" in name: UpperCAmelCase__ = None elif "weight_g" in name: UpperCAmelCase__ = "weight_g" elif "weight_v" in name: UpperCAmelCase__ = "weight_v" elif "bias" in name: UpperCAmelCase__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ = "weight" elif "running_mean" in name: UpperCAmelCase__ = "running_mean" elif "inv_freq" in name: UpperCAmelCase__ = "inv_freq" elif "running_var" in name: UpperCAmelCase__ = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase__ = "num_batches_tracked" else: UpperCAmelCase__ = None set_recursively(__A, __A, __A, __A, __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = full_name.split("conv_layers." )[-1] UpperCAmelCase__ = name.split("." ) UpperCAmelCase__ = int(items[0] ) UpperCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) @torch.no_grad() def lowerCAmelCase_ ( __A, __A, __A=None, __A=None, __A=True ) -> Optional[Any]: '''simple docstring''' if config_path is not None: UpperCAmelCase__ = WavaVecaConformerConfig.from_pretrained(__A, hidden_act="swish" ) else: UpperCAmelCase__ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase__ = "rotary" if is_finetuned: if dict_path: UpperCAmelCase__ = Dictionary.load(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase__ = target_dict.pad_index UpperCAmelCase__ = target_dict.bos_index UpperCAmelCase__ = target_dict.eos_index UpperCAmelCase__ = len(target_dict.symbols ) UpperCAmelCase__ = os.path.join(__A, "vocab.json" ) if not os.path.isdir(__A ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__A ) ) return os.makedirs(__A, exist_ok=__A ) UpperCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 with open(__A, "w", encoding="utf-8" ) as vocab_handle: json.dump(__A, __A ) UpperCAmelCase__ = WavaVecaCTCTokenizer( __A, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=__A, ) UpperCAmelCase__ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16_000, padding_value=0, do_normalize=__A, return_attention_mask=__A, ) UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=__A, tokenizer=__A ) processor.save_pretrained(__A ) UpperCAmelCase__ = WavaVecaConformerForCTC(__A ) else: UpperCAmelCase__ = WavaVecaConformerForPreTraining(__A ) if is_finetuned: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase__ = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase__ = fairseq.tasks.setup_task(__A ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=__A ) UpperCAmelCase__ = model[0].eval() recursively_load_weights(__A, __A, not is_finetuned ) hf_wavavec.save_pretrained(__A ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) UpperCamelCase__ = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
486
1
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : str = logging.get_logger(__name__) a : Union[str, Any] = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } a : Dict = { '''b0''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 2_2_4, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 2_4_0, '''dropout_rate''': 0.2, '''dw_padding''': [1_6], }, '''b2''': { '''hidden_dim''': 1_4_0_8, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 2_6_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 1_6], }, '''b3''': { '''hidden_dim''': 1_5_3_6, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 3_0_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 1_8], }, '''b4''': { '''hidden_dim''': 1_7_9_2, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 3_8_0, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2_0_4_8, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 4_5_6, '''dropout_rate''': 0.4, '''dw_padding''': [1_3, 2_7], }, '''b6''': { '''hidden_dim''': 2_3_0_4, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 5_2_8, '''dropout_rate''': 0.5, '''dw_padding''': [3_1], }, '''b7''': { '''hidden_dim''': 2_5_6_0, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 6_0_0, '''dropout_rate''': 0.5, '''dw_padding''': [1_8], }, } def _UpperCamelCase ( _A ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = EfficientNetConfig() _UpperCAmelCase = CONFIG_MAP[model_name]["""hidden_dim"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""width_coef"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""depth_coef"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""dropout_rate"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""dw_padding"""] _UpperCAmelCase = """huggingface/label-files""" _UpperCAmelCase = """imagenet-1k-id2label.json""" _UpperCAmelCase = 1_0_0_0 _UpperCAmelCase = json.load(open(hf_hub_download(_A , _A , repo_type="""dataset""" ) , """r""" ) ) _UpperCAmelCase = {int(_A ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase = Image.open(requests.get(_A , stream=_A ).raw ) return im def _UpperCamelCase ( _A ) -> List[str]: """simple docstring""" _UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=_A , ) return preprocessor def _UpperCamelCase ( _A ) -> Tuple: """simple docstring""" _UpperCAmelCase = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] _UpperCAmelCase = sorted(set(_A ) ) _UpperCAmelCase = len(_A ) _UpperCAmelCase = {b: str(_A ) for b, i in zip(_A , range(_A ) )} _UpperCAmelCase = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: _UpperCAmelCase = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) _UpperCAmelCase = {} for item in rename_keys: if item[0] in original_param_names: _UpperCAmelCase = """efficientnet.""" + item[1] _UpperCAmelCase = """classifier.weight""" _UpperCAmelCase = """classifier.bias""" return key_mapping def _UpperCamelCase ( _A , _A , _A ) -> List[str]: """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue _UpperCAmelCase = key_mapping[key] if "_conv" in key and "kernel" in key: _UpperCAmelCase = torch.from_numpy(_A ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: _UpperCAmelCase = torch.from_numpy(_A ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: _UpperCAmelCase = torch.from_numpy(np.transpose(_A ) ) else: _UpperCAmelCase = torch.from_numpy(_A ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_A ) @torch.no_grad() def _UpperCamelCase ( _A , _A , _A , _A ) -> Tuple: """simple docstring""" _UpperCAmelCase = model_classes[model_name]( include_top=_A , weights="""imagenet""" , input_tensor=_A , input_shape=_A , pooling=_A , classes=1_0_0_0 , classifier_activation="""softmax""" , ) _UpperCAmelCase = original_model.trainable_variables _UpperCAmelCase = original_model.non_trainable_variables _UpperCAmelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _UpperCAmelCase = param.numpy() _UpperCAmelCase = list(tf_params.keys() ) # Load HuggingFace model _UpperCAmelCase = get_efficientnet_config(_A ) _UpperCAmelCase = EfficientNetForImageClassification(_A ).eval() _UpperCAmelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) _UpperCAmelCase = rename_keys(_A ) replace_params(_A , _A , _A ) # Initialize preprocessor and preprocess input image _UpperCAmelCase = convert_image_processor(_A ) _UpperCAmelCase = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): _UpperCAmelCase = hf_model(**_A ) _UpperCAmelCase = outputs.logits.detach().numpy() # Original model inference _UpperCAmelCase = False _UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) _UpperCAmelCase = image.img_to_array(_A ) _UpperCAmelCase = np.expand_dims(_A , axis=0 ) _UpperCAmelCase = original_model.predict(_A ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_A , _A , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(_A ): os.mkdir(_A ) # Save converted model and image processor hf_model.save_pretrained(_A ) preprocessor.save_pretrained(_A ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) _UpperCAmelCase = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(_A ) hf_model.push_to_hub(_A ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') a : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
19
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( _A , _A , _A ) -> List[Any]: """simple docstring""" _UpperCAmelCase = LxmertConfig.from_json_file(_A ) print(F"""Building PyTorch model from configuration: {config}""" ) _UpperCAmelCase = LxmertForPreTraining(_A ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(_A , _A , _A ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
19
1
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCamelCase : @staticmethod def UpperCamelCase( *_UpperCamelCase , **_UpperCamelCase ): pass @is_pipeline_test @require_vision @require_torch class __UpperCamelCase ( unittest.TestCase ): __A : Union[str, Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) _UpperCAmelCase = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = object_detector(examples[0] , threshold=0.0 ) _UpperCAmelCase = len(_UpperCamelCase ) self.assertGreater(_UpperCamelCase , 0 ) self.assertEqual( _UpperCamelCase , [ { '''score''': ANY(_UpperCamelCase ), '''label''': ANY(_UpperCamelCase ), '''box''': {'''xmin''': ANY(_UpperCamelCase ), '''ymin''': ANY(_UpperCamelCase ), '''xmax''': ANY(_UpperCamelCase ), '''ymax''': ANY(_UpperCamelCase )}, } for i in range(_UpperCamelCase ) ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def UpperCamelCase( self ): pass @require_torch def UpperCamelCase( self ): _UpperCAmelCase = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) _UpperCAmelCase = object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.64 , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'''score''': 0.7235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] , ) _UpperCAmelCase = object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {'''score''': 0.7235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] ] , ) @require_torch @slow def UpperCamelCase( self ): _UpperCAmelCase = pipeline('''zero-shot-object-detection''' ) _UpperCAmelCase = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ] , ) _UpperCAmelCase = object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def UpperCamelCase( self ): pass @require_torch @slow def UpperCamelCase( self ): _UpperCAmelCase = 0.2 _UpperCAmelCase = pipeline('''zero-shot-object-detection''' ) _UpperCAmelCase = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=_UpperCamelCase , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, ] , ) @require_torch @slow def UpperCamelCase( self ): _UpperCAmelCase = 2 _UpperCAmelCase = pipeline('''zero-shot-object-detection''' ) _UpperCAmelCase = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=_UpperCamelCase , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, ] , )
