code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def lowerCAmelCase_ ( __a ) -> List[str]: """simple docstring""" lowerCamelCase__: Dict =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F"""{test_file} instead.""" ) lowerCamelCase__: List[str] =components[-1] if not test_fn.endswith("py" ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) lowerCamelCase__: Dict =components[:-1] + [test_fn.replace(".py" , "" )] lowerCamelCase__: Dict =".".join(__a ) return test_module_path def lowerCAmelCase_ ( __a ) -> Dict: """simple docstring""" lowerCamelCase__: List[Any] =get_module_path(__a ) lowerCamelCase__: Any =importlib.import_module(__a ) return test_module def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" lowerCamelCase__: Any =[] lowerCamelCase__: Optional[Any] =get_test_module(__a ) for attr in dir(__a ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(__a , __a ) ) # sort with class names return sorted(__a , key=lambda __a : x.__name__ ) def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" lowerCamelCase__: Any =[] lowerCamelCase__: Any =get_test_module(__a ) for attr in dir(__a ): lowerCamelCase__: List[str] =getattr(__a , __a ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCamelCase__: Optional[Any] =getattr(__a , "all_model_classes" , [] ) if len(__a ) > 0: test_classes.append(__a ) # sort with class names return sorted(__a , key=lambda __a : x.__name__ ) def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" lowerCamelCase__: Tuple =get_test_classes(__a ) lowerCamelCase__: Any =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__a , key=lambda __a : x.__name__ ) def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =test_class() if hasattr(__a , "setUp" ): test.setUp() lowerCamelCase__: List[str] =None if hasattr(__a , "model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCamelCase__: Union[str, Any] =test.model_tester.__class__ return model_tester def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Optional[Any] =get_test_classes(__a ) lowerCamelCase__: List[Any] =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__a ) # sort with class names return sorted(__a , key=lambda __a : x.__name__ ) def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =get_test_classes_for_model(__a , __a ) lowerCamelCase__: Optional[int] =[] for test_class in test_classes: lowerCamelCase__: Optional[Any] =get_model_tester_from_test_class(__a ) if tester_class is not None: tester_classes.append(__a ) # sort with class names return sorted(__a , key=lambda __a : x.__name__ ) def lowerCAmelCase_ ( __a ) -> Dict: """simple docstring""" lowerCamelCase__: Optional[int] =get_test_classes(__a ) lowerCamelCase__: Any ={test_class: get_model_tester_from_test_class(__a ) for test_class in test_classes} return test_tester_mapping def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: List[str] =get_model_classes(__a ) lowerCamelCase__: int ={ model_class: get_test_classes_for_model(__a , __a ) for model_class in model_classes } return model_test_mapping def lowerCAmelCase_ ( __a ) -> Any: """simple docstring""" lowerCamelCase__: int =get_model_classes(__a ) lowerCamelCase__: List[str] ={ model_class: get_tester_classes_for_model(__a , __a ) for model_class in model_classes } return model_to_tester_mapping def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" if isinstance(__a , __a ): return o elif isinstance(__a , __a ): return o.__name__ elif isinstance(__a , (list, tuple) ): return [to_json(__a ) for x in o] elif isinstance(__a , __a ): return {to_json(__a ): to_json(__a ) for k, v in o.items()} else: return o
59
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : int = 'dpr' def __init__( self : Tuple , A_ : List[str]=3_05_22 , A_ : Tuple=7_68 , A_ : str=12 , A_ : int=12 , A_ : Dict=30_72 , A_ : Optional[int]="gelu" , A_ : Tuple=0.1 , A_ : List[str]=0.1 , A_ : int=5_12 , A_ : List[str]=2 , A_ : int=0.02 , A_ : Tuple=1e-1_2 , A_ : List[Any]=0 , A_ : List[str]="absolute" , A_ : int = 0 , **A_ : Union[str, Any] , )-> Any: super().__init__(pad_token_id=A_ , **A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = projection_dim __UpperCamelCase = position_embedding_type
505
0
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: lowerCAmelCase__ = jnp.ones((batch_size, length) ) / length return scores def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = None lowerCAmelCase__ = 20 lowerCAmelCase__ = self._get_uniform_logits(batch_size=2 , length=lowerCamelCase__ ) # tweak scores to not be uniform anymore lowerCAmelCase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCAmelCase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCAmelCase__ = jax.nn.softmax(lowerCamelCase__ , axis=-1 ) lowerCAmelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase__ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCAmelCase__ = jax.nn.softmax(temp_dist_warper_sharper(lowerCamelCase__ , scores.copy() , cur_len=lowerCamelCase__ ) , axis=-1 ) lowerCAmelCase__ = jax.nn.softmax(temp_dist_warper_smoother(lowerCamelCase__ , scores.copy() , cur_len=lowerCamelCase__ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = None lowerCAmelCase__ = 10 lowerCAmelCase__ = 2 # create ramp distribution lowerCAmelCase__ = np.broadcast_to(np.arange(lowerCamelCase__ )[None, :] , (batch_size, vocab_size) ).copy() lowerCAmelCase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCAmelCase__ = FlaxTopKLogitsWarper(3 ) lowerCAmelCase__ = top_k_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCAmelCase__ = 5 lowerCAmelCase__ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCAmelCase__ = np.broadcast_to(np.arange(lowerCamelCase__ )[None, :] , (batch_size, length) ).copy() lowerCAmelCase__ = top_k_warp_safety_check(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = None lowerCAmelCase__ = 10 lowerCAmelCase__ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCAmelCase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCAmelCase__ = FlaxTopPLogitsWarper(0.8 ) lowerCAmelCase__ = np.exp(top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCAmelCase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCAmelCase__ = np.broadcast_to(np.arange(lowerCamelCase__ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCAmelCase__ = ramp_logits[1] * 1_00.0 # make sure at least 2 tokens are kept lowerCAmelCase__ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCAmelCase__ = top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = 20 lowerCAmelCase__ = 4 lowerCAmelCase__ = 0 lowerCAmelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase__ ) # check that min length is applied at length 5 lowerCAmelCase__ = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCAmelCase__ = 5 lowerCAmelCase__ = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = min_dist_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 lowerCAmelCase__ = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = 15 lowerCAmelCase__ = min_dist_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertFalse(jnp.isinf(lowerCamelCase__ ).any() ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = 20 lowerCAmelCase__ = 4 lowerCAmelCase__ = 0 lowerCAmelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase__ ) # check that all scores are -inf except the bos_token_id score lowerCAmelCase__ = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCAmelCase__ = 1 lowerCAmelCase__ = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCAmelCase__ = 3 lowerCAmelCase__ = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertFalse(jnp.isinf(lowerCamelCase__ ).any() ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = 20 lowerCAmelCase__ = 4 lowerCAmelCase__ = 0 lowerCAmelCase__ = 5 lowerCAmelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCAmelCase__ = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCAmelCase__ = 4 lowerCAmelCase__ = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCAmelCase__ = 3 lowerCAmelCase__ = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) self.assertFalse(jnp.isinf(lowerCamelCase__ ).any() ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = 4 lowerCAmelCase__ = 10 lowerCAmelCase__ = 15 lowerCAmelCase__ = 2 lowerCAmelCase__ = 1 lowerCAmelCase__ = 15 # dummy input_ids and scores lowerCAmelCase__ = ids_tensor((batch_size, sequence_length) , lowerCamelCase__ ) lowerCAmelCase__ = input_ids.copy() lowerCAmelCase__ = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = scores.copy() # instantiate all dist processors lowerCAmelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase__ = FlaxTopKLogitsWarper(3 ) lowerCAmelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase__ ) lowerCAmelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase__ ) lowerCAmelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) lowerCAmelCase__ = 10 # no processor list lowerCAmelCase__ = temp_dist_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) lowerCAmelCase__ = top_k_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) lowerCAmelCase__ = top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) lowerCAmelCase__ = min_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) lowerCAmelCase__ = bos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) lowerCAmelCase__ = eos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # with processor list lowerCAmelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase__ = processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = 4 lowerCAmelCase__ = 10 lowerCAmelCase__ = 15 lowerCAmelCase__ = 2 lowerCAmelCase__ = 1 lowerCAmelCase__ = 15 # dummy input_ids and scores lowerCAmelCase__ = ids_tensor((batch_size, sequence_length) , lowerCamelCase__ ) lowerCAmelCase__ = input_ids.copy() lowerCAmelCase__ = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = scores.copy() # instantiate all dist processors lowerCAmelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase__ = FlaxTopKLogitsWarper(3 ) lowerCAmelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase__ ) lowerCAmelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase__ ) lowerCAmelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) lowerCAmelCase__ = 10 # no processor list def run_no_processor_list(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = temp_dist_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) lowerCAmelCase__ = top_k_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) lowerCAmelCase__ = top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) lowerCAmelCase__ = min_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) lowerCAmelCase__ = bos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) lowerCAmelCase__ = eos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) return scores # with processor list def run_processor_list(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase__ = processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__ ) return scores lowerCAmelCase__ = jax.jit(lowerCamelCase__ ) lowerCAmelCase__ = jax.jit(lowerCamelCase__ ) lowerCAmelCase__ = jitted_run_no_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = jitted_run_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
718
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __UpperCAmelCase = False class a__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( image=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images lowerCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
98
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _a : Tuple = False class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __A ( self ): return 12 @property def __A ( self ): return 12 @property def __A ( self ): return 32 @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __A ( self ): _lowerCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(a_ ) @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = 12 _lowerCAmelCase : List[str] = 12 _lowerCAmelCase : Any = { """attention_bias""": True, """cross_attention_dim""": 32, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 32, """sample_size""": width, """activation_fn""": """geglu-approximate""", } _lowerCAmelCase : Optional[Any] = TransformeraDModel(**a_ ) return model def __A ( self ): _lowerCAmelCase : Optional[Any] = """cpu""" _lowerCAmelCase : str = self.dummy_vqvae _lowerCAmelCase : List[Any] = self.dummy_text_encoder _lowerCAmelCase : int = self.dummy_tokenizer _lowerCAmelCase : str = self.dummy_transformer _lowerCAmelCase : List[Any] = VQDiffusionScheduler(self.num_embed ) _lowerCAmelCase : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=a_ ) _lowerCAmelCase : Optional[int] = VQDiffusionPipeline( vqvae=a_ , text_encoder=a_ , tokenizer=a_ , transformer=a_ , scheduler=a_ , learned_classifier_free_sampling_embeddings=a_ , ) _lowerCAmelCase : List[Any] = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) _lowerCAmelCase : List[str] = """teddy bear playing in the pool""" _lowerCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _lowerCAmelCase : Dict = pipe([prompt] , generator=a_ , num_inference_steps=2 , output_type="""np""" ) _lowerCAmelCase : Dict = output.images _lowerCAmelCase : int = torch.Generator(device=a_ ).manual_seed(0 ) _lowerCAmelCase : int = pipe( [prompt] , generator=a_ , output_type="""np""" , return_dict=a_ , num_inference_steps=2 )[0] _lowerCAmelCase : Dict = image[0, -3:, -3:, -1] _lowerCAmelCase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _lowerCAmelCase : Dict = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): _lowerCAmelCase : List[str] = """cpu""" _lowerCAmelCase : List[str] = self.dummy_vqvae _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : Optional[int] = self.dummy_tokenizer _lowerCAmelCase : Optional[int] = self.dummy_transformer _lowerCAmelCase : List[Any] = VQDiffusionScheduler(self.num_embed ) _lowerCAmelCase : Tuple = LearnedClassifierFreeSamplingEmbeddings( learnable=a_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) _lowerCAmelCase : str = VQDiffusionPipeline( vqvae=a_ , text_encoder=a_ , tokenizer=a_ , transformer=a_ , scheduler=a_ , learned_classifier_free_sampling_embeddings=a_ , ) _lowerCAmelCase : Optional[Any] = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) _lowerCAmelCase : int = """teddy bear playing in the pool""" _lowerCAmelCase : str = torch.Generator(device=a_ ).manual_seed(0 ) _lowerCAmelCase : Tuple = pipe([prompt] , generator=a_ , num_inference_steps=2 , output_type="""np""" ) _lowerCAmelCase : Any = output.images _lowerCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _lowerCAmelCase : List[Any] = pipe( [prompt] , generator=a_ , output_type="""np""" , return_dict=a_ , num_inference_steps=2 )[0] _lowerCAmelCase : Dict = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _lowerCAmelCase : Any = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) _lowerCAmelCase : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) _lowerCAmelCase : List[Any] = pipeline.to(a_ ) pipeline.set_progress_bar_config(disable=a_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though _lowerCAmelCase : Dict = torch.Generator(device=a_ ).manual_seed(0 ) _lowerCAmelCase : str = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=a_ , output_type="""np""" , ) _lowerCAmelCase : List[str] = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
213
def snake_case (UpperCamelCase : int = 2000000 ): '''simple docstring''' lowerCamelCase__ = [0 for i in range(n + 1 )] lowerCamelCase__ = 1 lowerCamelCase__ = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , UpperCamelCase ): lowerCamelCase__ = 1 lowerCamelCase__ = 0 for i in range(UpperCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
165
0
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _A = 0 _A = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _A = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _A = tuple[int, int] class UpperCAmelCase__ : """simple docstring""" def __init__(self , _a , _a , _a , _a , _a , _a , ) -> None: lowercase_ : List[Any] = pos_x lowercase_ : str = pos_y lowercase_ : List[str] = (pos_y, pos_x) lowercase_ : Optional[Any] = goal_x lowercase_ : Any = goal_y lowercase_ : str = g_cost lowercase_ : Union[str, Any] = parent lowercase_ : str = self.calculate_heuristic() lowercase_ : Dict = self.g_cost + self.h_cost def _lowerCamelCase (self ) -> float: lowercase_ : List[Any] = self.pos_x - self.goal_x lowercase_ : str = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_a ) + abs(_a ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self , _a ) -> bool: return self.f_cost < other.f_cost class UpperCAmelCase__ : """simple docstring""" def __init__(self , _a , _a ) -> List[Any]: lowercase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) lowercase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) lowercase_ : Dict = [self.start] lowercase_ : list[Node] = [] lowercase_ : Union[str, Any] = False def _lowerCamelCase (self ) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowercase_ : Any = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_a ) self.closed_nodes.append(_a ) lowercase_ : Optional[Any] = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path lowercase_ : Dict = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) return [self.start.pos] def _lowerCamelCase (self , _a ) -> list[Node]: lowercase_ : Tuple = [] for action in delta: lowercase_ : str = parent.pos_x + action[1] lowercase_ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def _lowerCamelCase (self , _a ) -> list[TPosition]: lowercase_ : Any = node lowercase_ : List[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowercase_ : str = current_node.parent path.reverse() return path class UpperCAmelCase__ : """simple docstring""" def __init__(self , _a , _a ) -> None: lowercase_ : List[Any] = AStar(_a , _a ) lowercase_ : Tuple = AStar(_a , _a ) lowercase_ : Union[str, Any] = False def _lowerCamelCase (self ) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() lowercase_ : Any = self.fwd_astar.open_nodes.pop(0 ) lowercase_ : str = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _a , _a ) self.fwd_astar.closed_nodes.append(_a ) self.bwd_astar.closed_nodes.append(_a ) lowercase_ : List[str] = current_bwd_node lowercase_ : str = current_fwd_node lowercase_ : int = { self.fwd_astar: self.fwd_astar.get_successors(_a ), self.bwd_astar: self.bwd_astar.get_successors(_a ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_a ) else: # retrieve the best current path lowercase_ : List[str] = astar.open_nodes.pop( astar.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_a ) else: astar.open_nodes.append(_a ) return [self.fwd_astar.start.pos] def _lowerCamelCase (self , _a , _a ) -> list[TPosition]: lowercase_ : List[str] = self.fwd_astar.retrace_path(_a ) lowercase_ : Dict = self.bwd_astar.retrace_path(_a ) bwd_path.pop() bwd_path.reverse() lowercase_ : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _A = (0, 0) _A = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _A = time.time() _A = AStar(init, goal) _A = a_star.search() _A = time.time() - start_time print(F"""AStar execution time = {end_time:f} seconds""") _A = time.time() _A = BidirectionalAStar(init, goal) _A = time.time() - bd_start_time print(F"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
438
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ : """simple docstring""" def __init__(self , _a , _a=12 , _a=7 , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=32 , _a=2 , _a=4 , _a=37 , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=0 , _a=None , ) -> Optional[Any]: lowercase_ : List[Any] = parent lowercase_ : List[Any] = batch_size lowercase_ : Optional[Any] = seq_length lowercase_ : Optional[Any] = is_training lowercase_ : Optional[int] = use_input_mask lowercase_ : Any = use_labels lowercase_ : Union[str, Any] = vocab_size lowercase_ : Union[str, Any] = hidden_size lowercase_ : str = projection_dim lowercase_ : str = num_hidden_layers lowercase_ : List[str] = num_attention_heads lowercase_ : List[str] = intermediate_size lowercase_ : Optional[Any] = dropout lowercase_ : Tuple = attention_dropout lowercase_ : Optional[Any] = max_position_embeddings lowercase_ : Any = initializer_range lowercase_ : List[str] = scope lowercase_ : Optional[Any] = bos_token_id def _lowerCamelCase (self ) -> Tuple: lowercase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Optional[int] = None if self.use_input_mask: lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowercase_ : Dict = input_mask.numpy() lowercase_ ,lowercase_ : int = input_mask.shape lowercase_ : int = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_a ): lowercase_ : Tuple = 1 lowercase_ : List[Any] = 0 lowercase_ : List[Any] = self.get_config() return config, input_ids, tf.convert_to_tensor(_a ) def _lowerCamelCase (self ) -> Any: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _lowerCamelCase (self , _a , _a , _a ) -> List[Any]: lowercase_ : List[Any] = TFBlipTextModel(config=_a ) lowercase_ : List[str] = model(_a , attention_mask=_a , training=_a ) lowercase_ : Union[str, Any] = model(_a , training=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase (self ) -> Dict: lowercase_ : Optional[Any] = self.prepare_config_and_inputs() lowercase_ ,lowercase_ ,lowercase_ : Dict = config_and_inputs lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( _snake_case , unittest.TestCase ): """simple docstring""" A : Any = (TFBlipTextModel,) if is_tf_available() else () A : Union[str, Any] = False A : int = False A : str = False def _lowerCamelCase (self ) -> int: lowercase_ : Tuple = BlipTextModelTester(self ) lowercase_ : str = ConfigTester(self , config_class=_a , hidden_size=37 ) def _lowerCamelCase (self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowerCamelCase (self ) -> List[Any]: lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _lowerCamelCase (self ) -> Dict: pass def _lowerCamelCase (self ) -> Optional[int]: pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _lowerCamelCase (self ) -> List[Any]: pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _lowerCamelCase (self ) -> Any: pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _lowerCamelCase (self ) -> Optional[int]: pass @slow def _lowerCamelCase (self ) -> Optional[Any]: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[str] = TFBlipTextModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _lowerCamelCase (self , _a=True ) -> Optional[int]: super().test_pt_tf_model_equivalence(allow_missing_keys=_a )
438
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE = 16 SCREAMING_SNAKE_CASE = 32 def _lowerCamelCase ( __A : Accelerator , __A : int = 16 ) -> Optional[int]: _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _UpperCAmelCase : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__A : Dict ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Dict = datasets.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__A : str ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Union[str, Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : Dict = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : List[Any] = 8 else: _UpperCAmelCase : List[Any] = None return tokenizer.pad( __SCREAMING_SNAKE_CASE , padding='''longest''' , max_length=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) # Instantiate dataloaders. _UpperCAmelCase : Any = DataLoader( tokenized_datasets['''train'''] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) _UpperCAmelCase : int = DataLoader( tokenized_datasets['''validation'''] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders SCREAMING_SNAKE_CASE = mocked_dataloaders # noqa: F811 def _lowerCamelCase ( __A : List[Any] , __A : Union[str, Any] ) -> Optional[Any]: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __SCREAMING_SNAKE_CASE ) == "1": _UpperCAmelCase : int = 2 # New Code # _UpperCAmelCase : Tuple = int(args.gradient_accumulation_steps ) # Initialize accelerator _UpperCAmelCase : Optional[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__SCREAMING_SNAKE_CASE ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Tuple = config['''lr'''] _UpperCAmelCase : Any = int(config['''num_epochs'''] ) _UpperCAmelCase : int = int(config['''seed'''] ) _UpperCAmelCase : Optional[Any] = int(config['''batch_size'''] ) _UpperCAmelCase : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) set_seed(__SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Any = get_dataloaders(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : List[str] = AdamW(params=model.parameters() , lr=__SCREAMING_SNAKE_CASE ) # Instantiate scheduler _UpperCAmelCase : str = get_linear_schedule_with_warmup( optimizer=__SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(__SCREAMING_SNAKE_CASE ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase : Optional[int] = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(__SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Dict = model(**__SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[Any] = output.loss accelerator.backward(__SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : Tuple = model(**__SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[int] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase : List[str] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( ) -> List[str]: _UpperCAmelCase : Dict = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=__SCREAMING_SNAKE_CASE , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Optional[int] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
485
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def A_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' __SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) __SCREAMING_SNAKE_CASE : List[Any] = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073) , (0.26862954, 0.26130258, 0.27577711) ), ] ) __SCREAMING_SNAKE_CASE : Dict = transform(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(__SCREAMING_SNAKE_CASE ) return image def A_ ( __SCREAMING_SNAKE_CASE : Any ) -> int: if "visual_encoder" in key: __SCREAMING_SNAKE_CASE : List[Any] = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , __SCREAMING_SNAKE_CASE ) if "blocks" in key: __SCREAMING_SNAKE_CASE : int = re.sub(R'''blocks''' , '''layers''' , __SCREAMING_SNAKE_CASE ) if "attn" in key: __SCREAMING_SNAKE_CASE : int = re.sub(R'''attn''' , '''self_attn''' , __SCREAMING_SNAKE_CASE ) if "norm1" in key: __SCREAMING_SNAKE_CASE : Optional[int] = re.sub(R'''norm1''' , '''layer_norm1''' , __SCREAMING_SNAKE_CASE ) if "norm2" in key: __SCREAMING_SNAKE_CASE : Union[str, Any] = re.sub(R'''norm2''' , '''layer_norm2''' , __SCREAMING_SNAKE_CASE ) if "encoder.norm" in key: __SCREAMING_SNAKE_CASE : int = re.sub(R'''encoder.norm''' , '''post_layernorm''' , __SCREAMING_SNAKE_CASE ) if "encoder.patch_embed.proj" in key: __SCREAMING_SNAKE_CASE : Union[str, Any] = re.sub(R'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , __SCREAMING_SNAKE_CASE ) if "encoder.pos_embed" in key: __SCREAMING_SNAKE_CASE : Tuple = re.sub(R'''encoder.pos_embed''' , '''embeddings.position_embedding''' , __SCREAMING_SNAKE_CASE ) if "encoder.cls_token" in key: __SCREAMING_SNAKE_CASE : List[str] = re.sub(R'''encoder.cls_token''' , '''embeddings.class_embedding''' , __SCREAMING_SNAKE_CASE ) if "self_attn" in key: __SCREAMING_SNAKE_CASE : List[Any] = re.sub(R'''self_attn.proj''' , '''self_attn.projection''' , __SCREAMING_SNAKE_CASE ) return key @torch.no_grad() def A_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict=None ) -> Optional[Any]: if config_path is not None: __SCREAMING_SNAKE_CASE : Optional[int] = BlipConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE : List[str] = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} ) __SCREAMING_SNAKE_CASE : int = BlipForConditionalGeneration(__SCREAMING_SNAKE_CASE ).eval() __SCREAMING_SNAKE_CASE : Union[str, Any] = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' __SCREAMING_SNAKE_CASE : Any = blip_decoder(pretrained=__SCREAMING_SNAKE_CASE , image_size=3_84 , vit='''base''' ) __SCREAMING_SNAKE_CASE : int = pt_model.eval() __SCREAMING_SNAKE_CASE : Optional[Any] = pt_model.state_dict() for key in modified_state_dict.copy(): __SCREAMING_SNAKE_CASE : Union[str, Any] = modified_state_dict.pop(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : List[str] = rename_key(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Optional[int] = value hf_model.load_state_dict(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Optional[Any] = 3_84 __SCREAMING_SNAKE_CASE : List[Any] = load_demo_image(image_size=__SCREAMING_SNAKE_CASE , device='''cpu''' ) __SCREAMING_SNAKE_CASE : List[Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer(['''a picture of'''] ).input_ids __SCREAMING_SNAKE_CASE : List[Any] = hf_model.generate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] __SCREAMING_SNAKE_CASE : List[str] = hf_model.generate(__SCREAMING_SNAKE_CASE ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__SCREAMING_SNAKE_CASE ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __SCREAMING_SNAKE_CASE : Optional[int] = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = blip_vqa(pretrained=__SCREAMING_SNAKE_CASE , image_size=__SCREAMING_SNAKE_CASE , vit='''base''' ) vqa_model.eval() __SCREAMING_SNAKE_CASE : List[Any] = vqa_model.state_dict() for key in modified_state_dict.copy(): __SCREAMING_SNAKE_CASE : Dict = modified_state_dict.pop(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : List[str] = rename_key(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Optional[Any] = value __SCREAMING_SNAKE_CASE : Optional[Any] = BlipForQuestionAnswering(__SCREAMING_SNAKE_CASE ) hf_vqa_model.load_state_dict(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Optional[Any] = ['''How many dogs are in this image?'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids __SCREAMING_SNAKE_CASE : Optional[int] = hf_vqa_model.generate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) __SCREAMING_SNAKE_CASE : Optional[int] = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' __SCREAMING_SNAKE_CASE : Any = blip_itm(pretrained=__SCREAMING_SNAKE_CASE , image_size=__SCREAMING_SNAKE_CASE , vit='''base''' ) itm_model.eval() __SCREAMING_SNAKE_CASE : Union[str, Any] = itm_model.state_dict() for key in modified_state_dict.copy(): __SCREAMING_SNAKE_CASE : Any = modified_state_dict.pop(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : int = rename_key(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Tuple = value __SCREAMING_SNAKE_CASE : Union[str, Any] = BlipForImageTextRetrieval(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : List[Any] = ['''A picture of a woman with a dog sitting in a beach'''] __SCREAMING_SNAKE_CASE : Any = tokenizer( __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , padding='''max_length''' , truncation=__SCREAMING_SNAKE_CASE , max_length=35 , ).input_ids hf_itm_model.load_state_dict(__SCREAMING_SNAKE_CASE ) hf_itm_model.eval() __SCREAMING_SNAKE_CASE : Dict = hf_itm_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_itm_head=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Optional[Any] = hf_itm_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_itm_head=__SCREAMING_SNAKE_CASE ) assert out[0].item() == 0.2110687494277954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45698845386505127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") _A = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
158
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __magic_name__( unittest.TestCase ): def __init__( self : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int]=7 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Union[str, Any]=1_8 , __UpperCamelCase : Union[str, Any]=3_0 , __UpperCamelCase : str=4_0_0 , __UpperCamelCase : List[str]=True , __UpperCamelCase : List[str]=None , __UpperCamelCase : Optional[int]=True , ): '''simple docstring''' snake_case__ = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case__ = parent snake_case__ = batch_size snake_case__ = num_channels snake_case__ = image_size snake_case__ = min_resolution snake_case__ = max_resolution snake_case__ = do_resize snake_case__ = size snake_case__ = apply_ocr def __lowerCAmelCase( self : Any ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __magic_name__( __lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ : List[Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __lowerCAmelCase( self : Union[str, Any] ): '''simple docstring''' snake_case__ = LayoutLMvaImageProcessingTester(self ) @property def __lowerCAmelCase( self : Any ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase( self : Dict ): '''simple docstring''' snake_case__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """size""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """apply_ocr""" ) ) def __lowerCAmelCase( self : Any ): '''simple docstring''' snake_case__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} ) snake_case__ = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} ) def __lowerCAmelCase( self : int ): '''simple docstring''' pass def __lowerCAmelCase( self : List[str] ): '''simple docstring''' snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __UpperCamelCase ) self.assertIsInstance(encoding.boxes , __UpperCamelCase ) # Test batched snake_case__ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __lowerCAmelCase( self : Tuple ): '''simple docstring''' snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __lowerCAmelCase( self : Optional[Any] ): '''simple docstring''' snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __lowerCAmelCase( self : str ): '''simple docstring''' snake_case__ = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case__ = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) snake_case__ = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case__ = image_processing(__UpperCamelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case__ = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case__ = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __UpperCamelCase ) self.assertListEqual(encoding.boxes , __UpperCamelCase ) # with apply_OCR = False snake_case__ = LayoutLMvaImageProcessor(apply_ocr=__UpperCamelCase ) snake_case__ = image_processing(__UpperCamelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
566
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class __magic_name__( __lowerCAmelCase ): UpperCAmelCase_ : str = """informer""" UpperCAmelCase_ : Any = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Optional[Any] , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : str = "student_t" , __UpperCamelCase : str = "nll" , __UpperCamelCase : int = 1 , __UpperCamelCase : List[int] = None , __UpperCamelCase : Optional[Union[str, bool]] = "mean" , __UpperCamelCase : int = 0 , __UpperCamelCase : int = 0 , __UpperCamelCase : int = 0 , __UpperCamelCase : int = 0 , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : int = 6_4 , __UpperCamelCase : int = 3_2 , __UpperCamelCase : int = 3_2 , __UpperCamelCase : int = 2 , __UpperCamelCase : int = 2 , __UpperCamelCase : int = 2 , __UpperCamelCase : int = 2 , __UpperCamelCase : bool = True , __UpperCamelCase : str = "gelu" , __UpperCamelCase : float = 0.05 , __UpperCamelCase : float = 0.1 , __UpperCamelCase : float = 0.1 , __UpperCamelCase : float = 0.1 , __UpperCamelCase : float = 0.1 , __UpperCamelCase : int = 1_0_0 , __UpperCamelCase : float = 0.02 , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : str = "prob" , __UpperCamelCase : int = 5 , __UpperCamelCase : bool = True , **__UpperCamelCase : Any , ): '''simple docstring''' snake_case__ = prediction_length snake_case__ = context_length or prediction_length snake_case__ = distribution_output snake_case__ = loss snake_case__ = input_size snake_case__ = num_time_features snake_case__ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case__ = scaling snake_case__ = num_dynamic_real_features snake_case__ = num_static_real_features snake_case__ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(__UpperCamelCase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) snake_case__ = cardinality else: snake_case__ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(__UpperCamelCase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) snake_case__ = embedding_dimension else: snake_case__ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case__ = num_parallel_samples # Transformer architecture configuration snake_case__ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case__ = d_model snake_case__ = encoder_attention_heads snake_case__ = decoder_attention_heads snake_case__ = encoder_ffn_dim snake_case__ = decoder_ffn_dim snake_case__ = encoder_layers snake_case__ = decoder_layers snake_case__ = dropout snake_case__ = attention_dropout snake_case__ = activation_dropout snake_case__ = encoder_layerdrop snake_case__ = decoder_layerdrop snake_case__ = activation_function snake_case__ = init_std snake_case__ = use_cache # Informer snake_case__ = attention_type snake_case__ = sampling_factor snake_case__ = distil super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) @property def __lowerCAmelCase( self : str ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
566
1
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": A_ : int = input('Enter image url: ').strip() print(F"""Downloading image from {url} ...""") A_ : Dict = BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image A_ : Optional[Any] = soup.find('meta', {'property': 'og:image'})['content'] A_ : List[Any] = requests.get(image_url).content A_ : Optional[int] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, 'wb') as fp: fp.write(image_data) print(F"""Done. Image saved to disk as {file_name}.""")
303
0
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCamelCase__ ( _A , _A , _A , _A , _A ): # load base model a : List[Any] = StableDiffusionPipeline.from_pretrained(_A , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors a : Optional[int] = load_file(_A ) a : int = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: a : int = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) a : Any = pipeline.text_encoder else: a : Union[str, Any] = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) a : str = pipeline.unet # find the target layer a : Optional[Any] = layer_infos.pop(0 ) while len(_A ) > -1: try: a : Optional[int] = curr_layer.__getattr__(_A ) if len(_A ) > 0: a : Union[str, Any] = layer_infos.pop(0 ) elif len(_A ) == 0: break except Exception: if len(_A ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: a : List[str] = layer_infos.pop(0 ) a : str = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(_A ) else: pair_keys.append(_A ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: a : Optional[Any] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) a : str = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_A , _A ).unsqueeze(2 ).unsqueeze(3 ) else: a : str = state_dict[pair_keys[0]].to(torch.floataa ) a : str = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_A , _A ) # update visited list for item in pair_keys: visited.append(_A ) return pipeline if __name__ == "__main__": lowerCAmelCase: Tuple = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') lowerCAmelCase: List[str] = parser.parse_args() lowerCAmelCase: List[str] = args.base_model_path lowerCAmelCase: List[str] = args.checkpoint_path lowerCAmelCase: List[str] = args.dump_path lowerCAmelCase: List[Any] = args.lora_prefix_unet lowerCAmelCase: Optional[int] = args.lora_prefix_text_encoder lowerCAmelCase: Optional[Any] = args.alpha lowerCAmelCase: Optional[Any] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowerCAmelCase: Union[str, Any] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
704
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__( metaclass=lowerCamelCase__ ): lowercase__ = ["""torch""", """torchsde"""] def __init__( self : Any , *__snake_case : List[str] , **__snake_case : Tuple ): requires_backends(self , ['torch', 'torchsde'] ) @classmethod def lowercase_ ( cls : List[Any] , *__snake_case : str , **__snake_case : List[Any] ): requires_backends(cls , ['torch', 'torchsde'] ) @classmethod def lowercase_ ( cls : Dict , *__snake_case : Optional[Any] , **__snake_case : str ): requires_backends(cls , ['torch', 'torchsde'] )
195
0
import numpy as np from PIL import Image def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> np.ndarray: lowerCAmelCase__ : Dict = np.array(UpperCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase__ : Dict = 0 lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : Tuple = 0 # compute the shape of the output matrix lowerCAmelCase__ : List[str] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase__ : List[str] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase__ : Tuple = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Tuple = 0 return updated_arr def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> np.ndarray: lowerCAmelCase__ : Optional[Any] = np.array(UpperCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : Dict = 0 # compute the shape of the output matrix lowerCAmelCase__ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase__ : str = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase__ : str = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase__ : str = 0 lowerCAmelCase__ : Tuple = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image lowerCAmelCase_ = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
678
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def __magic_name__( *__UpperCAmelCase , **__UpperCAmelCase ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def __magic_name__( self ): lowerCAmelCase__ : int = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCAmelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase__ : List[str] = image_classifier(__UpperCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__UpperCAmelCase ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) lowerCAmelCase__ : List[Any] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], ] , ) @require_tf def __magic_name__( self ): lowerCAmelCase__ : List[Any] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCAmelCase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase__ : str = image_classifier(__UpperCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) lowerCAmelCase__ : List[Any] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], ] , ) @slow @require_torch def __magic_name__( self ): lowerCAmelCase__ : str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase__ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase__ : str = image_classifier(__UpperCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) lowerCAmelCase__ : Tuple = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def __magic_name__( self ): lowerCAmelCase__ : Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase__ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase__ : Union[str, Any] = image_classifier(__UpperCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) lowerCAmelCase__ : Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
678
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a_ : List[Any] = "src/diffusers" a_ : Any = "." # This is to make sure the diffusers module imported is the one in the repo. a_ : Union[str, Any] = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) a_ : Union[str, Any] = spec.loader.load_module() def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' return line.startswith(_UpperCamelCase ) or len(_UpperCamelCase ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , _UpperCamelCase ) is not None def __lowerCAmelCase ( _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = object_name.split('.' ) SCREAMING_SNAKE_CASE = 0 # First let's find the module where our object lives. SCREAMING_SNAKE_CASE = parts[i] while i < len(_UpperCamelCase ) and not os.path.isfile(os.path.join(_UpperCamelCase , f"""{module}.py""" ) ): i += 1 if i < len(_UpperCamelCase ): SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , parts[i] ) if i >= len(_UpperCamelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(_UpperCamelCase , f"""{module}.py""" ) , 'r' , encoding='utf-8' , newline='\n' ) as f: SCREAMING_SNAKE_CASE = f.readlines() # Now let's find the class / func in the code! SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = 0 for name in parts[i + 1 :]: while ( line_index < len(_UpperCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_UpperCamelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). SCREAMING_SNAKE_CASE = line_index while line_index < len(_UpperCamelCase ) and _should_continue(lines[line_index] , _UpperCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 SCREAMING_SNAKE_CASE = lines[start_index:line_index] return "".join(_UpperCamelCase ) a_ : Optional[int] = re.compile(R"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") a_ : Union[str, Any] = re.compile(R"^\s*(\S+)->(\S+)(\s+.*|$)") a_ : Optional[Any] = re.compile(R"<FILL\s+[^>]*>") def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = code.split('\n' ) SCREAMING_SNAKE_CASE = 0 while idx < len(_UpperCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_UpperCamelCase ): return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0] return "" def __lowerCAmelCase ( _UpperCamelCase : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = len(get_indent(_UpperCamelCase ) ) > 0 if has_indent: SCREAMING_SNAKE_CASE = f"""class Bla:\n{code}""" SCREAMING_SNAKE_CASE = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=_UpperCamelCase ) SCREAMING_SNAKE_CASE = black.format_str(_UpperCamelCase , mode=_UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = style_docstrings_in_code(_UpperCamelCase ) return result[len('class Bla:\n' ) :] if has_indent else result def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' with open(_UpperCamelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: SCREAMING_SNAKE_CASE = f.readlines() SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_UpperCamelCase ): SCREAMING_SNAKE_CASE = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = search.groups() SCREAMING_SNAKE_CASE = find_code_in_diffusers(_UpperCamelCase ) SCREAMING_SNAKE_CASE = get_indent(_UpperCamelCase ) SCREAMING_SNAKE_CASE = line_index + 1 if indent == theoretical_indent else line_index + 2 SCREAMING_SNAKE_CASE = theoretical_indent SCREAMING_SNAKE_CASE = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. SCREAMING_SNAKE_CASE = True while line_index < len(_UpperCamelCase ) and should_continue: line_index += 1 if line_index >= len(_UpperCamelCase ): break SCREAMING_SNAKE_CASE = lines[line_index] SCREAMING_SNAKE_CASE = _should_continue(_UpperCamelCase , _UpperCamelCase ) and re.search(f"""^{indent}# End copy""" , _UpperCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 SCREAMING_SNAKE_CASE = lines[start_index:line_index] SCREAMING_SNAKE_CASE = ''.join(_UpperCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies SCREAMING_SNAKE_CASE = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(_UpperCamelCase ) is None] SCREAMING_SNAKE_CASE = '\n'.join(_UpperCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(_UpperCamelCase ) > 0: SCREAMING_SNAKE_CASE = replace_pattern.replace('with' , '' ).split(',' ) SCREAMING_SNAKE_CASE = [_re_replace_pattern.search(_UpperCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = pattern.groups() SCREAMING_SNAKE_CASE = re.sub(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if option.strip() == "all-casing": SCREAMING_SNAKE_CASE = re.sub(obja.lower() , obja.lower() , _UpperCamelCase ) SCREAMING_SNAKE_CASE = re.sub(obja.upper() , obja.upper() , _UpperCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line SCREAMING_SNAKE_CASE = blackify(lines[start_index - 1] + theoretical_code ) SCREAMING_SNAKE_CASE = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: SCREAMING_SNAKE_CASE = lines[:start_index] + [theoretical_code] + lines[line_index:] SCREAMING_SNAKE_CASE = start_index + 1 if overwrite and len(_UpperCamelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_UpperCamelCase ) return diffs def __lowerCAmelCase ( _UpperCamelCase : bool = False ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = glob.glob(os.path.join(_UpperCamelCase , '**/*.py' ) , recursive=_UpperCamelCase ) SCREAMING_SNAKE_CASE = [] for filename in all_files: SCREAMING_SNAKE_CASE = is_copy_consistent(_UpperCamelCase , _UpperCamelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(_UpperCamelCase ) > 0: SCREAMING_SNAKE_CASE = '\n'.join(_UpperCamelCase ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a_ : Optional[Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
700
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a_ : Optional[int] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } a_ : List[Any] = { "allenai/led-base-16384": 1_6384, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =LEDTokenizer __UpperCamelCase =["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : List[Any]=None , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Dict="replace" , snake_case__ : Tuple="<s>" , snake_case__ : Optional[Any]="</s>" , snake_case__ : int="</s>" , snake_case__ : Dict="<s>" , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : Optional[int]="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : List[Any]=False , snake_case__ : int=True , **snake_case__ : Dict , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(snake_case__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**snake_case__ ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = 'post_processor' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['cls'] ) SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(snake_case__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase ( self : List[Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value SCREAMING_SNAKE_CASE = value def UpperCamelCase ( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[str] , *snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE = super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE = len(encoded_inputs['global_attention_mask'] ) != len(snake_case__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = len(snake_case__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
673
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __SCREAMING_SNAKE_CASE : Any = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = ['LayoutLMv2FeatureExtractor'] __SCREAMING_SNAKE_CASE : List[str] = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
670
from manim import * class lowercase_ ( __snake_case ): def UpperCamelCase ( self ): _snake_case : Tuple = Rectangle(height=0.5 , width=0.5 ) _snake_case : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _snake_case : List[str] = [mem.copy() for i in range(6 )] _snake_case : Any = [mem.copy() for i in range(6 )] _snake_case : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : str = VGroup(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : int = Text("CPU" , font_size=24 ) _snake_case : str = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase_ ) _snake_case : int = [mem.copy() for i in range(4 )] _snake_case : Dict = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : str = Text("GPU" , font_size=24 ) _snake_case : Optional[int] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase_ ) _snake_case : Any = [mem.copy() for i in range(6 )] _snake_case : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Dict = Text("Model" , font_size=24 ) _snake_case : Dict = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) model.move_to([3, -1.0, 0] ) self.add(lowercase_ ) _snake_case : str = [] for i, rect in enumerate(lowercase_ ): rect.set_stroke(lowercase_ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _snake_case : Union[str, Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0 ) self.add(lowercase_ ) cpu_targs.append(lowercase_ ) _snake_case : List[Any] = [mem.copy() for i in range(6 )] _snake_case : Union[str, Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Optional[Any] = Text("Loaded Checkpoint" , font_size=24 ) _snake_case : Union[str, Any] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _snake_case : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _snake_case : Optional[Any] = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase_ , lowercase_ ) _snake_case : Union[str, Any] = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _snake_case : List[Any] = MarkupText( f"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_ ) , Write(lowercase_ ) ) self.play(Write(lowercase_ , run_time=1 ) , Create(lowercase_ , run_time=1 ) ) _snake_case : int = [] _snake_case : str = [] for i, rect in enumerate(lowercase_ ): _snake_case : Dict = fill.copy().set_fill(lowercase_ , opacity=0.7 ) target.move_to(lowercase_ ) first_animations.append(GrowFromCenter(lowercase_ , run_time=1 ) ) _snake_case : Dict = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5 ) ) self.play(*lowercase_ ) self.play(*lowercase_ ) self.wait()
670
1
import inspect import unittest class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" import diffusers from diffusers.dependency_versions_table import deps snake_case__ : Dict =inspect.getmembers(__SCREAMING_SNAKE_CASE , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case__ : Optional[int] ='''k-diffusion''' elif backend == "invisible_watermark": snake_case__ : int ='''invisible-watermark''' assert backend in deps, f'''{backend} is not in the deps table!'''
408
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCamelCase__ = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def lowercase_ ( SCREAMING_SNAKE_CASE : str = "mumbai" ): """simple docstring""" snake_case__ : Optional[int] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): snake_case__ : Optional[Any] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() snake_case__ : Dict =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(F"""Job {i:>2} is {job[0]} at {job[1]}""")
408
1
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase_ = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _snake_case : """simple docstring""" a = PegasusConfig a = {} a = "gelu" def __init__( self : Union[str, Any] , _A : Any , _A : Tuple=1_3 , _A : str=7 , _A : Optional[Any]=True , _A : Optional[Any]=False , _A : Dict=9_9 , _A : Union[str, Any]=3_2 , _A : Dict=5 , _A : str=4 , _A : Any=3_7 , _A : Tuple=0.1 , _A : Optional[Any]=0.1 , _A : Optional[Any]=2_0 , _A : List[str]=2 , _A : Union[str, Any]=1 , _A : int=0 , ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = parent _SCREAMING_SNAKE_CASE : Dict = batch_size _SCREAMING_SNAKE_CASE : int = seq_length _SCREAMING_SNAKE_CASE : Optional[int] = is_training _SCREAMING_SNAKE_CASE : Optional[int] = use_labels _SCREAMING_SNAKE_CASE : List[Any] = vocab_size _SCREAMING_SNAKE_CASE : Optional[int] = hidden_size _SCREAMING_SNAKE_CASE : int = num_hidden_layers _SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Tuple = intermediate_size _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings _SCREAMING_SNAKE_CASE : Optional[Any] = eos_token_id _SCREAMING_SNAKE_CASE : Optional[Any] = pad_token_id _SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id def _lowerCAmelCase ( self : Union[str, Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) _SCREAMING_SNAKE_CASE : str = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) _SCREAMING_SNAKE_CASE : int = np.concatenate([input_ids, eos_tensor] , axis=1) _SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _SCREAMING_SNAKE_CASE : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _SCREAMING_SNAKE_CASE : Dict = prepare_pegasus_inputs_dict(lowercase_ , lowercase_ , lowercase_) return config, inputs_dict def _lowerCAmelCase ( self : Any , _A : Dict , _A : Tuple , _A : Union[str, Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : str = 2_0 _SCREAMING_SNAKE_CASE : Optional[Any] = model_class_name(lowercase_) _SCREAMING_SNAKE_CASE : int = model.encode(inputs_dict["""input_ids"""]) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _SCREAMING_SNAKE_CASE : List[Any] = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_) _SCREAMING_SNAKE_CASE : Tuple = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") _SCREAMING_SNAKE_CASE : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _SCREAMING_SNAKE_CASE : Optional[int] = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) _SCREAMING_SNAKE_CASE : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") _SCREAMING_SNAKE_CASE : List[str] = model.decode( decoder_input_ids[:, -1:] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase_ , ) _SCREAMING_SNAKE_CASE : int = model.decode(lowercase_ , lowercase_) _SCREAMING_SNAKE_CASE : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""") def _lowerCAmelCase ( self : List[str] , _A : Optional[int] , _A : int , _A : Any): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = 2_0 _SCREAMING_SNAKE_CASE : List[Any] = model_class_name(lowercase_) _SCREAMING_SNAKE_CASE : Tuple = model.encode(inputs_dict["""input_ids"""]) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) _SCREAMING_SNAKE_CASE : Dict = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_) _SCREAMING_SNAKE_CASE : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _SCREAMING_SNAKE_CASE : List[str] = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) _SCREAMING_SNAKE_CASE : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") _SCREAMING_SNAKE_CASE : Tuple = model.decode( decoder_input_ids[:, -1:] , lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase_ , decoder_position_ids=lowercase_ , ) _SCREAMING_SNAKE_CASE : List[Any] = model.decode(lowercase_ , lowercase_ , decoder_attention_mask=lowercase_) _SCREAMING_SNAKE_CASE : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""") def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , )-> int: if attention_mask is None: _SCREAMING_SNAKE_CASE : List[str] = np.not_equal(__SCREAMING_SNAKE_CASE , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE : Optional[int] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _snake_case ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) a = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () a = True a = False a = False a = False def _lowerCAmelCase ( self : Optional[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = FlaxPegasusModelTester(self) _SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=lowercase_) def _lowerCAmelCase ( self : str): """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : List[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_) def _lowerCAmelCase ( self : List[str]): """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ , lowercase_ , lowercase_) def _lowerCAmelCase ( self : Dict): """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(lowercase_ , lowercase_) _SCREAMING_SNAKE_CASE : Optional[int] = model_class(lowercase_) @jax.jit def encode_jitted(_A : Dict , _A : Any=None , **_A : Union[str, Any]): return model.encode(input_ids=lowercase_ , attention_mask=lowercase_) with self.subTest("""JIT Enabled"""): _SCREAMING_SNAKE_CASE : List[str] = encode_jitted(**lowercase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): _SCREAMING_SNAKE_CASE : Any = encode_jitted(**lowercase_).to_tuple() self.assertEqual(len(lowercase_) , len(lowercase_)) for jitted_output, output in zip(lowercase_ , lowercase_): self.assertEqual(jitted_output.shape , output.shape) def _lowerCAmelCase ( self : Optional[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _SCREAMING_SNAKE_CASE : Optional[int] = model_class(lowercase_) _SCREAMING_SNAKE_CASE : Tuple = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) _SCREAMING_SNAKE_CASE : Any = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(_A : Dict , _A : Dict , _A : Optional[int]): return model.decode( decoder_input_ids=lowercase_ , decoder_attention_mask=lowercase_ , encoder_outputs=lowercase_ , ) with self.subTest("""JIT Enabled"""): _SCREAMING_SNAKE_CASE : List[Any] = decode_jitted(**lowercase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): _SCREAMING_SNAKE_CASE : Optional[int] = decode_jitted(**lowercase_).to_tuple() self.assertEqual(len(lowercase_) , len(lowercase_)) for jitted_output, output in zip(lowercase_ , lowercase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _lowerCAmelCase ( self : Optional[Any]): """simple docstring""" for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE : Optional[Any] = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowercase_) _SCREAMING_SNAKE_CASE : str = np.ones((1, 1)) _SCREAMING_SNAKE_CASE : int = model(lowercase_) self.assertIsNotNone(lowercase_) @slow def _lowerCAmelCase ( self : int): """simple docstring""" _SCREAMING_SNAKE_CASE : int = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""") _SCREAMING_SNAKE_CASE : Any = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""") _SCREAMING_SNAKE_CASE : List[Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning \'Oh I think you\'re nominated\'\", said Dappy.\"And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around.\"At the end of the day we\'re grateful to be where we are in our careers.\"If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] _SCREAMING_SNAKE_CASE : List[str] = [ """California\'s largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.""", ] _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(lowercase_ , return_tensors="""np""" , truncation=lowercase_ , max_length=5_1_2 , padding=lowercase_) _SCREAMING_SNAKE_CASE : Dict = model.generate(**lowercase_ , num_beams=2).sequences _SCREAMING_SNAKE_CASE : List[Any] = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_) assert tgt_text == decoded
338
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : Optional[Any] = "falcon" __SCREAMING_SNAKE_CASE : List[Any] = ["past_key_values"] def __init__( self , lowercase_=6_5_0_2_4 , lowercase_=4_5_4_4 , lowercase_=3_2 , lowercase_=7_1 , lowercase_=1E-5 , lowercase_=0.0_2 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=None , lowercase_=False , lowercase_=False , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=1_1 , lowercase_=1_1 , **lowercase_ , ) -> Any: UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase = kwargs.pop('n_embed' , lowercase_ ) UpperCAmelCase = hidden_size if n_embed is None else n_embed UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = initializer_range UpperCAmelCase = use_cache UpperCAmelCase = hidden_dropout UpperCAmelCase = attention_dropout UpperCAmelCase = bos_token_id UpperCAmelCase = eos_token_id UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase = alibi UpperCAmelCase = new_decoder_architecture UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase = parallel_attn UpperCAmelCase = bias super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) @property def a_ ( self ) -> List[Any]: return self.hidden_size // self.num_attention_heads @property def a_ ( self ) -> List[str]: return not self.alibi
373
0
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCamelCase__ : Optional[int] = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' UpperCamelCase__ : Dict = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' UpperCamelCase__ : List[Any] = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" def remove_articles(_SCREAMING_SNAKE_CASE : Optional[Any] ): SCREAMING_SNAKE_CASE_ = re.compile(r'\b(a|an|the)\b' , re.UNICODE ) return re.sub(__lowerCAmelCase , ' ' , __lowerCAmelCase ) def white_space_fix(_SCREAMING_SNAKE_CASE : int ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Optional[Any] ): SCREAMING_SNAKE_CASE_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return int(normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [any(compute_exact(__lowerCAmelCase , __lowerCAmelCase ) for ref in refs ) for pred, refs in zip(__lowerCAmelCase , __lowerCAmelCase )] return (sum(__lowerCAmelCase ) / len(__lowerCAmelCase )) * 100 def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [rgram for rgrams in rgramslist for rgram in rgrams] SCREAMING_SNAKE_CASE_ = Counter(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = Counter(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = Counter() for sgram, scount in sgramcounter.items(): SCREAMING_SNAKE_CASE_ = scount * numref SCREAMING_SNAKE_CASE_ = Counter(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = Counter() for cgram, ccount in cgramcounter.items(): SCREAMING_SNAKE_CASE_ = ccount * numref # KEEP SCREAMING_SNAKE_CASE_ = sgramcounter_rep & cgramcounter_rep SCREAMING_SNAKE_CASE_ = keepgramcounter_rep & rgramcounter SCREAMING_SNAKE_CASE_ = sgramcounter_rep & rgramcounter SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 1 if len(__lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE_ = keeptmpscorea / len(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) SCREAMING_SNAKE_CASE_ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) SCREAMING_SNAKE_CASE_ = 0 if keepscore_precision > 0 or keepscore_recall > 0: SCREAMING_SNAKE_CASE_ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION SCREAMING_SNAKE_CASE_ = sgramcounter_rep - cgramcounter_rep SCREAMING_SNAKE_CASE_ = delgramcounter_rep - rgramcounter SCREAMING_SNAKE_CASE_ = sgramcounter_rep - rgramcounter SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. SCREAMING_SNAKE_CASE_ = 1 if len(__lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE_ = deltmpscorea / len(__lowerCAmelCase ) # ADDITION SCREAMING_SNAKE_CASE_ = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = set(__lowerCAmelCase ) & set(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 1 if len(__lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE_ = addtmpscore / len(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE_ = addtmpscore / len(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 0 if addscore_precision > 0 or addscore_recall > 0: SCREAMING_SNAKE_CASE_ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ = len(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ssent.split(' ' ) SCREAMING_SNAKE_CASE_ = csent.split(' ' ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for rsent in rsents: SCREAMING_SNAKE_CASE_ = rsent.split(' ' ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] ragramslist.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: SCREAMING_SNAKE_CASE_ = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: SCREAMING_SNAKE_CASE_ = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: SCREAMING_SNAKE_CASE_ = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: SCREAMING_SNAKE_CASE_ = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: SCREAMING_SNAKE_CASE_ = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: SCREAMING_SNAKE_CASE_ = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: SCREAMING_SNAKE_CASE_ = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: SCREAMING_SNAKE_CASE_ = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: SCREAMING_SNAKE_CASE_ = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(__lowerCAmelCase ) ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 SCREAMING_SNAKE_CASE_ = sum([delascore, delascore, delascore, delascore] ) / 4 SCREAMING_SNAKE_CASE_ = sum([addascore, addascore, addascore, addascore] ) / 4 SCREAMING_SNAKE_CASE_ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True ): """simple docstring""" if lowercase: SCREAMING_SNAKE_CASE_ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: SCREAMING_SNAKE_CASE_ = sacrebleu.metrics.bleu._get_tokenizer(__lowerCAmelCase )()(__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ = sacrebleu.TOKENIZERS[tokenizer]()(__lowerCAmelCase ) elif tokenizer == "moses": SCREAMING_SNAKE_CASE_ = sacremoses.MosesTokenizer().tokenize(__lowerCAmelCase , return_str=__lowerCAmelCase , escape=__lowerCAmelCase ) elif tokenizer == "penn": SCREAMING_SNAKE_CASE_ = sacremoses.MosesTokenizer().penn_tokenize(__lowerCAmelCase , return_str=__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ = sentence if not return_str: SCREAMING_SNAKE_CASE_ = normalized_sent.split() return normalized_sent def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" if not (len(__lowerCAmelCase ) == len(__lowerCAmelCase ) == len(__lowerCAmelCase )): raise ValueError('Sources length must match predictions and references lengths.' ) SCREAMING_SNAKE_CASE_ = 0 for src, pred, refs in zip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): sari_score += SARIsent(normalize(__lowerCAmelCase ) , normalize(__lowerCAmelCase ) , [normalize(__lowerCAmelCase ) for sent in refs] ) SCREAMING_SNAKE_CASE_ = sari_score / len(__lowerCAmelCase ) return 100 * sari_score def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str]="exp" , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : Dict=False , _SCREAMING_SNAKE_CASE : List[str]=False , _SCREAMING_SNAKE_CASE : str=False , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = len(references[0] ) if any(len(__lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) SCREAMING_SNAKE_CASE_ = [[refs[i] for refs in references] for i in range(__lowerCAmelCase )] SCREAMING_SNAKE_CASE_ = sacrebleu.corpus_bleu( __lowerCAmelCase , __lowerCAmelCase , smooth_method=__lowerCAmelCase , smooth_value=__lowerCAmelCase , force=__lowerCAmelCase , lowercase=__lowerCAmelCase , use_effective_order=__lowerCAmelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCAmelCase__ ( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Sequence(datasets.Value('string' , id='sequence') , id='references'), }) , codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] , reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def lowerCAmelCase__ ( self , _A , _A , _A): SCREAMING_SNAKE_CASE_ = {} result.update({'sari': compute_sari(sources=_lowerCAmelCase , predictions=_lowerCAmelCase , references=_lowerCAmelCase)}) result.update({'sacrebleu': compute_sacrebleu(predictions=_lowerCAmelCase , references=_lowerCAmelCase)}) result.update({'exact': compute_em(predictions=_lowerCAmelCase , references=_lowerCAmelCase)}) return result
709
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin UpperCamelCase__ : int = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __snake_case ( unittest.TestCase , lowerCAmelCase__ ): def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = load_tool('text-question-answering') self.tool.setup() SCREAMING_SNAKE_CASE_ = load_tool('text-question-answering' , remote=_A) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.tool(_A , 'What did Hugging Face do in April 2021?') self.assertEqual(_A , 'launched the BigScience Research Workshop') def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.remote_tool(_A , 'What did Hugging Face do in April 2021?') self.assertEqual(_A , 'launched the BigScience Research Workshop') def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.tool(text=_A , question='What did Hugging Face do in April 2021?') self.assertEqual(_A , 'launched the BigScience Research Workshop') def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.remote_tool(text=_A , question='What did Hugging Face do in April 2021?') self.assertEqual(_A , 'launched the BigScience Research Workshop')
620
0
"""simple docstring""" from collections.abc import Sequence def UpperCAmelCase__ ( lowerCAmelCase__ :Sequence[float] , lowerCAmelCase__ :float ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(lowerCAmelCase__ ) ) def UpperCAmelCase__ ( lowerCAmelCase__ :Sequence[float] , lowerCAmelCase__ :float ) -> float: '''simple docstring''' lowercase = 0.0 for coeff in reversed(lowerCAmelCase__ ): lowercase = result * x + coeff return result if __name__ == "__main__": __lowerCAmelCase : Tuple =(0.0, 0.0, 5.0, 9.3, 7.0) __lowerCAmelCase : Tuple =10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
359
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase__ ( lowerCAmelCase__ :Union[List, PIL.Image.Image, torch.Tensor] ) -> Optional[Any]: '''simple docstring''' warnings.warn( """The preprocess method is deprecated and will be removed in a future version. Please""" """ use VaeImageProcessor.preprocess instead""" , lowerCAmelCase__ , ) if isinstance(lowerCAmelCase__ , torch.Tensor ): return image elif isinstance(lowerCAmelCase__ , PIL.Image.Image ): lowercase = [image] if isinstance(image[0] , PIL.Image.Image ): lowercase , lowercase = image[0].size lowercase , lowercase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowercase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] lowercase = np.concatenate(lowerCAmelCase__ , axis=0 ) lowercase = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0 lowercase = image.transpose(0 , 3 , 1 , 2 ) lowercase = 2.0 * image - 1.0 lowercase = torch.from_numpy(lowerCAmelCase__ ) elif isinstance(image[0] , torch.Tensor ): lowercase = torch.cat(lowerCAmelCase__ , dim=0 ) return image def UpperCAmelCase__ ( lowerCAmelCase__ :Union[List, PIL.Image.Image, torch.Tensor] ) -> Dict: '''simple docstring''' if isinstance(lowerCAmelCase__ , torch.Tensor ): return mask elif isinstance(lowerCAmelCase__ , PIL.Image.Image ): lowercase = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowercase , lowercase = mask[0].size lowercase , lowercase = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 lowercase = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask] lowercase = np.concatenate(lowerCAmelCase__ , axis=0 ) lowercase = mask.astype(np.floataa ) / 255.0 lowercase = 0 lowercase = 1 lowercase = torch.from_numpy(lowerCAmelCase__ ) elif isinstance(mask[0] , torch.Tensor ): lowercase = torch.cat(lowerCAmelCase__ , dim=0 ) return mask class _A ( lowerCAmelCase ): snake_case__ : UNetaDModel snake_case__ : RePaintScheduler def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" super().__init__() self.register_modules(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) @torch.no_grad() def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 250 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 10 , __lowerCAmelCase = 10 , __lowerCAmelCase = None , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , ): """simple docstring""" lowercase = image lowercase = _preprocess_image(__lowerCAmelCase ) lowercase = original_image.to(device=self.device , dtype=self.unet.dtype ) lowercase = _preprocess_mask(__lowerCAmelCase ) lowercase = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowercase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) lowercase = original_image.shape lowercase = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , self.device ) lowercase = eta lowercase = self.scheduler.timesteps[0] + 1 lowercase = generator[0] if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowercase = self.unet(__lowerCAmelCase , __lowerCAmelCase ).sample # compute previous image: x_t -> x_t-1 lowercase = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowercase = self.scheduler.undo_step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase = t lowercase = (image / 2 + 0.5).clamp(0 , 1 ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
359
1
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy __lowerCAmelCase :Tuple = logging.get_logger(__name__) __lowerCAmelCase :str = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } __lowerCAmelCase :Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } __lowerCAmelCase :str = { 'jukebox': 5_12, } class _a( __A ): lowerCamelCase__ :Any = VOCAB_FILES_NAMES lowerCamelCase__ :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ :int = PRETRAINED_LYRIC_TOKENS_SIZES lowerCamelCase__ :Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case=["v3", "v2", "v2"] , __snake_case=5_1_2 , __snake_case=5 , __snake_case="<|endoftext|>" , **__snake_case , ) -> str: '''simple docstring''' _snake_case : List[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token super().__init__( unk_token=__snake_case , n_genres=__snake_case , version=__snake_case , max_n_lyric_tokens=__snake_case , **__snake_case , ) _snake_case : List[Any] = version _snake_case : Optional[Any] = max_n_lyric_tokens _snake_case : Optional[int] = n_genres with open(__snake_case , encoding="utf-8" ) as vocab_handle: _snake_case : List[str] = json.load(__snake_case ) with open(__snake_case , encoding="utf-8" ) as vocab_handle: _snake_case : List[str] = json.load(__snake_case ) with open(__snake_case , encoding="utf-8" ) as vocab_handle: _snake_case : List[str] = json.load(__snake_case ) _snake_case : int = r"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: _snake_case : List[str] = oov.replace(r"\-'" , r"\-+'" ) _snake_case : List[Any] = regex.compile(__snake_case ) _snake_case : Tuple = {v: k for k, v in self.artists_encoder.items()} _snake_case : Optional[Any] = {v: k for k, v in self.genres_encoder.items()} _snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def lowercase ( self ) -> List[Any]: '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def lowercase ( self ) -> Optional[Any]: '''simple docstring''' return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def lowercase ( self , __snake_case , __snake_case , __snake_case ) -> List[Any]: '''simple docstring''' _snake_case : List[str] = [self.artists_encoder.get(__snake_case , 0 ) for artist in list_artists] for genres in range(len(__snake_case ) ): _snake_case : List[Any] = [self.genres_encoder.get(__snake_case , 0 ) for genre in list_genres[genres]] _snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) _snake_case : Tuple = [[self.lyrics_encoder.get(__snake_case , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def lowercase ( self , __snake_case ) -> Any: '''simple docstring''' return list(__snake_case ) def lowercase ( self , __snake_case , __snake_case , __snake_case , **__snake_case ) -> List[str]: '''simple docstring''' _snake_case , _snake_case , _snake_case : Tuple = self.prepare_for_tokenization(__snake_case , __snake_case , __snake_case ) _snake_case : str = self._tokenize(__snake_case ) return artist, genre, lyrics def lowercase ( self , __snake_case , __snake_case , __snake_case , __snake_case = False ) -> Tuple[str, str, str, Dict[str, Any]]: '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": _snake_case : Dict = artists[idx].lower() _snake_case : Any = [genres[idx].lower()] else: _snake_case : List[Any] = self._normalize(artists[idx] ) + ".v2" _snake_case : Union[str, Any] = [ self._normalize(__snake_case ) + ".v2" for genre in genres[idx].split("_" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": _snake_case : List[Any] = regex.compile(r"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" ) _snake_case : int = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n" _snake_case : Tuple = {vocab[index]: index + 1 for index in range(len(__snake_case ) )} _snake_case : Union[str, Any] = 0 _snake_case : Tuple = len(__snake_case ) + 1 _snake_case : Dict = self.vocab _snake_case : Dict = {v: k for k, v in self.vocab.items()} _snake_case : Optional[Any] = "" else: _snake_case : Optional[Any] = regex.compile(r"[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+" ) _snake_case : Optional[Any] = self._run_strip_accents(__snake_case ) _snake_case : str = lyrics.replace("\\" , "\n" ) _snake_case : str = self.out_of_vocab.sub("" , __snake_case ), [], [] return artists, genres, lyrics def lowercase ( self , __snake_case ) -> str: '''simple docstring''' _snake_case : Union[str, Any] = unicodedata.normalize("NFD" , __snake_case ) _snake_case : Optional[Any] = [] for char in text: _snake_case : List[Any] = unicodedata.category(__snake_case ) if cat == "Mn": continue output.append(__snake_case ) return "".join(__snake_case ) def lowercase ( self , __snake_case ) -> str: '''simple docstring''' _snake_case : Any = ( [chr(__snake_case ) for i in range(ord("a" ) , ord("z" ) + 1 )] + [chr(__snake_case ) for i in range(ord("A" ) , ord("Z" ) + 1 )] + [chr(__snake_case ) for i in range(ord("0" ) , ord("9" ) + 1 )] + ["."] ) _snake_case : List[Any] = frozenset(__snake_case ) _snake_case : List[Any] = re.compile(r"_+" ) _snake_case : str = "".join([c if c in accepted else "_" for c in text.lower()] ) _snake_case : Optional[int] = pattern.sub("_" , __snake_case ).strip("_" ) return text def lowercase ( self , __snake_case ) -> str: '''simple docstring''' return " ".join(__snake_case ) def lowercase ( self , __snake_case , __snake_case = None , __snake_case = False ) -> Optional[Any]: '''simple docstring''' if not isinstance(__snake_case , __snake_case ): _snake_case : int = TensorType(__snake_case ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." ) import tensorflow as tf _snake_case : Optional[int] = tf.constant _snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed." ) import torch _snake_case : List[Any] = torch.tensor _snake_case : Optional[int] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed." ) import jax.numpy as jnp # noqa: F811 _snake_case : List[str] = jnp.array _snake_case : Any = _is_jax else: _snake_case : Dict = np.asarray _snake_case : str = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: _snake_case : Union[str, Any] = [inputs] if not is_tensor(__snake_case ): _snake_case : Any = as_tensor(__snake_case ) except: # noqa E722 raise ValueError( "Unable to create tensor, you should probably activate truncation and/or padding " "with 'padding=True' 'truncation=True' to have batched tensors with the same length." ) return inputs def __call__( self , __snake_case , __snake_case , __snake_case="" , __snake_case="pt" ) -> BatchEncoding: '''simple docstring''' _snake_case : str = [0, 0, 0] _snake_case : Union[str, Any] = [artist] * len(self.version ) _snake_case : Optional[Any] = [genres] * len(self.version ) _snake_case , _snake_case , _snake_case : Tuple = self.tokenize(__snake_case , __snake_case , __snake_case ) _snake_case , _snake_case , _snake_case : Any = self._convert_token_to_id(__snake_case , __snake_case , __snake_case ) _snake_case : Dict = [-INFINITY] * len(full_tokens[-1] ) _snake_case : str = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=__snake_case ) for i in range(len(self.version ) ) ] return BatchEncoding({"input_ids": input_ids, "attention_masks": attention_masks} ) def lowercase ( self , __snake_case , __snake_case = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _snake_case : Dict = os.path.join( __snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["artists_file"] ) with open(__snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=__snake_case ) ) _snake_case : Union[str, Any] = os.path.join( __snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["genres_file"] ) with open(__snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=__snake_case ) ) _snake_case : Tuple = os.path.join( __snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["lyrics_file"] ) with open(__snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=__snake_case ) ) return (artists_file, genres_file, lyrics_file) def lowercase ( self , __snake_case , __snake_case , __snake_case ) -> Any: '''simple docstring''' _snake_case : Dict = self.artists_decoder.get(__snake_case ) _snake_case : Dict = [self.genres_decoder.get(__snake_case ) for genre in genres_index] _snake_case : Dict = [self.lyrics_decoder.get(__snake_case ) for character in lyric_index] return artist, genres, lyrics
278
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class _a: def __init__( self , __snake_case , ) -> List[str]: '''simple docstring''' _snake_case : Dict = parent _snake_case : Any = 1_3 _snake_case : Union[str, Any] = 7 _snake_case : Any = True _snake_case : Optional[Any] = True _snake_case : List[str] = False _snake_case : str = True _snake_case : int = 9_9 _snake_case : Optional[int] = 3_2 _snake_case : Dict = 2 _snake_case : Optional[Any] = 4 _snake_case : Any = 3_7 _snake_case : Optional[int] = "gelu" _snake_case : Optional[Any] = 0.1 _snake_case : List[Any] = 0.1 _snake_case : Any = 5_1_2 _snake_case : Optional[int] = 1_6 _snake_case : Dict = 2 _snake_case : Optional[int] = 0.02 _snake_case : Any = 3 _snake_case : Tuple = 4 _snake_case : str = None def lowercase ( self ) -> Union[str, Any]: '''simple docstring''' _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : List[Any] = None if self.use_input_mask: _snake_case : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : str = None _snake_case : Optional[Any] = None _snake_case : Any = None if self.use_labels: _snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) _snake_case : Optional[Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' _snake_case : str = TFDistilBertModel(config=__snake_case ) _snake_case : Dict = {"input_ids": input_ids, "attention_mask": input_mask} _snake_case : Union[str, Any] = model(__snake_case ) _snake_case : Union[str, Any] = [input_ids, input_mask] _snake_case : int = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> str: '''simple docstring''' _snake_case : str = TFDistilBertForMaskedLM(config=__snake_case ) _snake_case : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} _snake_case : Tuple = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: '''simple docstring''' _snake_case : int = TFDistilBertForQuestionAnswering(config=__snake_case ) _snake_case : Any = { "input_ids": input_ids, "attention_mask": input_mask, } _snake_case : Tuple = model(__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> str: '''simple docstring''' _snake_case : Dict = self.num_labels _snake_case : Dict = TFDistilBertForSequenceClassification(__snake_case ) _snake_case : Dict = {"input_ids": input_ids, "attention_mask": input_mask} _snake_case : Optional[Any] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' _snake_case : str = self.num_choices _snake_case : List[str] = TFDistilBertForMultipleChoice(__snake_case ) _snake_case : Optional[int] = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) _snake_case : int = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) _snake_case : str = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } _snake_case : List[Any] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' _snake_case : List[str] = self.num_labels _snake_case : int = TFDistilBertForTokenClassification(__snake_case ) _snake_case : Any = {"input_ids": input_ids, "attention_mask": input_mask} _snake_case : Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self ) -> Tuple: '''simple docstring''' _snake_case : List[str] = self.prepare_config_and_inputs() ((_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case)) : List[str] = config_and_inputs _snake_case : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _a( __A , __A , unittest.TestCase ): lowerCamelCase__ :str = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) lowerCamelCase__ :Tuple = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ :Tuple = False lowerCamelCase__ :Any = False def lowercase ( self ) -> int: '''simple docstring''' _snake_case : Optional[Any] = TFDistilBertModelTester(self ) _snake_case : str = ConfigTester(self , config_class=__snake_case , dim=3_7 ) def lowercase ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase ( self ) -> List[Any]: '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__snake_case ) def lowercase ( self ) -> Any: '''simple docstring''' _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__snake_case ) def lowercase ( self ) -> List[str]: '''simple docstring''' _snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__snake_case ) def lowercase ( self ) -> Dict: '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__snake_case ) def lowercase ( self ) -> Dict: '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__snake_case ) def lowercase ( self ) -> List[Any]: '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__snake_case ) @slow def lowercase ( self ) -> Tuple: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): _snake_case : Any = TFDistilBertModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_tf class _a( unittest.TestCase ): @slow def lowercase ( self ) -> List[str]: '''simple docstring''' _snake_case : Any = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) _snake_case : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) _snake_case : Dict = model(__snake_case )[0] _snake_case : str = [1, 6, 7_6_8] self.assertEqual(output.shape , __snake_case ) _snake_case : Optional[Any] = tf.constant( [ [ [0.19_26_18_85, -0.13_73_29_55, 0.4_11_97_99], [0.22_15_01_56, -0.07_42_26_61, 0.39_03_72_04], [0.22_75_60_18, -0.0_89_64_14, 0.3_70_14_67], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __snake_case , atol=1E-4 )
278
1
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py UpperCAmelCase__ = "src/transformers" UpperCAmelCase__ = "docs/source/en" UpperCAmelCase__ = "." def _A( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ) -> List[Any]: '''simple docstring''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __lowercase = f.readlines() # Find the start prompt. __lowercase = 0 while not lines[start_index].startswith(UpperCamelCase__ ): start_index += 1 start_index += 1 __lowercase = start_index while not lines[end_index].startswith(UpperCamelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | UpperCAmelCase__ = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. UpperCAmelCase__ = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") UpperCAmelCase__ = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. UpperCAmelCase__ = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def _A( UpperCamelCase__ : Tuple ) -> List[Any]: '''simple docstring''' __lowercase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def _A( UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ) -> Any: '''simple docstring''' __lowercase = 2 if text == '''✅''' or text == '''❌''' else len(UpperCamelCase__ ) __lowercase = (width - text_length) // 2 __lowercase = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def _A( ) -> List[str]: '''simple docstring''' __lowercase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __lowercase = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __lowercase = {name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __lowercase = collections.defaultdict(UpperCamelCase__ ) __lowercase = collections.defaultdict(UpperCamelCase__ ) __lowercase = collections.defaultdict(UpperCamelCase__ ) __lowercase = collections.defaultdict(UpperCamelCase__ ) __lowercase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCamelCase__ ): __lowercase = None if attr_name.endswith('''Tokenizer''' ): __lowercase = slow_tokenizers __lowercase = attr_name[:-9] elif attr_name.endswith('''TokenizerFast''' ): __lowercase = fast_tokenizers __lowercase = attr_name[:-13] elif _re_tf_models.match(UpperCamelCase__ ) is not None: __lowercase = tf_models __lowercase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __lowercase = flax_models __lowercase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __lowercase = pt_models __lowercase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): __lowercase = True break # Try again after removing the last word in the name __lowercase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) # Let's build that table! __lowercase = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __lowercase = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __lowercase = [len(UpperCamelCase__ ) + 2 for c in columns] __lowercase = max([len(UpperCamelCase__ ) for name in model_names] ) + 2 # Build the table per se __lowercase = '''|''' + '''|'''.join([_center_text(UpperCamelCase__ , UpperCamelCase__ ) for c, w in zip(UpperCamelCase__ , UpperCamelCase__ )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n" __lowercase = {True: '''✅''', False: '''❌'''} for name in model_names: __lowercase = model_name_to_prefix[name] __lowercase = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCamelCase__ , UpperCamelCase__ ) for l, w in zip(UpperCamelCase__ , UpperCamelCase__ )] ) + "|\n" return table def _A( UpperCamelCase__ : Optional[Any]=False ) -> List[str]: '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = _find_text_in_file( filename=os.path.join(UpperCamelCase__ , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , ) __lowercase = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCamelCase__ , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( '''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCAmelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
332
from __future__ import annotations from dataclasses import dataclass @dataclass class a : """simple docstring""" UpperCamelCase_ : float UpperCamelCase_ : TreeNode | None = None UpperCamelCase_ : TreeNode | None = None def _A( UpperCamelCase__ : TreeNode | None ) -> bool: '''simple docstring''' def is_valid_tree(UpperCamelCase__ : TreeNode | None ) -> bool: if node is None: return True if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(UpperCamelCase__ ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( UpperCamelCase__ : TreeNode | None , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , UpperCamelCase__ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , UpperCamelCase__ ) ) return is_binary_search_tree_recursive_check(UpperCamelCase__ , -float('''inf''' ) , float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
332
1
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup UpperCamelCase_ : Optional[Any] = logging.get_logger(__name__) class lowerCamelCase__ ( __lowerCamelCase ): """simple docstring""" def __init__( self : Optional[Any] ,**a__ : int ): requires_backends(self ,["bs4"] ) super().__init__(**a__ ) def lowerCAmelCase_ ( self : List[Any] ,a__ : int ): a__ = [] a__ = [] a__ = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag a__ = parent.find_all(child.name ,recursive=a__ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(a__ ) else next(i for i, s in enumerate(a__ ,1 ) if s is child ) ) a__ = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def lowerCAmelCase_ ( self : Tuple ,a__ : Optional[Any] ): a__ = BeautifulSoup(a__ ,"html.parser" ) a__ = [] a__ = [] a__ = [] for element in html_code.descendants: if type(a__ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue a__ = html.unescape(a__ ).strip() if not text_in_this_tag: continue all_doc_strings.append(a__ ) a__ , a__ = self.xpath_soup(a__ ) stringaxtag_seq.append(a__ ) stringaxsubs_seq.append(a__ ) if len(a__ ) != len(a__ ): raise ValueError("Number of doc strings and xtags does not correspond" ) if len(a__ ) != len(a__ ): raise ValueError("Number of doc strings and xsubs does not correspond" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def lowerCAmelCase_ ( self : Union[str, Any] ,a__ : Union[str, Any] ,a__ : Optional[int] ): a__ = "" for tagname, subs in zip(a__ ,a__ ): xpath += f'/{tagname}' if subs != 0: xpath += f'[{subs}]' return xpath def __call__( self : Union[str, Any] ,a__ : int ): a__ = False # Check that strings has a valid type if isinstance(a__ ,a__ ): a__ = True elif isinstance(a__ ,(list, tuple) ): if len(a__ ) == 0 or isinstance(html_strings[0] ,a__ ): a__ = True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " f'but is of type {type(a__ )}.' ) a__ = bool(isinstance(a__ ,(list, tuple) ) and (isinstance(html_strings[0] ,a__ )) ) if not is_batched: a__ = [html_strings] # Get nodes + xpaths a__ = [] a__ = [] for html_string in html_strings: a__ , a__ , a__ = self.get_three_from_single(a__ ) nodes.append(a__ ) a__ = [] for node, tag_list, sub_list in zip(a__ ,a__ ,a__ ): a__ = self.construct_xpath(a__ ,a__ ) xpath_strings.append(a__ ) xpaths.append(a__ ) # return as Dict a__ = {"nodes": nodes, "xpaths": xpaths} a__ = BatchFeature(data=a__ ,tensor_type=a__ ) return encoded_inputs
394
'''simple docstring''' class lowerCamelCase__ : """simple docstring""" def __init__( self : Tuple ): a__ = {} # Mapping from char to TrieNode a__ = False def lowerCAmelCase_ ( self : str ,a__ : list[str] ): for word in words: self.insert(a__ ) def lowerCAmelCase_ ( self : int ,a__ : str ): a__ = self for char in word: if char not in curr.nodes: a__ = TrieNode() a__ = curr.nodes[char] a__ = True def lowerCAmelCase_ ( self : Any ,a__ : str ): a__ = self for char in word: if char not in curr.nodes: return False a__ = curr.nodes[char] return curr.is_leaf def lowerCAmelCase_ ( self : Optional[Any] ,a__ : str ): def _delete(a__ : TrieNode ,a__ : str ,a__ : int ) -> bool: if index == len(a__ ): # If word does not exist if not curr.is_leaf: return False a__ = False return len(curr.nodes ) == 0 a__ = word[index] a__ = curr.nodes.get(a__ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted a__ = _delete(a__ ,a__ ,index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self ,a__ ,0 ) def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" if node.is_leaf: print(_lowercase , end=" " ) for key, value in node.nodes.items(): print_words(_lowercase , word + key ) def _lowerCAmelCase (): """simple docstring""" a__ = "banana bananas bandana band apple all beast".split() a__ = TrieNode() root.insert_many(_lowercase ) # print_words(root, "") assert all(root.find(_lowercase ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" print(str(_lowercase ) , "works!" if passes else "doesn't work :(" ) def _lowerCAmelCase (): """simple docstring""" assert test_trie() def _lowerCAmelCase (): """simple docstring""" print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
394
1
import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def __UpperCAmelCase ( a_): config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested') config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested') config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested') config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment') config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate') config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule') def __UpperCAmelCase ( a_): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_snake_case) def __UpperCAmelCase ( a_): from transformers.testing_utils import pytest_terminal_summary_main snake_case_ = terminalreporter.config.getoption('--make-reports') if make_reports: pytest_terminal_summary_main(_snake_case , id=_snake_case) def __UpperCAmelCase ( a_ , a_): if exitstatus == 5: snake_case_ = 0 # Doctest custom flag to ignore output. lowercase = doctest.register_optionflag("IGNORE_RESULT") lowercase = doctest.OutputChecker class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def _UpperCamelCase ( self , a , a , a ) -> List[Any]: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , a , a , a ) lowercase = CustomOutputChecker lowercase = HfDoctestModule lowercase = HfDocTestParser
198
"""simple docstring""" _UpperCamelCase = 8.31_44_62 # Unit - J mol-1 K-1 def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
341
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase_ = { '''configuration_transfo_xl''': ['''TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TransfoXLConfig'''], '''tokenization_transfo_xl''': ['''TransfoXLCorpus''', '''TransfoXLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AdaptiveEmbedding''', '''TransfoXLForSequenceClassification''', '''TransfoXLLMHeadModel''', '''TransfoXLModel''', '''TransfoXLPreTrainedModel''', '''load_tf_weights_in_transfo_xl''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAdaptiveEmbedding''', '''TFTransfoXLForSequenceClassification''', '''TFTransfoXLLMHeadModel''', '''TFTransfoXLMainLayer''', '''TFTransfoXLModel''', '''TFTransfoXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
706
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __lowerCamelCase ( __snake_case ): def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> int: super().__init__() snake_case_ = value_function snake_case_ = unet snake_case_ = scheduler snake_case_ = env snake_case_ = env.get_dataset() snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].mean() except: # noqa: E722 pass snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].std() except: # noqa: E722 pass snake_case_ = env.observation_space.shape[0] snake_case_ = env.action_space.shape[0] def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase ) -> int: return (x_in - self.means[key]) / self.stds[key] def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase ) -> Dict: return x_in * self.stds[key] + self.means[key] def lowerCAmelCase_ ( self , lowerCamelCase ) -> List[str]: if type(lowerCamelCase ) is dict: return {k: self.to_torch(lowerCamelCase ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase , device=self.unet.device ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: for key, val in cond.items(): snake_case_ = val.clone() return x_in def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: snake_case_ = x.shape[0] snake_case_ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model snake_case_ = torch.full((batch_size,) , lowerCamelCase , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models snake_case_ = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase ).sample snake_case_ = torch.autograd.grad([y.sum()] , [x] )[0] snake_case_ = self.scheduler._get_variance(lowerCamelCase ) snake_case_ = torch.exp(0.5 * posterior_variance ) snake_case_ = model_std * grad snake_case_ = 0 snake_case_ = x.detach() snake_case_ = x + scale * grad snake_case_ = self.reset_xa(lowerCamelCase , lowerCamelCase , self.action_dim ) snake_case_ = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg snake_case_ = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , predict_epsilon=lowerCamelCase )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) snake_case_ = self.reset_xa(lowerCamelCase , lowerCamelCase , self.action_dim ) snake_case_ = self.to_torch(lowerCamelCase ) return x, y def __call__( self , lowerCamelCase , lowerCamelCase=64 , lowerCamelCase=32 , lowerCamelCase=2 , lowerCamelCase=0.1 ) -> List[Any]: # normalize the observations and create batch dimension snake_case_ = self.normalize(lowerCamelCase , """observations""" ) snake_case_ = obs[None].repeat(lowerCamelCase , axis=0 ) snake_case_ = {0: self.to_torch(lowerCamelCase )} snake_case_ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) snake_case_ = randn_tensor(lowerCamelCase , device=self.unet.device ) snake_case_ = self.reset_xa(lowerCamelCase , lowerCamelCase , self.action_dim ) snake_case_ = self.to_torch(lowerCamelCase ) # run the diffusion process snake_case_ , snake_case_ = self.run_diffusion(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # sort output trajectories by value snake_case_ = y.argsort(0 , descending=lowerCamelCase ).squeeze() snake_case_ = x[sorted_idx] snake_case_ = sorted_values[:, :, : self.action_dim] snake_case_ = actions.detach().cpu().numpy() snake_case_ = self.de_normalize(lowerCamelCase , key="""actions""" ) # select the action with the highest value if y is not None: snake_case_ = 0 else: # if we didn't run value guiding, select a random action snake_case_ = np.random.randint(0 , lowerCamelCase ) snake_case_ = denorm_actions[selected_index, 0] return denorm_actions
161
0
'''simple docstring''' import warnings from .generation import TFGenerationMixin class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , _SCREAMING_SNAKE_CASE , )
5
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCamelCase = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
0
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ : list[int] ) -> int: '''simple docstring''' if not nums: return 0 lowerCAmelCase_ :Tuple = nums[0] lowerCAmelCase_ :Any = 0 for num in nums[1:]: lowerCAmelCase_ :Any = ( max_excluding + num, max(lowercase__ , lowercase__ ), ) return max(lowercase__ , lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _SCREAMING_SNAKE_CASE : UpperCAmelCase_ :str = PegasusConfig UpperCAmelCase_ :Optional[int] = {} UpperCAmelCase_ :List[str] = "gelu" def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=False , __A=99 , __A=32 , __A=2 , __A=4 , __A=37 , __A=0.1 , __A=0.1 , __A=40 , __A=2 , __A=1 , __A=0 , ) -> int: lowerCAmelCase_ :List[Any] = parent lowerCAmelCase_ :List[Any] = batch_size lowerCAmelCase_ :Union[str, Any] = seq_length lowerCAmelCase_ :List[str] = is_training lowerCAmelCase_ :Tuple = use_labels lowerCAmelCase_ :str = vocab_size lowerCAmelCase_ :Optional[int] = hidden_size lowerCAmelCase_ :Optional[int] = num_hidden_layers lowerCAmelCase_ :Optional[int] = num_attention_heads lowerCAmelCase_ :Any = intermediate_size lowerCAmelCase_ :Dict = hidden_dropout_prob lowerCAmelCase_ :Optional[Any] = attention_probs_dropout_prob lowerCAmelCase_ :List[Any] = max_position_embeddings lowerCAmelCase_ :Union[str, Any] = eos_token_id lowerCAmelCase_ :str = pad_token_id lowerCAmelCase_ :str = bos_token_id def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ :str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ :Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ :List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCAmelCase_ :str = prepare_pegasus_inputs_dict(__A , __A , __A ) return config, inputs_dict def __lowerCAmelCase ( self , __A , __A ) -> Tuple: lowerCAmelCase_ :str = TFPegasusModel(config=__A ).get_decoder() lowerCAmelCase_ :str = inputs_dict["""input_ids"""] lowerCAmelCase_ :Optional[int] = input_ids[:1, :] lowerCAmelCase_ :Dict = inputs_dict["""attention_mask"""][:1, :] lowerCAmelCase_ :Union[str, Any] = inputs_dict["""head_mask"""] lowerCAmelCase_ :int = 1 # first forward pass lowerCAmelCase_ :List[Any] = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) lowerCAmelCase_ , lowerCAmelCase_ :Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ :Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ :Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase_ :str = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase_ :Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase_ :List[Any] = model(__A , attention_mask=__A )[0] lowerCAmelCase_ :Optional[int] = model(__A , attention_mask=__A , past_key_values=__A )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase_ :Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase_ :Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase_ :Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__A , __A , rtol=1E-3 ) def _snake_case ( lowercase__ : List[str] , lowercase__ : List[Any] , lowercase__ : Optional[Any] , lowercase__ : List[Any]=None , lowercase__ : int=None , lowercase__ : Optional[int]=None , lowercase__ : List[str]=None , lowercase__ : int=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: lowerCAmelCase_ :str = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCAmelCase_ :Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCAmelCase_ :Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase_ :Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase_ :Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _SCREAMING_SNAKE_CASE ( A__ , A__ , unittest.TestCase ): UpperCAmelCase_ :str = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () UpperCAmelCase_ :Union[str, Any] = (TFPegasusForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase_ :Union[str, Any] = ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase_ :List[Any] = True UpperCAmelCase_ :Optional[int] = False UpperCAmelCase_ :Optional[int] = False def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :str = TFPegasusModelTester(self ) lowerCAmelCase_ :Union[str, Any] = ConfigTester(self , config_class=__A ) def __lowerCAmelCase ( self ) -> int: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__A ) @require_sentencepiece @require_tokenizers @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): UpperCAmelCase_ :List[str] = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] UpperCAmelCase_ :str = [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers UpperCAmelCase_ :Optional[int] = "google/pegasus-xsum" @cached_property def __lowerCAmelCase ( self ) -> int: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __lowerCAmelCase ( self , **__A ) -> Union[str, Any]: lowerCAmelCase_ :Optional[int] = self.translate_src_text(**__A ) assert self.expected_text == generated_words def __lowerCAmelCase ( self , **__A ) -> str: lowerCAmelCase_ :str = self.tokenizer(self.src_text , **__A , padding=__A , return_tensors="""tf""" ) lowerCAmelCase_ :int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__A , ) lowerCAmelCase_ :int = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__A ) return generated_words @slow def __lowerCAmelCase ( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
256
0
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase = 10_00 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
207
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
391
0
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig _a : Dict = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class __A ( UpperCamelCase_ ): '''simple docstring''' lowerCAmelCase_ = """ernie_m""" lowerCAmelCase_ = {"""dropout""": """classifier_dropout""", """num_classes""": """num_labels"""} def __init__( self , __lowerCAmelCase = 2_5_0_0_0_2 , __lowerCAmelCase = 7_6_8 , __lowerCAmelCase = 1_2 , __lowerCAmelCase = 1_2 , __lowerCAmelCase = 3_0_7_2 , __lowerCAmelCase = "gelu" , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 5_1_4 , __lowerCAmelCase = 0.02 , __lowerCAmelCase = 1 , __lowerCAmelCase = 1E-05 , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=0.0 , **__lowerCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=__a , **__a ) lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = classifier_dropout lowerCamelCase__ = is_decoder lowerCamelCase__ = act_dropout
716
_a = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _a = [{"type": "code", "content": INSTALL_CONTENT}] _a = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
29
0