32
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _lowerCamelCase : Optional[List[str]] = None _lowerCamelCase : int = """<""" if sys.byteorder == """little""" else """>""" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _lowerCamelCase : Union[str, Any] = [ np.dtype("""|b1"""), np.dtype("""|u1"""), np.dtype("""<u2"""), np.dtype(""">u2"""), np.dtype("""<i2"""), np.dtype(""">i2"""), np.dtype("""<u4"""), np.dtype(""">u4"""), np.dtype("""<i4"""), np.dtype(""">i4"""), np.dtype("""<f4"""), np.dtype(""">f4"""), np.dtype("""<f8"""), np.dtype(""">f8"""), ] @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = True UpperCAmelCase__ = None # Automatically constructed UpperCAmelCase__ = "PIL.Image.Image" UpperCAmelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) UpperCAmelCase__ = field(default='''Image''' , init=UpperCAmelCase__ , repr=UpperCAmelCase__ ) def __call__( self : List[str]) ->List[str]: '''simple docstring''' return self.pa_type def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"]) ->dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''') if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = np.array(UpperCAmelCase__) if isinstance(UpperCAmelCase__ , UpperCAmelCase__): return {"path": value, "bytes": None} elif isinstance(UpperCAmelCase__ , UpperCAmelCase__): return {"path": None, "bytes": value} elif isinstance(UpperCAmelCase__ , np.ndarray): # convert the image array to PNG/TIFF bytes return encode_np_array(UpperCAmelCase__) elif isinstance(UpperCAmelCase__ , PIL.Image.Image): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(UpperCAmelCase__) elif value.get('''path''') is not None and os.path.isfile(value['''path''']): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''')} elif value.get('''bytes''') is not None or value.get('''path''') is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes'''), "path": value.get('''path''')} else: raise ValueError( f"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""") def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : dict , UpperCAmelCase__ : str=None) ->"PIL.Image.Image": '''simple docstring''' if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''') if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''') if token_per_repo_id is None: A__ = {} A__ , A__ = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(f"""An image should have one of 'path' or 'bytes' but both are None in {value}.""") else: if is_local_path(UpperCAmelCase__): A__ = PIL.Image.open(UpperCAmelCase__) else: A__ = path.split('''::''')[-1] try: A__ = string_to_dict(UpperCAmelCase__ , config.HUB_DATASETS_URL)['''repo_id'''] A__ = token_per_repo_id.get(UpperCAmelCase__) except ValueError: A__ = None with xopen(UpperCAmelCase__ , '''rb''' , use_auth_token=UpperCAmelCase__) as f: A__ = BytesIO(f.read()) A__ = PIL.Image.open(bytes_) else: A__ = PIL.Image.open(BytesIO(bytes_)) image.load() # to avoid "Too many open files" errors return image def SCREAMING_SNAKE_CASE ( self : Dict) ->Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value('''binary'''), "path": Value('''string'''), } ) def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Union[pa.StringArray, pa.StructArray, pa.ListArray]) ->pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type): A__ = pa.array([None] * len(UpperCAmelCase__) , type=pa.binary()) A__ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): A__ = pa.array([None] * len(UpperCAmelCase__) , type=pa.string()) A__ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('''bytes''') >= 0: A__ = storage.field('''bytes''') else: A__ = pa.array([None] * len(UpperCAmelCase__) , type=pa.binary()) if storage.type.get_field_index('''path''') >= 0: A__ = storage.field('''path''') else: A__ = pa.array([None] * len(UpperCAmelCase__) , type=pa.string()) A__ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_list(storage.type): A__ = pa.array( [encode_np_array(np.array(UpperCAmelCase__))['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) A__ = pa.array([None] * len(UpperCAmelCase__) , type=pa.string()) A__ = pa.StructArray.from_arrays( [bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(UpperCAmelCase__ , self.pa_type) def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : pa.StructArray) ->pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(UpperCAmelCase__ : Dict): with xopen(UpperCAmelCase__ , '''rb''') as f: A__ = f.read() return bytes_ A__ = pa.array( [ (path_to_bytes(x['''path''']) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) A__ = pa.array( [os.path.basename(UpperCAmelCase__) if path is not None else None for path in storage.field('''path''').to_pylist()] , type=pa.string() , ) A__ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(UpperCAmelCase__ , self.pa_type) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() A__ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def SCREAMING_SNAKE_CASE ( lowercase_ ) -> bytes: """simple docstring""" A__ = BytesIO() if image.format in list_image_compression_formats(): A__ = image.format else: A__ = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(lowercase_ , format=lowercase_ ) return buffer.getvalue() def SCREAMING_SNAKE_CASE ( lowercase_ ) -> dict: """simple docstring""" if hasattr(lowercase_ , '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowercase_ )} def SCREAMING_SNAKE_CASE ( lowercase_ ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) A__ = array.dtype A__ = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER A__ = dtype.kind A__ = dtype.itemsize A__ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: A__ = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( f"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: A__ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: A__ = dtype_byteorder + dtype_kind + str(lowercase_ ) A__ = np.dtype(lowercase_ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) A__ = PIL.Image.fromarray(array.astype(lowercase_ ) ) return {"path": None, "bytes": image_to_bytes(lowercase_ )} def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[dict]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: A__ , A__ = first_non_null_value(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowercase_ , np.ndarray ): A__ = no_op_if_value_is_null(lowercase_ ) return [obj_to_image_dict_func(lowercase_ ) for obj in objs] elif isinstance(lowercase_ , PIL.Image.Image ): A__ = no_op_if_value_is_null(lowercase_ ) return [obj_to_image_dict_func(lowercase_ ) for obj in objs] else: return objs else: return objs
87
0
def _SCREAMING_SNAKE_CASE ( a , a ) -> str: __A : int = len(a ) __A : int = len(a ) __A : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) __A : list = [] for char_count in range(a ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(a ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
77
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class _A( nn.Module ): """simple docstring""" def __init__( self ): super().__init__() __A : List[str] = nn.Linear(3 , 4 ) __A : Optional[Any] = nn.BatchNormad(4 ) __A : List[Any] = nn.Linear(4 , 5 ) def UpperCAmelCase_ ( self , _A ): return self.lineara(self.batchnorm(self.lineara(_A ) ) ) class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): __A : Dict = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(_A , model.state_dict() ) __A : str = os.path.join(_A , 'index.json' ) self.assertTrue(os.path.isfile(_A ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: __A : Optional[int] = os.path.join(_A , F"""{key}.dat""" ) self.assertTrue(os.path.isfile(_A ) ) # TODO: add tests on the fact weights are properly loaded def UpperCAmelCase_ ( self ): __A : Dict = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: __A : Tuple = torch.randn(2 , 3 , dtype=_A ) with TemporaryDirectory() as tmp_dir: __A : int = offload_weight(_A , 'weight' , _A , {} ) __A : Union[str, Any] = os.path.join(_A , 'weight.dat' ) self.assertTrue(os.path.isfile(_A ) ) self.assertDictEqual(_A , {'weight': {'shape': [2, 3], 'dtype': str(_A ).split('.' )[1]}} ) __A : List[str] = load_offloaded_weight(_A , index['weight'] ) self.assertTrue(torch.equal(_A , _A ) ) def UpperCAmelCase_ ( self ): __A : int = ModelForTest() __A : Union[str, Any] = model.state_dict() __A : Optional[Any] = {k: v for k, v in state_dict.items() if 'linear2' not in k} __A : str = {k: v for k, v in state_dict.items() if 'linear2' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_A , _A ) __A : List[str] = OffloadedWeightsLoader(state_dict=_A , save_folder=_A ) # Every key is there with the right value self.assertEqual(sorted(_A ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_A , weight_map[key] ) ) __A : Union[str, Any] = {k: v for k, v in state_dict.items() if 'weight' in k} __A : List[Any] = {k: v for k, v in state_dict.items() if 'weight' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_A , _A ) __A : Optional[int] = OffloadedWeightsLoader(state_dict=_A , save_folder=_A ) # Every key is there with the right value self.assertEqual(sorted(_A ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_A , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(_A , _A ) # Duplicates are removed __A : str = OffloadedWeightsLoader(state_dict=_A , save_folder=_A ) # Every key is there with the right value self.assertEqual(sorted(_A ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_A , weight_map[key] ) ) def UpperCAmelCase_ ( self ): __A : Dict = {'a.1': 0, 'a.10': 1, 'a.2': 2} __A : str = extract_submodules_state_dict(_A , ['a.1', 'a.2'] ) self.assertDictEqual(_A , {'a.1': 0, 'a.2': 2} ) __A : Optional[Any] = {'a.1.a': 0, 'a.10.a': 1, 'a.2.a': 2} __A : Any = extract_submodules_state_dict(_A , ['a.1', 'a.2'] ) self.assertDictEqual(_A , {'a.1.a': 0, 'a.2.a': 2} )
77
1