from queue import PriorityQueue from typing import Any import numpy as np def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A__ = cst_fwd.get(__UpperCamelCase , np.inf ) A__ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A__ = new_cost_f A__ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A__ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: A__ = -1 A__ = set() A__ = set() A__ = {source: 0} A__ = {destination: 0} A__ = {source: None} A__ = {destination: None} A__ = PriorityQueue() A__ = PriorityQueue() A__ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A__ , A__ = queue_forward.get() visited_forward.add(__UpperCamelCase ) A__ , A__ = queue_backward.get() visited_backward.add(__UpperCamelCase ) A__ = pass_and_relaxation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) A__ = pass_and_relaxation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A__ = shortest_distance return shortest_path_distance SCREAMING_SNAKE_CASE__ = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } SCREAMING_SNAKE_CASE__ = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
9
"""simple docstring""" class lowercase : def __init__(self : Dict ) -> List[Any]: """simple docstring""" lowerCAmelCase = {} def UpperCAmelCase (self : Union[str, Any] ) -> None: """simple docstring""" print(self.vertex ) for i in self.vertex: print(SCREAMING_SNAKE_CASE_ ,''' -> ''' ,''' -> '''.join([str(SCREAMING_SNAKE_CASE_ ) for j in self.vertex[i]] ) ) def UpperCAmelCase (self : Optional[Any] ,SCREAMING_SNAKE_CASE_ : int ,SCREAMING_SNAKE_CASE_ : int ) -> None: """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(SCREAMING_SNAKE_CASE_ ) else: # else make a new vertex lowerCAmelCase = [to_vertex] def UpperCAmelCase (self : List[str] ) -> None: """simple docstring""" lowerCAmelCase = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : Optional[Any] ,SCREAMING_SNAKE_CASE_ : int ,SCREAMING_SNAKE_CASE_ : list ) -> None: """simple docstring""" lowerCAmelCase = True print(SCREAMING_SNAKE_CASE_ ,end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCAmelCase = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
535
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __UpperCamelCase ( a : Any , a : Any=0.999 , a : Any="cosine" , ) ->List[str]: if alpha_transform_type == "cosine": def alpha_bar_fn(a : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a : Tuple ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) snake_case = [] for i in range(a ): snake_case = i / num_diffusion_timesteps snake_case = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a ) / alpha_bar_fn(a ) , a ) ) return torch.tensor(a , dtype=torch.floataa ) class _lowercase ( __a , __a ): _UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] _UpperCAmelCase = 2 @register_to_config def __init__( self , A__ = 10_00 , A__ = 0.0_0_0_8_5 , A__ = 0.0_1_2 , A__ = "linear" , A__ = None , A__ = "epsilon" , A__ = "linspace" , A__ = 0 , ) -> List[Any]: if trained_betas is not None: snake_case = torch.tensor(A__ , dtype=torch.floataa ) elif beta_schedule == "linear": snake_case = torch.linspace(A__ , A__ , A__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , A__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case = betas_for_alpha_bar(A__ ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) snake_case = 1.0 - self.betas snake_case = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(A__ , A__ , A__ ) def UpperCamelCase ( self , A__ , A__=None ) -> List[str]: if schedule_timesteps is None: snake_case = self.timesteps snake_case = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: snake_case = 1 if len(A__ ) > 1 else 0 else: snake_case = timestep.cpu().item() if torch.is_tensor(A__ ) else timestep snake_case = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase ( self ) -> List[str]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase ( self , A__ , A__ , ) -> torch.FloatTensor: snake_case = self.index_for_timestep(A__ ) if self.state_in_first_order: snake_case = self.sigmas[step_index] else: snake_case = self.sigmas_interpol[step_index] snake_case = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase ( self , A__ , A__ = None , A__ = None , ) -> Any: snake_case = num_inference_steps snake_case = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": snake_case = np.linspace(0 , num_train_timesteps - 1 , A__ , dtype=A__ )[::-1].copy() elif self.config.timestep_spacing == "leading": snake_case = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case = (np.arange(0 , A__ ) * step_ratio).round()[::-1].copy().astype(A__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": snake_case = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case = (np.arange(A__ , 0 , -step_ratio )).round().copy().astype(A__ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) snake_case = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) snake_case = torch.from_numpy(np.log(A__ ) ).to(A__ ) snake_case = np.interp(A__ , np.arange(0 , len(A__ ) ) , A__ ) snake_case = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) snake_case = torch.from_numpy(A__ ).to(device=A__ ) # interpolate sigmas snake_case = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() snake_case = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) snake_case = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(A__ ).startswith('''mps''' ): # mps does not support float64 snake_case = torch.from_numpy(A__ ).to(A__ , dtype=torch.floataa ) else: snake_case = torch.from_numpy(A__ ).to(A__ ) # interpolate timesteps snake_case = self.sigma_to_t(A__ ).to(A__ , dtype=timesteps.dtype ) snake_case = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() snake_case = torch.cat([timesteps[:1], interleaved_timesteps] ) snake_case = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter snake_case = defaultdict(A__ ) def UpperCamelCase ( self , A__ ) -> int: # get log sigma snake_case = sigma.log() # get distribution snake_case = log_sigma - self.log_sigmas[:, None] # get sigmas range snake_case = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) snake_case = low_idx + 1 snake_case = self.log_sigmas[low_idx] snake_case = self.log_sigmas[high_idx] # interpolate sigmas snake_case = (low - log_sigma) / (low - high) snake_case = w.clamp(0 , 1 ) # transform interpolation to time range snake_case = (1 - w) * low_idx + w * high_idx snake_case = t.view(sigma.shape ) return t @property def UpperCamelCase ( self ) -> List[str]: return self.sample is None def UpperCamelCase ( self , A__ , A__ , A__ , A__ = True , ) -> Union[SchedulerOutput, Tuple]: snake_case = self.index_for_timestep(A__ ) # advance index counter by 1 snake_case = timestep.cpu().item() if torch.is_tensor(A__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: snake_case = self.sigmas[step_index] snake_case = self.sigmas_interpol[step_index + 1] snake_case = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method snake_case = self.sigmas[step_index - 1] snake_case = self.sigmas_interpol[step_index] snake_case = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API snake_case = 0 snake_case = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": snake_case = sigma_hat if self.state_in_first_order else sigma_interpol snake_case = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": snake_case = sigma_hat if self.state_in_first_order else sigma_interpol snake_case = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order snake_case = (sample - pred_original_sample) / sigma_hat # 3. delta timestep snake_case = sigma_interpol - sigma_hat # store for 2nd order step snake_case = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order snake_case = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep snake_case = sigma_next - sigma_hat snake_case = self.sample snake_case = None snake_case = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A__ ) def UpperCamelCase ( self , A__ , A__ , A__ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples snake_case = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(A__ ): # mps does not support float64 snake_case = self.timesteps.to(original_samples.device , dtype=torch.floataa ) snake_case = timesteps.to(original_samples.device , dtype=torch.floataa ) else: snake_case = self.timesteps.to(original_samples.device ) snake_case = timesteps.to(original_samples.device ) snake_case = [self.index_for_timestep(A__ , A__ ) for t in timesteps] snake_case = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): snake_case = sigma.unsqueeze(-1 ) snake_case = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Tuple: return self.config.num_train_timesteps
44
'''simple docstring''' from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : def __init__( self , A__ , A__=13 , A__=30 , A__=2 , A__=3 , A__=True , A__=True , A__=32 , A__=2 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=10 , A__=0.0_2 , A__=3 , A__=None , ) -> List[Any]: snake_case = parent snake_case = batch_size snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = is_training snake_case = use_labels snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = type_sequence_label_size snake_case = initializer_range snake_case = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case = (image_size // patch_size) ** 2 snake_case = num_patches + 1 def UpperCamelCase ( self ) -> int: snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ) -> int: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A__ , initializer_range=self.initializer_range , ) def UpperCamelCase ( self , A__ , A__ , A__ ) -> Union[str, Any]: snake_case = TFViTModel(config=A__ ) snake_case = model(A__ , training=A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. snake_case = self.image_size // 2 snake_case = pixel_values[:, :, :image_size, :image_size] snake_case = model(A__ , interpolate_pos_encoding=A__ , training=A__ ) snake_case = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def UpperCamelCase ( self , A__ , A__ , A__ ) -> Optional[int]: snake_case = self.type_sequence_label_size snake_case = TFViTForImageClassification(A__ ) snake_case = model(A__ , labels=A__ , training=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. snake_case = self.image_size // 2 snake_case = pixel_values[:, :, :image_size, :image_size] snake_case = model(A__ , interpolate_pos_encoding=A__ , training=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case = 1 snake_case = TFViTForImageClassification(A__ ) snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase ( self ) -> Union[str, Any]: snake_case = self.prepare_config_and_inputs() snake_case , snake_case , snake_case = config_and_inputs snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _lowercase ( __a , __a , unittest.TestCase ): _UpperCAmelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def UpperCamelCase ( self ) -> List[Any]: snake_case = TFViTModelTester(self ) snake_case = ConfigTester(self , config_class=A__ , has_text_modality=A__ , hidden_size=37 ) def UpperCamelCase ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def UpperCamelCase ( self ) -> int: pass @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def UpperCamelCase ( self ) -> str: pass def UpperCamelCase ( self ) -> Union[str, Any]: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(A__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A__ , tf.keras.layers.Layer ) ) def UpperCamelCase ( self ) -> List[Any]: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(A__ ) snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case = [*signature.parameters.keys()] snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def UpperCamelCase ( self ) -> Optional[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A__ ) @slow def UpperCamelCase ( self ) -> Any: snake_case = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(A__ ) def __UpperCamelCase ( ) ->Any: snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _lowercase ( unittest.TestCase ): @cached_property def UpperCamelCase ( self ) -> Optional[int]: return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def UpperCamelCase ( self ) -> Dict: snake_case = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ) snake_case = self.default_image_processor snake_case = prepare_img() snake_case = image_processor(images=A__ , return_tensors='''tf''' ) # forward pass snake_case = model(**A__ ) # verify the logits snake_case = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , A__ ) snake_case = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , A__ , atol=1e-4 )
44
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : int = { '''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoForCausalLM''', '''GPTNeoForQuestionAnswering''', '''GPTNeoForSequenceClassification''', '''GPTNeoForTokenClassification''', '''GPTNeoModel''', '''GPTNeoPreTrainedModel''', '''load_tf_weights_in_gpt_neo''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ '''FlaxGPTNeoForCausalLM''', '''FlaxGPTNeoModel''', '''FlaxGPTNeoPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
343
import sys UpperCamelCase = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : List[Any] = 1 for digit in s: product *= int(SCREAMING_SNAKE_CASE ) return product def __magic_name__ ( SCREAMING_SNAKE_CASE = N ) -> int: _lowercase : Dict = -sys.maxsize - 1 _lowercase : Tuple = n[:13] _lowercase : List[Any] = 13 while cur_index < len(SCREAMING_SNAKE_CASE ) - 13: if int(n[cur_index] ) >= int(substr[0] ): _lowercase : List[str] = substr[1:] + n[cur_index] cur_index += 1 else: _lowercase : str = max(SCREAMING_SNAKE_CASE , str_eval(SCREAMING_SNAKE_CASE ) ) _lowercase : Dict = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
66
0
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
135
"""simple docstring""" import unittest from knapsack import knapsack as k class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Dict): a : Tuple = 0 a : Any = [0] a : List[Any] = [0] a : List[Any] = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 0) a : List[str] = [60] a : Dict = [10] a : Optional[int] = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 0) def __snake_case ( self : Optional[Any]): a : Union[str, Any] = 3 a : Any = [1, 2, 3] a : List[Any] = [3, 2, 1] a : Optional[Any] = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 5) def __snake_case ( self : str): a : int = 50 a : Dict = [60, 100, 120] a : Tuple = [10, 20, 30] a : Optional[Any] = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 220) if __name__ == "__main__": unittest.main()
135
1
def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> int: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError('''multiplicative_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''' ) UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Union[str, Any] = str(__UpperCAmelCase ) while len(__UpperCAmelCase ) != 1: UpperCamelCase__ : str = [int(__UpperCAmelCase ) for i in num_string] UpperCamelCase__ : Optional[Any] = 1 for i in range(0 , len(__UpperCAmelCase ) ): total *= numbers[i] UpperCamelCase__ : Optional[int] = str(__UpperCAmelCase ) steps += 1 return steps def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> int: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError('''additive_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''additive_persistence() does not accept negative values''' ) UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = str(__UpperCAmelCase ) while len(__UpperCAmelCase ) != 1: UpperCamelCase__ : Optional[Any] = [int(__UpperCAmelCase ) for i in num_string] UpperCamelCase__ : Tuple = 0 for i in range(0 , len(__UpperCAmelCase ) ): total += numbers[i] UpperCamelCase__ : Dict = str(__UpperCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
253
def lowerCAmelCase_ ( __UpperCAmelCase: float ) -> float: return 10 - x * x def lowerCAmelCase_ ( __UpperCAmelCase: float , __UpperCAmelCase: float ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(__UpperCAmelCase ) * equation(__UpperCAmelCase ) >= 0: raise ValueError('''Wrong space!''' ) UpperCamelCase__ : Optional[int] = a while (b - a) >= 0.01: # Find middle point UpperCamelCase__ : int = (a + b) / 2 # Check if middle point is root if equation(__UpperCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__UpperCAmelCase ) * equation(__UpperCAmelCase ) < 0: UpperCamelCase__ : str = c else: UpperCamelCase__ : Optional[int] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
253
1
"""simple docstring""" from __future__ import annotations import queue class lowerCamelCase__ : """simple docstring""" def __init__( self : str , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = data __UpperCAmelCase : List[str] = None __UpperCAmelCase : Any = None def lowerCamelCase ( ) -> TreeNode: '''simple docstring''' print("""\n********Press N to stop entering at any point of time********\n""" ) __UpperCAmelCase : Optional[int] = input("""Enter the value of the root node: """ ).strip().lower() __UpperCAmelCase : queue.Queue = queue.Queue() __UpperCAmelCase : int = TreeNode(int(_UpperCamelCase ) ) q.put(_UpperCamelCase ) while not q.empty(): __UpperCAmelCase : List[str] = q.get() __UpperCAmelCase : List[str] = f'''Enter the left node of {node_found.data}: ''' __UpperCAmelCase : Tuple = input(_UpperCamelCase ).strip().lower() or """n""" if check == "n": return tree_node __UpperCAmelCase : str = TreeNode(int(_UpperCamelCase ) ) __UpperCAmelCase : List[Any] = left_node q.put(_UpperCamelCase ) __UpperCAmelCase : List[str] = f'''Enter the right node of {node_found.data}: ''' __UpperCAmelCase : Tuple = input(_UpperCamelCase ).strip().lower() or """n""" if check == "n": return tree_node __UpperCAmelCase : List[str] = TreeNode(int(_UpperCamelCase ) ) __UpperCAmelCase : Tuple = right_node q.put(_UpperCamelCase ) raise def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return __UpperCAmelCase : queue.Queue = queue.Queue() q.put(_UpperCamelCase ) while not q.empty(): __UpperCAmelCase : str = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return __UpperCAmelCase : queue.Queue = queue.Queue() q.put(_UpperCamelCase ) while not q.empty(): __UpperCAmelCase : Union[str, Any] = [] while not q.empty(): __UpperCAmelCase : Optional[int] = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return __UpperCAmelCase : list[TreeNode] = [] __UpperCAmelCase : Optional[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(_UpperCamelCase ) __UpperCAmelCase : Dict = n.left # end of while means current node doesn't have left child __UpperCAmelCase : List[str] = stack.pop() # start to traverse its right child __UpperCAmelCase : List[str] = n.right def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return __UpperCAmelCase : list[TreeNode] = [] __UpperCAmelCase : Dict = node while n or stack: while n: stack.append(_UpperCamelCase ) __UpperCAmelCase : Tuple = n.left __UpperCAmelCase : Any = stack.pop() print(n.data , end=""",""" ) __UpperCAmelCase : List[Any] = n.right def lowerCamelCase ( _UpperCamelCase : TreeNode ) -> None: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not node: return __UpperCAmelCase ,__UpperCAmelCase : Optional[int] = [], [] __UpperCAmelCase : Optional[Any] = node stacka.append(_UpperCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 __UpperCAmelCase : Tuple = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_UpperCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def lowerCamelCase ( _UpperCamelCase : str = "" , _UpperCamelCase : int=5_0 , _UpperCamelCase : Tuple="*" ) -> str: '''simple docstring''' if not s: return "\n" + width * char __UpperCAmelCase ,__UpperCAmelCase : Tuple = divmod(width - len(_UpperCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) UpperCAmelCase : TreeNode = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
299
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCAmelCase : int = logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase__ ( A , A , unittest.TestCase ): """simple docstring""" __a = UNetaDModel __a = """sample""" @property def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : List[str] = 4 __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : Tuple = (32, 32) __UpperCAmelCase : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase ) __UpperCAmelCase : Dict = torch.tensor([10] ).to(UpperCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' return (3, 32, 32) @property def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' return (3, 32, 32) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = { """block_out_channels""": (32, 64), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 32, } __UpperCAmelCase : Optional[int] = self.dummy_input return init_dict, inputs_dict class lowerCamelCase__ ( A , A , unittest.TestCase ): """simple docstring""" __a = UNetaDModel __a = """sample""" @property def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 4 __UpperCAmelCase : List[Any] = 4 __UpperCAmelCase : int = (32, 32) __UpperCAmelCase : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = torch.tensor([10] ).to(UpperCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' return (4, 32, 32) @property def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' return (4, 32, 32) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Dict = { """sample_size""": 32, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (32, 64), """attention_head_dim""": 32, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } __UpperCAmelCase : Dict = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[int] = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Dict = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=UpperCamelCase ) model.to(UpperCamelCase ) __UpperCAmelCase : Optional[int] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=UpperCamelCase ) model_accelerate.to(UpperCamelCase ) model_accelerate.eval() __UpperCAmelCase : Optional[int] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) __UpperCAmelCase : Tuple = noise.to(UpperCamelCase ) __UpperCAmelCase : List[str] = torch.tensor([10] * noise.shape[0] ).to(UpperCamelCase ) __UpperCAmelCase : List[str] = model_accelerate(UpperCamelCase , UpperCamelCase )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() __UpperCAmelCase ,__UpperCAmelCase : int = UNetaDModel.from_pretrained( """fusing/unet-ldm-dummy-update""" , output_loading_info=UpperCamelCase , low_cpu_mem_usage=UpperCamelCase ) model_normal_load.to(UpperCamelCase ) model_normal_load.eval() __UpperCAmelCase : Optional[int] = model_normal_load(UpperCamelCase , UpperCamelCase )["""sample"""] assert torch_all_close(UpperCamelCase , UpperCamelCase , rtol=1e-3 ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Optional[int] = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ) model.eval() model.to(UpperCamelCase ) __UpperCAmelCase : Any = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __UpperCAmelCase : Optional[int] = noise.to(UpperCamelCase ) __UpperCAmelCase : Optional[int] = torch.tensor([10] * noise.shape[0] ).to(UpperCamelCase ) with torch.no_grad(): __UpperCAmelCase : Dict = model(UpperCamelCase , UpperCamelCase ).sample __UpperCAmelCase : List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __UpperCAmelCase : Tuple = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(UpperCamelCase , UpperCamelCase , rtol=1e-3 ) ) class lowerCamelCase__ ( A , A , unittest.TestCase ): """simple docstring""" __a = UNetaDModel __a = """sample""" @property def lowerCamelCase__ ( self : Dict , UpperCamelCase : Union[str, Any]=(32, 32) ): '''simple docstring''' __UpperCAmelCase : Optional[int] = 4 __UpperCAmelCase : Any = 3 __UpperCAmelCase : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase ) __UpperCAmelCase : Tuple = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=UpperCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return (3, 32, 32) @property def lowerCamelCase__ ( self : str ): '''simple docstring''' return (3, 32, 32) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : List[str] = { """block_out_channels""": [32, 64, 64, 64], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1e-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } __UpperCAmelCase : Any = self.dummy_input return init_dict, inputs_dict @slow def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : List[str] = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" , output_loading_info=UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCamelCase ) __UpperCAmelCase : Tuple = self.dummy_input __UpperCAmelCase : Union[str, Any] = floats_tensor((4, 3) + (256, 256) ).to(UpperCamelCase ) __UpperCAmelCase : Dict = noise __UpperCAmelCase : List[str] = model(**UpperCamelCase ) assert image is not None, "Make sure output is not None" @slow def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : str = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ) model.to(UpperCamelCase ) __UpperCAmelCase : Dict = 4 __UpperCAmelCase : int = 3 __UpperCAmelCase : Optional[int] = (256, 256) __UpperCAmelCase : Union[str, Any] = torch.ones((batch_size, num_channels) + sizes ).to(UpperCamelCase ) __UpperCAmelCase : Tuple = torch.tensor(batch_size * [1e-4] ).to(UpperCamelCase ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(UpperCamelCase , UpperCamelCase ).sample __UpperCAmelCase : Dict = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off __UpperCAmelCase : str = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(UpperCamelCase , UpperCamelCase , rtol=1e-2 ) ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : str = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" ) model.to(UpperCamelCase ) __UpperCAmelCase : Optional[int] = 4 __UpperCAmelCase : Union[str, Any] = 3 __UpperCAmelCase : str = (32, 32) __UpperCAmelCase : List[str] = torch.ones((batch_size, num_channels) + sizes ).to(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = torch.tensor(batch_size * [1e-4] ).to(UpperCamelCase ) with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase , UpperCamelCase ).sample __UpperCAmelCase : Tuple = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off __UpperCAmelCase : str = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(UpperCamelCase , UpperCamelCase , rtol=1e-2 ) ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' pass
299
1
import math def lowerCamelCase_ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ): if ( not isinstance(UpperCAmelCase_ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def lowerCamelCase_ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ): if ( not isinstance(UpperCAmelCase_ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
583
def lowerCamelCase_ ( UpperCAmelCase_ : list[int] ): lowercase : Union[str, Any] = len(UpperCAmelCase_ ) for i in range(UpperCAmelCase_ ): for j in range(i + 1 , UpperCAmelCase_ ): if numbers[j] < numbers[i]: lowercase , lowercase : int = numbers[j], numbers[i] return numbers if __name__ == "__main__": snake_case__ = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
583
1
def lowerCamelCase__ ( __lowerCAmelCase : list ): """simple docstring""" lowerCAmelCase_ = len(UpperCAmelCase__ ) for i in range(1 , UpperCAmelCase__ ): lowerCAmelCase_ = collection[i] lowerCAmelCase_ = 0 lowerCAmelCase_ = i - 1 while low <= high: lowerCAmelCase_ = (low + high) // 2 if val < collection[mid]: lowerCAmelCase_ = mid - 1 else: lowerCAmelCase_ = mid + 1 for j in range(UpperCAmelCase__ , UpperCAmelCase__ , -1 ): lowerCAmelCase_ = collection[j - 1] lowerCAmelCase_ = val return collection if __name__ == "__main__": _A = input("Enter numbers separated by a comma:\n").strip() _A = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
710
import os import re import shutil import sys import tempfile import unittest import black _A = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _A = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class _lowerCAmelCase ( unittest.TestCase ): def __a ( self ) -> Any: lowerCAmelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) lowerCAmelCase_ = self.transformer_dir shutil.copy( os.path.join(_UpperCamelCase , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = "src/transformers" shutil.rmtree(self.transformer_dir ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> Optional[int]: lowerCAmelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase_ = black.format_str(_UpperCamelCase , mode=_UpperCamelCase ) lowerCAmelCase_ = os.path.join(self.transformer_dir , "new_code.py" ) with open(_UpperCamelCase , "w" , newline="\n" ) as f: f.write(_UpperCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCamelCase ) with open(_UpperCamelCase , "r" ) as f: self.assertTrue(f.read() , _UpperCamelCase ) def __a ( self ) -> Any: lowerCAmelCase_ = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __a ( self ) -> Any: # Base copy consistency self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , _UpperCamelCase , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , _UpperCamelCase ) , ) # Copy consistency with a really long name lowerCAmelCase_ = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , f"""{long_class_name}LMPredictionHead""" , re.sub("Bert" , _UpperCamelCase , _UpperCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , _UpperCamelCase , overwrite_result=re.sub("Bert" , "TestModel" , _UpperCamelCase ) , ) def __a ( self ) -> Any: lowerCAmelCase_ = check_copies.LOCALIZED_READMES["README_zh-hans.md"] lowerCAmelCase_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) lowerCAmelCase_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) lowerCAmelCase_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) lowerCAmelCase_ , lowerCAmelCase_ = check_copies.convert_to_localized_md( _UpperCamelCase , _UpperCamelCase , localized_readme["format_model_list"] ) self.assertFalse(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ = check_copies.convert_to_localized_md( _UpperCamelCase , _UpperCamelCase , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_UpperCamelCase ) lowerCAmelCase_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) lowerCAmelCase_ = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) lowerCAmelCase_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) lowerCAmelCase_ , lowerCAmelCase_ = check_copies.convert_to_localized_md( _UpperCamelCase , _UpperCamelCase , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(_UpperCamelCase , _UpperCamelCase )
279
0
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase_ ( lowercase ): """simple docstring""" def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :Union[str, Any] = tempfile.mkdtemp() UpperCamelCase :List[str] = 5 # Realm tok UpperCamelCase :List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCamelCase :Dict = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE_ , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCamelCase :Any = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def UpperCAmelCase ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> str: UpperCamelCase :Union[str, Any] = RealmConfig(num_block_records=self.num_block_records ) return config def UpperCAmelCase ( self ) -> List[str]: UpperCamelCase :Tuple = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def UpperCAmelCase ( self ) -> str: UpperCamelCase :Optional[Any] = np.array( [ b'''This is the first record''', b'''This is the second record''', b'''This is the third record''', b'''This is the fourth record''', b'''This is the fifth record''', b'''This is a longer longer longer record''', ] , dtype=SCREAMING_SNAKE_CASE_ , ) return block_records def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :Optional[int] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :Optional[Any] = self.get_config() UpperCamelCase :str = self.get_dummy_retriever() UpperCamelCase :int = retriever.tokenizer UpperCamelCase :Optional[Any] = np.array([0, 3] , dtype='''long''' ) UpperCamelCase :Optional[Any] = tokenizer(['''Test question'''] ).input_ids UpperCamelCase :Tuple = tokenizer( ['''the fourth'''] , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ).input_ids UpperCamelCase :Optional[Any] = config.reader_seq_len UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :str = retriever( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , answer_ids=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def UpperCAmelCase ( self ) -> int: UpperCamelCase :Union[str, Any] = self.get_config() UpperCamelCase :Union[str, Any] = self.get_dummy_retriever() UpperCamelCase :Dict = retriever.tokenizer UpperCamelCase :str = np.array([0, 3, 5] , dtype='''long''' ) UpperCamelCase :List[str] = tokenizer(['''Test question'''] ).input_ids UpperCamelCase :Optional[Any] = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ).input_ids UpperCamelCase :Any = config.reader_seq_len UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Any = retriever( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , answer_ids=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ) self.assertEqual([False, True, True] , SCREAMING_SNAKE_CASE_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , SCREAMING_SNAKE_CASE_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :str = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path UpperCamelCase :List[str] = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: UpperCamelCase :Tuple = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) UpperCamelCase :List[Any] = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
658
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase :int = GenerationConfig( do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(SCREAMING_SNAKE_CASE_ , config_name=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = GenerationConfig.from_pretrained(SCREAMING_SNAKE_CASE_ , config_name=SCREAMING_SNAKE_CASE_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , SCREAMING_SNAKE_CASE_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> str: UpperCamelCase :Optional[Any] = AutoConfig.from_pretrained('''gpt2''' ) UpperCamelCase :Union[str, Any] = GenerationConfig.from_model_config(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :List[str] = GenerationConfig() UpperCamelCase :List[str] = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } UpperCamelCase :Dict = copy.deepcopy(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = generation_config.update(**SCREAMING_SNAKE_CASE_ ) # update_kwargs was not modified (no side effects) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(SCREAMING_SNAKE_CASE_ , {'''foo''': '''bar'''} ) def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :List[Any] = GenerationConfig() UpperCamelCase :Tuple = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = GenerationConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) UpperCamelCase :Union[str, Any] = GenerationConfig.from_model_config(SCREAMING_SNAKE_CASE_ ) assert not hasattr(SCREAMING_SNAKE_CASE_ , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase ( self ) -> Any: UpperCamelCase :Dict = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , SCREAMING_SNAKE_CASE_ ) self.assertEqual(default_config.num_beams , 1 ) UpperCamelCase :Tuple = GenerationConfig( do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , SCREAMING_SNAKE_CASE_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Tuple = GenerationConfig.from_pretrained(SCREAMING_SNAKE_CASE_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , SCREAMING_SNAKE_CASE_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase ( cls ) -> Optional[Any]: UpperCamelCase :List[str] = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE_ ) @classmethod def UpperCAmelCase ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase ( self ) -> Any: UpperCamelCase :Optional[Any] = GenerationConfig( do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) UpperCamelCase :List[Any] = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( SCREAMING_SNAKE_CASE_ , repo_id='''test-generation-config''' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token ) UpperCamelCase :Any = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :List[str] = GenerationConfig( do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) UpperCamelCase :Any = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( SCREAMING_SNAKE_CASE_ , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token ) UpperCamelCase :Tuple = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
658
1
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) def __a ( __lowerCamelCase : str , __lowerCamelCase : str ) -> str: '''simple docstring''' lowercase_ = RobertaPreLayerNormConfig.from_pretrained( __lowerCamelCase , architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict lowercase_ = torch.load(hf_hub_download(repo_id=__lowerCamelCase , filename="pytorch_model.bin" ) ) lowercase_ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): lowercase_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue lowercase_ = tensor_value lowercase_ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__lowerCamelCase , config=__lowerCamelCase , state_dict=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) # convert tokenizer lowercase_ = AutoTokenizer.from_pretrained(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase_ : int = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
710
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ : Tuple = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } lowerCAmelCase_ : Dict = { "gpt2": 1_024, "gpt2-medium": 1_024, "gpt2-large": 1_024, "gpt2-xl": 1_024, "distilgpt2": 1_024, } class lowercase ( __lowerCamelCase ): lowerCamelCase_ =VOCAB_FILES_NAMES lowerCamelCase_ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ =['input_ids', 'attention_mask'] lowerCamelCase_ =GPTaTokenizer def __init__( self : Dict , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Any="<|endoftext|>" , __lowerCAmelCase : Union[str, Any]="<|endoftext|>" , __lowerCAmelCase : List[Any]="<|endoftext|>" , __lowerCAmelCase : Optional[Any]=False , **__lowerCAmelCase : Dict , ) -> int: super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase_ = kwargs.pop("add_bos_token" , __lowerCAmelCase) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , __lowerCAmelCase) != add_prefix_space: lowercase_ = getattr(__lowerCAmelCase , pre_tok_state.pop("type")) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**__lowerCAmelCase) lowercase_ = add_prefix_space def __UpperCAmelCase ( self : List[str] , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : str) -> BatchEncoding: lowercase_ = kwargs.get("is_split_into_words" , __lowerCAmelCase) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowerCAmelCase , **__lowerCAmelCase) def __UpperCAmelCase ( self : List[Any] , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Union[str, Any]) -> BatchEncoding: lowercase_ = kwargs.get("is_split_into_words" , __lowerCAmelCase) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowerCAmelCase , **__lowerCAmelCase) def __UpperCAmelCase ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None) -> Tuple[str]: lowercase_ = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase) return tuple(__lowerCAmelCase) def __UpperCAmelCase ( self : Tuple , __lowerCAmelCase : "Conversation") -> List[int]: lowercase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase) + [self.eos_token_id]) if len(__lowerCAmelCase) > self.model_max_length: lowercase_ = input_ids[-self.model_max_length :] return input_ids
461
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def A ( lowercase__ : List[str] ) -> Tuple: UpperCamelCase__ :Dict = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ f"""{test_file} instead.""" ) UpperCamelCase__ :Optional[int] = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(f"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( f"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) UpperCamelCase__ :Union[str, Any] = components[:-1] + [test_fn.replace(""".py""" , """""" )] UpperCamelCase__ :List[Any] = """.""".join(lowercase__ ) return test_module_path def A ( lowercase__ : int ) -> Tuple: UpperCamelCase__ :Optional[Any] = get_module_path(lowercase__ ) UpperCamelCase__ :List[str] = importlib.import_module(lowercase__ ) return test_module def A ( lowercase__ : Union[str, Any] ) -> int: UpperCamelCase__ :Optional[int] = [] UpperCamelCase__ :str = get_test_module(lowercase__ ) for attr in dir(lowercase__ ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(lowercase__ , lowercase__ ) ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def A ( lowercase__ : Union[str, Any] ) -> Optional[Any]: UpperCamelCase__ :int = [] UpperCamelCase__ :Union[str, Any] = get_test_module(lowercase__ ) for attr in dir(lowercase__ ): UpperCamelCase__ :Optional[int] = getattr(lowercase__ , lowercase__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). UpperCamelCase__ :Union[str, Any] = getattr(lowercase__ , """all_model_classes""" , [] ) if len(lowercase__ ) > 0: test_classes.append(lowercase__ ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def A ( lowercase__ : Dict ) -> Union[str, Any]: UpperCamelCase__ :List[str] = get_test_classes(lowercase__ ) UpperCamelCase__ :Optional[Any] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def A ( lowercase__ : List[str] ) -> List[str]: UpperCamelCase__ :Any = test_class() if hasattr(lowercase__ , """setUp""" ): test.setUp() UpperCamelCase__ :str = None if hasattr(lowercase__ , """model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: UpperCamelCase__ :str = test.model_tester.__class__ return model_tester def A ( lowercase__ : List[Any] , lowercase__ : Optional[Any] ) -> Optional[int]: UpperCamelCase__ :int = get_test_classes(lowercase__ ) UpperCamelCase__ :str = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowercase__ ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def A ( lowercase__ : Tuple , lowercase__ : Optional[int] ) -> List[Any]: UpperCamelCase__ :Optional[Any] = get_test_classes_for_model(lowercase__ , lowercase__ ) UpperCamelCase__ :Optional[Any] = [] for test_class in test_classes: UpperCamelCase__ :Optional[int] = get_model_tester_from_test_class(lowercase__ ) if tester_class is not None: tester_classes.append(lowercase__ ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def A ( lowercase__ : Tuple ) -> Optional[Any]: UpperCamelCase__ :Tuple = get_test_classes(lowercase__ ) UpperCamelCase__ :Any = {test_class: get_model_tester_from_test_class(lowercase__ ) for test_class in test_classes} return test_tester_mapping def A ( lowercase__ : int ) -> Tuple: UpperCamelCase__ :Tuple = get_model_classes(lowercase__ ) UpperCamelCase__ :Dict = { model_class: get_test_classes_for_model(lowercase__ , lowercase__ ) for model_class in model_classes } return model_test_mapping def A ( lowercase__ : str ) -> Union[str, Any]: UpperCamelCase__ :Optional[int] = get_model_classes(lowercase__ ) UpperCamelCase__ :Tuple = { model_class: get_tester_classes_for_model(lowercase__ , lowercase__ ) for model_class in model_classes } return model_to_tester_mapping def A ( lowercase__ : Optional[Any] ) -> List[str]: if isinstance(lowercase__ , lowercase__ ): return o elif isinstance(lowercase__ , lowercase__ ): return o.__name__ elif isinstance(lowercase__ , (list, tuple) ): return [to_json(lowercase__ ) for x in o] elif isinstance(lowercase__ , lowercase__ ): return {to_json(lowercase__ ): to_json(lowercase__ ) for k, v in o.items()} else: return o
45
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowercase__ ( _UpperCAmelCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , )-> Any: '''simple docstring''' super().__init__( features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , num_proc=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = Generator( cache_dir=__UpperCAmelCase , features=__UpperCAmelCase , generator=__UpperCAmelCase , gen_kwargs=__UpperCAmelCase , **__UpperCAmelCase , ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' if self.streaming: lowerCAmelCase__ = self.builder.as_streaming_dataset(split="train" ) # Build regular (map-style) dataset else: lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None self.builder.download_and_prepare( download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , num_proc=self.num_proc , ) lowerCAmelCase__ = self.builder.as_dataset( split="train" , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
339
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCamelCase__ = Features({'''text''': Value('''string''' )} ) lowerCamelCase__ = Features({} ) lowerCamelCase__ = "text" @property def __UpperCamelCase ( self ): return {self.text_column: "text"}
419
'''simple docstring''' import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : int = tempfile.mkdtemp() snake_case__ : Optional[int] = 8 # DPR tok snake_case__ : List[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] snake_case__ : Optional[int] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) snake_case__ : str = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok snake_case__ : List[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] snake_case__ : Dict = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) snake_case__ : Dict = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case__ : Optional[Any] = {"""unk_token""": """<unk>"""} snake_case__ : Dict = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) snake_case__ : str = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) def __UpperCamelCase ( self ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def __UpperCamelCase ( self ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) @require_tokenizers def __UpperCamelCase ( self ): snake_case__ : Optional[int] = os.path.join(self.tmpdirname , """rag_tokenizer""" ) snake_case__ : str = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) snake_case__ : List[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__SCREAMING_SNAKE_CASE ) rag_tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = RagTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE ) self.assertIsInstance(new_rag_tokenizer.question_encoder , __SCREAMING_SNAKE_CASE ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , __SCREAMING_SNAKE_CASE ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __UpperCamelCase ( self ): snake_case__ : Optional[int] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) snake_case__ : List[Any] = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] snake_case__ : Tuple = tokenizer(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @slow def __UpperCamelCase ( self ): snake_case__ : str = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) snake_case__ : Optional[Any] = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] snake_case__ : List[Any] = tokenizer(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
419
1
"""simple docstring""" from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 42 A_ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
34
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( a_ ): __lowerCAmelCase = ["pixel_values"] def __init__( self , a_ = True , a_ = None , a_ = PILImageResampling.BILINEAR , a_ = True , a_ = None , a_ = True , a_ = 1 / 2_5_5 , a_ = True , a_ = None , a_ = None , **a_ , ): super().__init__(**a_ ) a_ : Any = size if size is not None else {"shortest_edge": 2_5_6} a_ : Any = get_size_dict(a_ , default_to_square=a_ ) a_ : int = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} a_ : Optional[int] = get_size_dict(a_ , param_name="crop_size" ) a_ : List[Any] = do_resize a_ : List[str] = size a_ : Dict = resample a_ : int = do_center_crop a_ : List[Any] = crop_size a_ : Union[str, Any] = do_rescale a_ : str = rescale_factor a_ : Any = do_normalize a_ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a_ : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case_ ( self , a_ , a_ , a_ = PILImageResampling.BICUBIC , a_ = None , **a_ , ): a_ : Tuple = get_size_dict(a_ , default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) a_ : Optional[int] = get_resize_output_image_size(a_ , size=size["shortest_edge"] , default_to_square=a_ ) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def snake_case_ ( self , a_ , a_ , a_ = None , **a_ , ): a_ : Any = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(a_ , size=(size["height"], size["width"]) , data_format=a_ , **a_ ) def snake_case_ ( self , a_ , a_ , a_ = None , **a_ ): return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def snake_case_ ( self , a_ , a_ , a_ , a_ = None , **a_ , ): return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def snake_case_ ( self , a_ , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = ChannelDimension.FIRST , **a_ , ): a_ : int = do_resize if do_resize is not None else self.do_resize a_ : Any = size if size is not None else self.size a_ : Dict = get_size_dict(a_ , default_to_square=a_ ) a_ : int = resample if resample is not None else self.resample a_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop a_ : Any = crop_size if crop_size is not None else self.crop_size a_ : Dict = get_size_dict(a_ , param_name="crop_size" ) a_ : str = do_rescale if do_rescale is not None else self.do_rescale a_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor a_ : List[Any] = do_normalize if do_normalize is not None else self.do_normalize a_ : int = image_mean if image_mean is not None else self.image_mean a_ : Dict = image_std if image_std is not None else self.image_std a_ : int = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. a_ : Optional[int] = [to_numpy_array(a_ ) for image in images] if do_resize: a_ : Union[str, Any] = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_center_crop: a_ : Union[str, Any] = [self.center_crop(image=a_ , size=a_ ) for image in images] if do_rescale: a_ : int = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_normalize: a_ : List[str] = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images] a_ : Tuple = [to_channel_dimension_format(a_ , a_ ) for image in images] a_ : Optional[Any] = {"pixel_values": images} return BatchFeature(data=a_ , tensor_type=a_ ) def snake_case_ ( self , a_ , a_ = None ): a_ : Tuple = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a_ ) != len(a_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(a_ ): a_ : str = target_sizes.numpy() a_ : int = [] for idx in range(len(a_ ) ): a_ : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=a_ ) a_ : List[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a_ ) else: a_ : List[str] = logits.argmax(dim=1 ) a_ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
237
0
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Any = position _lowerCamelCase : Optional[int] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _lowerCamelCase : Any = [] for position in positions: _lowerCamelCase : List[str] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(lowercase__ ) return permissible_positions def _snake_case ( lowercase__ ): return not any(elem == 0 for row in board for elem in row ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): if is_complete(lowercase__ ): return True for position in get_valid_pos(lowercase__ , len(lowercase__ ) ): _lowerCamelCase : int = position if board[y][x] == 0: _lowerCamelCase : Tuple = curr + 1 if open_knight_tour_helper(lowercase__ , lowercase__ , curr + 1 ): return True _lowerCamelCase : List[Any] = 0 return False def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = [[0 for i in range(lowercase__ )] for j in range(lowercase__ )] for i in range(lowercase__ ): for j in range(lowercase__ ): _lowerCamelCase : Dict = 1 if open_knight_tour_helper(lowercase__ , (i, j) , 1 ): return board _lowerCamelCase : List[str] = 0 _lowerCamelCase : Dict = f'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
706
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """sew-d""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase=2 , lowercase=512 , lowercase=256 , lowercase=True , lowercase=True , lowercase=("p2c", "c2p") , lowercase="layer_norm" , lowercase="gelu_python" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-7 , lowercase=1E-5 , lowercase="group" , lowercase="gelu" , lowercase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase=False , lowercase=128 , lowercase=16 , lowercase=True , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="mean" , lowercase=False , lowercase=False , lowercase=256 , lowercase=0 , lowercase=1 , lowercase=2 , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : int = feat_extract_norm _lowerCamelCase : Optional[Any] = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Union[str, Any] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : List[str] = conv_bias _lowerCamelCase : str = num_conv_pos_embeddings _lowerCamelCase : Optional[Any] = num_conv_pos_embedding_groups _lowerCamelCase : Tuple = len(self.conv_dim ) _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : List[str] = intermediate_size _lowerCamelCase : Dict = squeeze_factor _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : List[str] = position_buckets _lowerCamelCase : Dict = share_att_key _lowerCamelCase : List[str] = relative_attention _lowerCamelCase : Optional[Any] = norm_rel_ebd _lowerCamelCase : List[Any] = list(lowercase ) _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : Optional[Any] = num_attention_heads _lowerCamelCase : Optional[int] = hidden_dropout _lowerCamelCase : Optional[int] = attention_dropout _lowerCamelCase : Any = activation_dropout _lowerCamelCase : Tuple = feat_proj_dropout _lowerCamelCase : Any = final_dropout _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = feature_layer_norm_eps _lowerCamelCase : Any = initializer_range _lowerCamelCase : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Dict = apply_spec_augment _lowerCamelCase : int = mask_time_prob _lowerCamelCase : Union[str, Any] = mask_time_length _lowerCamelCase : Optional[Any] = mask_time_min_masks _lowerCamelCase : List[Any] = mask_feature_prob _lowerCamelCase : Union[str, Any] = mask_feature_length _lowerCamelCase : List[Any] = mask_feature_min_masks # ctc loss _lowerCamelCase : List[str] = ctc_loss_reduction _lowerCamelCase : List[str] = ctc_zero_infinity # sequence classification _lowerCamelCase : Dict = use_weighted_layer_sum _lowerCamelCase : List[Any] = classifier_proj_size @property def A_ ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
492
0
"""simple docstring""" def a_ ( _lowerCAmelCase : list , _lowerCAmelCase : list ): '''simple docstring''' _validate_point(_lowerCAmelCase ) _validate_point(_lowerCAmelCase ) if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(_lowerCAmelCase , _lowerCAmelCase ) ) ) def a_ ( _lowerCAmelCase : list[float] ): '''simple docstring''' if point: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): for item in point: if not isinstance(_lowerCAmelCase , (int, float) ): lowercase__ : int = ( 'Expected a list of numbers as input, found ' f"""{type(_lowerCAmelCase ).__name__}""" ) raise TypeError(_lowerCAmelCase ) else: lowercase__ : List[Any] = f"""Expected a list of numbers as input, found {type(_lowerCAmelCase ).__name__}""" raise TypeError(_lowerCAmelCase ) else: raise ValueError('Missing an input' ) def a_ ( _lowerCAmelCase : list , _lowerCAmelCase : list ): '''simple docstring''' _validate_point(_lowerCAmelCase ) _validate_point(_lowerCAmelCase ) if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(_lowerCAmelCase , _lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
599
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def a_ ( _lowerCAmelCase : int = 200_0000 ): '''simple docstring''' lowercase__ : list[int] = [0] lowercase__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target lowercase__ : int = 0 # the area corresponding to the grid that gives the product closest to target lowercase__ : int = 0 # an estimate of b, using the quadratic formula lowercase__ : float # the largest integer less than b_estimate lowercase__ : int # the largest integer less than b_estimate lowercase__ : int # the triangle number corresponding to b_floor lowercase__ : int # the triangle number corresponding to b_ceil lowercase__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): lowercase__ : int = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 lowercase__ : Union[str, Any] = floor(_lowerCAmelCase ) lowercase__ : Tuple = ceil(_lowerCAmelCase ) lowercase__ : Optional[Any] = triangle_numbers[b_floor] lowercase__ : Optional[Any] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): lowercase__ : Union[str, Any] = triangle_b_first_guess * triangle_a lowercase__ : Optional[Any] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): lowercase__ : str = triangle_b_second_guess * triangle_a lowercase__ : Optional[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(f'''{solution() = }''')
599
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowercase__ : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = ["ViTFeatureExtractor"] lowercase__ : str = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowercase__ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
451
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) def A_ ( snake_case : List[str] ) -> List[str]: '''simple docstring''' print('''Loading config file...''' ) def flatten_yaml_as_dict(snake_case : Optional[int] , snake_case : List[Any]="" , snake_case : str="." ): __UpperCamelCase = [] for k, v in d.items(): __UpperCamelCase = parent_key + sep + k if parent_key else k if isinstance(snake_case , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case , snake_case , sep=snake_case ).items() ) else: items.append((new_key, v) ) return dict(snake_case ) __UpperCamelCase = argparse.Namespace() with open(snake_case , '''r''' ) as yaml_file: try: __UpperCamelCase = yaml.load(snake_case , Loader=yaml.FullLoader ) __UpperCamelCase = flatten_yaml_as_dict(snake_case ) for k, v in flat_cfg.items(): setattr(snake_case , snake_case , snake_case ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(snake_case , str(snake_case ) ) ) return config def A_ ( snake_case : List[Any] , snake_case : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase = MobileViTVaConfig() __UpperCamelCase = False # dataset if task_name.startswith('''imagenet1k_''' ): __UpperCamelCase = 1000 if int(task_name.strip().split('''_''' )[-1] ) == 384: __UpperCamelCase = 384 else: __UpperCamelCase = 256 __UpperCamelCase = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): __UpperCamelCase = 21000 if int(task_name.strip().split('''_''' )[-1] ) == 384: __UpperCamelCase = 384 else: __UpperCamelCase = 256 __UpperCamelCase = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): __UpperCamelCase = 151 __UpperCamelCase = 512 __UpperCamelCase = '''ade20k-id2label.json''' __UpperCamelCase = True elif task_name.startswith('''voc_''' ): __UpperCamelCase = 21 __UpperCamelCase = 512 __UpperCamelCase = '''pascal-voc-id2label.json''' __UpperCamelCase = True # orig_config __UpperCamelCase = load_orig_config_file(snake_case ) assert getattr(snake_case , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" __UpperCamelCase = getattr(snake_case , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(snake_case , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" __UpperCamelCase = getattr(snake_case , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: __UpperCamelCase = getattr(snake_case , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: __UpperCamelCase = getattr(snake_case , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) __UpperCamelCase = getattr(snake_case , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) __UpperCamelCase = getattr(snake_case , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label __UpperCamelCase = '''huggingface/label-files''' __UpperCamelCase = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='''dataset''' ) , '''r''' ) ) __UpperCamelCase = {int(snake_case ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} return config def A_ ( snake_case : List[Any] , snake_case : int , snake_case : Any ) -> str: '''simple docstring''' __UpperCamelCase = dct.pop(snake_case ) __UpperCamelCase = val def A_ ( snake_case : int , snake_case : List[Any]=False ) -> Optional[Any]: '''simple docstring''' if base_model: __UpperCamelCase = '''''' else: __UpperCamelCase = '''mobilevitv2.''' __UpperCamelCase = [] for k in state_dict.keys(): if k[:8] == "encoder.": __UpperCamelCase = k[8:] else: __UpperCamelCase = k if ".block." in k: __UpperCamelCase = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: __UpperCamelCase = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: __UpperCamelCase = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: __UpperCamelCase = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." ) for i in [1, 2]: if f"layer_{i}." in k: __UpperCamelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: __UpperCamelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: __UpperCamelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f"layer_{i}.0." in k: __UpperCamelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if f"layer_{i}.1.local_rep.0." in k: __UpperCamelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if f"layer_{i}.1.local_rep.1." in k: __UpperCamelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: __UpperCamelCase = [0, 1] elif i == 4: __UpperCamelCase = [0, 1, 2, 3] elif i == 5: __UpperCamelCase = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: __UpperCamelCase = k_new.replace( f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: __UpperCamelCase = k_new.replace( f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: __UpperCamelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: __UpperCamelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: __UpperCamelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: __UpperCamelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: __UpperCamelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: __UpperCamelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: __UpperCamelCase = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: __UpperCamelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: __UpperCamelCase = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: __UpperCamelCase = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def A_ ( snake_case : List[str] ) -> str: '''simple docstring''' __UpperCamelCase = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(snake_case ) for k in keys_to_ignore: state_dict.pop(snake_case , snake_case ) def A_ ( ) -> str: '''simple docstring''' __UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" __UpperCamelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def A_ ( snake_case : Dict , snake_case : List[str] , snake_case : Optional[Any] , snake_case : Optional[int] ) -> int: '''simple docstring''' __UpperCamelCase = get_mobilevitva_config(snake_case , snake_case ) # load original state_dict __UpperCamelCase = torch.load(snake_case , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): __UpperCamelCase = MobileViTVaForSemanticSegmentation(snake_case ).eval() __UpperCamelCase = False else: __UpperCamelCase = MobileViTVaForImageClassification(snake_case ).eval() __UpperCamelCase = False # remove and rename some keys of load the original model __UpperCamelCase = checkpoint remove_unused_keys(snake_case ) __UpperCamelCase = create_rename_keys(snake_case , base_model=snake_case ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) # load modified state_dict model.load_state_dict(snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor __UpperCamelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) __UpperCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCamelCase = model(**snake_case ) # verify classification model if task_name.startswith('''imagenet''' ): __UpperCamelCase = outputs.logits __UpperCamelCase = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant __UpperCamelCase = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ) assert torch.allclose(logits[0, :3] , snake_case , atol=1e-4 ) Path(snake_case ).mkdir(exist_ok=snake_case ) print(f"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": lowercase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) lowercase__ : Tuple = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
451
1
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' ,[ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] ,) def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' ,'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' ,'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' ,'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) SCREAMING_SNAKE_CASE : Tuple = DatasetInfosDict.from_directory(__UpperCamelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' ,[ DatasetInfo(), DatasetInfo( description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,), ] ,) def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: DatasetInfo ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = str(__UpperCamelCase ) dataset_info.write_to_directory(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = DatasetInfo.from_directory(__UpperCamelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__UpperCamelCase ,'dataset_info.json' ) ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = DatasetInfo( description='foo' ,citation='bar' ,homepage='https://foo.bar' ,license='CC0' ,features=Features({'a': Value('int32' )} ) ,post_processed={} ,supervised_keys=() ,task_templates=[] ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train', 'num_examples': 42}] ,download_checksums={} ,download_size=13_37 ,post_processing_size=4_42 ,dataset_size=12_34 ,size_in_bytes=13_37 + 4_42 + 12_34 ,) SCREAMING_SNAKE_CASE : Optional[Any] = dataset_info._to_yaml_dict() assert sorted(__UpperCamelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] ,(list, dict, int, str) ) SCREAMING_SNAKE_CASE : List[str] = yaml.safe_dump(__UpperCamelCase ) SCREAMING_SNAKE_CASE : str = yaml.safe_load(__UpperCamelCase ) assert dataset_info_yaml_dict == reloaded def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DatasetInfo() SCREAMING_SNAKE_CASE : Optional[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' ,[ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] ,) def lowercase__( __UpperCamelCase: Tuple ,__UpperCamelCase: DatasetInfosDict ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = str(__UpperCamelCase ) dataset_infos_dict.write_to_directory(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = DatasetInfosDict.from_directory(__UpperCamelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): SCREAMING_SNAKE_CASE : Any = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml SCREAMING_SNAKE_CASE : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__UpperCamelCase ,'README.md' ) )
28
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class snake_case ( _snake_case ): '''simple docstring''' UpperCamelCase__ : torch.FloatTensor class snake_case ( _snake_case , _snake_case ): '''simple docstring''' @register_to_config def __init__( self : Tuple , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 3 , lowerCamelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCamelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCamelCase_ : Tuple[int] = (64,) , lowerCamelCase_ : int = 1 , lowerCamelCase_ : str = "silu" , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 32 , lowerCamelCase_ : int = 256 , lowerCamelCase_ : int = 32 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : float = 0.18215 , lowerCamelCase_ : str = "group" , ) ->str: '''simple docstring''' super().__init__() # pass init params to Encoder UpperCAmelCase__ = Encoder( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , down_block_types=lowerCamelCase_ , block_out_channels=lowerCamelCase_ , layers_per_block=lowerCamelCase_ , act_fn=lowerCamelCase_ , norm_num_groups=lowerCamelCase_ , double_z=lowerCamelCase_ , ) UpperCAmelCase__ = vq_embed_dim if vq_embed_dim is not None else latent_channels UpperCAmelCase__ = nn.Convad(lowerCamelCase_ , lowerCamelCase_ , 1 ) UpperCAmelCase__ = VectorQuantizer(lowerCamelCase_ , lowerCamelCase_ , beta=0.25 , remap=lowerCamelCase_ , sane_index_shape=lowerCamelCase_ ) UpperCAmelCase__ = nn.Convad(lowerCamelCase_ , lowerCamelCase_ , 1 ) # pass init params to Decoder UpperCAmelCase__ = Decoder( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , up_block_types=lowerCamelCase_ , block_out_channels=lowerCamelCase_ , layers_per_block=lowerCamelCase_ , act_fn=lowerCamelCase_ , norm_num_groups=lowerCamelCase_ , norm_type=lowerCamelCase_ , ) @apply_forward_hook def UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : bool = True ) ->VQEncoderOutput: '''simple docstring''' UpperCAmelCase__ = self.encoder(lowerCamelCase_ ) UpperCAmelCase__ = self.quant_conv(lowerCamelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCamelCase_ ) @apply_forward_hook def UpperCAmelCase ( self : int , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = True ) ->Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if not force_not_quantize: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.quantize(lowerCamelCase_ ) else: UpperCAmelCase__ = h UpperCAmelCase__ = self.post_quant_conv(lowerCamelCase_ ) UpperCAmelCase__ = self.decoder(lowerCamelCase_ , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase_ ) def UpperCAmelCase ( self : Any , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : bool = True ) ->Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' UpperCAmelCase__ = sample UpperCAmelCase__ = self.encode(lowerCamelCase_ ).latents UpperCAmelCase__ = self.decode(lowerCamelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase_ )
392
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): snake_case_ = StableDiffusionInstructPixaPixPipeline snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} snake_case_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case_ = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_: List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCAmelCase_: Optional[int] = PNDMScheduler(skip_prk_steps=A__ ) torch.manual_seed(0 ) UpperCAmelCase_: Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_: Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_: Any = CLIPTextModel(A__ ) UpperCAmelCase_: Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_: Dict = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def snake_case_ ( self , A__ , A__=0 ): """simple docstring""" UpperCAmelCase_: int = floats_tensor((1, 3, 32, 32) , rng=random.Random(A__ ) ).to(A__ ) UpperCAmelCase_: List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_: Optional[Any] = Image.fromarray(np.uinta(A__ ) ).convert("RGB" ) if str(A__ ).startswith("mps" ): UpperCAmelCase_: Optional[int] = torch.manual_seed(A__ ) else: UpperCAmelCase_: List[str] = torch.Generator(device=A__ ).manual_seed(A__ ) UpperCAmelCase_: str = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "image_guidance_scale": 1, "output_type": "numpy", } return inputs def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: List[str] = self.get_dummy_components() UpperCAmelCase_: Tuple = StableDiffusionInstructPixaPixPipeline(**A__ ) UpperCAmelCase_: List[Any] = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) UpperCAmelCase_: Any = self.get_dummy_inputs(A__ ) UpperCAmelCase_: int = sd_pipe(**A__ ).images UpperCAmelCase_: Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_: List[str] = np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Dict = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: str = self.get_dummy_components() UpperCAmelCase_: Optional[int] = StableDiffusionInstructPixaPixPipeline(**A__ ) UpperCAmelCase_: int = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) UpperCAmelCase_: Any = self.get_dummy_inputs(A__ ) UpperCAmelCase_: List[Any] = "french fries" UpperCAmelCase_: Tuple = sd_pipe(**A__ , negative_prompt=A__ ) UpperCAmelCase_: Optional[int] = output.images UpperCAmelCase_: Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_: Optional[int] = np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Any = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: Optional[int] = self.get_dummy_components() UpperCAmelCase_: Dict = StableDiffusionInstructPixaPixPipeline(**A__ ) UpperCAmelCase_: Any = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) UpperCAmelCase_: List[Any] = self.get_dummy_inputs(A__ ) UpperCAmelCase_: List[str] = [inputs["prompt"]] * 2 UpperCAmelCase_: int = np.array(inputs["image"] ).astype(np.floataa ) / 255.0 UpperCAmelCase_: Optional[Any] = torch.from_numpy(A__ ).unsqueeze(0 ).to(A__ ) UpperCAmelCase_: Optional[Any] = image / 2 + 0.5 UpperCAmelCase_: int = image.permute(0 , 3 , 1 , 2 ) UpperCAmelCase_: Optional[int] = image.repeat(2 , 1 , 1 , 1 ) UpperCAmelCase_: Dict = sd_pipe(**A__ ).images UpperCAmelCase_: int = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) UpperCAmelCase_: List[str] = np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: Optional[Any] = self.get_dummy_components() UpperCAmelCase_: Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" ) UpperCAmelCase_: List[Any] = StableDiffusionInstructPixaPixPipeline(**A__ ) UpperCAmelCase_: List[Any] = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) UpperCAmelCase_: List[Any] = self.get_dummy_inputs(A__ ) UpperCAmelCase_: Optional[int] = sd_pipe(**A__ ).images UpperCAmelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_: Any = [round(A__ , 4 ) for x in image_slice.flatten().tolist()] print(",".join([str(A__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) UpperCAmelCase_: Tuple = np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def snake_case_ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: List[str] = self.get_dummy_components() UpperCAmelCase_: Optional[Any] = StableDiffusionInstructPixaPixPipeline(**A__ ) UpperCAmelCase_: Any = VaeImageProcessor(do_resize=A__ , do_normalize=A__ ) UpperCAmelCase_: List[str] = pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) UpperCAmelCase_: Dict = pipe(**self.get_dummy_inputs_by_type(A__ , input_image_type="pt" ) )[0] UpperCAmelCase_: Optional[int] = components["vae"] UpperCAmelCase_: Union[str, Any] = self.get_dummy_inputs_by_type(A__ , input_image_type="pt" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): UpperCAmelCase_: Any = vae.encode(inputs[image_param] ).latent_dist.mode() UpperCAmelCase_: int = pipe(**A__ )[0] UpperCAmelCase_: Optional[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(A__ , 1E-4 , "passing latents as image input generate different result from passing image" ) @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): def snake_case_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self , A__=0 ): """simple docstring""" UpperCAmelCase_: List[Any] = torch.manual_seed(A__ ) UpperCAmelCase_: List[Any] = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" ) UpperCAmelCase_: Optional[int] = { "prompt": "turn him into a cyborg", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "image_guidance_scale": 1.0, "output_type": "numpy", } return inputs def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=A__ ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing() UpperCAmelCase_: Union[str, Any] = self.get_inputs() UpperCAmelCase_: List[Any] = pipe(**A__ ).images UpperCAmelCase_: str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase_: Union[str, Any] = np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: str = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=A__ ) UpperCAmelCase_: Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing() UpperCAmelCase_: Optional[int] = self.get_inputs() UpperCAmelCase_: Optional[Any] = pipe(**A__ ).images UpperCAmelCase_: Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase_: Tuple = np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=A__ ) UpperCAmelCase_: Tuple = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing() UpperCAmelCase_: str = self.get_inputs() UpperCAmelCase_: Union[str, Any] = pipe(**A__ ).images UpperCAmelCase_: Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase_: str = np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: List[Any] = 0 def callback_fn(A__ , A__ , A__ ) -> None: UpperCAmelCase_: List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCAmelCase_: List[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_: str = latents[0, -3:, -3:, -1] UpperCAmelCase_: str = np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: UpperCAmelCase_: Optional[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_: Optional[Any] = latents[0, -3:, -3:, -1] UpperCAmelCase_: Optional[Any] = np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 UpperCAmelCase_: Tuple = False UpperCAmelCase_: str = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=A__ , torch_dtype=torch.floataa ) UpperCAmelCase_: Tuple = pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing() UpperCAmelCase_: Tuple = self.get_inputs() pipe(**A__ , callback=A__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def snake_case_ ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_: List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=A__ , torch_dtype=torch.floataa ) UpperCAmelCase_: Tuple = pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase_: Any = self.get_inputs() UpperCAmelCase_: Union[str, Any] = pipe(**A__ ) UpperCAmelCase_: str = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: List[str] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 UpperCAmelCase_: Optional[Any] = inputs["image"].resize((504, 504) ) UpperCAmelCase_: int = "timbrooks/instruct-pix2pix" UpperCAmelCase_: Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( A__ , safety_checker=A__ , ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing() UpperCAmelCase_: int = pipe(**A__ ) UpperCAmelCase_: str = output.images[0] UpperCAmelCase_: Dict = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) UpperCAmelCase_: Dict = np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
306
from __future__ import annotations _lowerCAmelCase = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _lowerCAmelCase = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowercase ( _a ) -> list[float]: UpperCAmelCase_: Dict = [] UpperCAmelCase_: List[Any] = len(_a ) for i in range(_a ): UpperCAmelCase_: float = -1 for j in range(i + 1 ,_a ): if arr[i] < arr[j]: UpperCAmelCase_: List[str] = arr[j] break result.append(_a ) return result def lowercase ( _a ) -> list[float]: UpperCAmelCase_: List[Any] = [] for i, outer in enumerate(_a ): UpperCAmelCase_: float = -1 for inner in arr[i + 1 :]: if outer < inner: UpperCAmelCase_: Union[str, Any] = inner break result.append(_a ) return result def lowercase ( _a ) -> list[float]: UpperCAmelCase_: Union[str, Any] = len(_a ) UpperCAmelCase_: list[float] = [] UpperCAmelCase_: list[float] = [-1] * arr_size for index in reversed(range(_a ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: UpperCAmelCase_: Union[str, Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _lowerCAmelCase = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
306
1
'''simple docstring''' from __future__ import annotations UpperCAmelCase_ : List[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class _lowerCamelCase : '''simple docstring''' def __init__( self , __lowercase , __lowercase ): """simple docstring""" __A : Dict = graph # mapping node to its parent in resulting breadth first tree __A : dict[str, str | None] = {} __A : Union[str, Any] = source_vertex def snake_case__ ( self ): """simple docstring""" __A : str = {self.source_vertex} __A : List[Any] = None __A : int = [self.source_vertex] # first in first out queue while queue: __A : Tuple = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__lowercase ) __A : Dict = vertex queue.append(__lowercase ) def snake_case__ ( self , __lowercase ): """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex __A : Tuple = self.parent.get(__lowercase ) if target_vertex_parent is None: __A : Tuple = ( F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(__lowercase ) return self.shortest_path(__lowercase ) + F"""->{target_vertex}""" if __name__ == "__main__": UpperCAmelCase_ : str = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
365
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : Any = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = ['MaskFormerFeatureExtractor'] UpperCAmelCase_ : List[str] = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] UpperCAmelCase_ : Optional[int] = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys UpperCAmelCase_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
365
1
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = {'''vocab_file''': '''vocab.txt'''} _lowerCAmelCase : List[Any] = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } _lowerCAmelCase : int = { '''openbmb/cpm-ant-10b''': 1024, } def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Tuple = collections.OrderedDict() with open(_lowerCamelCase , "r" , encoding="utf-8" ) as reader: _lowerCamelCase : Any = reader.readlines() for index, token in enumerate(_lowerCamelCase ): _lowerCamelCase : Dict = token.rstrip("\n" ) _lowerCamelCase : Dict = index return vocab class A_ ( _a ): def __init__( self: Tuple ,__lowerCAmelCase: Any ,__lowerCAmelCase: Dict="<unk>" ,__lowerCAmelCase: Dict=200 ): '''simple docstring''' _lowerCamelCase : Any = vocab _lowerCamelCase : Union[str, Any] = unk_token _lowerCamelCase : Dict = max_input_chars_per_word def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Tuple = list(__lowerCAmelCase ) if len(__lowerCAmelCase ) > self.max_input_chars_per_word: return [self.unk_token] _lowerCamelCase : Dict = 0 _lowerCamelCase : Dict = [] while start < len(__lowerCAmelCase ): _lowerCamelCase : Any = len(__lowerCAmelCase ) _lowerCamelCase : Tuple = None while start < end: _lowerCamelCase : str = "".join(chars[start:end] ) if substr in self.vocab: _lowerCamelCase : Dict = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = end return sub_tokens class A_ ( _a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = False def __init__( self: int ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int="<d>" ,__lowerCAmelCase: List[Any]="</d>" ,__lowerCAmelCase: Optional[Any]="<s>" ,__lowerCAmelCase: Dict="</s>" ,__lowerCAmelCase: Optional[int]="<pad>" ,__lowerCAmelCase: str="<unk>" ,__lowerCAmelCase: int="</n>" ,__lowerCAmelCase: Any="</_>" ,__lowerCAmelCase: List[Any]="left" ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' requires_backends(self ,["jieba"] ) super().__init__( bod_token=__lowerCAmelCase ,eod_token=__lowerCAmelCase ,bos_token=__lowerCAmelCase ,eos_token=__lowerCAmelCase ,pad_token=__lowerCAmelCase ,unk_token=__lowerCAmelCase ,line_token=__lowerCAmelCase ,space_token=__lowerCAmelCase ,padding_side=__lowerCAmelCase ,**__lowerCAmelCase ,) _lowerCamelCase : Dict = bod_token _lowerCamelCase : str = eod_token _lowerCamelCase : str = load_vocab(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = self.encoder[space_token] _lowerCamelCase : int = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] _lowerCamelCase : Optional[Any] = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda __lowerCAmelCase : x[1] ) ) _lowerCamelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} _lowerCamelCase : Tuple = WordpieceTokenizer(vocab=self.encoder ,unk_token=self.unk_token ) @property def _lowercase ( self: Tuple ): '''simple docstring''' return self.encoder[self.bod_token] @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' return self.encoder[self.eod_token] @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' return self.encoder["\n"] @property def _lowercase ( self: Tuple ): '''simple docstring''' return len(self.encoder ) def _lowercase ( self: List[str] ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = [] for x in jieba.cut(__lowerCAmelCase ,cut_all=__lowerCAmelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__lowerCAmelCase ) ) return output_tokens def _lowercase ( self: int ,__lowerCAmelCase: Any ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [i for i in token_ids if i >= 0] _lowerCamelCase : Dict = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return token in self.encoder def _lowercase ( self: Optional[int] ,__lowerCAmelCase: List[str] ): '''simple docstring''' return "".join(__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' return self.encoder.get(__lowerCAmelCase ,self.encoder.get(self.unk_token ) ) def _lowercase ( self: Any ,__lowerCAmelCase: List[str] ): '''simple docstring''' return self.decoder.get(__lowerCAmelCase ,self.unk_token ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[str] = None ): '''simple docstring''' if os.path.isdir(__lowerCAmelCase ): _lowerCamelCase : str = os.path.join( __lowerCAmelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: _lowerCamelCase : Tuple = (filename_prefix + "-" if filename_prefix else "") + save_directory _lowerCamelCase : int = 0 if " " in self.encoder: _lowerCamelCase : Dict = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: _lowerCamelCase : List[Any] = self.encoder["\n"] del self.encoder["\n"] _lowerCamelCase : Optional[Any] = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda __lowerCAmelCase : x[1] ) ) with open(__lowerCAmelCase ,"w" ,encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) _lowerCamelCase : List[Any] = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def _lowercase ( self: List[str] ,__lowerCAmelCase: List[int] ,__lowerCAmelCase: List[int] = None ): '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _lowercase ( self: Optional[int] ,__lowerCAmelCase: List[int] ,__lowerCAmelCase: Optional[List[int]] = None ,__lowerCAmelCase: bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase ,token_ids_a=__lowerCAmelCase ,already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] + ([0] * len(__lowerCAmelCase )) return [1] + ([0] * len(__lowerCAmelCase ))
386
"""simple docstring""" import math def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' return math.pow(_lowerCamelCase , 2 ) - a def lowerCamelCase_( _lowerCamelCase ) -> float: '''simple docstring''' return 2 * x def lowerCamelCase_( _lowerCamelCase ) -> float: '''simple docstring''' _lowerCamelCase : Tuple = 2.0 while start <= a: _lowerCamelCase : int = math.pow(_lowerCamelCase , 2 ) return start def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = 9999 , _lowerCamelCase = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 ) -> float: '''simple docstring''' if a < 0: raise ValueError("math domain error" ) _lowerCamelCase : Any = get_initial_point(_lowerCamelCase ) for _ in range(_lowerCamelCase ): _lowerCamelCase : List[str] = value _lowerCamelCase : Tuple = value - fx(_lowerCamelCase , _lowerCamelCase ) / fx_derivative(_lowerCamelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
386
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a__ : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
589
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __magic_name__ : def __init__( self , __magic_name__ , __magic_name__=1_3 , __magic_name__=1_0 , __magic_name__=3 , __magic_name__=2 , __magic_name__=2 , __magic_name__=2 , __magic_name__=True , __magic_name__=True , __magic_name__=3_2 , __magic_name__=5 , __magic_name__=4 , __magic_name__=3_7 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=1_0 , __magic_name__=0.02 , __magic_name__=0.9 , __magic_name__=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = patch_size _lowerCAmelCase = tubelet_size _lowerCAmelCase = num_frames _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = mask_ratio _lowerCAmelCase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _lowerCAmelCase = (image_size // patch_size) ** 2 _lowerCAmelCase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _lowerCAmelCase = int(mask_ratio * self.seq_length ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = VideoMAEModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = VideoMAEForPreTraining(__magic_name__ ) model.to(__magic_name__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _lowerCAmelCase = torch.ones((self.num_masks,) ) _lowerCAmelCase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _lowerCAmelCase = mask.expand(self.batch_size , -1 ).bool() _lowerCAmelCase = model(__magic_name__ , __magic_name__ ) # model only returns predictions for masked patches _lowerCAmelCase = mask.sum().item() _lowerCAmelCase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): UpperCamelCase : List[str] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) UpperCamelCase : Optional[int] = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) UpperCamelCase : Dict = False UpperCamelCase : int = False UpperCamelCase : Union[str, Any] = False UpperCamelCase : List[str] = False def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = VideoMAEModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=3_7 ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__=False ): """simple docstring""" _lowerCAmelCase = copy.deepcopy(__magic_name__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _lowerCAmelCase = torch.ones((self.model_tester.num_masks,) ) _lowerCAmelCase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _lowerCAmelCase = mask.expand(self.model_tester.batch_size , -1 ).bool() _lowerCAmelCase = bool_masked_pos.to(__magic_name__ ) if return_labels: if model_class in [ *get_values(__magic_name__ ), ]: _lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def _lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__magic_name__ ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__magic_name__ ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = VideoMAEModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" if not self.has_attentions: pass else: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True for model_class in self.all_model_classes: _lowerCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks _lowerCAmelCase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase = True _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _lowerCAmelCase = len(__magic_name__ ) # Check attention is always last and order is fine _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _lowerCamelCase ( self ): """simple docstring""" def check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ): _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) _lowerCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks _lowerCAmelCase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _lowerCamelCase ( self ): """simple docstring""" pass def A__ ( ): """simple docstring""" _lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video', filename='eating_spaghetti.npy', repo_type='dataset' ) _lowerCAmelCase = np.load(__lowerCamelCase ) return list(__lowerCamelCase ) @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( __magic_name__ ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_video() _lowerCAmelCase = image_processor(__magic_name__ , return_tensors='pt' ).to(__magic_name__ ) # forward pass with torch.no_grad(): _lowerCAmelCase = model(**__magic_name__ ) # verify the logits _lowerCAmelCase = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) _lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(__magic_name__ ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_video() _lowerCAmelCase = image_processor(__magic_name__ , return_tensors='pt' ).to(__magic_name__ ) # add boolean mask, indicating which patches to mask _lowerCAmelCase = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) _lowerCAmelCase = torch.load(__magic_name__ ) # forward pass with torch.no_grad(): _lowerCAmelCase = model(**__magic_name__ ) # verify the logits _lowerCAmelCase = torch.Size([1, 1_4_0_8, 1_5_3_6] ) _lowerCAmelCase = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=__magic_name__ ) self.assertEqual(outputs.logits.shape , __magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __magic_name__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _lowerCAmelCase = torch.tensor([0.51_42] , device=__magic_name__ ) self.assertTrue(torch.allclose(outputs.loss , __magic_name__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _lowerCAmelCase = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=__magic_name__ ).to( __magic_name__ ) with torch.no_grad(): _lowerCAmelCase = model(**__magic_name__ ) _lowerCAmelCase = torch.tensor(torch.tensor([0.64_69] ) , device=__magic_name__ ) self.assertTrue(torch.allclose(outputs.loss , __magic_name__ , atol=1e-4 ) )
589
1
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCamelCase__ : """simple docstring""" @staticmethod def lowerCamelCase_ ( *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' pass def __A ( lowerCamelCase_ ): """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __UpperCAmelCase = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = pipeline( """document-question-answering""" , model=lowerCamelCase_ , tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = INVOICE_URL SCREAMING_SNAKE_CASE : Tuple = list(zip(*apply_tesseract(load_image(lowerCamelCase_ ) , lowerCamelCase_ , """""" ) ) ) SCREAMING_SNAKE_CASE : List[str] = """What is the placebo?""" SCREAMING_SNAKE_CASE : Dict = [ { """image""": load_image(lowerCamelCase_ ), """question""": question, }, { """image""": image, """question""": question, }, { """image""": image, """question""": question, """word_boxes""": word_boxes, }, ] return dqa_pipeline, examples def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = dqa_pipeline(lowerCamelCase_ , top_k=2 ) self.assertEqual( lowerCamelCase_ , [ [ {"""score""": ANY(lowerCamelCase_ ), """answer""": ANY(lowerCamelCase_ ), """start""": ANY(lowerCamelCase_ ), """end""": ANY(lowerCamelCase_ )}, {"""score""": ANY(lowerCamelCase_ ), """answer""": ANY(lowerCamelCase_ ), """start""": ANY(lowerCamelCase_ ), """end""": ANY(lowerCamelCase_ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline("""document-question-answering""" , model="""hf-internal-testing/tiny-random-layoutlmv2""" ) SCREAMING_SNAKE_CASE : Optional[int] = INVOICE_URL SCREAMING_SNAKE_CASE : List[Any] = """How many cats are there?""" SCREAMING_SNAKE_CASE : Union[str, Any] = [ {"""score""": 0.0_001, """answer""": """oy 2312/2019""", """start""": 38, """end""": 39}, {"""score""": 0.0_001, """answer""": """oy 2312/2019 DUE""", """start""": 38, """end""": 40}, ] SCREAMING_SNAKE_CASE : Any = dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCamelCase_ , decimals=4 ) , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCamelCase_ , decimals=4 ) , lowerCamelCase_ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE : str = """./tests/fixtures/tests_samples/COCO/000000039769.png""" SCREAMING_SNAKE_CASE : Optional[Any] = dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual(lowerCamelCase_ , [] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE : Optional[int] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[Any] = dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , words=lowerCamelCase_ , boxes=lowerCamelCase_ , top_k=2 ) self.assertEqual(lowerCamelCase_ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , ) SCREAMING_SNAKE_CASE : List[str] = INVOICE_URL SCREAMING_SNAKE_CASE : Optional[Any] = """What is the invoice number?""" SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) SCREAMING_SNAKE_CASE : int = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 16, """end""": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE : List[Any] = INVOICE_URL SCREAMING_SNAKE_CASE : Union[str, Any] = """What is the invoice number?""" SCREAMING_SNAKE_CASE : Optional[int] = dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=lowerCamelCase_ , revision="""3dc6de3""" , ) SCREAMING_SNAKE_CASE : Optional[Any] = INVOICE_URL SCREAMING_SNAKE_CASE : int = """What is the invoice number?""" SCREAMING_SNAKE_CASE : int = dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) SCREAMING_SNAKE_CASE : Any = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) SCREAMING_SNAKE_CASE : int = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] ] * 2 , ) SCREAMING_SNAKE_CASE : Dict = list(zip(*apply_tesseract(load_image(lowerCamelCase_ ) , lowerCamelCase_ , """""" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=lowerCamelCase_ , revision="""3dc6de3""" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE : int = INVOICE_URL SCREAMING_SNAKE_CASE : Tuple = """What is the invoice number?""" SCREAMING_SNAKE_CASE : Dict = dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) SCREAMING_SNAKE_CASE : str = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) SCREAMING_SNAKE_CASE : Dict = list(zip(*apply_tesseract(load_image(lowerCamelCase_ ) , lowerCamelCase_ , """""" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE : int = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) @slow @require_torch def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = pipeline( """document-question-answering""" , model="""naver-clova-ix/donut-base-finetuned-docvqa""" , tokenizer=AutoTokenizer.from_pretrained("""naver-clova-ix/donut-base-finetuned-docvqa""" ) , feature_extractor="""naver-clova-ix/donut-base-finetuned-docvqa""" , ) SCREAMING_SNAKE_CASE : List[str] = INVOICE_URL SCREAMING_SNAKE_CASE : int = """What is the invoice number?""" SCREAMING_SNAKE_CASE : Optional[Any] = dqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCamelCase_ , decimals=4 ) , [{"""answer""": """us-001"""}] ) @require_tf @unittest.skip("""Document question answering not implemented in TF""" ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass
79
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __UpperCAmelCase = random.Random() def __A ( lowerCamelCase_ , lowerCamelCase_=1.0 , lowerCamelCase_=None , lowerCamelCase_=None ): """simple docstring""" if rng is None: SCREAMING_SNAKE_CASE : Optional[Any] = global_rng SCREAMING_SNAKE_CASE : Optional[int] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int]=7 , lowerCamelCase_ : Optional[int]=4_00 , lowerCamelCase_ : int=20_00 , lowerCamelCase_ : List[str]=20_48 , lowerCamelCase_ : Optional[Any]=1_28 , lowerCamelCase_ : Optional[Any]=1 , lowerCamelCase_ : str=5_12 , lowerCamelCase_ : Dict=30 , lowerCamelCase_ : Dict=4_41_00 , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE : List[str] = min_seq_length SCREAMING_SNAKE_CASE : Any = max_seq_length SCREAMING_SNAKE_CASE : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE : int = spectrogram_length SCREAMING_SNAKE_CASE : List[Any] = feature_size SCREAMING_SNAKE_CASE : Any = num_audio_channels SCREAMING_SNAKE_CASE : Tuple = hop_length SCREAMING_SNAKE_CASE : str = chunk_length SCREAMING_SNAKE_CASE : Dict = sampling_rate def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Tuple=False , lowerCamelCase_ : Any=False ): '''simple docstring''' def _flatten(lowerCamelCase_ : Dict ): return list(itertools.chain(*lowerCamelCase_ ) ) if equal_length: SCREAMING_SNAKE_CASE : Optional[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE : Dict = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE : Optional[int] = [np.asarray(lowerCamelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase__ ( lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = TvltFeatureExtractor def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = TvltFeatureExtractionTester(self ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCamelCase_ , """spectrogram_length""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """feature_size""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """num_audio_channels""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """hop_length""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """chunk_length""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """sampling_rate""" ) ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Any = feat_extract_first.save_pretrained(lowerCamelCase_ )[0] check_json_file_has_correct_format(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extraction_class.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE : List[Any] = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE : Optional[int] = dict_first.pop("""mel_filters""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : int = os.path.join(lowerCamelCase_ , """feat_extract.json""" ) feat_extract_first.to_json_file(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extraction_class.from_json_file(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE : int = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE : List[str] = dict_first.pop("""mel_filters""" ) SCREAMING_SNAKE_CASE : Optional[Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE : Optional[int] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] SCREAMING_SNAKE_CASE : int = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE : Union[str, Any] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor(lowerCamelCase_ , return_tensors="""np""" , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking SCREAMING_SNAKE_CASE : List[str] = feature_extractor( lowerCamelCase_ , return_tensors="""np""" , sampling_rate=4_41_00 , mask_audio=lowerCamelCase_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE : Optional[int] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] SCREAMING_SNAKE_CASE : int = np.asarray(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = feature_extractor(lowerCamelCase_ , return_tensors="""np""" , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE : Union[str, Any] = ds.sort("""id""" ).select(range(lowerCamelCase_ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE : Tuple = TvltFeatureExtractor() SCREAMING_SNAKE_CASE : List[Any] = feature_extractor(lowerCamelCase_ , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_92, 1_28) ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[-0.3_032, -0.2_708], [-0.4_434, -0.4_007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , lowerCamelCase_ , atol=1e-4 ) )
79
1
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( _lowerCAmelCase ): def __init__( self ,*_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,**_SCREAMING_SNAKE_CASE ) -> str: super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) _snake_case = eval_examples _snake_case = post_process_function def _lowercase ( self ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE = "eval" ) -> Any: _snake_case = self.eval_dataset if eval_dataset is None else eval_dataset _snake_case = self.get_eval_dataloader(_SCREAMING_SNAKE_CASE ) _snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _snake_case = self.compute_metrics _snake_case = None _snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _snake_case = time.time() try: _snake_case = eval_loop( _SCREAMING_SNAKE_CASE ,description="Evaluation" ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=_SCREAMING_SNAKE_CASE ,metric_key_prefix=_SCREAMING_SNAKE_CASE ,) finally: _snake_case = compute_metrics _snake_case = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,num_samples=output.num_samples ,num_steps=math.ceil(output.num_samples / total_batch_size ) ,) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _snake_case = self.post_process_function(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,output.predictions ) _snake_case = self.compute_metrics(_SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): _snake_case = metrics.pop(_SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) else: _snake_case = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_SCREAMING_SNAKE_CASE ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _snake_case = self.callback_handler.on_evaluate(self.args ,self.state ,self.control ,_SCREAMING_SNAKE_CASE ) return metrics def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE = "test" ) -> Union[str, Any]: _snake_case = self.get_test_dataloader(_SCREAMING_SNAKE_CASE ) # Temporarily disable metric computation, we will do it in the loop here. _snake_case = self.compute_metrics _snake_case = None _snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _snake_case = time.time() try: _snake_case = eval_loop( _SCREAMING_SNAKE_CASE ,description="Prediction" ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=_SCREAMING_SNAKE_CASE ,metric_key_prefix=_SCREAMING_SNAKE_CASE ,) finally: _snake_case = compute_metrics _snake_case = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,num_samples=output.num_samples ,num_steps=math.ceil(output.num_samples / total_batch_size ) ,) ) if self.post_process_function is None or self.compute_metrics is None: return output _snake_case = self.post_process_function(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,output.predictions ,"predict" ) _snake_case = self.compute_metrics(_SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): _snake_case = metrics.pop(_SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions ,label_ids=predictions.label_ids ,metrics=_SCREAMING_SNAKE_CASE )
185
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : int = '''deta''' a_ : Dict = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__(self , UpperCAmelCase=None , UpperCAmelCase=9_0_0 , UpperCAmelCase=2_0_4_8 , UpperCAmelCase=6 , UpperCAmelCase=2_0_4_8 , UpperCAmelCase=8 , UpperCAmelCase=6 , UpperCAmelCase=1_0_2_4 , UpperCAmelCase=8 , UpperCAmelCase=0.0 , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=2_5_6 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=1.0 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase="sine" , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase=True , UpperCAmelCase=3_0_0 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=1 , UpperCAmelCase=5 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=1 , UpperCAmelCase=5 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.25 , **UpperCAmelCase , ): '''simple docstring''' if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') __UpperCAmelCase =CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4''']) else: if isinstance(UpperCAmelCase , UpperCAmelCase): __UpperCAmelCase =backbone_config.pop('''model_type''') __UpperCAmelCase =CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase =config_class.from_dict(UpperCAmelCase) __UpperCAmelCase =backbone_config __UpperCAmelCase =num_queries __UpperCAmelCase =max_position_embeddings __UpperCAmelCase =d_model __UpperCAmelCase =encoder_ffn_dim __UpperCAmelCase =encoder_layers __UpperCAmelCase =encoder_attention_heads __UpperCAmelCase =decoder_ffn_dim __UpperCAmelCase =decoder_layers __UpperCAmelCase =decoder_attention_heads __UpperCAmelCase =dropout __UpperCAmelCase =attention_dropout __UpperCAmelCase =activation_dropout __UpperCAmelCase =activation_function __UpperCAmelCase =init_std __UpperCAmelCase =init_xavier_std __UpperCAmelCase =encoder_layerdrop __UpperCAmelCase =auxiliary_loss __UpperCAmelCase =position_embedding_type # deformable attributes __UpperCAmelCase =num_feature_levels __UpperCAmelCase =encoder_n_points __UpperCAmelCase =decoder_n_points __UpperCAmelCase =two_stage __UpperCAmelCase =two_stage_num_proposals __UpperCAmelCase =with_box_refine __UpperCAmelCase =assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''') # Hungarian matcher __UpperCAmelCase =class_cost __UpperCAmelCase =bbox_cost __UpperCAmelCase =giou_cost # Loss coefficients __UpperCAmelCase =mask_loss_coefficient __UpperCAmelCase =dice_loss_coefficient __UpperCAmelCase =bbox_loss_coefficient __UpperCAmelCase =giou_loss_coefficient __UpperCAmelCase =eos_coefficient __UpperCAmelCase =focal_alpha super().__init__(is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase) @property def A__ (self): '''simple docstring''' return self.encoder_attention_heads @property def A__ (self): '''simple docstring''' return self.d_model def A__ (self): '''simple docstring''' __UpperCAmelCase =copy.deepcopy(self.__dict__) __UpperCAmelCase =self.backbone_config.to_dict() __UpperCAmelCase =self.__class__.model_type return output
132
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''PerceiverFeatureExtractor'''] _snake_case = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
170
def __lowerCamelCase ( _lowercase , _lowercase = False ) -> str: if not isinstance(_lowercase , _lowercase ): UpperCamelCase = F'Expected string as input, found {type(_lowercase )}' raise ValueError(_lowercase ) if not isinstance(_lowercase , _lowercase ): UpperCamelCase = F'Expected boolean as use_pascal parameter, found {type(_lowercase )}' raise ValueError(_lowercase ) UpperCamelCase = input_str.split('_' ) UpperCamelCase = 0 if use_pascal else 1 UpperCamelCase = words[start_index:] UpperCamelCase = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCamelCase = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
170
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case__ :list[int] , snake_case__ :list[int] , snake_case__ :int ) -> tuple[float, list[float]]: _lowercase = list(range(len(snake_case__ ) ) ) _lowercase = [v / w for v, w in zip(snake_case__ , snake_case__ )] index.sort(key=lambda snake_case__ : ratio[i] , reverse=snake_case__ ) _lowercase = 0 _lowercase = [0] * len(snake_case__ ) for i in index: if weight[i] <= capacity: _lowercase = 1 max_value += value[i] capacity -= weight[i] else: _lowercase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
67
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a_ ( lowercase__ :Optional[Any], lowercase__ :List[str]=0.999, lowercase__ :Optional[int]="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ :str ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ :Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowerCamelCase = [] for i in range(lowercase__ ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ), lowercase__ ) ) return torch.tensor(lowercase__, dtype=torch.floataa ) class __snake_case (lowerCamelCase , lowerCamelCase ): __a = [e.name for e in KarrasDiffusionSchedulers] __a = 2 @register_to_config def __init__( self: Any , A_: int = 10_00 , A_: float = 0.00_085 , A_: float = 0.012 , A_: str = "linear" , A_: Optional[Union[np.ndarray, List[float]]] = None , A_: str = "epsilon" , A_: Optional[bool] = False , A_: Optional[bool] = False , A_: float = 1.0 , A_: str = "linspace" , A_: int = 0 , ): if trained_betas is not None: __lowerCamelCase = torch.tensor(A_ , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase = torch.linspace(A_ , A_ , A_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , A_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase = betas_for_alpha_bar(A_ , alpha_transform_type="""cosine""" ) elif beta_schedule == "exp": __lowerCamelCase = betas_for_alpha_bar(A_ , alpha_transform_type="""exp""" ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(A_ , A_ , A_ ) __lowerCamelCase = use_karras_sigmas def __a ( self: Optional[Any] , A_: List[Any] , A_: Tuple=None ): if schedule_timesteps is None: __lowerCamelCase = self.timesteps __lowerCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCamelCase = 1 if len(A_ ) > 1 else 0 else: __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep __lowerCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def __a ( self: Tuple ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __a ( self: Union[str, Any] , A_: torch.FloatTensor , A_: Union[float, torch.FloatTensor] , ): __lowerCamelCase = self.index_for_timestep(A_ ) __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def __a ( self: str , A_: int , A_: Union[str, torch.device] = None , A_: Optional[int] = None , ): __lowerCamelCase = num_inference_steps __lowerCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCamelCase = np.linspace(0 , num_train_timesteps - 1 , A_ , dtype=A_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(0 , A_ ) * step_ratio).round()[::-1].copy().astype(A_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(A_ , 0 , -step_ratio )).round().copy().astype(A_ ) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __lowerCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCamelCase = np.log(A_ ) __lowerCamelCase = np.interp(A_ , np.arange(0 , len(A_ ) ) , A_ ) if self.config.use_karras_sigmas: __lowerCamelCase = self._convert_to_karras(in_sigmas=A_ , num_inference_steps=self.num_inference_steps ) __lowerCamelCase = np.array([self._sigma_to_t(A_ , A_ ) for sigma in sigmas] ) __lowerCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCamelCase = torch.from_numpy(A_ ).to(device=A_ ) __lowerCamelCase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCamelCase = torch.from_numpy(A_ ) __lowerCamelCase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(A_ ).startswith("""mps""" ): # mps does not support float64 __lowerCamelCase = timesteps.to(A_ , dtype=torch.floataa ) else: __lowerCamelCase = timesteps.to(device=A_ ) # empty dt and derivative __lowerCamelCase = None __lowerCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCamelCase = defaultdict(A_ ) def __a ( self: Any , A_: int , A_: int ): # get log sigma __lowerCamelCase = np.log(A_ ) # get distribution __lowerCamelCase = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __lowerCamelCase = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __lowerCamelCase = low_idx + 1 __lowerCamelCase = log_sigmas[low_idx] __lowerCamelCase = log_sigmas[high_idx] # interpolate sigmas __lowerCamelCase = (low - log_sigma) / (low - high) __lowerCamelCase = np.clip(A_ , 0 , 1 ) # transform interpolation to time range __lowerCamelCase = (1 - w) * low_idx + w * high_idx __lowerCamelCase = t.reshape(sigma.shape ) return t def __a ( self: Dict , A_: torch.FloatTensor , A_: Tuple ): __lowerCamelCase = in_sigmas[-1].item() __lowerCamelCase = in_sigmas[0].item() __lowerCamelCase = 7.0 # 7.0 is the value used in the paper __lowerCamelCase = np.linspace(0 , 1 , A_ ) __lowerCamelCase = sigma_min ** (1 / rho) __lowerCamelCase = sigma_max ** (1 / rho) __lowerCamelCase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __a ( self: List[Any] ): return self.dt is None def __a ( self: Union[str, Any] , A_: Union[torch.FloatTensor, np.ndarray] , A_: Union[float, torch.FloatTensor] , A_: Union[torch.FloatTensor, np.ndarray] , A_: bool = True , ): __lowerCamelCase = self.index_for_timestep(A_ ) # advance index counter by 1 __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __lowerCamelCase = self.sigmas[step_index - 1] __lowerCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCamelCase = 0 __lowerCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_next __lowerCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_next __lowerCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __lowerCamelCase = model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: __lowerCamelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCamelCase = sigma_next - sigma_hat # store for 2nd order step __lowerCamelCase = derivative __lowerCamelCase = dt __lowerCamelCase = sample else: # 2. 2nd order / Heun's method __lowerCamelCase = (sample - pred_original_sample) / sigma_next __lowerCamelCase = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __lowerCamelCase = self.dt __lowerCamelCase = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A_ ) def __a ( self: str , A_: torch.FloatTensor , A_: torch.FloatTensor , A_: torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(A_ ): # mps does not support float64 __lowerCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCamelCase = self.timesteps.to(original_samples.device ) __lowerCamelCase = timesteps.to(original_samples.device ) __lowerCamelCase = [self.index_for_timestep(A_ , A_ ) for t in timesteps] __lowerCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCamelCase = sigma.unsqueeze(-1 ) __lowerCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self: Tuple ): return self.config.num_train_timesteps
281
0
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCAmelCase = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
717
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> bool: if num < 0: return False __lowerCAmelCase : int = num __lowerCAmelCase : int = 0 while num > 0: __lowerCAmelCase : Any = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
240
0
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def _a ( lowerCamelCase_="" ): snake_case : Any =tempfile.mkdtemp() return os.path.join(lowerCamelCase_ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def __snake_case ( self : Optional[Any] ): '''simple docstring''' snake_case : List[str] =torch.rand(12, dtype=torch.floataa ) - 0.5 snake_case : List[str] =AgentAudio(_snake_case ) snake_case : Any =str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_snake_case, agent_type.to_raw(), atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(_snake_case ) ) # Ensure that the file contains the same value as the original tensor snake_case , snake_case : List[Any] =sf.read(_snake_case ) self.assertTrue(torch.allclose(_snake_case, torch.tensor(_snake_case ), atol=1E-4 ) ) def __snake_case ( self : int ): '''simple docstring''' snake_case : Dict =torch.rand(12, dtype=torch.floataa ) - 0.5 snake_case : Optional[Any] =get_new_path(suffix='''.wav''' ) sf.write(_snake_case, _snake_case, 16_000 ) snake_case : Any =AgentAudio(_snake_case ) self.assertTrue(torch.allclose(_snake_case, agent_type.to_raw(), atol=1E-4 ) ) self.assertEqual(agent_type.to_string(), _snake_case ) @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def __snake_case ( self : Dict ): '''simple docstring''' snake_case : Any =torch.randint(0, 256, (64, 64, 3) ) snake_case : Union[str, Any] =AgentImage(_snake_case ) snake_case : List[Any] =str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_snake_case, agent_type._tensor, atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw(), Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_snake_case ) ) def __snake_case ( self : List[str] ): '''simple docstring''' snake_case : str =Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' snake_case : Optional[int] =Image.open(_snake_case ) snake_case : int =AgentImage(_snake_case ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_snake_case ) ) def __snake_case ( self : Tuple ): '''simple docstring''' snake_case : Tuple =Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' snake_case : Any =Image.open(_snake_case ) snake_case : List[str] =AgentImage(_snake_case ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_snake_case ) ) class lowerCAmelCase_ ( unittest.TestCase ): def __snake_case ( self : Union[str, Any] ): '''simple docstring''' snake_case : Dict ='''Hey!''' snake_case : Optional[int] =AgentText(_snake_case ) self.assertEqual(_snake_case, agent_type.to_string() ) self.assertEqual(_snake_case, agent_type.to_raw() ) self.assertEqual(_snake_case, _snake_case )
349
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( a_ , unittest.TestCase ): __UpperCAmelCase = DebertaTokenizer __UpperCAmelCase = True __UpperCAmelCase = DebertaTokenizerFast def __snake_case ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case : List[Any] =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] snake_case : Dict =dict(zip(_snake_case, range(len(_snake_case ) ) ) ) snake_case : Tuple =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] snake_case : List[Any] ={'''unk_token''': '''[UNK]'''} snake_case : List[Any] =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case : Tuple =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(_snake_case ) + '''\n''' ) with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_snake_case ) ) def __snake_case ( self : str, **_snake_case : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **_snake_case ) def __snake_case ( self : List[str], _snake_case : List[str] ): '''simple docstring''' snake_case : List[str] ='''lower newer''' snake_case : Optional[int] ='''lower newer''' return input_text, output_text def __snake_case ( self : Any ): '''simple docstring''' snake_case : List[Any] =self.get_tokenizer() snake_case : List[Any] ='''lower newer''' snake_case : Union[str, Any] =['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] snake_case : str =tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case, _snake_case ) snake_case : Any =tokens + [tokenizer.unk_token] snake_case : List[Any] =[0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ), _snake_case ) def __snake_case ( self : Tuple ): '''simple docstring''' snake_case : Optional[Any] =self.get_tokenizer() snake_case : Any =tokenizer('''Hello''', '''World''' ) snake_case : List[Any] =[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''], _snake_case ) @slow def __snake_case ( self : Optional[Any] ): '''simple docstring''' snake_case : int =self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) snake_case : List[Any] =tokenizer.encode('''sequence builders''', add_special_tokens=_snake_case ) snake_case : str =tokenizer.encode('''multi-sequence build''', add_special_tokens=_snake_case ) snake_case : Union[str, Any] =tokenizer.encode( '''sequence builders''', add_special_tokens=_snake_case, add_prefix_space=_snake_case ) snake_case : Optional[int] =tokenizer.encode( '''sequence builders''', '''multi-sequence build''', add_special_tokens=_snake_case, add_prefix_space=_snake_case ) snake_case : str =tokenizer.build_inputs_with_special_tokens(_snake_case ) snake_case : Tuple =tokenizer.build_inputs_with_special_tokens(_snake_case, _snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __snake_case ( self : Dict ): '''simple docstring''' snake_case : int =[self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: snake_case : Optional[int] =tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) snake_case : Optional[Any] =[ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] snake_case : int =tokenizer(_snake_case, padding=_snake_case ) snake_case : str =[tokenizer.decode(_snake_case, skip_special_tokens=_snake_case ) for seq in encoding['''input_ids''']] # fmt: off snake_case : Optional[Any] ={ '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on snake_case : Tuple =[ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data, _snake_case ) for expected, decoded in zip(_snake_case, _snake_case ): self.assertEqual(_snake_case, _snake_case )
349
1
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __UpperCAmelCase : '''simple docstring''' pass
165
"""simple docstring""" def _lowerCAmelCase(a : int = 3 , a : int = 7 , a : int = 100_0000 ) -> int: _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =1 for current_denominator in range(1 , limit + 1 ): _SCREAMING_SNAKE_CASE =current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: _SCREAMING_SNAKE_CASE =current_numerator _SCREAMING_SNAKE_CASE =current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_0_0_0_0_0_0))
165
1
from __future__ import annotations from decimal import Decimal from numpy import array def __magic_name__ ( lowercase ) -> list[list[float]]: """simple docstring""" lowercase_ : Union[str, Any] = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowercase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowercase_ : int = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements lowercase_ : Dict = [[0.0, 0.0], [0.0, 0.0]] lowercase_ , lowercase_ : Tuple = matrix[1][1], matrix[0][0] lowercase_ , lowercase_ : Any = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowercase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowercase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowercase_ : Optional[int] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix lowercase_ : List[str] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowercase_ : List[Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowercase_ : int = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowercase_ : int = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowercase_ : str = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowercase_ : Optional[Any] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowercase_ : Optional[int] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowercase_ : Tuple = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowercase_ : Optional[Any] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowercase_ : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowercase_ : Optional[Any] = array(lowercase ) for i in range(3 ): for j in range(3 ): lowercase_ : int = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowercase_ : Optional[int] = array(lowercase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowercase ) # Calculate the inverse of the matrix return [[float(d(lowercase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
458
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' @register_to_config def __init__( self, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ = False, ) -> Any: """simple docstring""" super().__init__() lowercase_ : str = nn.Embedding(snake_case__, snake_case__ ) lowercase_ : Dict = nn.Embedding(snake_case__, snake_case__ ) lowercase_ : List[str] = False lowercase_ : Optional[int] = nn.Dropout(p=snake_case__ ) lowercase_ : Any = TaConfig( vocab_size=snake_case__, d_model=snake_case__, num_heads=snake_case__, d_kv=snake_case__, d_ff=snake_case__, dropout_rate=snake_case__, feed_forward_proj=snake_case__, is_decoder=snake_case__, is_encoder_decoder=snake_case__, ) lowercase_ : List[Any] = nn.ModuleList() for lyr_num in range(snake_case__ ): lowercase_ : List[str] = TaBlock(snake_case__ ) self.encoders.append(snake_case__ ) lowercase_ : Tuple = TaLayerNorm(snake_case__ ) lowercase_ : Dict = nn.Dropout(p=snake_case__ ) def snake_case__ ( self, snake_case__, snake_case__ ) -> Union[str, Any]: """simple docstring""" lowercase_ : Union[str, Any] = self.token_embedder(snake_case__ ) lowercase_ : Tuple = encoder_input_tokens.shape[1] lowercase_ : List[str] = torch.arange(snake_case__, device=encoder_input_tokens.device ) x += self.position_encoding(snake_case__ ) lowercase_ : Union[str, Any] = self.dropout_pre(snake_case__ ) # inverted the attention mask lowercase_ : List[str] = encoder_input_tokens.size() lowercase_ : Union[str, Any] = self.get_extended_attention_mask(snake_case__, snake_case__ ) for lyr in self.encoders: lowercase_ : Optional[Any] = lyr(snake_case__, snake_case__ )[0] lowercase_ : Dict = self.layer_norm(snake_case__ ) return self.dropout_post(snake_case__ ), encoder_inputs_mask
458
1
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCAmelCase__: '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Dict=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : List[Any]=[1, 1, 2] , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : int=32 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : int=37 , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : str=5_12 , lowerCAmelCase : str=3 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[int]=False , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = block_sizes lowercase__ = num_decoder_layers lowercase__ = d_model lowercase__ = n_head lowercase__ = d_head lowercase__ = d_inner lowercase__ = hidden_act lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = 2 lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope lowercase__ = initializer_std # Used in the tests to check the size of the first attention layer lowercase__ = n_head # Used in the tests to check the size of the first hidden state lowercase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowercase__ = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowercase__ = self.num_hidden_layers + 2 def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase__ = ids_tensor([self.batch_size] , self.num_choices) lowercase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , ) -> int: """simple docstring""" lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , ) -> str: """simple docstring""" lowercase__ = TFFunnelForPreTraining(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForMaskedLM(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForSequenceClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = TFFunnelForMultipleChoice(config=lowerCAmelCase) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForTokenClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForQuestionAnswering(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) = config_and_inputs lowercase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) A : Dict = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) A : Optional[int] = False A : Optional[int] = False def UpperCAmelCase ( self : Tuple) -> str: """simple docstring""" lowercase__ = TFFunnelModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase) @require_tf class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) A : List[str] = False A : int = False def UpperCAmelCase ( self : Any) -> List[Any]: """simple docstring""" lowercase__ = TFFunnelModelTester(self , base=lowerCAmelCase) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase)
642
import heapq import sys import numpy as np a__ : Dict = tuple[int, int] class UpperCAmelCase__: '''simple docstring''' def __init__( self : List[str]) -> Any: """simple docstring""" lowercase__ = [] lowercase__ = set() def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf') def UpperCAmelCase ( self : int) -> str: """simple docstring""" return len(self.elements) == 0 def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(lowerCAmelCase) else: # update # print("update", item) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple: """simple docstring""" if item in self.set: self.set.remove(lowerCAmelCase) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" return self.elements[0][1] def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) self.set.remove(lowerCAmelCase) return (priority, item) def _lowerCAmelCase ( A__ , A__ ): # euclidean distance lowercase__ = np.array(A__ ) lowercase__ = np.array(A__ ) return np.linalg.norm(a - b ) def _lowerCAmelCase ( A__ , A__ ): # integer division by time variable return consistent_heuristic(A__ , A__ ) // t def _lowerCAmelCase ( A__ , A__ ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ ) return ans def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = np.chararray((n, n) ) for i in range(A__ ): for j in range(A__ ): lowercase__ = '*' for i in range(A__ ): for j in range(A__ ): if (j, (n - 1) - i) in blocks: lowercase__ = '#' lowercase__ = '-' lowercase__ = back_pointer[goal] while x != start: ((lowercase__), (lowercase__)) = x # print(x) lowercase__ = '-' lowercase__ = back_pointer[x] lowercase__ = '-' for i in range(A__ ): for j in range(A__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowercase__ = back_pointer[goal] while x != start: print(A__ , end=' ' ) lowercase__ = back_pointer[x] print(A__ ) sys.exit() def _lowerCAmelCase ( A__ ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): for itera in range(A__ ): open_list[itera].remove_element(A__ ) # print("s", s) # print("j", j) ((lowercase__), (lowercase__)) = s lowercase__ = (x - 1, y) lowercase__ = (x + 1, y) lowercase__ = (x, y + 1) lowercase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(A__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(A__ ) lowercase__ = -1 lowercase__ = float('inf' ) if valid(A__ ) and g_function[neighbours] > g_function[s] + 1: lowercase__ = g_function[s] + 1 lowercase__ = s if neighbours not in close_list_anchor: open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) ) if neighbours not in close_list_inad: for var in range(1 , A__ ): if key(A__ , A__ , A__ , A__ ) <= Wa * key( A__ , 0 , A__ , A__ ): open_list[j].put( A__ , key(A__ , A__ , A__ , A__ ) ) def _lowerCAmelCase ( ): lowercase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a__ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a__ : Any = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a__ : Any = make_common_ground() a__ : Union[str, Any] = blocks_blk # hyper parameters a__ : List[Any] = 1 a__ : List[str] = 1 a__ : Optional[int] = 20 a__ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a__ : Tuple = (0, 0) a__ : str = (n - 1, n - 1) a__ : Optional[Any] = 1 def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = {start: 0, goal: float('inf' )} lowercase__ = {start: -1, goal: -1} lowercase__ = [] lowercase__ = set() for i in range(A__ ): open_list.append(PriorityQueue() ) open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) ) lowercase__ = [] lowercase__ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , A__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__, lowercase__ = open_list[i].top_show() visited.add(A__ ) expand_state( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_inad.append(A__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__ = open_list[0].top_show() visited.add(A__ ) expand_state( A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_anchor.append(A__ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(A__ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
642
1
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowercase = logging.get_logger(__name__) __lowercase = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Dict = '''detr''' UpperCAmelCase_ : List[str] = ['''past_key_values'''] UpperCAmelCase_ : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=3 , __lowerCAmelCase=100 , __lowerCAmelCase=6 , __lowerCAmelCase=2048 , __lowerCAmelCase=8 , __lowerCAmelCase=6 , __lowerCAmelCase=2048 , __lowerCAmelCase=8 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=True , __lowerCAmelCase="relu" , __lowerCAmelCase=256 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1.0 , __lowerCAmelCase=False , __lowerCAmelCase="sine" , __lowerCAmelCase="resnet50" , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=1 , __lowerCAmelCase=5 , __lowerCAmelCase=2 , __lowerCAmelCase=1 , __lowerCAmelCase=1 , __lowerCAmelCase=5 , __lowerCAmelCase=2 , __lowerCAmelCase=0.1 , **__lowerCAmelCase , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""") if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""") lowerCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""]) elif isinstance(__lowerCAmelCase , __lowerCAmelCase): lowerCAmelCase = backbone_config.get("""model_type""") lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase = config_class.from_dict(__lowerCAmelCase) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None, None, None lowerCAmelCase = use_timm_backbone lowerCAmelCase = backbone_config lowerCAmelCase = num_channels lowerCAmelCase = num_queries lowerCAmelCase = d_model lowerCAmelCase = encoder_ffn_dim lowerCAmelCase = encoder_layers lowerCAmelCase = encoder_attention_heads lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = init_xavier_std lowerCAmelCase = encoder_layerdrop lowerCAmelCase = decoder_layerdrop lowerCAmelCase = encoder_layers lowerCAmelCase = auxiliary_loss lowerCAmelCase = position_embedding_type lowerCAmelCase = backbone lowerCAmelCase = use_pretrained_backbone lowerCAmelCase = dilation # Hungarian matcher lowerCAmelCase = class_cost lowerCAmelCase = bbox_cost lowerCAmelCase = giou_cost # Loss coefficients lowerCAmelCase = mask_loss_coefficient lowerCAmelCase = dice_loss_coefficient lowerCAmelCase = bbox_loss_coefficient lowerCAmelCase = giou_loss_coefficient lowerCAmelCase = eos_coefficient super().__init__(is_encoder_decoder=__lowerCAmelCase , **__lowerCAmelCase) @property def a_ ( self): """simple docstring""" return self.encoder_attention_heads @property def a_ ( self): """simple docstring""" return self.d_model @classmethod def a_ ( cls , __lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" return cls(backbone_config=__lowerCAmelCase , **__lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: lowerCAmelCase = self.backbone_config.to_dict() lowerCAmelCase = self.__class__.model_type return output class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : int = version.parse('''1.11''' ) @property def a_ ( self): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ]) @property def a_ ( self): """simple docstring""" return 1E-5 @property def a_ ( self): """simple docstring""" return 12
370
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter __lowercase = '''Create a default config file for Accelerate with only a few flags set.''' def snake_case__ ( _A: Dict="no" , _A: str = default_json_config_file , _A: bool = False ) -> List[str]: '''simple docstring''' lowerCAmelCase = Path(_A ) path.parent.mkdir(parents=_A , exist_ok=_A ) if path.exists(): print( f"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`." ) return False lowerCAmelCase = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}" ) lowerCAmelCase = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): lowerCAmelCase = torch.cuda.device_count() lowerCAmelCase = num_gpus lowerCAmelCase = False if num_gpus > 1: lowerCAmelCase = """MULTI_GPU""" else: lowerCAmelCase = """NO""" elif is_xpu_available() and use_xpu: lowerCAmelCase = torch.xpu.device_count() lowerCAmelCase = num_xpus lowerCAmelCase = False if num_xpus > 1: lowerCAmelCase = """MULTI_XPU""" else: lowerCAmelCase = """NO""" elif is_npu_available(): lowerCAmelCase = torch.npu.device_count() lowerCAmelCase = num_npus lowerCAmelCase = False if num_npus > 1: lowerCAmelCase = """MULTI_NPU""" else: lowerCAmelCase = """NO""" else: lowerCAmelCase = 0 lowerCAmelCase = True lowerCAmelCase = 1 lowerCAmelCase = """NO""" lowerCAmelCase = ClusterConfig(**_A ) config.to_json_file(_A ) return path def snake_case__ ( _A: str , _A: Any ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase = parser.add_parser("""default""" , parents=_A , help=_A , formatter_class=_A ) parser.add_argument( """--config_file""" , default=_A , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=_A , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=_A ) return parser def snake_case__ ( _A: Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f"accelerate configuration saved at {config_file}" )
370
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : str = "▁" __lowerCamelCase : List[Any] = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } __lowerCamelCase : Tuple = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } __lowerCamelCase : Any = { "facebook/m2m100_418M": 1_024, } # fmt: off __lowerCamelCase : List[Any] = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class __magic_name__ ( A__ ): lowercase : int =VOCAB_FILES_NAMES lowercase : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : str =PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] =['''input_ids''', '''attention_mask'''] lowercase : List[int] =[] lowercase : List[int] =[] def __init__( self : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int=None , UpperCamelCase__ : int=None , UpperCamelCase__ : int="<s>" , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : Any="</s>" , UpperCamelCase__ : Union[str, Any]="<pad>" , UpperCamelCase__ : List[str]="<unk>" , UpperCamelCase__ : str="m2m100" , UpperCamelCase__ : Optional[Dict[str, Any]] = None , UpperCamelCase__ : Any=8 , **UpperCamelCase__ : int , ) -> None: '''simple docstring''' UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = language_codes UpperCAmelCase = FAIRSEQ_LANGUAGE_CODES[language_codes] UpperCAmelCase = {lang_code: F'__{lang_code}__' for lang_code in fairseq_language_code} UpperCAmelCase = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(UpperCamelCase__ ) for lang_code in fairseq_language_code if self.get_lang_token(UpperCamelCase__ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=UpperCamelCase__ , tgt_lang=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , language_codes=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=UpperCamelCase__ , **UpperCamelCase__ , ) UpperCAmelCase = vocab_file UpperCAmelCase = load_json(UpperCamelCase__ ) UpperCAmelCase = {v: k for k, v in self.encoder.items()} UpperCAmelCase = spm_file UpperCAmelCase = load_spm(UpperCamelCase__ , self.sp_model_kwargs ) UpperCAmelCase = len(self.encoder ) UpperCAmelCase = { self.get_lang_token(UpperCamelCase__ ): self.encoder_size + i for i, lang_code in enumerate(UpperCamelCase__ ) } UpperCAmelCase = {lang_code: self.encoder_size + i for i, lang_code in enumerate(UpperCamelCase__ )} UpperCAmelCase = {v: k for k, v in self.lang_token_to_id.items()} UpperCAmelCase = src_lang if src_lang is not None else "en" UpperCAmelCase = tgt_lang UpperCAmelCase = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) UpperCAmelCase = num_madeup_words @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> int: '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCamelCase__ : str ) -> None: '''simple docstring''' UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCamelCase__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCamelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(UpperCamelCase__ , self.encoder[self.unk_token] ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCamelCase__ : int ) -> str: '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(UpperCamelCase__ , self.unk_token ) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCamelCase__ : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase__ ) + token UpperCAmelCase = [] else: current_sub_tokens.append(UpperCamelCase__ ) out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCamelCase__ )) + suffix_ones return prefix_ones + ([0] * len(UpperCamelCase__ )) + ([0] * len(UpperCamelCase__ )) + suffix_ones def SCREAMING_SNAKE_CASE_ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : List[str] , UpperCamelCase__ : Dict ) -> None: '''simple docstring''' UpperCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase = {} UpperCAmelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' UpperCAmelCase = Path(UpperCamelCase__ ) if not save_dir.is_dir(): raise OSError(F'{save_directory} should be a directory' ) UpperCAmelCase = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) UpperCAmelCase = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , UpperCamelCase__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , UpperCamelCase__ ) elif not os.path.isfile(self.spm_file ): with open(UpperCamelCase__ , "wb" ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (str(UpperCamelCase__ ), str(UpperCamelCase__ )) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : str = "en" , UpperCamelCase__ : Optional[List[str]] = None , UpperCamelCase__ : str = "ro" , **UpperCamelCase__ : Tuple , ) -> BatchEncoding: '''simple docstring''' UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : int ) -> Dict: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCAmelCase = src_lang UpperCAmelCase = self(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , **UpperCamelCase__ ) UpperCAmelCase = self.get_lang_id(UpperCamelCase__ ) UpperCAmelCase = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCamelCase__ : str ) -> None: '''simple docstring''' UpperCAmelCase = self.get_lang_token(UpperCamelCase__ ) UpperCAmelCase = self.lang_token_to_id[lang_token] UpperCAmelCase = [self.cur_lang_id] UpperCAmelCase = [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCamelCase__ : str ) -> None: '''simple docstring''' UpperCAmelCase = self.get_lang_token(UpperCamelCase__ ) UpperCAmelCase = self.lang_token_to_id[lang_token] UpperCAmelCase = [self.cur_lang_id] UpperCAmelCase = [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCamelCase__ : str ) -> str: '''simple docstring''' return self.lang_code_to_token[lang] def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCamelCase__ : str ) -> int: '''simple docstring''' UpperCAmelCase = self.get_lang_token(UpperCamelCase__ ) return self.lang_token_to_id[lang_token] def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> sentencepiece.SentencePieceProcessor: UpperCAmelCase = sentencepiece.SentencePieceProcessor(**lowerCamelCase_ ) spm.Load(str(lowerCamelCase_ ) ) return spm def lowerCamelCase_(lowerCamelCase_ ) -> Union[Dict, List]: with open(lowerCamelCase_ , "r" ) as f: return json.load(lowerCamelCase_ ) def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> None: with open(lowerCamelCase_ , "w" ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ , indent=2 )
457
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCamelCase : Optional[int] = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
457
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _UpperCamelCase : Optional[int] = logging.get_logger(__name__) _UpperCamelCase : int = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class UpperCAmelCase_ ( _a): lowerCamelCase__ : Dict = "blenderbot-small" lowerCamelCase__ : Optional[int] = ["past_key_values"] lowerCamelCase__ : Union[str, Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , a=5_0_2_6_5 , a=5_1_2 , a=8 , a=2_0_4_8 , a=1_6 , a=8 , a=2_0_4_8 , a=1_6 , a=0.0 , a=0.0 , a=True , a=True , a="gelu" , a=5_1_2 , a=0.1 , a=0.0 , a=0.0 , a=0.02 , a=1 , a=False , a=0 , a=1 , a=2 , a=2 , **a , ) -> List[Any]: lowercase__ : str = vocab_size lowercase__ : str = max_position_embeddings lowercase__ : Any = d_model lowercase__ : int = encoder_ffn_dim lowercase__ : List[str] = encoder_layers lowercase__ : Dict = encoder_attention_heads lowercase__ : List[str] = decoder_ffn_dim lowercase__ : Tuple = decoder_layers lowercase__ : Dict = decoder_attention_heads lowercase__ : List[Any] = dropout lowercase__ : Union[str, Any] = attention_dropout lowercase__ : Tuple = activation_dropout lowercase__ : str = activation_function lowercase__ : Any = init_std lowercase__ : str = encoder_layerdrop lowercase__ : int = decoder_layerdrop lowercase__ : Tuple = use_cache lowercase__ : Dict = encoder_layers lowercase__ : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , forced_eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) class UpperCAmelCase_ ( _a): @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowercase__ : List[Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: lowercase__ : Tuple = {0: 'batch'} lowercase__ : Optional[int] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase__ : List[Any] = {0: 'batch', 1: 'decoder_sequence'} lowercase__ : List[Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase_ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase__ : str = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: lowercase__ , lowercase__ : Optional[int] = self.num_layers for i in range(UpperCamelCase_ ): lowercase__ : Optional[int] = {0: 'batch', 2: 'past_sequence + sequence'} lowercase__ : List[Any] = {0: 'batch', 2: 'past_sequence + sequence'} else: lowercase__ : str = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowercase__ : int = super().outputs else: lowercase__ : str = super(UpperCamelCase_ , self ).outputs if self.use_past: lowercase__ , lowercase__ : Any = self.num_layers for i in range(UpperCamelCase_ ): lowercase__ : Union[str, Any] = {0: 'batch', 2: 'past_sequence + sequence'} lowercase__ : Union[str, Any] = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def _UpperCAmelCase ( self , a , a = -1 , a = -1 , a = False , a = None , ) -> Mapping[str, Any]: lowercase__ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Generate decoder inputs lowercase__ : int = seq_length if not self.use_past else 1 lowercase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ : Optional[int] = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} lowercase__ : Optional[Any] = dict(**UpperCamelCase_ , **UpperCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowercase__ , lowercase__ : List[Any] = common_inputs['input_ids'].shape lowercase__ : Union[str, Any] = common_inputs['decoder_input_ids'].shape[1] lowercase__ , lowercase__ : Union[str, Any] = self.num_attention_heads lowercase__ : int = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase__ : List[Any] = decoder_seq_length + 3 lowercase__ : Optional[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase__ : List[Any] = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(UpperCamelCase_ , UpperCamelCase_ )] , dim=1 ) lowercase__ : str = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase__ , lowercase__ : Dict = self.num_layers lowercase__ : List[Any] = min(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ : Tuple = max(UpperCamelCase_ , UpperCamelCase_ ) - min_num_layers lowercase__ : List[str] = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCamelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), ) ) # TODO: test this. lowercase__ : str = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCamelCase_ , UpperCamelCase_ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) ) return common_inputs def _UpperCAmelCase ( self , a , a = -1 , a = -1 , a = False , a = None , ) -> Mapping[str, Any]: lowercase__ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowercase__ , lowercase__ : List[Any] = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowercase__ : List[Any] = seqlen + 2 lowercase__ , lowercase__ : Any = self.num_layers lowercase__ , lowercase__ : int = self.num_attention_heads lowercase__ : Optional[int] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase__ : Dict = common_inputs['attention_mask'].dtype lowercase__ : Tuple = torch.cat( [common_inputs['attention_mask'], torch.ones(UpperCamelCase_ , UpperCamelCase_ , dtype=UpperCamelCase_ )] , dim=1 ) lowercase__ : List[Any] = [ (torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) for _ in range(UpperCamelCase_ ) ] return common_inputs def _UpperCAmelCase ( self , a , a = -1 , a = -1 , a = False , a = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase__ : Union[str, Any] = compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase__ : List[Any] = tokenizer.num_special_tokens_to_add(UpperCamelCase_ ) lowercase__ : Union[str, Any] = compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase_ ) # Generate dummy inputs according to compute batch and sequence lowercase__ : List[str] = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase__ : int = dict(tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) ) return common_inputs def _UpperCAmelCase ( self , a , a = -1 , a = -1 , a = False , a = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: lowercase__ : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) elif self.task == "causal-lm": lowercase__ : int = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) else: lowercase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) return common_inputs def _UpperCAmelCase ( self , a , a , a , a ) -> List[str]: if self.task in ["default", "seq2seq-lm"]: lowercase__ : Any = super()._flatten_past_key_values_(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: lowercase__ : Any = super(UpperCamelCase_ , self )._flatten_past_key_values_( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
599
'''simple docstring''' import enum import shutil import sys a__ , a__ : Any = shutil.get_terminal_size() a__ : Optional[int] = {'''UP''': '''A''', '''DOWN''': '''B''', '''RIGHT''': '''C''', '''LEFT''': '''D'''} class __snake_case ( enum.Enum ): __lowerCAmelCase = 0 __lowerCAmelCase = 1 def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_="" ) ->Optional[Any]: sys.stdout.write(str(UpperCAmelCase_ ) + end ) sys.stdout.flush() def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_="" ) ->List[str]: forceWrite(f'''\u001b[{color}m{content}\u001b[0m''' , UpperCAmelCase_ ) def __lowerCamelCase ( ) ->Optional[Any]: forceWrite('\r' ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ ) ->Any: forceWrite(f'''\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}''' ) def __lowerCamelCase ( ) ->str: forceWrite(' ' * TERMINAL_WIDTH ) reset_cursor() def __lowerCamelCase ( ) ->Tuple: reset_cursor() forceWrite('-' * TERMINAL_WIDTH )
368
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self ,_A ,_A=7 ,_A=3 ,_A=30 ,_A=400 ,_A=True ,_A=None ,_A=0.9 ,_A=None ,_A=True ,_A=[0.5, 0.5, 0.5] ,_A=[0.5, 0.5, 0.5] ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = size if size is not None else {'shortest_edge': 30} _lowerCAmelCase : Any = crop_size if crop_size is not None else {'height': 30, 'width': 30} _lowerCAmelCase : List[str] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : int = num_channels _lowerCAmelCase : str = min_resolution _lowerCAmelCase : List[str] = max_resolution _lowerCAmelCase : Any = do_resize_and_center_crop _lowerCAmelCase : List[str] = size _lowerCAmelCase : List[Any] = crop_pct _lowerCAmelCase : Optional[Any] = crop_size _lowerCAmelCase : Optional[Any] = do_normalize _lowerCAmelCase : Optional[int] = image_mean _lowerCAmelCase : Optional[int] = image_std def __lowerCamelCase ( self ): '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = PoolFormerImageProcessingTester(self ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A ,'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(_A ,'size' ) ) self.assertTrue(hasattr(_A ,'crop_pct' ) ) self.assertTrue(hasattr(_A ,'do_normalize' ) ) self.assertTrue(hasattr(_A ,'image_mean' ) ) self.assertTrue(hasattr(_A ,'image_std' ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size ,{'height': 30, 'width': 30} ) _lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A ,Image.Image ) # Test not batched input _lowerCAmelCase : Dict = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _lowerCAmelCase : Optional[Any] = image_processing(_A ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_A ,numpify=_A ) for image in image_inputs: self.assertIsInstance(_A ,np.ndarray ) # Test not batched input _lowerCAmelCase : Dict = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _lowerCAmelCase : Any = image_processing(_A ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_A ,torchify=_A ) for image in image_inputs: self.assertIsInstance(_A ,torch.Tensor ) # Test not batched input _lowerCAmelCase : List[str] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _lowerCAmelCase : List[Any] = image_processing(_A ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,)
16
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
1
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class snake_case ( UpperCamelCase_ ): lowercase_ = 'ernie_m' lowercase_ = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : Optional[Any] , a_ : int = 25_0002 , a_ : int = 768 , a_ : int = 12 , a_ : int = 12 , a_ : int = 3072 , a_ : str = "gelu" , a_ : float = 0.1 , a_ : float = 0.1 , a_ : int = 514 , a_ : float = 0.02 , a_ : int = 1 , a_ : float = 1e-0_5 , a_ : List[Any]=None , a_ : Dict=False , a_ : Union[str, Any]=0.0 , **a_ : List[Any] , )-> Tuple: """simple docstring""" super().__init__(pad_token_id=a_ , **a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE__ : List[str] = hidden_size SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers SCREAMING_SNAKE_CASE__ : str = num_attention_heads SCREAMING_SNAKE_CASE__ : Dict = intermediate_size SCREAMING_SNAKE_CASE__ : str = hidden_act SCREAMING_SNAKE_CASE__ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE__ : int = initializer_range SCREAMING_SNAKE_CASE__ : str = layer_norm_eps SCREAMING_SNAKE_CASE__ : Dict = classifier_dropout SCREAMING_SNAKE_CASE__ : List[Any] = is_decoder SCREAMING_SNAKE_CASE__ : Optional[Any] = act_dropout
85
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = """timm_backbone""" def __init__( self :Any , lowerCamelCase_ :int=None , lowerCamelCase_ :Optional[int]=3 , lowerCamelCase_ :int=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Union[str, Any]=None , **lowerCamelCase_ :Optional[int] , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =backbone lowerCamelCase__ : List[Any] =num_channels lowerCamelCase__ : Tuple =features_only lowerCamelCase__ : Dict =use_pretrained_backbone lowerCamelCase__ : Optional[int] =True lowerCamelCase__ : Optional[int] =out_indices if out_indices is not None else (-1,)
174
0
"""simple docstring""" import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __lowercase ( snake_case__ ): '''simple docstring''' __lowerCAmelCase = '''microsoft/speecht5_tts''' __lowerCAmelCase = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) __lowerCAmelCase = '''text_reader''' __lowerCAmelCase = SpeechTaProcessor __lowerCAmelCase = SpeechTaForTextToSpeech __lowerCAmelCase = SpeechTaHifiGan __lowerCAmelCase = ['''text'''] __lowerCAmelCase = ['''audio'''] def _lowerCamelCase ( self ): if self.post_processor is None: __a : Dict = "microsoft/speecht5_hifigan" super().setup() def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ): __a : Tuple = self.pre_processor(text=lowercase_ , return_tensors='''pt''' , truncation=lowercase_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) __a : Optional[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) __a : List[Any] = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _lowerCamelCase ( self , _UpperCAmelCase ): with torch.no_grad(): return self.model.generate_speech(**lowercase_ ) def _lowerCamelCase ( self , _UpperCAmelCase ): with torch.no_grad(): return self.post_processor(lowercase_ ).cpu().detach()
704
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping A = tuple[int, int] class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : set[int] = vertices __a : dict[EdgeT, int] = { (min(_UpperCAmelCase ), max(_UpperCAmelCase )): weight for edge, weight in edges.items() } def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __a : Any = weight def _lowerCamelCase ( self ): __a : Graph = Graph({min(self.vertices )} , {} ) __a : EdgeT __a : int __a : EdgeT __a : int while len(subgraph.vertices ) < len(self.vertices ): __a : List[Any] = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __a : str = edge __a : int = weight subgraph.add_edge(_UpperCAmelCase , _UpperCAmelCase ) return subgraph def __A ( a_ :str = "p107_network.txt") -> int: __a : str = os.path.abspath(os.path.dirname(a_)) __a : str = os.path.join(a_ , a_) __a : dict[EdgeT, int] = {} __a : list[str] __a : int __a : int with open(a_) as f: __a : Any = f.read().strip().split('''\n''') __a : Union[str, Any] = [line.split(''',''') for line in data] for edgea in range(1 , len(a_)): for edgea in range(a_): if adjaceny_matrix[edgea][edgea] != "-": __a : int = int(adjaceny_matrix[edgea][edgea]) __a : Graph = Graph(set(range(len(a_))) , a_) __a : Graph = graph.prims_algorithm() __a : int = sum(graph.edges.values()) __a : int = sum(subgraph.edges.values()) return initial_total - optimal_total if __name__ == "__main__": print(F'{solution() = }')
101
0
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __a = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __a = logging.get_logger(__name__) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "maskformer" lowercase = {"hidden_size": "mask_feature_size"} lowercase = ["resnet", "swin"] lowercase = ["detr"] def __init__( self : Union[str, Any] , snake_case_ : int = 256 , snake_case_ : int = 256 , snake_case_ : float = 0.1 , snake_case_ : bool = False , snake_case_ : Optional[Dict] = None , snake_case_ : Optional[Dict] = None , snake_case_ : float = 0.02 , snake_case_ : float = 1.0 , snake_case_ : float = 1.0 , snake_case_ : float = 1.0 , snake_case_ : float = 20.0 , snake_case_ : Optional[bool] = None , **snake_case_ : Tuple , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k snake_case__ : Dict = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(snake_case_ , snake_case_ ): snake_case__ : Any = backbone_config.pop("""model_type""" ) snake_case__ : Dict = CONFIG_MAPPING[backbone_model_type] snake_case__ : List[str] = config_class.from_dict(snake_case_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " f"Supported model types: {','.join(self.backbones_supported )}" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 snake_case__ : List[Any] = DetrConfig() else: # verify that the decoder is supported snake_case__ : int = ( decoder_config.pop("""model_type""" ) if isinstance(snake_case_ , snake_case_ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"Transformer Decoder {decoder_type} not supported, please use one of" f" {','.join(self.decoders_supported )}" ) if isinstance(snake_case_ , snake_case_ ): snake_case__ : List[Any] = CONFIG_MAPPING[decoder_type] snake_case__ : Union[str, Any] = config_class.from_dict(snake_case_ ) snake_case__ : Optional[int] = backbone_config snake_case__ : Optional[Any] = decoder_config # main feature dimension for the model snake_case__ : int = fpn_feature_size snake_case__ : List[str] = mask_feature_size # initializer snake_case__ : Dict = init_std snake_case__ : List[str] = init_xavier_std # Hungarian matcher && loss snake_case__ : Optional[Any] = cross_entropy_weight snake_case__ : Union[str, Any] = dice_weight snake_case__ : List[Any] = mask_weight snake_case__ : List[Any] = use_auxiliary_loss snake_case__ : Tuple = no_object_weight snake_case__ : Optional[int] = output_auxiliary_logits snake_case__ : Union[str, Any] = self.decoder_config.encoder_attention_heads snake_case__ : List[Any] = self.decoder_config.num_hidden_layers super().__init__(**snake_case_ ) @classmethod def lowerCamelCase ( cls : Optional[int] , snake_case_ : PretrainedConfig , snake_case_ : PretrainedConfig , **snake_case_ : Optional[Any] ): return cls( backbone_config=snake_case_ , decoder_config=snake_case_ , **snake_case_ , ) def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : str = copy.deepcopy(self.__dict__ ) snake_case__ : int = self.backbone_config.to_dict() snake_case__ : Optional[int] = self.decoder_config.to_dict() snake_case__ : Union[str, Any] = self.__class__.model_type return output
374
'''simple docstring''' import sys __a = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def __snake_case( _lowerCAmelCase = N ) -> int: snake_case__ : Dict = -sys.maxsize - 1 for i in range(len(_lowerCAmelCase ) - 12 ): snake_case__ : Any = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case__ : List[str] = product return largest_product if __name__ == "__main__": print(F"{solution() = }")
374
1
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') lowerCAmelCase_ , lowerCAmelCase_ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') lowerCAmelCase_ = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: lowerCAmelCase_ = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) lowerCAmelCase_ = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"pip install -r transformers/examples/{example_dir}/requirements.txt"]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
717
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class _snake_case : """simple docstring""" def __init__( self : int , _A : List[Any] , _A : int , _A : int): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""") _SCREAMING_SNAKE_CASE : str = img _SCREAMING_SNAKE_CASE : Optional[Any] = img.shape[1] _SCREAMING_SNAKE_CASE : Tuple = img.shape[0] _SCREAMING_SNAKE_CASE : Any = dst_width _SCREAMING_SNAKE_CASE : Any = dst_height _SCREAMING_SNAKE_CASE : Any = self.src_w / self.dst_w _SCREAMING_SNAKE_CASE : Dict = self.src_h / self.dst_h _SCREAMING_SNAKE_CASE : Optional[Any] = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta) * 2_5_5 ) def _lowerCAmelCase ( self : Tuple): """simple docstring""" for i in range(self.dst_h): for j in range(self.dst_w): _SCREAMING_SNAKE_CASE : Any = self.img[self.get_y(_A)][self.get_x(_A)] def _lowerCAmelCase ( self : int , _A : int): """simple docstring""" return int(self.ratio_x * x) def _lowerCAmelCase ( self : str , _A : int): """simple docstring""" return int(self.ratio_y * y) if __name__ == "__main__": lowerCAmelCase_ , lowerCAmelCase_ = 800, 600 lowerCAmelCase_ = imread('''image_data/lena.jpg''', 1) lowerCAmelCase_ = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F"Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}", n.output ) waitKey(0) destroyAllWindows()
635
0
import math def snake_case ( snake_case__ :int = 100) -> int: _A = sum(i * i for i in range(1 , n + 1)) _A = int(math.pow(sum(range(1 , n + 1)) , 2)) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
401
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _SCREAMING_SNAKE_CASE = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def snake_case ( snake_case__ :List[str]) -> List[Any]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__) def snake_case ( snake_case__ :Optional[Any]) -> Dict: from transformers.testing_utils import pytest_terminal_summary_main _A = terminalreporter.config.getoption("""--make-reports""") if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__)
401
1
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) # General docstring __UpperCAmelCase : Union[str, Any] = "PoolFormerConfig" # Base docstring __UpperCAmelCase : int = "sail/poolformer_s12" __UpperCAmelCase : Optional[int] = [1, 512, 7, 7] # Image classification docstring __UpperCAmelCase : Dict = "sail/poolformer_s12" __UpperCAmelCase : List[Any] = "tabby, tabby cat" __UpperCAmelCase : str = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = False) -> List[Any]: if drop_prob == 0.0 or not training: return input __snake_case: List[Any] = 1 - drop_prob __snake_case: str = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets __snake_case: Optional[Any] = keep_prob + torch.rand(SCREAMING_SNAKE_CASE__ , dtype=input.dtype , device=input.device) random_tensor.floor_() # binarize __snake_case: Any = input.div(SCREAMING_SNAKE_CASE__) * random_tensor return output class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self : str , A : Optional[float] = None ): super().__init__() __snake_case: Dict = drop_prob def UpperCAmelCase__ ( self : List[str] , A : torch.Tensor ): return drop_path(A , self.drop_prob , self.training ) def UpperCAmelCase__ ( self : Optional[int] ): return "p={}".format(self.drop_prob ) class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , A : str , A : Dict , A : Optional[Any] , A : Any , A : List[Any] , A : int=None ): super().__init__() __snake_case: List[str] = patch_size if isinstance(A , collections.abc.Iterable ) else (patch_size, patch_size) __snake_case: Any = stride if isinstance(A , collections.abc.Iterable ) else (stride, stride) __snake_case: Any = padding if isinstance(A , collections.abc.Iterable ) else (padding, padding) __snake_case: str = nn.Convad(A , A , kernel_size=A , stride=A , padding=A ) __snake_case: Optional[int] = norm_layer(A ) if norm_layer else nn.Identity() def UpperCAmelCase__ ( self : Tuple , A : int ): __snake_case: List[str] = self.projection(A ) __snake_case: Optional[Any] = self.norm(A ) return embeddings class __snake_case ( nn.GroupNorm ): '''simple docstring''' def __init__( self : Optional[Any] , A : Optional[int] , **A : List[Any] ): super().__init__(1 , A , **A ) class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , A : Dict ): super().__init__() __snake_case: Any = nn.AvgPoolad(A , stride=1 , padding=pool_size // 2 , count_include_pad=A ) def UpperCAmelCase__ ( self : str , A : Dict ): return self.pool(A ) - hidden_states class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , A : Optional[int] , A : Tuple , A : int , A : str ): super().__init__() __snake_case: Dict = nn.Convad(A , A , 1 ) __snake_case: Dict = nn.Convad(A , A , 1 ) __snake_case: str = PoolFormerDropPath(A ) if isinstance(config.hidden_act , A ): __snake_case: List[str] = ACTaFN[config.hidden_act] else: __snake_case: Any = config.hidden_act def UpperCAmelCase__ ( self : Optional[int] , A : str ): __snake_case: Optional[int] = self.conva(A ) __snake_case: Optional[int] = self.act_fn(A ) __snake_case: List[Any] = self.drop(A ) __snake_case: Dict = self.conva(A ) __snake_case: Any = self.drop(A ) return hidden_states class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , A : Any , A : Tuple , A : Optional[Any] , A : List[str] , A : Tuple , A : List[str] ): super().__init__() __snake_case: Tuple = PoolFormerPooling(A ) __snake_case: List[Any] = PoolFormerOutput(A , A , A , A ) __snake_case: str = PoolFormerGroupNorm(A ) __snake_case: Optional[int] = PoolFormerGroupNorm(A ) # Useful for training neural nets __snake_case: List[Any] = PoolFormerDropPath(A ) if drop_path > 0.0 else nn.Identity() __snake_case: Tuple = config.use_layer_scale if config.use_layer_scale: __snake_case: Union[str, Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((A) ) , requires_grad=A ) __snake_case: Optional[Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((A) ) , requires_grad=A ) def UpperCAmelCase__ ( self : Optional[Any] , A : str ): if self.use_layer_scale: __snake_case: Tuple = self.pooling(self.before_norm(A ) ) __snake_case: int = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection __snake_case: Union[str, Any] = hidden_states + self.drop_path(A ) __snake_case: List[Any] = () __snake_case: List[str] = self.output(self.after_norm(A ) ) __snake_case: Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection __snake_case: Optional[int] = hidden_states + self.drop_path(A ) __snake_case: List[Any] = (output,) + outputs return outputs else: __snake_case: Tuple = self.drop_path(self.pooling(self.before_norm(A ) ) ) # First residual connection __snake_case: str = pooling_output + hidden_states __snake_case: List[str] = () # Second residual connection inside the PoolFormerOutput block __snake_case: Dict = self.drop_path(self.output(self.after_norm(A ) ) ) __snake_case: Union[str, Any] = hidden_states + layer_output __snake_case: Dict = (output,) + outputs return outputs class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , A : List[str] ): super().__init__() __snake_case: str = config # stochastic depth decay rule __snake_case: Dict = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings __snake_case: Dict = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) __snake_case: int = nn.ModuleList(A ) # Transformer blocks __snake_case: List[Any] = [] __snake_case: str = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers __snake_case: Dict = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(A ) ) __snake_case: List[str] = nn.ModuleList(A ) def UpperCAmelCase__ ( self : int , A : Dict , A : Tuple=False , A : Tuple=True ): __snake_case: List[str] = () if output_hidden_states else None __snake_case: Optional[Any] = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): __snake_case , __snake_case: Tuple = layers # Get patch embeddings from hidden_states __snake_case: Dict = embedding_layer(A ) # Send the embeddings through the blocks for _, blk in enumerate(A ): __snake_case: Tuple = blk(A ) __snake_case: str = layer_outputs[0] if output_hidden_states: __snake_case: Optional[Any] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=A , hidden_states=A ) class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = PoolFormerConfig lowerCAmelCase__ = """poolformer""" lowerCAmelCase__ = """pixel_values""" lowerCAmelCase__ = True def UpperCAmelCase__ ( self : Union[str, Any] , A : str ): if isinstance(A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(A , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def UpperCAmelCase__ ( self : Any , A : Any , A : int=False ): if isinstance(A , A ): __snake_case: List[str] = value __UpperCAmelCase : Dict = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase : List[str] = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( """The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.""" , __lowerCamelCase , ) class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : List[str] , A : str ): super().__init__(A ) __snake_case: str = config __snake_case: Tuple = PoolFormerEncoder(A ) # Initialize weights and apply final processing self.post_init() def UpperCAmelCase__ ( self : Optional[Any] ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase__ ( self : Optional[int] , A : Optional[torch.FloatTensor] = None , A : Optional[bool] = None , A : Optional[bool] = None , ): __snake_case: Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case: str = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) __snake_case: List[Any] = self.encoder( A , output_hidden_states=A , return_dict=A , ) __snake_case: int = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=A , hidden_states=encoder_outputs.hidden_states , ) class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , A : List[Any] ): super().__init__() __snake_case: Optional[Any] = nn.Linear(config.hidden_size , config.hidden_size ) def UpperCAmelCase__ ( self : Optional[Any] , A : List[str] ): __snake_case: Tuple = self.dense(A ) return output @add_start_docstrings( """ PoolFormer Model transformer with an image classification head on top """ , __lowerCamelCase , ) class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : Dict , A : int ): super().__init__(A ) __snake_case: Union[str, Any] = config.num_labels __snake_case: Optional[Any] = PoolFormerModel(A ) # Final norm __snake_case: Any = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head __snake_case: Tuple = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase__ ( self : Union[str, Any] , A : Optional[torch.FloatTensor] = None , A : Optional[torch.LongTensor] = None , A : Optional[bool] = None , A : Optional[bool] = None , ): __snake_case: str = return_dict if return_dict is not None else self.config.use_return_dict __snake_case: List[Any] = self.poolformer( A , output_hidden_states=A , return_dict=A , ) __snake_case: Dict = outputs[0] __snake_case: List[str] = self.classifier(self.norm(A ).mean([-2, -1] ) ) __snake_case: str = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __snake_case: Any = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __snake_case: Union[str, Any] = """single_label_classification""" else: __snake_case: Optional[int] = """multi_label_classification""" if self.config.problem_type == "regression": __snake_case: Optional[int] = MSELoss() if self.num_labels == 1: __snake_case: Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: __snake_case: Union[str, Any] = loss_fct(A , A ) elif self.config.problem_type == "single_label_classification": __snake_case: int = CrossEntropyLoss() __snake_case: int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __snake_case: Union[str, Any] = BCEWithLogitsLoss() __snake_case: Tuple = loss_fct(A , A ) if not return_dict: __snake_case: str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=A , logits=A , hidden_states=outputs.hidden_states )
155
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __snake_case ( ctypes.Structure ): '''simple docstring''' lowerCAmelCase__ = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def A__ ( ) -> List[Any]: if os.name == "nt": __snake_case: str = CursorInfo() __snake_case: List[str] = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__)) __snake_case: Optional[int] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__)) elif os.name == "posix": sys.stdout.write("""\033[?25l""") sys.stdout.flush() def A__ ( ) -> List[Any]: if os.name == "nt": __snake_case: Dict = CursorInfo() __snake_case: List[str] = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__)) __snake_case: List[str] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__)) elif os.name == "posix": sys.stdout.write("""\033[?25h""") sys.stdout.flush() @contextmanager def A__ ( ) -> int: try: hide_cursor() yield finally: show_cursor()
155
1
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowercase : str = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowercase : Any = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowercase : int = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = len([g for position, g in enumerate(snake_case_ ) if g == main_target[position]] ) return (item, float(snake_case_ )) def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = random.randint(0 , len(snake_case_ ) - 1 ) __UpperCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] __UpperCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowercase__ ( snake_case_ :str , snake_case_ :list[str] ): __UpperCAmelCase = list(snake_case_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __UpperCAmelCase = random.choice(snake_case_ ) return "".join(snake_case_ ) def lowercase__ ( snake_case_ :tuple[str, float] , snake_case_ :list[tuple[str, float]] , snake_case_ :list[str] , ): __UpperCAmelCase = [] # Generate more children proportionally to the fitness score. __UpperCAmelCase = int(parent_a[1] * 100 ) + 1 __UpperCAmelCase = 10 if child_n >= 10 else child_n for _ in range(snake_case_ ): __UpperCAmelCase = population_score[random.randint(0 , snake_case_ )][0] __UpperCAmelCase , __UpperCAmelCase = crossover(parent_a[0] , snake_case_ ) # Append new string to the population list. pop.append(mutate(snake_case_ , snake_case_ ) ) pop.append(mutate(snake_case_ , snake_case_ ) ) return pop def lowercase__ ( snake_case_ :str , snake_case_ :list[str] , snake_case_ :bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: __UpperCAmelCase = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(snake_case_ ) # Verify that the target contains no genes besides the ones inside genes variable. __UpperCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __UpperCAmelCase = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(snake_case_ ) # Generate random starting population. __UpperCAmelCase = [] for _ in range(snake_case_ ): population.append(''''''.join([random.choice(snake_case_ ) for i in range(len(snake_case_ ) )] ) ) # Just some logs to know what the algorithms is doing. __UpperCAmelCase , __UpperCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(snake_case_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __UpperCAmelCase = [evaluate(snake_case_ , snake_case_ ) for item in population] # Check if there is a matching evolution. __UpperCAmelCase = sorted(snake_case_ , key=lambda snake_case_ : x[1] , reverse=snake_case_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __UpperCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(snake_case_ ) # Normalize population score to be between 0 and 1. __UpperCAmelCase = [ (item, score / len(snake_case_ )) for item, score in population_score ] # This is selection for i in range(snake_case_ ): population.extend(select(population_score[int(snake_case_ )] , snake_case_ , snake_case_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(snake_case_ ) > N_POPULATION: break if __name__ == "__main__": _lowercase : Optional[int] = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) _lowercase : Union[str, Any] = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) _lowercase ,_lowercase ,_lowercase : Optional[int] = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
49
"""simple docstring""" _A = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def a__ ( ) -> None: UpperCAmelCase__ : Optional[Any] = input("""Enter message: """ ) UpperCAmelCase__ : Optional[Any] = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase__ : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase__ : Optional[Any] = """encrypt""" UpperCAmelCase__ : List[Any] = encrypt_message(lowerCAmelCase , lowerCAmelCase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase__ : Optional[Any] = """decrypt""" UpperCAmelCase__ : Dict = decrypt_message(lowerCAmelCase , lowerCAmelCase ) print(F"""\n{mode.title()}ed message:""" ) print(lowerCAmelCase ) def a__ ( lowerCAmelCase , lowerCAmelCase ) -> str: return translate_message(lowerCAmelCase , lowerCAmelCase , """encrypt""" ) def a__ ( lowerCAmelCase , lowerCAmelCase ) -> str: return translate_message(lowerCAmelCase , lowerCAmelCase , """decrypt""" ) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> str: UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : int = 0 UpperCAmelCase__ : str = key.upper() for symbol in message: UpperCAmelCase__ : Optional[Any] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(lowerCAmelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(lowerCAmelCase ): UpperCAmelCase__ : List[str] = 0 else: translated.append(lowerCAmelCase ) return "".join(lowerCAmelCase ) if __name__ == "__main__": main()
182
0
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowerCAmelCase: Union[str, Any] = re.compile(r'\s+') def lowerCamelCase__ ( _A ): return {"hash": hashlib.mda(re.sub(_A , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def lowerCamelCase__ ( _A ): a : Union[str, Any] = [len(_A ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_A ), "line_max": max(_A )} def lowerCamelCase__ ( _A ): a : Dict = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def lowerCamelCase__ ( _A , _A ): if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def lowerCamelCase__ ( _A , _A=5 ): a : Dict = ['auto-generated', 'autogenerated', 'automatically generated'] a : Union[str, Any] = example['content'].splitlines() for _, line in zip(range(_A ) , _A ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCamelCase__ ( _A , _A=5 , _A=0.05 ): a : Optional[int] = ['unit tests', 'test file', 'configuration file'] a : Optional[int] = example['content'].splitlines() a : Any = 0 a : int = 0 # first test for _, line in zip(range(_A ) , _A ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test a : str = example['content'].count('\n' ) a : List[str] = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCamelCase__ ( _A ): a : List[str] = ['def ', 'class ', 'for ', 'while '] a : Union[str, Any] = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCamelCase__ ( _A , _A=4 ): a : str = example['content'].splitlines() a : str = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCamelCase__ ( _A ): a : Tuple = tokenizer(example['content'] , truncation=_A )['input_ids'] a : int = len(example['content'] ) / len(_A ) return {"ratio": ratio} def lowerCamelCase__ ( _A ): a : Union[str, Any] = {} results.update(get_hash(_A ) ) results.update(line_stats(_A ) ) results.update(alpha_stats(_A ) ) results.update(char_token_ratio(_A ) ) results.update(is_autogenerated(_A ) ) results.update(is_config_or_test(_A ) ) results.update(has_no_keywords(_A ) ) results.update(has_few_assignments(_A ) ) return results def lowerCamelCase__ ( _A , _A , _A ): if not check_uniques(_A , _A ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCamelCase__ ( _A ): with open(_A , 'rb' ) as f_in: with gzip.open(str(_A ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_A , _A ) os.unlink(_A ) # Settings lowerCAmelCase: List[str] = HfArgumentParser(PreprocessingArguments) lowerCAmelCase: Any = parser.parse_args() if args.num_workers is None: lowerCAmelCase: List[str] = multiprocessing.cpu_count() lowerCAmelCase: List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowerCAmelCase: Tuple = time.time() lowerCAmelCase: Tuple = load_dataset(args.dataset_name, split='train') print(F"Time to load dataset: {time.time()-t_start:.2f}") # Run preprocessing lowerCAmelCase: str = time.time() lowerCAmelCase: str = ds.map(preprocess, num_proc=args.num_workers) print(F"Time to preprocess dataset: {time.time()-t_start:.2f}") # Deduplicate hashes lowerCAmelCase: Any = set(ds.unique('hash')) lowerCAmelCase: Optional[int] = len(uniques) / len(ds) print(F"Fraction of duplicates: {1-frac:.2%}") # Deduplicate data and apply heuristics lowerCAmelCase: Dict = time.time() lowerCAmelCase: List[Any] = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(F"Time to filter dataset: {time.time()-t_start:.2f}") print(F"Size of filtered dataset: {len(ds_filter)}") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowerCAmelCase: Any = time.time() lowerCAmelCase , lowerCAmelCase: Optional[int] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"Time to deduplicate dataset: {time.time()-t_start:.2f}") print(F"Size of deduplicate dataset: {len(ds_filter)}") # Save data in batches of samples_per_file lowerCAmelCase: Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) lowerCAmelCase: int = output_dir / 'data' data_dir.mkdir(exist_ok=True) lowerCAmelCase: Optional[Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowerCAmelCase: Optional[int] = str(data_dir / F"file-{file_number+1:012}.json") lowerCAmelCase: Union[str, Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"Time to save dataset: {time.time()-t_start:.2f}")
195
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCAmelCase: Tuple = 'src/transformers' lowerCAmelCase: Union[str, Any] = 'docs/source/en' lowerCAmelCase: Dict = '.' def lowerCamelCase__ ( _A , _A , _A ): with open(_A , 'r' , encoding='utf-8' , newline='\n' ) as f: a : Optional[Any] = f.readlines() # Find the start prompt. a : Dict = 0 while not lines[start_index].startswith(_A ): start_index += 1 start_index += 1 a : Optional[Any] = start_index while not lines[end_index].startswith(_A ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCAmelCase: List[str] = 'Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. lowerCAmelCase: Dict = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') lowerCAmelCase: Any = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCAmelCase: Dict = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase: List[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase__ ( _A ): a : Tuple = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , _A ) return [m.group(0 ) for m in matches] def lowerCamelCase__ ( _A , _A ): a : List[Any] = 2 if text == '✅' or text == '❌' else len(_A ) a : Optional[int] = (width - text_length) // 2 a : List[Any] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase__ ( ): a : Union[str, Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES a : Union[str, Any] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } a : Tuple = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. a : int = collections.defaultdict(_A ) a : List[Any] = collections.defaultdict(_A ) a : List[Any] = collections.defaultdict(_A ) a : Union[str, Any] = collections.defaultdict(_A ) a : int = collections.defaultdict(_A ) # Let's lookup through all transformers object (once). for attr_name in dir(_A ): a : Optional[Any] = None if attr_name.endswith('Tokenizer' ): a : int = slow_tokenizers a : Any = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): a : str = fast_tokenizers a : List[Any] = attr_name[:-13] elif _re_tf_models.match(_A ) is not None: a : Optional[Any] = tf_models a : Dict = _re_tf_models.match(_A ).groups()[0] elif _re_flax_models.match(_A ) is not None: a : int = flax_models a : Optional[Any] = _re_flax_models.match(_A ).groups()[0] elif _re_pt_models.match(_A ) is not None: a : Tuple = pt_models a : Optional[int] = _re_pt_models.match(_A ).groups()[0] if lookup_dict is not None: while len(_A ) > 0: if attr_name in model_name_to_prefix.values(): a : Tuple = True break # Try again after removing the last word in the name a : Tuple = ''.join(camel_case_split(_A )[:-1] ) # Let's build that table! a : List[Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) a : Tuple = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). a : Tuple = [len(_A ) + 2 for c in columns] a : str = max([len(_A ) for name in model_names] ) + 2 # Build the table per se a : List[Any] = '|' + '|'.join([_center_text(_A , _A ) for c, w in zip(_A , _A )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" a : str = {True: '✅', False: '❌'} for name in model_names: a : Any = model_name_to_prefix[name] a : Optional[Any] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(_A , _A ) for l, w in zip(_A , _A )] ) + "|\n" return table def lowerCamelCase__ ( _A=False ): a , a , a , a : Tuple = _find_text_in_file( filename=os.path.join(_A , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) a : Optional[int] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(_A , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": lowerCAmelCase: Dict = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase: Any = parser.parse_args() check_model_table(args.fix_and_overwrite)
195
1
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _lowerCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): for attribute in key.split('''.''' ): _UpperCamelCase = getattr(__snake_case , __snake_case ) if weight_type is not None: _UpperCamelCase = getattr(__snake_case , __snake_case ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.feature_extractor _UpperCamelCase = hf_model.adapter for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == '''group''' , ) _UpperCamelCase = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(__snake_case , __snake_case , __snake_case , __snake_case ) _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(__snake_case )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''' , __snake_case ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: _UpperCamelCase = '''weight''' else: _UpperCamelCase = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _UpperCamelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _UpperCamelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _UpperCamelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _UpperCamelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__snake_case ) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): _UpperCamelCase = full_name.split('''adaptor.''' )[-1] _UpperCamelCase = name.split('''.''' ) if items[1].isdigit(): _UpperCamelCase = int(items[1] ) else: _UpperCamelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" _UpperCamelCase = value logger.info(f"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" _UpperCamelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" _UpperCamelCase = value logger.info(f"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" _UpperCamelCase = value logger.info(f"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(__snake_case , __snake_case ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" _UpperCamelCase = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" _UpperCamelCase = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(__snake_case ) def _snake_case ( __snake_case ): _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(__snake_case , __snake_case , bias=__snake_case ) _UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): _UpperCamelCase = WavaVecaConfig.from_pretrained( __snake_case , add_adapter=__snake_case , adapter_stride=__snake_case , adapter_kernel_size=__snake_case , use_auth_token=__snake_case , output_hidden_size=__snake_case , ) _UpperCamelCase = MBartConfig.from_pretrained(__snake_case ) # load model _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) _UpperCamelCase = model[0].eval() # load feature extractor _UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(__snake_case , use_auth_token=__snake_case ) # set weights for wav2vec2 encoder _UpperCamelCase = WavaVecaModel(__snake_case ) recursively_load_weights_wavaveca(model.encoder , __snake_case ) # load decoder weights _UpperCamelCase = MBartForCausalLM(__snake_case ) _UpperCamelCase , _UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__snake_case ) logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) _UpperCamelCase = SpeechEncoderDecoderModel(encoder=__snake_case , decoder=__snake_case ) _UpperCamelCase = False _UpperCamelCase = MBartaaTokenizer(__snake_case ) tokenizer.save_pretrained(__snake_case ) _UpperCamelCase = hf_wavavec.config.to_dict() _UpperCamelCase = tokenizer.pad_token_id _UpperCamelCase = tokenizer.bos_token_id _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = '''mbart50''' _UpperCamelCase = '''wav2vec2''' _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = 250004 _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1_024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250_004, type=int, help="`decoder_start_token_id` of model config") _lowerCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
10
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( snake_case ): lowerCamelCase_ = (CMStochasticIterativeScheduler,) lowerCamelCase_ = 1_0 def _UpperCAmelCase ( self : Any , **snake_case_ : Tuple ): """simple docstring""" A : str = { '''num_train_timesteps''': 201, '''sigma_min''': 0.0_02, '''sigma_max''': 80.0, } config.update(**snake_case_ ) return config def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" A : List[str] = 10 A : Dict = self.get_scheduler_config() A : Optional[int] = self.scheduler_classes[0](**snake_case_ ) scheduler.set_timesteps(snake_case_ ) A : List[str] = scheduler.timesteps[0] A : Any = scheduler.timesteps[1] A : int = self.dummy_sample A : str = 0.1 * sample A : Tuple = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample A : Tuple = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case_ ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=snake_case_ ) def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" A : List[Any] = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config() A : List[str] = scheduler_class(**snake_case_ ) A : str = 1 scheduler.set_timesteps(snake_case_ ) A : Optional[int] = scheduler.timesteps A : int = torch.manual_seed(0 ) A : Optional[Any] = self.dummy_model() A : int = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(snake_case_ ): # 1. scale model input A : Dict = scheduler.scale_model_input(snake_case_ , snake_case_ ) # 2. predict noise residual A : List[Any] = model(snake_case_ , snake_case_ ) # 3. predict previous sample x_t-1 A : Union[str, Any] = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample A : Union[str, Any] = pred_prev_sample A : List[str] = torch.sum(torch.abs(snake_case_ ) ) A : int = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 1_92.76_14 ) < 1E-2 assert abs(result_mean.item() - 0.25_10 ) < 1E-3 def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" A : Tuple = self.scheduler_classes[0] A : Tuple = self.get_scheduler_config() A : str = scheduler_class(**snake_case_ ) A : Optional[int] = [106, 0] scheduler.set_timesteps(timesteps=snake_case_ ) A : Optional[int] = scheduler.timesteps A : Any = torch.manual_seed(0 ) A : Tuple = self.dummy_model() A : str = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input A : Tuple = scheduler.scale_model_input(snake_case_ , snake_case_ ) # 2. predict noise residual A : str = model(snake_case_ , snake_case_ ) # 3. predict previous sample x_t-1 A : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample A : str = pred_prev_sample A : str = torch.sum(torch.abs(snake_case_ ) ) A : Union[str, Any] = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 3_47.63_57 ) < 1E-2 assert abs(result_mean.item() - 0.45_27 ) < 1E-3 def _UpperCAmelCase ( self : int ): """simple docstring""" A : Optional[int] = self.scheduler_classes[0] A : Optional[int] = self.get_scheduler_config() A : Any = scheduler_class(**snake_case_ ) A : Union[str, Any] = [39, 30, 12, 15, 0] with self.assertRaises(snake_case_ , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=snake_case_ ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" A : List[str] = self.scheduler_classes[0] A : Dict = self.get_scheduler_config() A : Tuple = scheduler_class(**snake_case_ ) A : Any = [39, 30, 12, 1, 0] A : List[Any] = len(snake_case_ ) with self.assertRaises(snake_case_ , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=snake_case_ , timesteps=snake_case_ ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" A : List[Any] = self.scheduler_classes[0] A : str = self.get_scheduler_config() A : List[Any] = scheduler_class(**snake_case_ ) A : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=snake_case_ )
256
0
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=None , a_=None , a_=None , a_="resnet50" , a_=3 , a_=32 , a_=3 , a_=True , a_=True , ): '''simple docstring''' __snake_case : List[Any] = parent __snake_case : Tuple = out_indices if out_indices is not None else [4] __snake_case : Optional[Any] = stage_names __snake_case : str = out_features __snake_case : List[str] = backbone __snake_case : Optional[int] = batch_size __snake_case : Optional[int] = image_size __snake_case : str = num_channels __snake_case : Optional[int] = use_pretrained_backbone __snake_case : Optional[int] = is_training def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[int] = self.get_config() return config, pixel_values def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = TimmBackbone(config=a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case : int = model(a_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case : List[Any] = config_and_inputs __snake_case : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(TimmBackbone,) if is_torch_available() else () lowerCamelCase__ ={'feature-extraction': TimmBackbone} if is_torch_available() else {} lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = TimmBackboneModelTester(self ) __snake_case : Dict = ConfigTester(self , config_class=a_ , has_text_modality=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = '''resnet18''' __snake_case : Tuple = '''microsoft/resnet-18''' __snake_case : Dict = AutoBackbone.from_pretrained(a_ , use_timm_backbone=a_ ) __snake_case : Tuple = AutoBackbone.from_pretrained(a_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __snake_case : Optional[Any] = AutoBackbone.from_pretrained(a_ , use_timm_backbone=a_ , out_indices=[1, 2, 3] ) __snake_case : Optional[int] = AutoBackbone.from_pretrained(a_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''Safetensors is not supported by timm.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Any = model_class(a_ ) __snake_case : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Tuple = [*signature.parameters.keys()] __snake_case : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[Any] = True __snake_case : List[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __snake_case : Dict = self.all_model_classes[0] __snake_case : Optional[int] = model_class(a_ ) model.to(a_ ) __snake_case : int = self._prepare_for_class(a_ , a_ ) __snake_case : Optional[Any] = model(**a_ ) __snake_case : int = outputs[0][-1] # Encoder-/Decoder-only models __snake_case : int = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __snake_case : int = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[int] = model_class(a_ ) model.to(a_ ) model.eval() __snake_case : List[str] = model(**a_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __snake_case : Optional[Any] = copy.deepcopy(a_ ) __snake_case : str = None __snake_case : int = model_class(a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(**a_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __snake_case : Union[str, Any] = copy.deepcopy(a_ ) __snake_case : int = False __snake_case : List[str] = model_class(a_ ) model.to(a_ ) model.eval() __snake_case : Optional[Any] = model(**a_ )
229
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =BlenderbotConfig lowerCamelCase__ ={} lowerCamelCase__ ='gelu' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=False , a_=99 , a_=32 , a_=2 , a_=4 , a_=37 , a_=0.1 , a_=0.1 , a_=20 , a_=2 , a_=1 , a_=0 , ): '''simple docstring''' __snake_case : Dict = parent __snake_case : Tuple = batch_size __snake_case : Optional[Any] = seq_length __snake_case : List[str] = is_training __snake_case : str = use_labels __snake_case : Any = vocab_size __snake_case : Dict = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : Any = intermediate_size __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Optional[Any] = eos_token_id __snake_case : List[str] = pad_token_id __snake_case : Tuple = bos_token_id def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __snake_case : Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __snake_case : Optional[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __snake_case : int = prepare_blenderbot_inputs_dict(a_ , a_ , a_ ) return config, inputs_dict def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = TFBlenderbotModel(config=a_ ).get_decoder() __snake_case : Tuple = inputs_dict['''input_ids'''] __snake_case : List[Any] = input_ids[:1, :] __snake_case : Any = inputs_dict['''attention_mask'''][:1, :] __snake_case : List[Any] = inputs_dict['''head_mask'''] __snake_case : List[Any] = 1 # first forward pass __snake_case : List[str] = model(a_ , attention_mask=a_ , head_mask=a_ , use_cache=a_ ) __snake_case , __snake_case : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __snake_case : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __snake_case : str = tf.concat([input_ids, next_tokens] , axis=-1 ) __snake_case : Tuple = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __snake_case : Tuple = model(a_ , attention_mask=a_ )[0] __snake_case : Tuple = model(a_ , attention_mask=a_ , past_key_values=a_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __snake_case : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __snake_case : Any = output_from_no_past[:, -3:, random_slice_idx] __snake_case : str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a_ , a_ , rtol=1E-3 ) def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : str=None , _snake_case : List[Any]=None , _snake_case : Optional[Any]=None , _snake_case : List[str]=None , _snake_case : Tuple=None , ) ->List[str]: """simple docstring""" if attention_mask is None: __snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(_snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __snake_case : Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __snake_case : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __snake_case : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __snake_case : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowerCamelCase__ =(TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowerCamelCase__ =( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = TFBlenderbotModelTester(self ) __snake_case : Any = ConfigTester(self , config_class=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a_ ) @require_tokenizers @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =['My friends are cool but they eat too many carbs.'] lowerCamelCase__ ='facebook/blenderbot-400M-distill' @cached_property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = self.tokenizer(self.src_text , return_tensors='''tf''' ) __snake_case : Union[str, Any] = self.model.generate( model_inputs.input_ids , ) __snake_case : Dict = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=a_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
229
1
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: int, SCREAMING_SNAKE_CASE__: int, SCREAMING_SNAKE_CASE__: int, SCREAMING_SNAKE_CASE__: int, SCREAMING_SNAKE_CASE__: int, SCREAMING_SNAKE_CASE__: int ) -> Dict: """simple docstring""" # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: __a = ksize + 1 __a = np.zeros((ksize, ksize), dtype=np.floataa ) # each value for y in range(SCREAMING_SNAKE_CASE__ ): for x in range(SCREAMING_SNAKE_CASE__ ): # distance from center __a = x - ksize // 2 __a = y - ksize // 2 # degree to radiant __a = theta / 180 * np.pi __a = np.cos(_theta ) __a = np.sin(_theta ) # get kernel x __a = cos_theta * px + sin_theta * py # get kernel y __a = -sin_theta * px + cos_theta * py # fill kernel __a = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : Union[str, Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __UpperCamelCase : List[str] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : List[Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : List[Any] = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : Any = out / out.max() * 255 __UpperCamelCase : Any = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
448
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , ) -> Optional[Any]: UpperCamelCase :int = parent UpperCamelCase :List[Any] = batch_size UpperCamelCase :List[Any] = patch_size UpperCamelCase :Optional[int] = max_length UpperCamelCase :Union[str, Any] = num_mel_bins UpperCamelCase :Optional[int] = is_training UpperCamelCase :Dict = use_labels UpperCamelCase :Dict = hidden_size UpperCamelCase :Optional[int] = num_hidden_layers UpperCamelCase :str = num_attention_heads UpperCamelCase :Optional[int] = intermediate_size UpperCamelCase :List[str] = hidden_act UpperCamelCase :List[str] = hidden_dropout_prob UpperCamelCase :List[Any] = attention_probs_dropout_prob UpperCamelCase :str = type_sequence_label_size UpperCamelCase :List[Any] = initializer_range UpperCamelCase :Union[str, Any] = scope UpperCamelCase :List[Any] = frequency_stride UpperCamelCase :Tuple = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCamelCase :List[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCamelCase :List[str] = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCamelCase :Tuple = frequency_out_dimension * time_out_dimension UpperCamelCase :Optional[int] = num_patches + 2 def UpperCAmelCase ( self ) -> Any: UpperCamelCase :Tuple = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCamelCase :Tuple = None if self.use_labels: UpperCamelCase :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase :str = self.get_config() return config, input_values, labels def UpperCAmelCase ( self ) -> List[Any]: return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase :Optional[Any] = ASTModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase :Tuple = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :List[Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) :Union[str, Any] = config_and_inputs UpperCamelCase :List[Any] = {'''input_values''': input_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( lowercase, lowercase, unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[int] =( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) UpperCamelCase_ : Any =( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) UpperCamelCase_ : Optional[int] =False UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Optional[Any] =False UpperCamelCase_ : Dict =False def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :List[Any] = ASTModelTester(self ) UpperCamelCase :Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCAmelCase ( self ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def UpperCAmelCase ( self ) -> str: pass def UpperCAmelCase ( self ) -> int: UpperCamelCase , UpperCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase :Dict = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase :Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase , UpperCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase :Dict = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase :Any = [*signature.parameters.keys()] UpperCamelCase :Optional[int] = ['''input_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCAmelCase ( self ) -> Optional[int]: for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase :Union[str, Any] = ASTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def _A ( ): UpperCamelCase :Any = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) UpperCamelCase , UpperCamelCase :Any = torchaudio.load(SCREAMING_SNAKE_CASE__ ) return audio, sampling_rate @require_torch @require_torchaudio class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> Tuple: return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def UpperCAmelCase ( self ) -> str: UpperCamelCase :Union[str, Any] = self.default_feature_extractor UpperCamelCase :Union[str, Any] = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = self.default_feature_extractor UpperCamelCase , UpperCamelCase :Dict = prepare_audio() UpperCamelCase :Dict = audio.squeeze().numpy() UpperCamelCase :int = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase :Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase :List[Any] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :int = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
658
0
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A =get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class _snake_case ( UpperCamelCase__ , unittest.TestCase ): lowerCAmelCase :str = PegasusTokenizer lowerCAmelCase :Optional[int] = PegasusTokenizerFast lowerCAmelCase :Union[str, Any] = True lowerCAmelCase :Optional[Any] = True def snake_case__ ( self): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : List[Any] = PegasusTokenizer(_a) tokenizer.save_pretrained(self.tmpdirname) @cached_property def snake_case__ ( self): return PegasusTokenizer.from_pretrained("""google/pegasus-large""") def snake_case__ ( self , **_lowerCamelCase): return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a) def snake_case__ ( self , _lowerCamelCase): return ("This is a test", "This is a test") def snake_case__ ( self): UpperCAmelCase__ : Dict = """</s>""" UpperCAmelCase__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a) , _a) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a) , _a) def snake_case__ ( self): UpperCAmelCase__ : List[str] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<pad>""") self.assertEqual(vocab_keys[1] , """</s>""") self.assertEqual(vocab_keys[-1] , """v""") self.assertEqual(len(_a) , 1103) def snake_case__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 1103) def snake_case__ ( self): UpperCAmelCase__ : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname) UpperCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname) UpperCAmelCase__ : int = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase__ : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a).input_ids[0] UpperCAmelCase__ : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a).input_ids[0] self.assertListEqual(_a , _a) def snake_case__ ( self): UpperCAmelCase__ : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase__ : Optional[int] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase__ : Union[str, Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] UpperCAmelCase__ : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_a).input_ids[0] self.assertListEqual(_a , _a) def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase__ : Any = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase__ : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] UpperCAmelCase__ : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_a).input_ids[0] self.assertListEqual(_a , _a) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3]) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase__ : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase__ : Union[str, Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""") UpperCAmelCase__ : Tuple = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""") assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_a) == 2 # input_ids, attention_mask. @slow def snake_case__ ( self): # fmt: off UpperCAmelCase__ : List[Any] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class _snake_case ( UpperCamelCase__ , unittest.TestCase ): lowerCAmelCase :Tuple = PegasusTokenizer lowerCAmelCase :Tuple = PegasusTokenizerFast lowerCAmelCase :Dict = True lowerCAmelCase :Optional[int] = True def snake_case__ ( self): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Tuple = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""") tokenizer.save_pretrained(self.tmpdirname) @cached_property def snake_case__ ( self): return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""") def snake_case__ ( self , **_lowerCamelCase): return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a) def snake_case__ ( self , _lowerCamelCase): return ("This is a test", "This is a test") def snake_case__ ( self): UpperCAmelCase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname) UpperCAmelCase__ : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname) UpperCAmelCase__ : Dict = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase__ : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a).input_ids[0] UpperCAmelCase__ : int = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a).input_ids[0] self.assertListEqual(_a , _a) @require_torch def snake_case__ ( self): UpperCAmelCase__ : Tuple = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase__ : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase__ : Tuple = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""") UpperCAmelCase__ : str = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""") assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_a) == 2 # input_ids, attention_mask. def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase__ : Any = self._large_tokenizer(_a).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
710
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __A =numpy.array([0, 0]) __A =numpy.array([0.5, 0.8_6_6_0_2_5_4]) __A =numpy.array([1, 0]) __A =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Union[str, Any] = initial_vectors for _ in range(UpperCamelCase__ ): UpperCAmelCase__ : Dict = iteration_step(UpperCamelCase__ ) return vectors def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Optional[Any] = [] for i, start_vector in enumerate(vectors[:-1] ): UpperCAmelCase__ : Tuple = vectors[i + 1] new_vectors.append(UpperCamelCase__ ) UpperCAmelCase__ : Optional[Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Any = numpy.radians(UpperCamelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ : int = numpy.cos(UpperCamelCase__ ), numpy.sin(UpperCamelCase__ ) UpperCAmelCase__ : Dict = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCamelCase__ , UpperCamelCase__ ) def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Any = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() UpperCAmelCase__ , UpperCAmelCase__ : Tuple = zip(*UpperCamelCase__ ) plt.plot(UpperCamelCase__ , UpperCamelCase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __A =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
113
0
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _lowerCamelCase( _a ): def __init__( self, *lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, **lowerCamelCase) -> List[Any]: """simple docstring""" super().__init__(*lowerCamelCase, **lowerCamelCase) _lowercase : Any = eval_examples _lowercase : List[Any] = post_process_function def UpperCamelCase ( self, lowerCamelCase = None, lowerCamelCase=None, lowerCamelCase = None, lowerCamelCase = "eval", **lowerCamelCase, ) -> Dict[str, float]: """simple docstring""" _lowercase : Optional[Any] = gen_kwargs.copy() _lowercase : List[Any] = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length ) _lowercase : Any = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams ) _lowercase : Optional[Any] = gen_kwargs _lowercase : Optional[int] = self.eval_dataset if eval_dataset is None else eval_dataset _lowercase : Optional[int] = self.get_eval_dataloader(lowerCamelCase) _lowercase : Optional[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _lowercase : List[Any] = self.compute_metrics _lowercase : int = None _lowercase : Optional[Any] = time.time() _lowercase : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _lowercase : int = eval_loop( lowerCamelCase, description='Evaluation', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCamelCase, metric_key_prefix=lowerCamelCase, ) finally: _lowercase : Union[str, Any] = compute_metrics _lowercase : Optional[int] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowerCamelCase, lowerCamelCase, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size), )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _lowercase : Dict = self.post_process_function(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[Any] = self.compute_metrics(lowerCamelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F'''{metric_key_prefix}_'''): _lowercase : Optional[int] = metrics.pop(lowerCamelCase) metrics.update(output.metrics) else: _lowercase : Dict = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCamelCase) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) _lowercase : List[str] = self.callback_handler.on_evaluate(self.args, self.state, self.control, lowerCamelCase) return metrics def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase = "test", **lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : str = gen_kwargs.copy() _lowercase : str = self.get_test_dataloader(lowerCamelCase) # Temporarily disable metric computation, we will do it in the loop here. _lowercase : List[str] = self.compute_metrics _lowercase : Any = None _lowercase : str = time.time() _lowercase : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _lowercase : str = eval_loop( lowerCamelCase, description='Prediction', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCamelCase, metric_key_prefix=lowerCamelCase, ) finally: _lowercase : int = compute_metrics _lowercase : int = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowerCamelCase, lowerCamelCase, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size), )) if self.post_process_function is None or self.compute_metrics is None: return output _lowercase : Dict = self.post_process_function(lowerCamelCase, lowerCamelCase, lowerCamelCase, 'predict') _lowercase : Optional[Any] = self.compute_metrics(lowerCamelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F'''{metric_key_prefix}_'''): _lowercase : Optional[Any] = metrics.pop(lowerCamelCase) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=lowerCamelCase)
89
from __future__ import annotations from typing import Any class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = 0) -> None: """simple docstring""" _lowercase , _lowercase : str = row, column _lowercase : Any = [[default_value for c in range(lowerCamelCase)] for r in range(lowerCamelCase)] def __str__( self) -> str: """simple docstring""" _lowercase : Tuple = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier _lowercase : str = 0 for row_vector in self.array: for obj in row_vector: _lowercase : Optional[int] = max(lowerCamelCase, len(str(lowerCamelCase))) _lowercase : List[str] = F'''%{max_element_length}s''' # Make string and return def single_line(lowerCamelCase) -> str: nonlocal string_format_identifier _lowercase : Union[str, Any] = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(lowerCamelCase) for row_vector in self.array) return s def __repr__( self) -> str: """simple docstring""" return str(self) def UpperCamelCase ( self, lowerCamelCase) -> bool: """simple docstring""" if not (isinstance(lowerCamelCase, (list, tuple)) and len(lowerCamelCase) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, lowerCamelCase) -> Any: """simple docstring""" assert self.validate_indicies(lowerCamelCase) return self.array[loc[0]][loc[1]] def __setitem__( self, lowerCamelCase, lowerCamelCase) -> None: """simple docstring""" assert self.validate_indicies(lowerCamelCase) _lowercase : Optional[Any] = value def __add__( self, lowerCamelCase) -> Matrix: """simple docstring""" assert isinstance(lowerCamelCase, lowerCamelCase) assert self.row == another.row and self.column == another.column # Add _lowercase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowercase : int = self[r, c] + another[r, c] return result def __neg__( self) -> Matrix: """simple docstring""" _lowercase : List[Any] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowercase : List[str] = -self[r, c] return result def __sub__( self, lowerCamelCase) -> Matrix: """simple docstring""" return self + (-another) def __mul__( self, lowerCamelCase) -> Matrix: """simple docstring""" if isinstance(lowerCamelCase, (int, float)): # Scalar multiplication _lowercase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowercase : Union[str, Any] = self[r, c] * another return result elif isinstance(lowerCamelCase, lowerCamelCase): # Matrix multiplication assert self.column == another.row _lowercase : str = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowercase : Tuple = F'''Unsupported type given for another ({type(lowerCamelCase)})''' raise TypeError(lowerCamelCase) def UpperCamelCase ( self) -> Matrix: """simple docstring""" _lowercase : List[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowercase : Union[str, Any] = self[r, c] return result def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" assert isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowercase : Dict = v.transpose() _lowercase : Any = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def UpperCamelCase_( ) -> None: # a^(-1) _lowercase : Optional[int] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowercase : int = 1 print(F'''a^(-1) is {ainv}''' ) # u, v _lowercase : Dict = Matrix(3 , 1 , 0 ) _lowercase , _lowercase , _lowercase : Dict = 1, 2, -3 _lowercase : List[Any] = Matrix(3 , 1 , 0 ) _lowercase , _lowercase , _lowercase : int = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase_ , lowerCamelCase_ )}''' ) def UpperCamelCase_( ) -> None: import doctest doctest.testmod() testa()
89
1
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __A ( a_ : str , a_ : List[Any] )-> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = checkpoint SCREAMING_SNAKE_CASE : int = {} SCREAMING_SNAKE_CASE : int = vae_state_dict['''encoder.conv_in.weight'''] SCREAMING_SNAKE_CASE : List[Any] = vae_state_dict['''encoder.conv_in.bias'''] SCREAMING_SNAKE_CASE : Optional[int] = vae_state_dict['''encoder.conv_out.weight'''] SCREAMING_SNAKE_CASE : Tuple = vae_state_dict['''encoder.conv_out.bias'''] SCREAMING_SNAKE_CASE : int = vae_state_dict['''encoder.norm_out.weight'''] SCREAMING_SNAKE_CASE : Union[str, Any] = vae_state_dict['''encoder.norm_out.bias'''] SCREAMING_SNAKE_CASE : List[str] = vae_state_dict['''decoder.conv_in.weight'''] SCREAMING_SNAKE_CASE : Any = vae_state_dict['''decoder.conv_in.bias'''] SCREAMING_SNAKE_CASE : List[Any] = vae_state_dict['''decoder.conv_out.weight'''] SCREAMING_SNAKE_CASE : Dict = vae_state_dict['''decoder.conv_out.bias'''] SCREAMING_SNAKE_CASE : Union[str, Any] = vae_state_dict['''decoder.norm_out.weight'''] SCREAMING_SNAKE_CASE : Dict = vae_state_dict['''decoder.norm_out.bias'''] SCREAMING_SNAKE_CASE : Optional[Any] = vae_state_dict['''quant_conv.weight'''] SCREAMING_SNAKE_CASE : List[str] = vae_state_dict['''quant_conv.bias'''] SCREAMING_SNAKE_CASE : Optional[int] = vae_state_dict['''post_quant_conv.weight'''] SCREAMING_SNAKE_CASE : str = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only SCREAMING_SNAKE_CASE : Any = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) SCREAMING_SNAKE_CASE : List[Any] = { layer_id: [key for key in vae_state_dict if F"down.{layer_id}" in key] for layer_id in range(a_ ) } # Retrieves the keys for the decoder up blocks only SCREAMING_SNAKE_CASE : Any = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) SCREAMING_SNAKE_CASE : Union[str, Any] = { layer_id: [key for key in vae_state_dict if F"up.{layer_id}" in key] for layer_id in range(a_ ) } for i in range(a_ ): SCREAMING_SNAKE_CASE : Any = [key for key in down_blocks[i] if F"down.{i}" in key and F"down.{i}.downsample" not in key] if F"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: SCREAMING_SNAKE_CASE : List[str] = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.weight" ) SCREAMING_SNAKE_CASE : Optional[int] = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.bias" ) SCREAMING_SNAKE_CASE : str = renew_vae_resnet_paths(a_ ) SCREAMING_SNAKE_CASE : Optional[Any] = {'''old''': F"down.{i}.block", '''new''': F"down_blocks.{i}.resnets"} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) SCREAMING_SNAKE_CASE : List[str] = [key for key in vae_state_dict if '''encoder.mid.block''' in key] SCREAMING_SNAKE_CASE : Any = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE : Optional[Any] = [key for key in mid_resnets if F"encoder.mid.block_{i}" in key] SCREAMING_SNAKE_CASE : int = renew_vae_resnet_paths(a_ ) SCREAMING_SNAKE_CASE : str = {'''old''': F"mid.block_{i}", '''new''': F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) SCREAMING_SNAKE_CASE : Dict = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] SCREAMING_SNAKE_CASE : List[str] = renew_vae_attention_paths(a_ ) SCREAMING_SNAKE_CASE : Optional[Any] = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) conv_attn_to_linear(a_ ) for i in range(a_ ): SCREAMING_SNAKE_CASE : Optional[Any] = num_up_blocks - 1 - i SCREAMING_SNAKE_CASE : Union[str, Any] = [ key for key in up_blocks[block_id] if F"up.{block_id}" in key and F"up.{block_id}.upsample" not in key ] if F"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: SCREAMING_SNAKE_CASE : Tuple = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.weight" ] SCREAMING_SNAKE_CASE : List[str] = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.bias" ] SCREAMING_SNAKE_CASE : List[str] = renew_vae_resnet_paths(a_ ) SCREAMING_SNAKE_CASE : str = {'''old''': F"up.{block_id}.block", '''new''': F"up_blocks.{i}.resnets"} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) SCREAMING_SNAKE_CASE : Dict = [key for key in vae_state_dict if '''decoder.mid.block''' in key] SCREAMING_SNAKE_CASE : Any = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE : Optional[Any] = [key for key in mid_resnets if F"decoder.mid.block_{i}" in key] SCREAMING_SNAKE_CASE : Union[str, Any] = renew_vae_resnet_paths(a_ ) SCREAMING_SNAKE_CASE : List[str] = {'''old''': F"mid.block_{i}", '''new''': F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) SCREAMING_SNAKE_CASE : Tuple = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] SCREAMING_SNAKE_CASE : Dict = renew_vae_attention_paths(a_ ) SCREAMING_SNAKE_CASE : Tuple = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) conv_attn_to_linear(a_ ) return new_checkpoint def __A ( a_ : str , a_ : str , )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = io.BytesIO(r.content ) SCREAMING_SNAKE_CASE : Union[str, Any] = OmegaConf.load(a_ ) SCREAMING_SNAKE_CASE : List[Any] = 5_12 SCREAMING_SNAKE_CASE : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open SCREAMING_SNAKE_CASE : Dict = {} with safe_open(a_ , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): SCREAMING_SNAKE_CASE : Any = f.get_tensor(a_ ) else: SCREAMING_SNAKE_CASE : Any = torch.load(a_ , map_location=a_ )['''state_dict'''] # Convert the VAE model. SCREAMING_SNAKE_CASE : List[Any] = create_vae_diffusers_config(a_ , image_size=a_ ) SCREAMING_SNAKE_CASE : Any = custom_convert_ldm_vae_checkpoint(a_ , a_ ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL(**a_ ) vae.load_state_dict(a_ ) vae.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") lowerCamelCase__ : Any = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
710
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") lowerCamelCase__ : Any = logging.getLogger(__name__) @dataclass class lowercase__: '''simple docstring''' UpperCamelCase = field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase = field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) UpperCamelCase = field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """A csv or a json file containing the training data."""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """A csv or a json file containing the validation data."""} ) UpperCamelCase = field(default=_UpperCAmelCase , metadata={"""help""": """A csv or a json file containing the test data."""} ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." SCREAMING_SNAKE_CASE : Optional[int] = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class lowercase__: '''simple docstring''' UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCamelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def __A ( )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. SCREAMING_SNAKE_CASE : Any = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: SCREAMING_SNAKE_CASE : List[Any] = data_args.train_file.split('''.''' )[-1] SCREAMING_SNAKE_CASE : Optional[int] = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." SCREAMING_SNAKE_CASE : str = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(F"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files SCREAMING_SNAKE_CASE : int = load_dataset('''csv''' , data_files=a_ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files SCREAMING_SNAKE_CASE : Tuple = load_dataset('''json''' , data_files=a_ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels SCREAMING_SNAKE_CASE : str = raw_datasets['''train'''].features['''label'''].names SCREAMING_SNAKE_CASE : Union[str, Any] = len(a_ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer SCREAMING_SNAKE_CASE : Dict = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=a_ , ) SCREAMING_SNAKE_CASE : List[Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=a_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE : Tuple = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch SCREAMING_SNAKE_CASE : Optional[Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. SCREAMING_SNAKE_CASE : Tuple = {'''Refused''': 0, '''Entailed''': 1} SCREAMING_SNAKE_CASE : List[Any] = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) SCREAMING_SNAKE_CASE : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(a_ : str ): # Tokenize the texts def _convert_table_text_to_pandas(a_ : List[Any] ): SCREAMING_SNAKE_CASE : List[Any] = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] SCREAMING_SNAKE_CASE : Dict = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd SCREAMING_SNAKE_CASE : List[Any] = examples['''statement'''] SCREAMING_SNAKE_CASE : Optional[int] = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) ) SCREAMING_SNAKE_CASE : Any = tokenizer(a_ , a_ , padding=a_ , max_length=a_ , truncation=a_ ) SCREAMING_SNAKE_CASE : List[Any] = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): SCREAMING_SNAKE_CASE : Optional[Any] = raw_datasets.map( a_ , batched=a_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) SCREAMING_SNAKE_CASE : List[str] = raw_datasets['''train'''] if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE : Any = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) SCREAMING_SNAKE_CASE : List[str] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) SCREAMING_SNAKE_CASE : Tuple = raw_datasets['''test'''] if data_args.max_predict_samples is not None: SCREAMING_SNAKE_CASE : Optional[int] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(a_ ) ) , 3 ): logger.info(F"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(a_ : EvalPrediction ): SCREAMING_SNAKE_CASE : str = p.predictions[0] if isinstance(p.predictions , a_ ) else p.predictions SCREAMING_SNAKE_CASE : Tuple = np.argmax(a_ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE : Tuple = default_data_collator elif training_args.fpaa: SCREAMING_SNAKE_CASE : Union[str, Any] = DataCollatorWithPadding(a_ , pad_to_multiple_of=8 ) else: SCREAMING_SNAKE_CASE : List[Any] = None # Initialize our Trainer SCREAMING_SNAKE_CASE : Optional[Any] = Trainer( model=a_ , args=a_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=a_ , tokenizer=a_ , data_collator=a_ , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE : List[str] = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE : str = last_checkpoint SCREAMING_SNAKE_CASE : str = trainer.train(resume_from_checkpoint=a_ ) SCREAMING_SNAKE_CASE : Optional[int] = train_result.metrics SCREAMING_SNAKE_CASE : int = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) SCREAMING_SNAKE_CASE : Optional[int] = min(a_ , len(a_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , a_ ) trainer.save_metrics('''train''' , a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) SCREAMING_SNAKE_CASE : Tuple = trainer.evaluate(eval_dataset=a_ ) SCREAMING_SNAKE_CASE : str = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = min(a_ , len(a_ ) ) trainer.log_metrics('''eval''' , a_ ) trainer.save_metrics('''eval''' , a_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. SCREAMING_SNAKE_CASE : Optional[Any] = predict_dataset.remove_columns('''label''' ) SCREAMING_SNAKE_CASE : Optional[Any] = trainer.predict(a_ , metric_key_prefix='''predict''' ).predictions SCREAMING_SNAKE_CASE : Union[str, Any] = np.argmax(a_ , axis=1 ) SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(a_ , '''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(a_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = label_list[item] writer.write(F"{index}\t{item}\n" ) SCREAMING_SNAKE_CASE : Optional[int] = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __A ( a_ : List[str] )-> int: '''simple docstring''' main() if __name__ == "__main__": main()
18
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a ( __lowerCAmelCase ): """simple docstring""" __lowerCAmelCase = ["""image_processor""", """tokenizer"""] __lowerCAmelCase = """BlipImageProcessor""" __lowerCAmelCase = """AutoTokenizer""" def __init__( self , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Any = False super().__init__(snake_case_ , snake_case_ ) __UpperCAmelCase: Dict = self.image_processor def __call__( self , snake_case_ = None , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ): '''simple docstring''' if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: __UpperCAmelCase: Optional[Any] = self.tokenizer __UpperCAmelCase: List[str] = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) return text_encoding # add pixel_values __UpperCAmelCase: Tuple = self.image_processor(snake_case_ , return_tensors=snake_case_ ) if text is not None: __UpperCAmelCase: Tuple = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) else: __UpperCAmelCase: int = None if text_encoding is not None: encoding_image_processor.update(snake_case_ ) return encoding_image_processor def lowercase_ ( self , *snake_case_ , **snake_case_ ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def lowercase_ ( self , *snake_case_ , **snake_case_ ): '''simple docstring''' return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[Any] = self.tokenizer.model_input_names __UpperCAmelCase: int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
523
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class a ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = StableDiffusionPanoramaPipeline __lowerCAmelCase = TEXT_TO_IMAGE_PARAMS __lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS __lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase: List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __UpperCAmelCase: List[str] = DDIMScheduler() torch.manual_seed(0 ) __UpperCAmelCase: List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __UpperCAmelCase: Union[str, Any] = CLIPTextModel(snake_case_ ) __UpperCAmelCase: List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase: int = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase_ ( self , snake_case_ , snake_case_=0 ): '''simple docstring''' __UpperCAmelCase: Dict = torch.manual_seed(snake_case_ ) __UpperCAmelCase: Optional[Any] = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: str = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase: Any = self.get_dummy_components() __UpperCAmelCase: str = StableDiffusionPanoramaPipeline(**snake_case_ ) __UpperCAmelCase: Tuple = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) __UpperCAmelCase: Optional[int] = self.get_dummy_inputs(snake_case_ ) __UpperCAmelCase: str = sd_pipe(**snake_case_ ).images __UpperCAmelCase: int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCAmelCase: Dict = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ): '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase: Tuple = self.get_dummy_components() __UpperCAmelCase: Any = StableDiffusionPanoramaPipeline(**snake_case_ ) __UpperCAmelCase: List[Any] = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) __UpperCAmelCase: int = self.get_dummy_inputs(snake_case_ ) __UpperCAmelCase: Optional[Any] = """french fries""" __UpperCAmelCase: str = sd_pipe(**snake_case_ , negative_prompt=snake_case_ ) __UpperCAmelCase: Tuple = output.images __UpperCAmelCase: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCAmelCase: int = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase: List[str] = self.get_dummy_components() __UpperCAmelCase: str = StableDiffusionPanoramaPipeline(**snake_case_ ) __UpperCAmelCase: Dict = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) __UpperCAmelCase: str = self.get_dummy_inputs(snake_case_ ) __UpperCAmelCase: Dict = sd_pipe(**snake_case_ , view_batch_size=2 ) __UpperCAmelCase: Dict = output.images __UpperCAmelCase: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCAmelCase: Optional[Any] = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase: Optional[int] = self.get_dummy_components() __UpperCAmelCase: Tuple = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" ) __UpperCAmelCase: str = StableDiffusionPanoramaPipeline(**snake_case_ ) __UpperCAmelCase: Dict = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) __UpperCAmelCase: Dict = self.get_dummy_inputs(snake_case_ ) __UpperCAmelCase: Tuple = sd_pipe(**snake_case_ ).images __UpperCAmelCase: Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCAmelCase: Union[str, Any] = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase: Dict = self.get_dummy_components() __UpperCAmelCase: List[Any] = PNDMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , skip_prk_steps=snake_case_ ) __UpperCAmelCase: List[str] = StableDiffusionPanoramaPipeline(**snake_case_ ) __UpperCAmelCase: str = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) __UpperCAmelCase: Optional[Any] = self.get_dummy_inputs(snake_case_ ) __UpperCAmelCase: int = sd_pipe(**snake_case_ ).images __UpperCAmelCase: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCAmelCase: Dict = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self , snake_case_=0 ): '''simple docstring''' __UpperCAmelCase: Any = torch.manual_seed(snake_case_ ) __UpperCAmelCase: Tuple = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: str = """stabilityai/stable-diffusion-2-base""" __UpperCAmelCase: Optional[Any] = DDIMScheduler.from_pretrained(snake_case_ , subfolder="""scheduler""" ) __UpperCAmelCase: List[str] = StableDiffusionPanoramaPipeline.from_pretrained(snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() __UpperCAmelCase: Tuple = self.get_inputs() __UpperCAmelCase: Tuple = pipe(**snake_case_ ).images __UpperCAmelCase: List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) __UpperCAmelCase: int = np.array( [ 0.3_6_9_6_8_3_9_2, 0.2_7_0_2_5_3_7_2, 0.3_2_4_4_6_7_6_6, 0.2_8_3_7_9_3_8_7, 0.3_6_3_6_3_2_7_4, 0.3_0_7_3_3_3_4_7, 0.2_7_1_0_0_0_2_7, 0.2_7_0_5_4_1_2_5, 0.2_5_5_3_6_0_9_6, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[str] = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=snake_case_ ) __UpperCAmelCase: int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() __UpperCAmelCase: str = self.get_inputs() __UpperCAmelCase: str = pipe(**snake_case_ ).images __UpperCAmelCase: Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) __UpperCAmelCase: str = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[Any] = 0 def callback_fn(snake_case_ , snake_case_ , snake_case_ ) -> None: __UpperCAmelCase: List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __UpperCAmelCase: Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) __UpperCAmelCase: Union[str, Any] = latents[0, -3:, -3:, -1] __UpperCAmelCase: Any = np.array( [ 0.1_8_6_8_1_8_6_9, 0.3_3_9_0_7_8_1_6, 0.5_3_6_1_2_7_6, 0.1_4_4_3_2_8_6_5, -0.0_2_8_5_6_6_1_1, -0.7_3_9_4_1_1_2_3, 0.2_3_3_9_7_9_8_7, 0.4_7_3_2_2_6_8_2, -0.3_7_8_2_3_1_6_4, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: __UpperCAmelCase: Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) __UpperCAmelCase: str = latents[0, -3:, -3:, -1] __UpperCAmelCase: List[Any] = np.array( [ 0.1_8_5_3_9_6_4_5, 0.3_3_9_8_7_2_4_8, 0.5_3_7_8_5_5_9, 0.1_4_4_3_7_1_4_2, -0.0_2_4_5_5_2_6_1, -0.7_3_3_8_3_1_7, 0.2_3_9_9_0_7_5_5, 0.4_7_3_5_6_2_7_2, -0.3_7_8_6_5_0_5, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 __UpperCAmelCase: Union[str, Any] = False __UpperCAmelCase: Optional[Any] = """stabilityai/stable-diffusion-2-base""" __UpperCAmelCase: Optional[Any] = DDIMScheduler.from_pretrained(snake_case_ , subfolder="""scheduler""" ) __UpperCAmelCase: Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained(snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ ) __UpperCAmelCase: List[Any] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() __UpperCAmelCase: Optional[Any] = self.get_inputs() pipe(**snake_case_ , callback=snake_case_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase_ ( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase: Optional[Any] = """stabilityai/stable-diffusion-2-base""" __UpperCAmelCase: Optional[int] = DDIMScheduler.from_pretrained(snake_case_ , subfolder="""scheduler""" ) __UpperCAmelCase: Any = StableDiffusionPanoramaPipeline.from_pretrained(snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ ) __UpperCAmelCase: Tuple = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __UpperCAmelCase: Optional[Any] = self.get_inputs() __UpperCAmelCase: Union[str, Any] = pipe(**snake_case_ ) __UpperCAmelCase: Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
523
1
class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = [ [], [], [], ] def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int ): '''simple docstring''' try: if len(self.queues[priority] ) >= 100: raise OverflowError('''Maximum queue size is 100''' ) self.queues[priority].append(__UpperCamelCase ) except IndexError: raise ValueError('''Valid priorities are 0, 1, and 2''' ) def _lowerCamelCase ( self : int ): '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('''All queues are empty''' ) def __str__( self : str ): '''simple docstring''' return "\n".join(f'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class lowerCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = [] def _lowerCamelCase ( self : str , __snake_case : int ): '''simple docstring''' if len(self.queue ) == 100: raise OverFlowError('''Maximum queue size is 100''' ) self.queue.append(__UpperCamelCase ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' if not self.queue: raise UnderFlowError('''The queue is empty''' ) else: UpperCAmelCase_ : Dict = min(self.queue ) self.queue.remove(__UpperCamelCase ) return data def __str__( self : Optional[Any] ): '''simple docstring''' return str(self.queue ) def snake_case_ ( ): UpperCAmelCase_ : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 , 1_0 ) fpq.enqueue(1 , 7_0 ) fpq.enqueue(0 , 1_0_0 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 6_4 ) fpq.enqueue(0 , 1_2_8 ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = ElementPriorityQueue() epq.enqueue(1_0 ) epq.enqueue(7_0 ) epq.enqueue(1_0_0 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(6_4 ) epq.enqueue(1_2_8 ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
707
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ : Any = { "configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "GraphormerForGraphClassification", "GraphormerModel", "GraphormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowerCamelCase__ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
from __future__ import annotations SCREAMING_SNAKE_CASE : Tuple = 1.6_021E-19 # units = C def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif conductivity < 0: raise ValueError("""Conductivity cannot be negative""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative""" ) elif mobility < 0: raise ValueError("""mobility cannot be negative""" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
635
0
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase = { """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
702
"""simple docstring""" import os def A( ): """simple docstring""" with open(os.path.dirname(snake_case_ ) + "/p022_names.txt" ) as file: lowercase__: str = str(file.readlines()[0] ) lowercase__: str = names.replace("\"" , "" ).split("," ) names.sort() lowercase__: Any = 0 lowercase__: List[str] = 0 for i, name in enumerate(snake_case_ ): for letter in name: name_score += ord(snake_case_ ) - 64 total_score += (i + 1) * name_score lowercase__: Dict = 0 return total_score if __name__ == "__main__": print(solution())
120
0
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="attention" ): """simple docstring""" lowercase_ : Union[str, Any] = params[F"""{prefix}/layers_{i}/{layer_name}/key/kernel"""] lowercase_ : Dict = params[F"""{prefix}/layers_{i}/{layer_name}/out/kernel"""] lowercase_ : int = params[F"""{prefix}/layers_{i}/{layer_name}/query/kernel"""] lowercase_ : Tuple = params[F"""{prefix}/layers_{i}/{layer_name}/value/kernel"""] return k, o, q, v def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ): """simple docstring""" if split_mlp_wi: lowercase_ : Optional[int] = params[F"""{prefix}/layers_{i}/mlp/wi_0/kernel"""] lowercase_ : Optional[int] = params[F"""{prefix}/layers_{i}/mlp/wi_1/kernel"""] lowercase_ : int = (wi_a, wi_a) else: lowercase_ : Union[str, Any] = params[F"""{prefix}/layers_{i}/mlp/wi/kernel"""] lowercase_ : Tuple = params[F"""{prefix}/layers_{i}/mlp/wo/kernel"""] return wi, wo def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return params[F"""{prefix}/layers_{i}/{layer_name}/scale"""] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , *, _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Union[str, Any] = traverse_util.flatten_dict(variables["target"] ) lowercase_ : Optional[Any] = {"/".join(_UpperCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase_ : str = "encoder/layers_0/mlp/wi_0/kernel" in old print("Split MLP:" , _UpperCamelCase ) lowercase_ : int = collections.OrderedDict() # Shared embeddings. lowercase_ : str = old["token_embedder/embedding"] # Encoder. for i in range(_UpperCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ : int = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "pre_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "attention" ) lowercase_ : int = layer_norm lowercase_ : str = k.T lowercase_ : List[Any] = o.T lowercase_ : Optional[Any] = q.T lowercase_ : Union[str, Any] = v.T # Block i, layer 1 (MLP). lowercase_ : Any = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ : Any = tax_mlp_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , _UpperCamelCase ) lowercase_ : str = layer_norm if split_mlp_wi: lowercase_ : Tuple = wi[0].T lowercase_ : List[str] = wi[1].T else: lowercase_ : List[Any] = wi.T lowercase_ : int = wo.T lowercase_ : Any = old[ "encoder/relpos_bias/rel_embedding" ].T lowercase_ : Optional[Any] = old["encoder/encoder_norm/scale"] if not is_encoder_only: # Decoder. for i in range(_UpperCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ : List[str] = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_self_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ : str = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "self_attention" ) lowercase_ : List[Any] = layer_norm lowercase_ : int = k.T lowercase_ : str = o.T lowercase_ : Union[str, Any] = q.T lowercase_ : int = v.T # Block i, layer 1 (Cross Attention). lowercase_ : int = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "encoder_decoder_attention" ) lowercase_ : str = layer_norm lowercase_ : str = k.T lowercase_ : Tuple = o.T lowercase_ : List[str] = q.T lowercase_ : Union[str, Any] = v.T # Block i, layer 2 (MLP). lowercase_ : Optional[Any] = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ : Tuple = tax_mlp_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , _UpperCamelCase ) lowercase_ : Tuple = layer_norm if split_mlp_wi: lowercase_ : str = wi[0].T lowercase_ : int = wi[1].T else: lowercase_ : List[Any] = wi.T lowercase_ : Dict = wo.T lowercase_ : int = old["decoder/decoder_norm/scale"] lowercase_ : Optional[int] = old[ "decoder/relpos_bias/rel_embedding" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase_ : Any = old["decoder/logits_dense/kernel"].T return new def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : int = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase_ : List[Any] = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase_ : List[str] = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) lowercase_ : Union[str, Any] = state_dict["shared.weight"] return state_dict def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Any = checkpoints.load_tax_checkpoint(_UpperCamelCase ) lowercase_ : Any = convert_tax_to_pytorch(_UpperCamelCase , num_layers=config.num_layers , is_encoder_only=_UpperCamelCase ) lowercase_ : int = make_state_dict(_UpperCamelCase , _UpperCamelCase ) model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = False ): """simple docstring""" lowercase_ : int = TaConfig.from_json_file(_UpperCamelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase_ : int = TaEncoderModel(_UpperCamelCase ) else: lowercase_ : Union[str, Any] = TaForConditionalGeneration(_UpperCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_UpperCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(_UpperCamelCase ) print("Done" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) UpperCamelCase__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
620
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod @abstractmethod def _snake_case ( snake_case__ : ArgumentParser ) -> Tuple: raise NotImplementedError() @abstractmethod def _snake_case ( self : Optional[Any] ) -> Optional[Any]: raise NotImplementedError()
544
0
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] ): if not nums: return 0 __lowercase : Tuple = nums[0] __lowercase : Tuple = 0 for num in nums[1:]: __lowercase , __lowercase : List[str] = ( max_excluding + num, max(lowerCAmelCase_ , lowerCAmelCase_ ), ) return max(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
649
1
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) class a__: def __init__( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: snake_case__ =question_encoder snake_case__ =generator snake_case__ =self.question_encoder def _lowercase ( self , _UpperCAmelCase ) -> Tuple: if os.path.isfile(_UpperCAmelCase ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) snake_case__ =os.path.join(_UpperCAmelCase , 'question_encoder_tokenizer' ) snake_case__ =os.path.join(_UpperCAmelCase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(_UpperCAmelCase ) self.generator.save_pretrained(_UpperCAmelCase ) @classmethod def _lowercase ( cls , _UpperCAmelCase , **_UpperCAmelCase ) -> Dict: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer snake_case__ =kwargs.pop('config' , _UpperCAmelCase ) if config is None: snake_case__ =RagConfig.from_pretrained(_UpperCAmelCase ) snake_case__ =AutoTokenizer.from_pretrained( _UpperCAmelCase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) snake_case__ =AutoTokenizer.from_pretrained( _UpperCAmelCase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=_UpperCAmelCase , generator=_UpperCAmelCase ) def __call__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> str: return self.current_tokenizer(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowercase ( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Dict: return self.generator.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowercase ( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Any: return self.generator.decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowercase ( self ) -> List[Any]: snake_case__ =self.question_encoder def _lowercase ( self ) -> Union[str, Any]: snake_case__ =self.generator def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "longest" , _UpperCAmelCase = None , _UpperCAmelCase = True , **_UpperCAmelCase , ) -> BatchEncoding: warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , _UpperCAmelCase , ) if max_length is None: snake_case__ =self.current_tokenizer.model_max_length snake_case__ =self( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , max_length=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , **_UpperCAmelCase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case__ =self.current_tokenizer.model_max_length snake_case__ =self( text_target=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , **_UpperCAmelCase , ) snake_case__ =labels['input_ids'] return model_inputs
538
'''simple docstring''' import os SCREAMING_SNAKE_CASE__ : Optional[Any] = {'''I''': 1, '''V''': 5, '''X''': 1_0, '''L''': 5_0, '''C''': 1_0_0, '''D''': 5_0_0, '''M''': 1_0_0_0} def a ( UpperCamelCase_ : str ) -> int: snake_case__ =0 snake_case__ =0 while index < len(UpperCamelCase_ ) - 1: snake_case__ =SYMBOLS[numerals[index]] snake_case__ =SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a ( UpperCamelCase_ : int ) -> str: snake_case__ ='' snake_case__ =num // 1000 numerals += m_count * "M" num %= 1000 snake_case__ =num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 snake_case__ =num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a ( UpperCamelCase_ : str = "/p089_roman.txt" ) -> int: snake_case__ =0 with open(os.path.dirname(UpperCamelCase_ ) + roman_numerals_filename ) as filea: snake_case__ =filea.readlines() for line in lines: snake_case__ =line.strip() snake_case__ =parse_roman_numerals(UpperCamelCase_ ) snake_case__ =generate_roman_numerals(UpperCamelCase_ ) savings += len(UpperCamelCase_ ) - len(UpperCamelCase_ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
538
1
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int]=None ): '''simple docstring''' assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCAmelCase : str = nn.Parameter(SCREAMING_SNAKE_CASE ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCAmelCase : List[str] = nn.Parameter(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : int = np.asarray(weights[0] ) lowerCAmelCase : Any = np.asarray(weights[1] ) lowerCAmelCase : Dict = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE ).view(-1 , SCREAMING_SNAKE_CASE ).contiguous().transpose(0 , 1 ) , ) def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[int] = np.asarray(weights[0] ) lowerCAmelCase : Tuple = np.asarray(weights[1] ) lowerCAmelCase : Union[str, Any] = np.asarray(weights[2] ) lowerCAmelCase : str = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.self_attention.key , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE ).view(-1 , SCREAMING_SNAKE_CASE ).contiguous().transpose(0 , 1 ) , ) def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' lowerCAmelCase : Any = weights[0][0][0] lowerCAmelCase : List[str] = np.asarray(layer_norm_a[0] ) lowerCAmelCase : Dict = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE ) , torch.tensor(SCREAMING_SNAKE_CASE ) , ) # lsh weights + output lowerCAmelCase : Tuple = weights[0][1] if len(SCREAMING_SNAKE_CASE ) < 4: set_layer_weights_in_torch_lsh(SCREAMING_SNAKE_CASE , torch_block.attention , SCREAMING_SNAKE_CASE ) else: set_layer_weights_in_torch_local(SCREAMING_SNAKE_CASE , torch_block.attention , SCREAMING_SNAKE_CASE ) # intermediate weighs lowerCAmelCase : List[str] = weights[2][0][1][2] # Chunked Feed Forward if len(SCREAMING_SNAKE_CASE ) == 4: lowerCAmelCase : Optional[int] = intermediate_weights[2] # layernorm 2 lowerCAmelCase : int = np.asarray(intermediate_weights[0][0] ) lowerCAmelCase : List[str] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE ) , torch.tensor(SCREAMING_SNAKE_CASE ) , ) # intermediate dense lowerCAmelCase : Dict = np.asarray(intermediate_weights[1][0] ) lowerCAmelCase : List[str] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE ) , ) # intermediate out lowerCAmelCase : int = np.asarray(intermediate_weights[4][0] ) lowerCAmelCase : Any = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE ) , ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = torch_model.reformer # word embeds lowerCAmelCase : List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(SCREAMING_SNAKE_CASE ) , ) if isinstance(weights[3] , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Optional[Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCAmelCase : List[str] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCAmelCase : List[Any] = nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : List[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( SCREAMING_SNAKE_CASE ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCAmelCase : str = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # output layer norm lowerCAmelCase : int = np.asarray(weights[7][0] ) lowerCAmelCase : Optional[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE ) , torch.tensor(SCREAMING_SNAKE_CASE ) , ) # output embeddings lowerCAmelCase : str = np.asarray(weights[9][0] ) lowerCAmelCase : List[Any] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE ) , ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Optional[int] = ReformerConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase : Optional[int] = ReformerModelWithLMHead(SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , "rb" ) as f: lowerCAmelCase : int = pickle.load(SCREAMING_SNAKE_CASE )["weights"] set_model_weights_in_torch(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
717
"""simple docstring""" import math def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return math.sqrt(SCREAMING_SNAKE_CASE ) * math.sqrt(SCREAMING_SNAKE_CASE ) == num def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = 0 lowerCAmelCase : List[str] = n while left <= right: lowerCAmelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase : int = mid - 1 else: lowerCAmelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
681
0
'''simple docstring''' import os import sys UpperCamelCase__ = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase__ = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def a__ ( *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: return AutoConfig.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def a__ ( *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: return AutoTokenizer.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def a__ ( *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: return AutoModel.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def a__ ( *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: return AutoModelForCausalLM.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def a__ ( *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: return AutoModelForMaskedLM.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def a__ ( *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: return AutoModelForSequenceClassification.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def a__ ( *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: return AutoModelForQuestionAnswering.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ )
75
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase_ : def __init__( self : Optional[int] , _A : Optional[Any] , _A : Tuple=2 , _A : Tuple=3 , _A : Optional[Any]=4 , _A : List[Any]=2 , _A : List[Any]=7 , _A : int=True , _A : Dict=True , _A : int=True , _A : Dict=True , _A : Tuple=99 , _A : Union[str, Any]=36 , _A : int=2 , _A : List[str]=4 , _A : int=37 , _A : List[Any]="gelu" , _A : str=0.1 , _A : str=0.1 , _A : Tuple=512 , _A : Dict=16 , _A : Tuple=2 , _A : Union[str, Any]=0.0_2 , _A : Any=6 , _A : Union[str, Any]=6 , _A : str=3 , _A : str=4 , _A : Tuple=None , _A : int=1_000 , ): '''simple docstring''' UpperCAmelCase__ : int = parent UpperCAmelCase__ : Optional[int] = batch_size UpperCAmelCase__ : str = num_channels UpperCAmelCase__ : str = image_size UpperCAmelCase__ : List[str] = patch_size UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : List[str] = use_input_mask UpperCAmelCase__ : Tuple = use_token_type_ids UpperCAmelCase__ : str = use_labels UpperCAmelCase__ : int = vocab_size UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Optional[int] = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : int = hidden_dropout_prob UpperCAmelCase__ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase__ : List[str] = max_position_embeddings UpperCAmelCase__ : Tuple = type_vocab_size UpperCAmelCase__ : Any = type_sequence_label_size UpperCAmelCase__ : List[str] = initializer_range UpperCAmelCase__ : List[str] = coordinate_size UpperCAmelCase__ : Tuple = shape_size UpperCAmelCase__ : Optional[int] = num_labels UpperCAmelCase__ : Optional[Any] = num_choices UpperCAmelCase__ : Union[str, Any] = scope UpperCAmelCase__ : Optional[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCAmelCase__ : str = text_seq_length UpperCAmelCase__ : Tuple = (image_size // patch_size) ** 2 + 1 UpperCAmelCase__ : Tuple = self.text_seq_length + self.image_seq_length def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCAmelCase__ : int = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase__ : str = bbox[i, j, 3] UpperCAmelCase__ : Dict = bbox[i, j, 1] UpperCAmelCase__ : str = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase__ : Optional[int] = bbox[i, j, 2] UpperCAmelCase__ : Any = bbox[i, j, 0] UpperCAmelCase__ : List[Any] = tmp_coordinate UpperCAmelCase__ : str = tf.constant(_A ) UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Any = None if self.use_input_mask: UpperCAmelCase__ : Any = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCAmelCase__ : Any = None if self.use_token_type_ids: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : List[str] = None if self.use_labels: UpperCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCAmelCase__ : Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase_ ( self : Union[str, Any] , _A : int , _A : str , _A : Optional[int] , _A : Optional[int] , _A : List[str] , _A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : int = TFLayoutLMvaModel(config=_A ) # text + image UpperCAmelCase__ : Tuple = model(_A , pixel_values=_A , training=_A ) UpperCAmelCase__ : Tuple = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , training=_A , ) UpperCAmelCase__ : Optional[Any] = model(_A , bbox=_A , pixel_values=_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCAmelCase__ : Any = model(_A , training=_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCAmelCase__ : str = model({'''pixel_values''': pixel_values} , training=_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase_ ( self : Union[str, Any] , _A : Optional[int] , _A : Optional[Any] , _A : Dict , _A : List[Any] , _A : List[Any] , _A : Any , _A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.num_labels UpperCAmelCase__ : int = TFLayoutLMvaForSequenceClassification(config=_A ) UpperCAmelCase__ : Union[str, Any] = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , training=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : Dict , _A : List[Any] , _A : Any , _A : Dict , _A : str , _A : Optional[int] , _A : str , _A : str ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.num_labels UpperCAmelCase__ : Union[str, Any] = TFLayoutLMvaForTokenClassification(config=_A ) UpperCAmelCase__ : Optional[int] = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , training=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase_ ( self : Dict , _A : Dict , _A : List[str] , _A : Union[str, Any] , _A : int , _A : Tuple , _A : Dict , _A : str ): '''simple docstring''' UpperCAmelCase__ : str = 2 UpperCAmelCase__ : Dict = TFLayoutLMvaForQuestionAnswering(config=_A ) UpperCAmelCase__ : str = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , training=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : int = self.prepare_config_and_inputs() ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) : List[str] = config_and_inputs UpperCAmelCase__ : List[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase__ = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : List[Any] , _A : Union[str, Any] , _A : str , _A : List[Any] , _A : Dict , _A : List[str] ): '''simple docstring''' return True def lowercase_ ( self : Optional[Any] , _A : Tuple , _A : Any , _A : Dict=False ): '''simple docstring''' UpperCAmelCase__ : List[Any] = copy.deepcopy(_A ) if model_class in get_values(_A ): UpperCAmelCase__ : Tuple = { k: tf.tile(tf.expand_dims(_A , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(_A , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_A ): UpperCAmelCase__ : Dict = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_A ): UpperCAmelCase__ : Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCAmelCase__ : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_A ): UpperCAmelCase__ : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_A ): UpperCAmelCase__ : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = TFLayoutLMvaModelTester(self ) UpperCAmelCase__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def lowercase_ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = model_class(_A ) if getattr(_A , '''hf_compute_loss''' , _A ): # The number of elements in the loss should be the same as the number of elements in the label UpperCAmelCase__ : Tuple = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) UpperCAmelCase__ : List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=_A )[0] ] UpperCAmelCase__ : Optional[Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCAmelCase__ : Any = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) UpperCAmelCase__ : Tuple = prepared_for_class.pop('''input_ids''' ) UpperCAmelCase__ : List[Any] = model(_A , **_A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCAmelCase__ : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) UpperCAmelCase__ : Tuple = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: UpperCAmelCase__ : Optional[Any] = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCAmelCase__ : Any = -100 UpperCAmelCase__ : Union[str, Any] = tf.convert_to_tensor(_A ) UpperCAmelCase__ : int = model(_A , **_A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCAmelCase__ : Optional[int] = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) UpperCAmelCase__ : Dict = model(_A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCAmelCase__ : Dict = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) # Get keys that were added with the _prepare_for_class function UpperCAmelCase__ : Optional[int] = prepared_for_class.keys() - inputs_dict.keys() UpperCAmelCase__ : int = inspect.signature(model.call ).parameters UpperCAmelCase__ : Union[str, Any] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCAmelCase__ : Dict = {0: '''input_ids'''} for label_key in label_keys: UpperCAmelCase__ : str = signature_names.index(_A ) UpperCAmelCase__ : List[Any] = label_key UpperCAmelCase__ : Dict = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCAmelCase__ : Tuple = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCAmelCase__ : Any = prepared_for_class[value] UpperCAmelCase__ : Tuple = tuple(_A ) # Send to model UpperCAmelCase__ : Optional[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase_ ( self : int ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_A , _A , _A , _A , _A , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ : Union[str, Any] = type self.model_tester.create_and_check_model(_A , _A , _A , _A , _A , _A ) def lowercase_ ( self : List[str] ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( _A , _A , _A , _A , _A , _A , _A ) def lowercase_ ( self : Any ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( _A , _A , _A , _A , _A , _A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( _A , _A , _A , _A , _A , _A , _A ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[str] = TFLayoutLMvaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def a__ ( ) -> List[str]: UpperCAmelCase__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowercase_ ( self : Dict ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=_A ) if is_vision_available() else None @slow def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) UpperCAmelCase__ : Dict = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : int = image_processor(images=_A , return_tensors='''tf''' ).pixel_values UpperCAmelCase__ : str = tf.constant([[1, 2]] ) UpperCAmelCase__ : Optional[Any] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCAmelCase__ : int = model(input_ids=_A , bbox=_A , pixel_values=_A , training=_A ) # verify the logits UpperCAmelCase__ : Optional[int] = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , _A ) UpperCAmelCase__ : Dict = tf.constant( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _A , atol=1e-4 ) )
75
1
'''simple docstring''' import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase : str = logging.getLogger(__name__) lowerCAmelCase : Optional[int] = '''pytorch_model.bin''' @dataclasses.dataclass class UpperCAmelCase__ : a : Union[str, Any] = dataclasses.field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models."""} ) a : Optional[int] = dataclasses.field( default=lowercase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co."""} , ) @dataclasses.dataclass class UpperCAmelCase__ : a : Optional[int] = dataclasses.field(metadata={"""help""": """A csv or a json file containing the training data."""} ) a : Optional[Any] = dataclasses.field(metadata={"""help""": """A csv or a json file containing the data to predict on."""} ) a : str = dataclasses.field( default=lowercase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a : List[Any] = dataclasses.field( default=lowercase_ , metadata={"""help""": """The name of the task to train on."""} , ) a : Optional[int] = dataclasses.field( default=lowercase_ , metadata={"""help""": """The list of labels for the task."""} ) @dataclasses.dataclass class UpperCAmelCase__ : a : List[Any] = dataclasses.field( metadata={"""help""": """The output directory where the model predictions and checkpoints will be written."""} ) a : List[Any] = dataclasses.field( default="""accuracy""" , metadata={"""help""": """The evaluation metric used for the task."""} ) a : Optional[Any] = dataclasses.field( default="""no""" , metadata={ """help""": """The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]""" } , ) a : int = dataclasses.field( default=1_0 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) a : List[Any] = dataclasses.field( default=0.0 , metadata={ """help""": """How much the specified evaluation metric must improve to satisfy early stopping conditions.""" } , ) a : Optional[int] = dataclasses.field( default=lowercase_ , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the confidence score."""} , ) a : int = dataclasses.field( default=lowercase_ , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the validation performance."""} , ) a : int = dataclasses.field( default=lowercase_ , metadata={"""help""": """Whether to fine-tune on labeled data after pseudo training."""} , ) a : Any = dataclasses.field( default=0.0 , metadata={"""help""": """Confidence threshold for pseudo-labeled data filtering."""} , ) a : Tuple = dataclasses.field( default=1_0_0 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) a : int = dataclasses.field( default=lowercase_ , metadata={"""help""": """Random seed for initialization."""} , ) def __lowerCAmelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Any , lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple ): '''simple docstring''' __lowerCAmelCase = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __lowerCAmelCase = dataset.filter(lambda lowerCamelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __lowerCAmelCase = int(eval_result * len(lowerCamelCase_ ) ) print(lowerCamelCase_ ) __lowerCAmelCase = dataset.sort("probability" , reverse=lowerCamelCase_ ) __lowerCAmelCase = dataset.select(range(lowerCamelCase_ ) ) __lowerCAmelCase = dataset.remove_columns(["label", "probability"] ) __lowerCAmelCase = dataset.rename_column("prediction" , "label" ) __lowerCAmelCase = dataset.map(lambda lowerCamelCase : {"label": idalabel[example["label"]]} ) __lowerCAmelCase = dataset.shuffle(seed=args.seed ) __lowerCAmelCase = os.path.join(lowerCamelCase_ , f'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(lowerCamelCase_ , index=lowerCamelCase_ ) else: dataset.to_json(lowerCamelCase_ ) def __lowerCAmelCase ( lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : int , **lowerCamelCase : Dict ): '''simple docstring''' __lowerCAmelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __lowerCAmelCase = STModelArguments(model_name_or_path=lowerCamelCase_ ) __lowerCAmelCase = STDataArguments(train_file=lowerCamelCase_ , infer_file=lowerCamelCase_ ) __lowerCAmelCase = STTrainingArguments(output_dir=lowerCamelCase_ ) __lowerCAmelCase = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowerCamelCase_ ).items(): setattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for key, value in kwargs.items(): if hasattr(lowerCamelCase_ , lowerCamelCase_ ): setattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Sanity checks __lowerCAmelCase = {} __lowerCAmelCase = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __lowerCAmelCase = args.train_file __lowerCAmelCase = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __lowerCAmelCase = args.eval_file for key in data_files: __lowerCAmelCase = data_files[key].split("." )[-1] assert extension in ["csv", "json"], f'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: __lowerCAmelCase = extension else: assert extension == args.data_file_extension, f'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), f'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) __lowerCAmelCase = f'''{args.output_dir}/self-train_iter-{{}}'''.format __lowerCAmelCase = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) accelerator.wait_for_everyone() __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = False # Show the progress bar __lowerCAmelCase = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __lowerCAmelCase = data_dir_format(lowerCamelCase_ ) assert os.path.exists(lowerCamelCase_ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __lowerCAmelCase = os.path.join(lowerCamelCase_ , "stage-1" ) __lowerCAmelCase = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowerCamelCase_ , lowerCamelCase_ ): arguments_dict.update({key: value} ) __lowerCAmelCase = os.path.join(lowerCamelCase_ , "best-checkpoint" , lowerCamelCase_ ) if os.path.exists(lowerCamelCase_ ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , lowerCamelCase_ , lowerCamelCase_ , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , lowerCamelCase_ ) finetune(**lowerCamelCase_ ) accelerator.wait_for_everyone() assert os.path.exists(lowerCamelCase_ ) logger.info("Self-training job completed: iteration: %d, stage: 1." , lowerCamelCase_ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __lowerCAmelCase = os.path.join(lowerCamelCase_ , "best-checkpoint" ) __lowerCAmelCase = os.path.join(lowerCamelCase_ , "stage-2" ) # Update arguments_dict __lowerCAmelCase = model_path __lowerCAmelCase = data_files["""train"""] __lowerCAmelCase = current_output_dir __lowerCAmelCase = os.path.join(lowerCamelCase_ , "best-checkpoint" , lowerCamelCase_ ) if os.path.exists(lowerCamelCase_ ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , lowerCamelCase_ , lowerCamelCase_ , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , lowerCamelCase_ ) finetune(**lowerCamelCase_ ) accelerator.wait_for_everyone() assert os.path.exists(lowerCamelCase_ ) logger.info("Self-training job completed: iteration: %d, stage: 2." , lowerCamelCase_ ) __lowerCAmelCase = iteration __lowerCAmelCase = data_dir_format(iteration + 1 ) __lowerCAmelCase = AutoConfig.from_pretrained(os.path.join(lowerCamelCase_ , "best-checkpoint" ) ) __lowerCAmelCase = config.idalabel __lowerCAmelCase = os.path.join(lowerCamelCase_ , "eval_results_best-checkpoint.json" ) __lowerCAmelCase = os.path.join(lowerCamelCase_ , "test_results_best-checkpoint.json" ) assert os.path.exists(lowerCamelCase_ ) with open(lowerCamelCase_ , "r" ) as f: __lowerCAmelCase = float(json.load(lowerCamelCase_ )[args.eval_metric] ) __lowerCAmelCase = os.path.join(lowerCamelCase_ , "infer_output_best-checkpoint.csv" ) assert os.path.exists(lowerCamelCase_ ) # Loading the dataset from local csv or json files. __lowerCAmelCase = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["""data"""] __lowerCAmelCase = load_dataset("csv" , data_files={"data": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) shutil.copy(lowerCamelCase_ , os.path.join(lowerCamelCase_ , f'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(lowerCamelCase_ ): shutil.copy(lowerCamelCase_ , os.path.join(lowerCamelCase_ , f'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) accelerator.wait_for_everyone() __lowerCAmelCase = os.path.join(lowerCamelCase_ , f'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __lowerCAmelCase = eval_result if best_iteration is None: __lowerCAmelCase = new_iteration __lowerCAmelCase = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __lowerCAmelCase = new_iteration __lowerCAmelCase = new_eval_result __lowerCAmelCase = 0 else: if new_eval_result == best_eval_result: __lowerCAmelCase = new_iteration __lowerCAmelCase = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __lowerCAmelCase = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , lowerCamelCase_ ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , lowerCamelCase_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowerCamelCase_ , f'''eval_results_iter-{iteration}.json''' ) , os.path.join(lowerCamelCase_ , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , lowerCamelCase_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowerCamelCase_ , f'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(lowerCamelCase_ , "eval_results_best-iteration.json" ) , )
712
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __lowerCAmelCase ( lowerCamelCase : Any ): '''simple docstring''' __lowerCAmelCase = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] __lowerCAmelCase = True if "large" in model_name or "huge" in model_name else False __lowerCAmelCase = True if "large" in model_name or "huge" in model_name else False __lowerCAmelCase = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowerCAmelCase = [3, 3, 3, 3] __lowerCAmelCase = [5, 5, 5, 5] elif "fl4" in model_name: __lowerCAmelCase = [4, 4, 4, 4] __lowerCAmelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowerCAmelCase = [3, 3, 3, 3] if "lrf" in model_name: __lowerCAmelCase = [3, 3, 3, 3] else: __lowerCAmelCase = [2, 2, 2, 2] if "tiny" in model_name: __lowerCAmelCase = 96 elif "small" in model_name: __lowerCAmelCase = 96 elif "base" in model_name: __lowerCAmelCase = 1_28 elif "large" in model_name: __lowerCAmelCase = 1_92 elif "xlarge" in model_name: __lowerCAmelCase = 2_56 elif "huge" in model_name: __lowerCAmelCase = 3_52 # set label information __lowerCAmelCase = "huggingface/label-files" if "large" in model_name or "huge" in model_name: __lowerCAmelCase = "imagenet-22k-id2label.json" else: __lowerCAmelCase = "imagenet-1k-id2label.json" __lowerCAmelCase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(lowerCamelCase ): v for k, v in idalabel.items()} __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = FocalNetConfig( embed_dim=lowerCamelCase , depths=lowerCamelCase , focal_levels=lowerCamelCase , focal_windows=lowerCamelCase , use_conv_embed=lowerCamelCase , idalabel=lowerCamelCase , labelaid=lowerCamelCase , use_post_layernorm=lowerCamelCase , use_layerscale=lowerCamelCase , ) return config def __lowerCAmelCase ( lowerCamelCase : Union[str, Any] ): '''simple docstring''' if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __lowerCAmelCase = "encoder." + name if "encoder.layers" in name: __lowerCAmelCase = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: __lowerCAmelCase = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: __lowerCAmelCase = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowerCAmelCase = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowerCAmelCase = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowerCAmelCase = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": __lowerCAmelCase = "layernorm.weight" if name == "norm.bias": __lowerCAmelCase = "layernorm.bias" if "head" in name: __lowerCAmelCase = name.replace("head" , "classifier" ) else: __lowerCAmelCase = "focalnet." + name return name def __lowerCAmelCase ( lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : Union[str, Any]=False ): '''simple docstring''' __lowerCAmelCase = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on __lowerCAmelCase = model_name_to_url[model_name] print("Checkpoint URL: " , lowerCamelCase ) __lowerCAmelCase = torch.hub.load_state_dict_from_url(lowerCamelCase , map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): __lowerCAmelCase = state_dict.pop(lowerCamelCase ) __lowerCAmelCase = val __lowerCAmelCase = get_focalnet_config(lowerCamelCase ) __lowerCAmelCase = FocalNetForImageClassification(lowerCamelCase ) model.eval() # load state dict model.load_state_dict(lowerCamelCase ) # verify conversion __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = BitImageProcessor( do_resize=lowerCamelCase , size={"shortest_edge": 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCamelCase , crop_size=2_24 , do_normalize=lowerCamelCase , image_mean=lowerCamelCase , image_std=lowerCamelCase , ) __lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) __lowerCAmelCase = processor(images=lowerCamelCase , return_tensors="pt" ) __lowerCAmelCase = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) __lowerCAmelCase = image_transforms(lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , lowerCamelCase , atol=1e-4 ) __lowerCAmelCase = model(**lowerCamelCase ) __lowerCAmelCase = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowerCAmelCase = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": __lowerCAmelCase = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": __lowerCAmelCase = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": __lowerCAmelCase = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": __lowerCAmelCase = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": __lowerCAmelCase = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase ) processor.save_pretrained(lowerCamelCase ) if push_to_hub: print(f'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(f'''{model_name}''' ) processor.push_to_hub(f'''{model_name}''' ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) lowerCAmelCase : Optional[int] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
39
0
"""simple docstring""" def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _validate_point(SCREAMING_SNAKE_CASE ) _validate_point(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) def UpperCamelCase (SCREAMING_SNAKE_CASE ): if point: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for item in point: if not isinstance(SCREAMING_SNAKE_CASE , (int, float) ): UpperCamelCase : List[Any] = ( """Expected a list of numbers as input, found """ f"""{type(SCREAMING_SNAKE_CASE ).__name__}""" ) raise TypeError(SCREAMING_SNAKE_CASE ) else: UpperCamelCase : List[Any] = f"""Expected a list of numbers as input, found {type(SCREAMING_SNAKE_CASE ).__name__}""" raise TypeError(SCREAMING_SNAKE_CASE ) else: raise ValueError("""Missing an input""" ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _validate_point(SCREAMING_SNAKE_CASE ) _validate_point(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
102
def snake_case__ ( lowercase ): lowerCAmelCase_: Union[str, Any] = [1] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_: int = 0, 0, 0 lowerCAmelCase_: Union[str, Any] = ugly_nums[ia] * 2 lowerCAmelCase_: str = ugly_nums[ia] * 3 lowerCAmelCase_: Dict = ugly_nums[ia] * 5 for _ in range(1 , lowercase ): lowerCAmelCase_: Any = min(lowercase , lowercase , lowercase ) ugly_nums.append(lowercase ) if next_num == next_a: ia += 1 lowerCAmelCase_: str = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowerCAmelCase_: Optional[int] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowerCAmelCase_: int = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
613
0
def __lowerCamelCase ( __a : dict ) -> set: _lowercase =set() # edges = list of graph's edges _lowercase =get_edges(__a ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _lowercase , _lowercase =edges.pop() chosen_vertices.add(__a ) chosen_vertices.add(__a ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__a ) return chosen_vertices def __lowerCamelCase ( __a : dict ) -> set: _lowercase =set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
594
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class _a ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = 1 @register_to_config def __init__( self , lowerCAmelCase_=2000 , lowerCAmelCase_=0.1 , lowerCAmelCase_=20 , lowerCAmelCase_=1e-3 ): _lowercase =None _lowercase =None _lowercase =None def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): _lowercase =torch.linspace(1 , self.config.sampling_eps , lowerCAmelCase_ , device=lowerCAmelCase_ ) def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ): if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowercase =( -0.2_5 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowercase =std.flatten() while len(std.shape ) < len(score.shape ): _lowercase =std.unsqueeze(-1 ) _lowercase =-score / std # compute _lowercase =-1.0 / len(self.timesteps ) _lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowercase =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowercase =beta_t.unsqueeze(-1 ) _lowercase =-0.5 * beta_t * x _lowercase =torch.sqrt(lowerCAmelCase_ ) _lowercase =drift - diffusion**2 * score _lowercase =x + drift * dt # add noise _lowercase =randn_tensor(x.shape , layout=x.layout , generator=lowerCAmelCase_ , device=x.device , dtype=x.dtype ) _lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ): return self.config.num_train_timesteps
594
1
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __a ): def __init__( self : Any , snake_case_ : int ): """simple docstring""" super().__init__() A : List[Any] = nn.ModuleList(__UpperCamelCase ) def _UpperCAmelCase ( self : Optional[int] , snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : List[str] = None , snake_case_ : Optional[int] = None , snake_case_ : List[Any] = None , snake_case_ : Dict = None , snake_case_ : List[Any] = False , snake_case_ : str = True , ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(__UpperCamelCase , __UpperCamelCase , self.nets ) ): A : str = controlnet( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) # merge samples if i == 0: A : Optional[Any] = down_samples, mid_sample else: A : Any = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__UpperCamelCase , __UpperCamelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _UpperCAmelCase ( self : Tuple , snake_case_ : Optional[int] , snake_case_ : Optional[int] = True , snake_case_ : Optional[Any] = None , snake_case_ : str = False , snake_case_ : Union[str, Any] = None , ): """simple docstring""" A : Any = 0 A : str = save_directory for controlnet in self.nets: controlnet.save_pretrained( __UpperCamelCase , is_main_process=__UpperCamelCase , save_function=__UpperCamelCase , safe_serialization=__UpperCamelCase , variant=__UpperCamelCase , ) idx += 1 A : List[Any] = model_path_to_save + f"""_{idx}""" @classmethod def _UpperCAmelCase ( cls : List[str] , snake_case_ : Optional[int] , **snake_case_ : int ): """simple docstring""" A : Optional[Any] = 0 A : List[str] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... A : Optional[Any] = pretrained_model_path while os.path.isdir(__UpperCamelCase ): A : Optional[Any] = ControlNetModel.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) controlnets.append(__UpperCamelCase ) idx += 1 A : Optional[int] = pretrained_model_path + f"""_{idx}""" logger.info(f"""{len(__UpperCamelCase )} controlnets loaded from {pretrained_model_path}.""" ) if len(__UpperCamelCase ) == 0: raise ValueError( f"""No ControlNets found under {os.path.dirname(__UpperCamelCase )}. Expected at least {pretrained_model_path + "_0"}.""" ) return cls(__UpperCamelCase )
256
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase ( unittest.TestCase , __a ): def A_ (self ) -> Tuple: UpperCamelCase_ : Any = load_tool("""text-to-speech""" ) self.tool.setup() def A_ (self ) -> Dict: # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCamelCase_ : Optional[Any] = self.tool("""hey""" ) UpperCamelCase_ : Optional[Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) ) def A_ (self ) -> Dict: # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCamelCase_ : Any = self.tool("""hey""" ) UpperCamelCase_ : Tuple = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
635
0
import argparse UpperCAmelCase__ = "docs/source/_static/js/custom.js" def _A( UpperCamelCase__ : Optional[int] ) -> Optional[int]: '''simple docstring''' with open(UpperCamelCase__ , encoding='''utf-8''' , newline='''\n''' ) as f: __lowercase = f.readlines() __lowercase = 0 # First let's put the right version while not lines[index].startswith('''const stableVersion =''' ): index += 1 __lowercase = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('''const versionMapping = {''' ): index += 1 # We go until the end while not lines[index].startswith('''}''' ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") UpperCAmelCase__ = parser.parse_args() update_custom_js(args.version)
362
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] , lowerCamelCase__ : float ) -> float: """simple docstring""" return 0.0 def _A( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int ) -> tuple[int | float, int | float]: '''simple docstring''' __lowercase = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) __lowercase = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def _A( UpperCamelCase__ : FilterType , UpperCamelCase__ : int ) -> None: '''simple docstring''' __lowercase = 512 __lowercase = [1] + [0] * (size - 1) __lowercase = [filter_type.process(UpperCamelCase__ ) for item in inputs] __lowercase = [0] * (samplerate - size) # zero-padding outputs += filler __lowercase = np.abs(np.fft.fft(UpperCamelCase__ ) ) __lowercase = 20 * np.logaa(UpperCamelCase__ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds __lowercase = get_bounds(UpperCamelCase__ , UpperCamelCase__ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(UpperCamelCase__ ) plt.show() def _A( UpperCamelCase__ : FilterType , UpperCamelCase__ : int ) -> None: '''simple docstring''' __lowercase = 512 __lowercase = [1] + [0] * (size - 1) __lowercase = [filter_type.process(UpperCamelCase__ ) for item in inputs] __lowercase = [0] * (samplerate - size) # zero-padding outputs += filler __lowercase = np.angle(np.fft.fft(UpperCamelCase__ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(UpperCamelCase__ , -2 * pi ) ) plt.show()
362
1
def __UpperCAmelCase ( __a : Union[str, Any] ) -> int: """simple docstring""" if not head: return True # split the list to two parts _a , _a : Optional[Any] = head.next, head while fast and fast.next: _a : List[Any] = fast.next.next _a : List[str] = slow.next _a : Any = slow.next _a : Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part _a : Union[str, Any] = None while second: _a : Union[str, Any] = second.next _a : List[str] = node _a : Optional[Any] = second _a : List[str] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False _a : Tuple = node.next _a : Any = head.next return True def __UpperCAmelCase ( __a : Tuple ) -> List[Any]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) _a : Dict = head while fast and fast.next: _a , _a : List[Any] = fast.next.next, slow.next # 2. Push the second half into the stack _a : Optional[int] = [slow.val] while slow.next: _a : Union[str, Any] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False _a : List[Any] = cur.next return True def __UpperCAmelCase ( __a : str ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True _a : Tuple = {} _a : List[Any] = 0 while head: if head.val in d: d[head.val].append(__a ) else: _a : Dict = [pos] _a : Dict = head.next pos += 1 _a : Any = pos - 1 _a : List[str] = 0 for v in d.values(): if len(__a ) % 2 != 0: middle += 1 else: _a : Tuple = 0 for i in range(0 ,len(__a ) ): if v[i] + v[len(__a ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
14
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = MgpstrTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = False def __lowercase ( self ) -> Any: super().setUp() # fmt: off _a : Tuple = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _a : Optional[int] = dict(zip(_a , range(len(_a ) ) ) ) _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) def __lowercase ( self , **_a ) -> Dict: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __lowercase ( self , _a ) -> Tuple: _a : List[str] = '''tester''' _a : Optional[Any] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def __lowercase ( self ) -> Any: pass def __lowercase ( self ) -> Any: _a : Union[str, Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a : int = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) _a : Tuple = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) _a : Tuple = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def __lowercase ( self ) -> Tuple: _a : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _a , _a : int = self.get_input_output_texts(_a ) _a : List[str] = tokenizer.tokenize(_a ) _a : Optional[int] = tokenizer.convert_tokens_to_ids(_a ) _a : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Optional[int] = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) _a : int = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _a ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def __lowercase ( self ) -> Optional[Any]: pass
14
1
'''simple docstring''' from __future__ import annotations class SCREAMING_SNAKE_CASE: '''simple docstring''' def __init__( self , lowerCamelCase__ ) -> None: """simple docstring""" __lowercase = order # a_{0} ... a_{k} __lowercase = [1.0] + [0.0] * order # b_{0} ... b_{k} __lowercase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] __lowercase = [0.0] * self.order # y[n-1] ... y[n-k] __lowercase = [0.0] * self.order def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> None: """simple docstring""" if len(lowerCamelCase__ ) < self.order: __lowercase = [1.0, *a_coeffs] if len(lowerCamelCase__ ) != self.order + 1: __lowercase = ( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(lowerCamelCase__ )}' ) raise ValueError(lowerCamelCase__ ) if len(lowerCamelCase__ ) != self.order + 1: __lowercase = ( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(lowerCamelCase__ )}' ) raise ValueError(lowerCamelCase__ ) __lowercase = a_coeffs __lowercase = b_coeffs def snake_case__ ( self , lowerCamelCase__ ) -> float: """simple docstring""" __lowercase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) __lowercase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] __lowercase = self.input_history[:-1] __lowercase = self.output_history[:-1] __lowercase = sample __lowercase = result return result
718
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE( unittest.TestCase ): def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case__ ( self ) -> Any: """simple docstring""" __lowercase = 1 __lowercase = 3 __lowercase = (32, 32) __lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase__ ) return image @property def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=lowerCamelCase__ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def snake_case__ ( self ) -> Dict: """simple docstring""" torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def snake_case__ ( self ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) return CLIPTextModel(lowerCamelCase__ ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" __lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowercase = self.dummy_cond_unet_upscale __lowercase = DDPMScheduler() __lowercase = DDIMScheduler(prediction_type="""v_prediction""" ) __lowercase = self.dummy_vae __lowercase = self.dummy_text_encoder __lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowercase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __lowercase = StableDiffusionUpscalePipeline( unet=lowerCamelCase__ , low_res_scheduler=lowerCamelCase__ , scheduler=lowerCamelCase__ , vae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , max_noise_level=350 , ) __lowercase = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowercase = sd_pipe( [prompt] , image=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images __lowercase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowercase = sd_pipe( [prompt] , image=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=lowerCamelCase__ , )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] __lowercase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __lowercase = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case__ ( self ) -> Any: """simple docstring""" __lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowercase = self.dummy_cond_unet_upscale __lowercase = DDPMScheduler() __lowercase = DDIMScheduler(prediction_type="""v_prediction""" ) __lowercase = self.dummy_vae __lowercase = self.dummy_text_encoder __lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowercase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __lowercase = StableDiffusionUpscalePipeline( unet=lowerCamelCase__ , low_res_scheduler=lowerCamelCase__ , scheduler=lowerCamelCase__ , vae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , max_noise_level=350 , ) __lowercase = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images assert image.shape[0] == 2 __lowercase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowercase = sd_pipe( [prompt] , image=lowerCamelCase__ , generator=lowerCamelCase__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def snake_case__ ( self ) -> Dict: """simple docstring""" __lowercase = self.dummy_cond_unet_upscale __lowercase = DDPMScheduler() __lowercase = DDIMScheduler(prediction_type="""v_prediction""" ) __lowercase = self.dummy_vae __lowercase = self.dummy_text_encoder __lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowercase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 __lowercase = unet.half() __lowercase = text_encoder.half() # make sure here that pndm scheduler skips prk __lowercase = StableDiffusionUpscalePipeline( unet=lowerCamelCase__ , low_res_scheduler=lowerCamelCase__ , scheduler=lowerCamelCase__ , vae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , max_noise_level=350 , ) __lowercase = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = torch.manual_seed(0 ) __lowercase = sd_pipe( [prompt] , image=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=2 , output_type="""np""" , ).images __lowercase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE( unittest.TestCase ): def snake_case__ ( self ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) __lowercase = """stabilityai/stable-diffusion-x4-upscaler""" __lowercase = StableDiffusionUpscalePipeline.from_pretrained(lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() __lowercase = """a cat sitting on a park bench""" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def snake_case__ ( self ) -> List[str]: """simple docstring""" __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) __lowercase = """stabilityai/stable-diffusion-x4-upscaler""" __lowercase = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase__ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() __lowercase = """a cat sitting on a park bench""" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def snake_case__ ( self ) -> Dict: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) __lowercase = """stabilityai/stable-diffusion-x4-upscaler""" __lowercase = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase__ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowercase = """a cat sitting on a park bench""" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=5 , output_type="""np""" , ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
163
0
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor __A : List[str] = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : str , *__lowerCamelCase : str , **__lowerCamelCase : Optional[Any] ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
16
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Any = logging.get_logger(__name__) __A : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : Optional[Any] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __A : Union[str, Any] = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ): SCREAMING_SNAKE_CASE = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE = bs[:] SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : Optional[Any]="</s>" , __lowerCamelCase : Any="</s>" , __lowerCamelCase : Union[str, Any]="<s>" , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : Dict="<mask>" , __lowerCamelCase : Any=False , **__lowerCamelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE = bytes_to_unicode() SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : str ): return len(self.encoder ) def _snake_case ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Dict , __lowerCamelCase : List[Any] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __lowerCamelCase ): SCREAMING_SNAKE_CASE = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Tuple , __lowerCamelCase : Dict ): return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Any , __lowerCamelCase : Optional[int] ): return self.decoder.get(__lowerCamelCase ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Any=False , **__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE = " " + text return (text, kwargs) def _snake_case ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _snake_case ( self : int , __lowerCamelCase : "Conversation" ): SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
16
1
import qiskit def __UpperCamelCase ( a, a) ->qiskit.result.counts.Counts: lowerCamelCase__ = qiskit.Aer.get_backend("aer_simulator") # Create a Quantum Circuit acting on the q register lowerCamelCase__ = qiskit.QuantumCircuit(a, a) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0) circuit.x(1) # Map the quantum measurement to the classical bits circuit.measure([0, 1], [0, 1]) # Execute the circuit on the qasm simulator lowerCamelCase__ = qiskit.execute(a, a, shots=1000) # Return the histogram data of the results of the experiment. return job.result().get_counts(a) if __name__ == "__main__": A_ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
710
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase A_ = logging.get_logger(__name__) A_ = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" A__ = "longformer" def __init__( self , _lowerCAmelCase = 512 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0522 , _lowerCAmelCase = 768 , _lowerCAmelCase = 12 , _lowerCAmelCase = 12 , _lowerCAmelCase = 3072 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 512 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowerCamelCase__ = attention_window lowerCamelCase__ = sep_token_id lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_act lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = onnx_export class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase__ = True @property def __magic_name__ ( self ): if self.task == "multiple-choice": lowerCamelCase__ = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def __magic_name__ ( self ): lowerCamelCase__ = super().outputs if self.task == "default": lowerCamelCase__ = {0: "batch"} return outputs @property def __magic_name__ ( self ): return 1E-4 @property def __magic_name__ ( self ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ): lowerCamelCase__ = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowerCamelCase__ = torch.zeros_like(inputs["input_ids"] ) # make every second token global lowerCamelCase__ = 1 return inputs
360
0
'''simple docstring''' lowerCamelCase = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) lowerCamelCase = frozenset(["""prompt""", """negative_prompt"""]) lowerCamelCase = frozenset([]) lowerCamelCase = frozenset(["""image"""]) lowerCamelCase = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) lowerCamelCase = frozenset(["""image"""]) lowerCamelCase = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) lowerCamelCase = frozenset(["""prompt""", """image""", """negative_prompt"""]) lowerCamelCase = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) lowerCamelCase = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) lowerCamelCase = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) lowerCamelCase = frozenset(["""image""", """mask_image"""]) lowerCamelCase = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) lowerCamelCase = frozenset(["""example_image""", """image""", """mask_image"""]) lowerCamelCase = frozenset(["""class_labels"""]) lowerCamelCase = frozenset(["""class_labels"""]) lowerCamelCase = frozenset(["""batch_size"""]) lowerCamelCase = frozenset([]) lowerCamelCase = frozenset(["""batch_size"""]) lowerCamelCase = frozenset([]) lowerCamelCase = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) lowerCamelCase = frozenset(["""prompt""", """negative_prompt"""]) lowerCamelCase = frozenset(["""input_tokens"""]) lowerCamelCase = frozenset(["""input_tokens"""])
474
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """conditional_detr""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , _lowerCAmelCase : int=True , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Union[str, Any]=3_0_0 , _lowerCAmelCase : Tuple=6 , _lowerCAmelCase : Dict=2_0_4_8 , _lowerCAmelCase : Union[str, Any]=8 , _lowerCAmelCase : Dict=6 , _lowerCAmelCase : Optional[int]=2_0_4_8 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : int=True , _lowerCAmelCase : List[str]="relu" , _lowerCAmelCase : Optional[int]=2_5_6 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : str=1.0 , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : List[str]="sine" , _lowerCAmelCase : str="resnet50" , _lowerCAmelCase : Any=True , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : Dict=5 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : int=5 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Tuple=0.25 , **_lowerCAmelCase : Any , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') __lowercase =CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(_lowerCAmelCase , _lowerCAmelCase): __lowercase =backbone_config.get('model_type') __lowercase =CONFIG_MAPPING[backbone_model_type] __lowercase =config_class.from_dict(_lowerCAmelCase) __lowercase =use_timm_backbone __lowercase =backbone_config __lowercase =num_channels __lowercase =num_queries __lowercase =d_model __lowercase =encoder_ffn_dim __lowercase =encoder_layers __lowercase =encoder_attention_heads __lowercase =decoder_ffn_dim __lowercase =decoder_layers __lowercase =decoder_attention_heads __lowercase =dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =activation_function __lowercase =init_std __lowercase =init_xavier_std __lowercase =encoder_layerdrop __lowercase =decoder_layerdrop __lowercase =encoder_layers __lowercase =auxiliary_loss __lowercase =position_embedding_type __lowercase =backbone __lowercase =use_pretrained_backbone __lowercase =dilation # Hungarian matcher __lowercase =class_cost __lowercase =bbox_cost __lowercase =giou_cost # Loss coefficients __lowercase =mask_loss_coefficient __lowercase =dice_loss_coefficient __lowercase =cls_loss_coefficient __lowercase =bbox_loss_coefficient __lowercase =giou_loss_coefficient __lowercase =focal_alpha super().__init__(is_encoder_decoder=_lowerCAmelCase , **_lowerCAmelCase) @property def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return self.encoder_attention_heads @property def __lowerCamelCase ( self : List[str]): '''simple docstring''' return self.d_model def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =copy.deepcopy(self.__dict__) if self.backbone_config is not None: __lowercase =self.backbone_config.to_dict() __lowercase =self.__class__.model_type return output class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = version.parse("""1.11""" ) @property def __lowerCamelCase ( self : Tuple): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ]) @property def __lowerCamelCase ( self : int): '''simple docstring''' return 1e-5 @property def __lowerCamelCase ( self : str): '''simple docstring''' return 1_2
474
1
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _A : Tuple ={'''UserAgent''': UserAgent().random} def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> dict: lowerCamelCase__ : List[Any] = script.contents[0] lowerCamelCase__ : str = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _lowercase : def __init__( self: Optional[Any] , UpperCamelCase__: Union[str, Any] ): lowerCamelCase__ : List[str] = F'''https://www.instagram.com/{username}/''' lowerCamelCase__ : Dict = self.get_json() def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Optional[Any] = requests.get(self.url , headers=UpperCamelCase__ ).text lowerCamelCase__ : Tuple = BeautifulSoup(UpperCamelCase__ , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self: Union[str, Any] ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self: List[str] ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowerCamelCase_ ( self: Tuple ): return self.user_data["username"] @property def lowerCamelCase_ ( self: Any ): return self.user_data["full_name"] @property def lowerCamelCase_ ( self: Tuple ): return self.user_data["biography"] @property def lowerCamelCase_ ( self: str ): return self.user_data["business_email"] @property def lowerCamelCase_ ( self: int ): return self.user_data["external_url"] @property def lowerCamelCase_ ( self: Tuple ): return self.user_data["edge_followed_by"]["count"] @property def lowerCamelCase_ ( self: List[Any] ): return self.user_data["edge_follow"]["count"] @property def lowerCamelCase_ ( self: Tuple ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowerCamelCase_ ( self: Optional[int] ): return self.user_data["profile_pic_url_hd"] @property def lowerCamelCase_ ( self: Optional[Any] ): return self.user_data["is_verified"] @property def lowerCamelCase_ ( self: Tuple ): return self.user_data["is_private"] def SCREAMING_SNAKE_CASE_ (UpperCamelCase = "github" ) -> None: import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions lowerCamelCase__ : int = InstagramUser(UpperCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _A : Dict =InstagramUser('''github''') print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
713
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _A : int =get_tests_dir('''fixtures/test_sentencepiece.model''') _A : Tuple ={'''target_lang''': '''fi''', '''source_lang''': '''en'''} _A : int ='''>>zh<<''' _A : Dict ='''Helsinki-NLP/''' if is_torch_available(): _A : List[Any] ='''pt''' elif is_tf_available(): _A : Optional[int] ='''tf''' else: _A : Dict ='''jax''' @require_sentencepiece class _lowercase ( _lowercase , unittest.TestCase ): a = MarianTokenizer a = False a = True def lowerCamelCase_ ( self: List[str] ): super().setUp() lowerCamelCase__ : List[Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] lowerCamelCase__ : Optional[Any] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) lowerCamelCase__ : Optional[int] = Path(self.tmpdirname ) save_json(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) lowerCamelCase__ : Dict = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self: Optional[Any] , **UpperCamelCase__: Any ): return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: str , UpperCamelCase__: List[str] ): return ( "This is a test", "This is a test", ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Any = """</s>""" lowerCamelCase__ : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase__ ) , 9 ) def lowerCamelCase_ ( self: int ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowerCamelCase_ ( self: int ): lowerCamelCase__ : List[Any] = MarianTokenizer.from_pretrained(F'''{ORG_NAME}opus-mt-en-de''' ) lowerCamelCase__ : Optional[int] = en_de_tokenizer(["""I am a small frog"""] , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = [38, 121, 14, 697, 38_848, 0] self.assertListEqual(UpperCamelCase__ , batch.input_ids[0] ) lowerCamelCase__ : List[str] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(UpperCamelCase__ ) lowerCamelCase__ : Tuple = [x.name for x in Path(UpperCamelCase__ ).glob("""*""" )] self.assertIn("""source.spm""" , UpperCamelCase__ ) MarianTokenizer.from_pretrained(UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : List[Any] = self.get_tokenizer() lowerCamelCase__ : Any = tok( ["""I am a small frog""" * 1_000, """I am a small frog"""] , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : str = self.get_tokenizer() lowerCamelCase__ : Dict = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowerCamelCase_ ( self: List[str] ): # fmt: off lowerCamelCase__ : int = {"""input_ids""": [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Union[str, Any] = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) lowerCamelCase__ : str = """Tämä on testi""" lowerCamelCase__ : Any = """This is a test""" lowerCamelCase__ : int = [76, 7, 2_047, 2] lowerCamelCase__ : List[str] = [69, 12, 11, 940, 2] lowerCamelCase__ : Tuple = tokenizer(UpperCamelCase__ ).input_ids self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = tokenizer(text_target=UpperCamelCase__ ).input_ids self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Tuple = tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
631
0
def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ = " " ) -> list: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 for index, char in enumerate(lowerCAmelCase_ ): if char == separator: split_words.append(string[last_index:index] ) SCREAMING_SNAKE_CASE__ = index + 1 elif index + 1 == len(lowerCAmelCase_ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
100
'''simple docstring''' def __lowerCamelCase ( __snake_case : int = 10, __snake_case : int = 22 ) -> int: """simple docstring""" A__ : Any =range(1, __snake_case ) A__ : List[str] =range(1, __snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
215
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): lowercase = ['input_features', 'is_longer'] def __init__( self ,__UpperCamelCase=64 ,__UpperCamelCase=4_8000 ,__UpperCamelCase=480 ,__UpperCamelCase=10 ,__UpperCamelCase=1024 ,__UpperCamelCase=0.0 ,__UpperCamelCase=False ,__UpperCamelCase = 0 ,__UpperCamelCase = 1_4000 ,__UpperCamelCase = None ,__UpperCamelCase = "fusion" ,__UpperCamelCase = "repeatpad" ,**__UpperCamelCase ,) -> Optional[int]: '''simple docstring''' super().__init__( feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,**__UpperCamelCase ,) lowercase_ : Union[str, Any] = top_db lowercase_ : Any = truncation lowercase_ : str = padding lowercase_ : Optional[Any] = fft_window_size lowercase_ : List[Any] = (fft_window_size >> 1) + 1 lowercase_ : Any = hop_length lowercase_ : List[Any] = max_length_s lowercase_ : Any = max_length_s * sampling_rate lowercase_ : Optional[int] = sampling_rate lowercase_ : List[Any] = frequency_min lowercase_ : str = frequency_max lowercase_ : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=__UpperCamelCase ,min_frequency=__UpperCamelCase ,max_frequency=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,norm=__UpperCamelCase ,mel_scale='htk' ,) lowercase_ : Optional[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=__UpperCamelCase ,min_frequency=__UpperCamelCase ,max_frequency=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,norm='slaney' ,mel_scale='slaney' ,) def _UpperCAmelCase ( self ) -> Dict[str, Any]: '''simple docstring''' lowercase_ : int = copy.deepcopy(self.__dict__ ) lowercase_ : Any = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> np.ndarray: '''simple docstring''' lowercase_ : Union[str, Any] = spectrogram( __UpperCamelCase ,window_function(self.fft_window_size ,'hann' ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=__UpperCamelCase ,log_mel='dB' ,) return log_mel_spectrogram.T def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Dict = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase_ : Optional[int] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase_ : List[str] = [0] # randomly choose index for each part lowercase_ : List[str] = np.random.choice(ranges[0] ) lowercase_ : Optional[Any] = np.random.choice(ranges[1] ) lowercase_ : Union[str, Any] = np.random.choice(ranges[2] ) lowercase_ : Tuple = mel[idx_front : idx_front + chunk_frames, :] lowercase_ : str = mel[idx_middle : idx_middle + chunk_frames, :] lowercase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] lowercase_ : Tuple = torch.tensor(mel[None, None, :] ) lowercase_ : Optional[Any] = torch.nn.functional.interpolate( __UpperCamelCase ,size=[chunk_frames, 64] ,mode='bilinear' ,align_corners=__UpperCamelCase ) lowercase_ : str = mel_shrink[0][0].numpy() lowercase_ : Optional[int] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase_ : Any = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase_ : Any = len(__UpperCamelCase ) - max_length lowercase_ : List[str] = np.random.randint(0 ,overflow + 1 ) lowercase_ : Any = waveform[idx : idx + max_length] lowercase_ : Optional[int] = self._np_extract_fbank_features(__UpperCamelCase ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase_ : str = self._np_extract_fbank_features(__UpperCamelCase ,self.mel_filters ) lowercase_ : List[str] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase_ : Dict = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase_ : int = np.stack([mel, mel, mel, mel] ,axis=0 ) lowercase_ : Optional[Any] = False else: lowercase_ : int = self._random_mel_fusion(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Tuple = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowercase_ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase_ : Optional[int] = int(max_length / len(__UpperCamelCase ) ) lowercase_ : Any = np.stack(np.tile(__UpperCamelCase ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase_ : Union[str, Any] = int(max_length / len(__UpperCamelCase ) ) lowercase_ : int = np.stack(np.tile(__UpperCamelCase ,__UpperCamelCase ) ) lowercase_ : str = np.pad(__UpperCamelCase ,(0, max_length - waveform.shape[0]) ,mode='constant' ,constant_values=0 ) if truncation == "fusion": lowercase_ : List[str] = self._np_extract_fbank_features(__UpperCamelCase ,self.mel_filters ) lowercase_ : List[str] = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: lowercase_ : Any = self._np_extract_fbank_features(__UpperCamelCase ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> BatchFeature: '''simple docstring''' lowercase_ : Union[str, Any] = truncation if truncation is not None else self.truncation lowercase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowercase_ : Tuple = isinstance(__UpperCamelCase ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowercase_ : List[str] = is_batched_numpy or ( isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowercase_ : str = [np.asarray(__UpperCamelCase ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ): lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa ) elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase_ : Dict = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase_ : int = [np.asarray(__UpperCamelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase_ : List[str] = [ self._get_input_mel(__UpperCamelCase ,max_length if max_length else self.nb_max_samples ,__UpperCamelCase ,__UpperCamelCase ) for waveform in raw_speech ] lowercase_ : int = [] lowercase_ : int = [] for mel, longer in padded_inputs: input_mel.append(__UpperCamelCase ) is_longer.append(__UpperCamelCase ) if truncation == "fusion" and sum(__UpperCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase_ : int = np.random.randint(0 ,len(__UpperCamelCase ) ) lowercase_ : Tuple = True if isinstance(input_mel[0] ,__UpperCamelCase ): lowercase_ : Union[str, Any] = [np.asarray(__UpperCamelCase ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase_ : Any = [[longer] for longer in is_longer] lowercase_ : List[Any] = {'input_features': input_mel, 'is_longer': is_longer} lowercase_ : Union[str, Any] = BatchFeature(__UpperCamelCase ) if return_tensors is not None: lowercase_ : Any = input_features.convert_to_tensors(__UpperCamelCase ) return input_features
705
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def lowercase__( ): lowercase_ : List[Any] = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) lowercase_ : int = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) # Let's go lowercase_ : str = parser.parse_args() if not hasattr(__SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run lowercase_ : Optional[Any] = args.func(__SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
477
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast lowercase_ = datasets.utils.logging.get_logger(__name__) @dataclass class __UpperCamelCase ( datasets.BuilderConfig ): """simple docstring""" lowerCAmelCase_ = 1_00_00 lowerCAmelCase_ = None lowerCAmelCase_ = None class __UpperCamelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" lowerCAmelCase_ = ParquetConfig def UpperCAmelCase__ ( self : Any ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase__ ( self : Any , _A : Optional[Any] ): """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __SCREAMING_SNAKE_CASE : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_A , (str, list, tuple) ): __SCREAMING_SNAKE_CASE : Tuple = data_files if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE : List[Any] = [dl_manager.iter_files(_A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __SCREAMING_SNAKE_CASE : int = [] for split_name, files in data_files.items(): if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Any = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE : Optional[int] = [dl_manager.iter_files(_A ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_A ): with open(_A , '''rb''' ) as f: __SCREAMING_SNAKE_CASE : Dict = datasets.Features.from_arrow_schema(pq.read_schema(_A ) ) break splits.append(datasets.SplitGenerator(name=_A , gen_kwargs={'''files''': files} ) ) return splits def UpperCAmelCase__ ( self : str , _A : pa.Table ): """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __SCREAMING_SNAKE_CASE : str = table_cast(_A , self.info.features.arrow_schema ) return pa_table def UpperCAmelCase__ ( self : Tuple , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_A ) ): with open(_A , '''rb''' ) as f: __SCREAMING_SNAKE_CASE : str = pq.ParquetFile(_A ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __SCREAMING_SNAKE_CASE : Optional[Any] = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'''{file_idx}_{batch_idx}''', self._cast_table(_A ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(_A )}: {e}''' ) raise
74
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase_ = """src/diffusers""" lowercase_ = """.""" # This is to make sure the diffusers module imported is the one in the repo. lowercase_ = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) lowercase_ = spec.loader.load_module() def a__ ( snake_case , snake_case ): """simple docstring""" return line.startswith(snake_case ) or len(snake_case ) <= 1 or re.search(R'''^\s*\)(\s*->.*:|:)\s*$''' , snake_case ) is not None def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = object_name.split('''.''' ) __SCREAMING_SNAKE_CASE : str = 0 # First let's find the module where our object lives. __SCREAMING_SNAKE_CASE : Any = parts[i] while i < len(snake_case ) and not os.path.isfile(os.path.join(snake_case , F'''{module}.py''' ) ): i += 1 if i < len(snake_case ): __SCREAMING_SNAKE_CASE : str = os.path.join(snake_case , parts[i] ) if i >= len(snake_case ): raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(snake_case , F'''{module}.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __SCREAMING_SNAKE_CASE : Dict = f.readlines() # Now let's find the class / func in the code! __SCREAMING_SNAKE_CASE : Union[str, Any] = '''''' __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(snake_case ) and re.search(RF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(snake_case ): raise ValueError(F''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __SCREAMING_SNAKE_CASE : List[Any] = line_index while line_index < len(snake_case ) and _should_continue(lines[line_index] , snake_case ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __SCREAMING_SNAKE_CASE : Dict = lines[start_index:line_index] return "".join(snake_case ) lowercase_ = re.compile(R"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") lowercase_ = re.compile(R"""^\s*(\S+)->(\S+)(\s+.*|$)""") lowercase_ = re.compile(R"""<FILL\s+[^>]*>""") def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = code.split('''\n''' ) __SCREAMING_SNAKE_CASE : Dict = 0 while idx < len(snake_case ) and len(lines[idx] ) == 0: idx += 1 if idx < len(snake_case ): return re.search(R'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = len(get_indent(snake_case ) ) > 0 if has_indent: __SCREAMING_SNAKE_CASE : List[Any] = F'''class Bla:\n{code}''' __SCREAMING_SNAKE_CASE : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = black.format_str(snake_case , mode=snake_case ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = style_docstrings_in_code(snake_case ) return result[len('''class Bla:\n''' ) :] if has_indent else result def a__ ( snake_case , snake_case=False ): """simple docstring""" with open(snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __SCREAMING_SNAKE_CASE : List[str] = f.readlines() __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : int = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(snake_case ): __SCREAMING_SNAKE_CASE : Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = search.groups() __SCREAMING_SNAKE_CASE : int = find_code_in_diffusers(snake_case ) __SCREAMING_SNAKE_CASE : str = get_indent(snake_case ) __SCREAMING_SNAKE_CASE : Any = line_index + 1 if indent == theoretical_indent else line_index + 2 __SCREAMING_SNAKE_CASE : Dict = theoretical_indent __SCREAMING_SNAKE_CASE : Optional[int] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __SCREAMING_SNAKE_CASE : List[Any] = True while line_index < len(snake_case ) and should_continue: line_index += 1 if line_index >= len(snake_case ): break __SCREAMING_SNAKE_CASE : Any = lines[line_index] __SCREAMING_SNAKE_CASE : Optional[Any] = _should_continue(snake_case , snake_case ) and re.search(F'''^{indent}# End copy''' , snake_case ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __SCREAMING_SNAKE_CASE : List[str] = lines[start_index:line_index] __SCREAMING_SNAKE_CASE : Dict = ''''''.join(snake_case ) # Remove any nested `Copied from` comments to avoid circular copies __SCREAMING_SNAKE_CASE : Tuple = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(snake_case ) is None] __SCREAMING_SNAKE_CASE : Union[str, Any] = '''\n'''.join(snake_case ) # Before comparing, use the `replace_pattern` on the original code. if len(snake_case ) > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = [_re_replace_pattern.search(snake_case ) for p in patterns] for pattern in patterns: if pattern is None: continue __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = pattern.groups() __SCREAMING_SNAKE_CASE : str = re.sub(snake_case , snake_case , snake_case ) if option.strip() == "all-casing": __SCREAMING_SNAKE_CASE : Optional[Any] = re.sub(obja.lower() , obja.lower() , snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = re.sub(obja.upper() , obja.upper() , snake_case ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __SCREAMING_SNAKE_CASE : Optional[Any] = blackify(lines[start_index - 1] + theoretical_code ) __SCREAMING_SNAKE_CASE : int = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __SCREAMING_SNAKE_CASE : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] __SCREAMING_SNAKE_CASE : str = start_index + 1 if overwrite and len(snake_case ) > 0: # Warn the user a file has been modified. print(F'''Detected changes, rewriting {filename}.''' ) with open(snake_case , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(snake_case ) return diffs def a__ ( snake_case = False ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = glob.glob(os.path.join(snake_case , '''**/*.py''' ) , recursive=snake_case ) __SCREAMING_SNAKE_CASE : Tuple = [] for filename in all_files: __SCREAMING_SNAKE_CASE : int = is_copy_consistent(snake_case , snake_case ) diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(snake_case ) > 0: __SCREAMING_SNAKE_CASE : Optional[int] = '''\n'''.join(snake_case ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowercase_ = parser.parse_args() check_copies(args.fix_and_overwrite)
74
1
def __UpperCamelCase ( _A ): lowerCAmelCase_ = len(_A ) for i in range(_A ): for j in range(i + 1 , _A ): if numbers[j] < numbers[i]: lowerCAmelCase_ , lowerCAmelCase_ = numbers[j], numbers[i] return numbers if __name__ == "__main__": _A = input('''Enter numbers separated by a comma:\n''').strip() _A = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
711
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( __UpperCAmelCase ): def __init__( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" super().__init__() self.register_modules(vqvae=UpperCamelCase__, unet=UpperCamelCase__, scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self, UpperCamelCase__ = 1, UpperCamelCase__ = None, UpperCamelCase__ = 0.0, UpperCamelCase__ = 50, UpperCamelCase__ = "pil", UpperCamelCase__ = True, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=UpperCamelCase__, ) lowerCAmelCase_ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase_ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(UpperCamelCase__ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature lowerCAmelCase_ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase_ = {} if accepts_eta: lowerCAmelCase_ = eta for t in self.progress_bar(self.scheduler.timesteps ): lowerCAmelCase_ = self.scheduler.scale_model_input(UpperCamelCase__, UpperCamelCase__ ) # predict the noise residual lowerCAmelCase_ = self.unet(UpperCamelCase__, UpperCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase_ = self.scheduler.step(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, **UpperCamelCase__ ).prev_sample # decode the image latents with the VAE lowerCAmelCase_ = self.vqvae.decode(UpperCamelCase__ ).sample lowerCAmelCase_ = (image / 2 + 0.5).clamp(0, 1 ) lowerCAmelCase_ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": lowerCAmelCase_ = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
325
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __magic_name__ : lowerCamelCase__ = 42 lowerCamelCase__ = None lowerCamelCase__ = None def A(): lowerCAmelCase_ = Node(1 ) lowerCAmelCase_ = Node(2 ) lowerCAmelCase_ = Node(3 ) lowerCAmelCase_ = Node(4 ) lowerCAmelCase_ = Node(5 ) return tree def A(__a: Node | None ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def A(__a: Node | None ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def A(__a: Node | None ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def A(__a: Node | None ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def A(__a: Node | None ): lowerCAmelCase_ = [] if root is None: return output lowerCAmelCase_ = deque([root] ) while process_queue: lowerCAmelCase_ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def A(__a: Node | None , __a: int ): lowerCAmelCase_ = [] def populate_output(__a: Node | None , __a: int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__snake_case , __snake_case ) return output def A(__a: Node | None , __a: int ): lowerCAmelCase_ = [] def populate_output(__a: Node | None , __a: int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__snake_case , __snake_case ) return output def A(__a: Node | None ): if root is None: return [] lowerCAmelCase_ = [] lowerCAmelCase_ = 0 lowerCAmelCase_ = height(__snake_case ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__snake_case , __snake_case ) ) lowerCAmelCase_ = 1 else: output.append(get_nodes_from_right_to_left(__snake_case , __snake_case ) ) lowerCAmelCase_ = 0 return output def A(): # Main function for testing. lowerCAmelCase_ = make_tree() print(F"In-order Traversal: {inorder(__snake_case )}" ) print(F"Pre-order Traversal: {preorder(__snake_case )}" ) print(F"Post-order Traversal: {postorder(__snake_case )}" , "\n" ) print(F"Height of Tree: {height(__snake_case )}" , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(__snake_case ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(__snake_case ) + 1 ): print(F"Level {level}:" , get_nodes_from_left_to_right(__snake_case , level=__snake_case ) ) print("\nZigZag order Traversal: " ) print(zigzag(__snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
122
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def a ( __snake_case : float, __snake_case : float ): '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
608
0
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _lowercase : Optional[int] = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] _lowercase : Optional[Any] = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] _lowercase : Tuple = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) _lowercase : List[Any] = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) _lowercase : Tuple = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def lowerCamelCase__ ( A : str , A : int ): '''simple docstring''' for tf_name, hf_name in patterns: UpperCAmelCase = k.replace(A , A ) return k def lowerCamelCase__ ( A : dict , A : dict ): '''simple docstring''' UpperCAmelCase = BigBirdPegasusConfig(**A ) UpperCAmelCase = BigBirdPegasusForConditionalGeneration(A ) UpperCAmelCase = torch_model.state_dict() UpperCAmelCase = {} # separating decoder weights UpperCAmelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCAmelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): UpperCAmelCase = [k.endswith(A ) for ending in KEYS_TO_IGNORE] if any(A ): continue UpperCAmelCase = DECODER_PATTERNS UpperCAmelCase = rename_state_dict_key(A , A ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCAmelCase = v.T UpperCAmelCase = torch.from_numpy(A ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): UpperCAmelCase = [k.endswith(A ) for ending in KEYS_TO_IGNORE] if any(A ): continue UpperCAmelCase = REMAINING_PATTERNS UpperCAmelCase = rename_state_dict_key(A , A ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCAmelCase = v.T UpperCAmelCase = torch.from_numpy(A ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" UpperCAmelCase = mapping['''model.embed_positions.weight'''] UpperCAmelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCAmelCase , UpperCAmelCase = torch_model.load_state_dict(A , strict=A ) UpperCAmelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = tf.train.list_variables(A ) UpperCAmelCase = {} UpperCAmelCase = ['''global_step'''] for name, shape in tqdm(A , desc='''converting tf checkpoint to dict''' ): UpperCAmelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase = tf.train.load_variable(A , A ) UpperCAmelCase = array return tf_weights def lowerCamelCase__ ( A : str , A : str , A : dict ): '''simple docstring''' UpperCAmelCase = get_tf_weights_as_numpy(A ) UpperCAmelCase = convert_bigbird_pegasus(A , A ) torch_model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") _lowercase : Union[str, Any] = parser.parse_args() _lowercase : Dict = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
717
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
66
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( A = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _a : Union[str, Any] = BeautifulSoup(requests.get(A ).text , 'html.parser' ) _a : int = soup.findAll('h1' ) _a : Union[str, Any] = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(A , A )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
120
0
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification UpperCAmelCase__ : Any = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co UpperCAmelCase__ : str = """main""" # Default branch name UpperCAmelCase__ : str = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) UpperCAmelCase__ : str = """aaaaaaa""" # This commit does not exist, so we should 404. UpperCAmelCase__ : Optional[Any] = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes UpperCAmelCase__ : Optional[int] = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def __lowercase ( ) -> int: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def __lowercase ( ) -> Union[str, Any]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class a__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ) ->List[Any]: """simple docstring""" assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class a__ ( unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _lowercase ( self : List[str] , UpperCAmelCase__ : List[Any] ) ->List[str]: """simple docstring""" with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _lowercase ( self : Dict , UpperCAmelCase__ : Optional[Any] ) ->Tuple: """simple docstring""" with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[str] ) ->Tuple: """simple docstring""" with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def _lowercase ( self : Any ) ->Any: """simple docstring""" self.assertEqual(find_labels(UpperCAmelCase__ ) , ["""labels"""] ) self.assertEqual(find_labels(UpperCAmelCase__ ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(UpperCAmelCase__ ) , ["""start_positions""", """end_positions"""] ) class a__ ( UpperCAmelCase ): """simple docstring""" pass self.assertEqual(find_labels(UpperCAmelCase__ ) , ["""labels"""] ) @require_tf def _lowercase ( self : Union[str, Any] ) ->Dict: """simple docstring""" self.assertEqual(find_labels(UpperCAmelCase__ ) , ["""labels"""] ) self.assertEqual(find_labels(UpperCAmelCase__ ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(UpperCAmelCase__ ) , ["""start_positions""", """end_positions"""] ) class a__ ( UpperCAmelCase ): """simple docstring""" pass self.assertEqual(find_labels(UpperCAmelCase__ ) , ["""labels"""] ) @require_flax def _lowercase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" self.assertEqual(find_labels(UpperCAmelCase__ ) , [] ) self.assertEqual(find_labels(UpperCAmelCase__ ) , [] ) self.assertEqual(find_labels(UpperCAmelCase__ ) , [] ) class a__ ( UpperCAmelCase ): """simple docstring""" pass self.assertEqual(find_labels(UpperCAmelCase__ ) , [] )
446
from __future__ import annotations def __lowercase ( _A , _A ) -> list[str]: if nth_term == "": return [""] SCREAMING_SNAKE_CASE : Optional[Any] = int(_A ) SCREAMING_SNAKE_CASE : Optional[int] = int(_A ) SCREAMING_SNAKE_CASE : list[str] = [] for temp in range(int(_A ) ): series.append(F"1 / {pow(temp + 1 , int(_A ) )}" if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : Dict = int(input("""Enter the last number (nth term) of the P-Series""")) UpperCAmelCase__ : Optional[int] = int(input("""Enter the power for P-Series""")) print("""Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p""") print(p_series(nth_term, power))
446
1