code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """google/vivit-b-16x2-kinetics400""": ( """https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json""" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'vivit' def __init__( self , __a=2_24 , __a=32 , __a=[2, 16, 16] , __a=3 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu_fast" , __a=0.0 , __a=0.0 , __a=0.02 , __a=1e-06 , __a=True , **__a , ) -> int: '''simple docstring''' _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = image_size _UpperCamelCase = num_frames _UpperCamelCase = tubelet_size _UpperCamelCase = num_channels _UpperCamelCase = qkv_bias super().__init__(**__a)
19
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowercase__ : int = logging.get_logger(__name__) lowercase__ : Any = 'T5Config' def a__ ( lowercase : jnp.array, lowercase : int, lowercase : int ) -> jnp.ndarray: """simple docstring""" _UpperCamelCase = jnp.zeros_like(lowercase ) _UpperCamelCase = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) _UpperCamelCase = shifted_input_ids.at[:, 0].set(lowercase ) _UpperCamelCase = jnp.where(shifted_input_ids == -100, lowercase, lowercase ) return shifted_input_ids class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[Any] = 'mt5' _snake_case : Union[str, Any] = MTaConfig class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Tuple = 'mt5' _snake_case : int = MTaConfig class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[int] = 'mt5' _snake_case : Optional[Any] = MTaConfig
98
0
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
465
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ = logging.get_logger(__name__) class _snake_case ( _a ): _A : Union[str, Any] = ['''pixel_values'''] def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BILINEAR ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 255 ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,**SCREAMING_SNAKE_CASE__ : List[str] ,): super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:int = size if size is not None else {"shortest_edge": 384} SCREAMING_SNAKE_CASE:List[str] = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:str = do_resize SCREAMING_SNAKE_CASE:List[Any] = size # Default value set here for backwards compatibility where the value in config is None SCREAMING_SNAKE_CASE:Dict = crop_pct if crop_pct is not None else 224 / 256 SCREAMING_SNAKE_CASE:Any = resample SCREAMING_SNAKE_CASE:Dict = do_rescale SCREAMING_SNAKE_CASE:Optional[int] = rescale_factor SCREAMING_SNAKE_CASE:Union[str, Any] = do_normalize SCREAMING_SNAKE_CASE:Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE:Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Dict[str, int] ,SCREAMING_SNAKE_CASE__ : float ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : int ,): SCREAMING_SNAKE_CASE:List[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) if "shortest_edge" not in size: raise ValueError(F'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE:Any = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct SCREAMING_SNAKE_CASE:Any = int(shortest_edge / crop_pct ) SCREAMING_SNAKE_CASE:Any = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = resize(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=SCREAMING_SNAKE_CASE__ ,size=(shortest_edge, shortest_edge) ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( SCREAMING_SNAKE_CASE__ ,size=(shortest_edge, shortest_edge) ,resample=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[int, float] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ,): return rescale(SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ,): return normalize(SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : ImageInput ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : PILImageResampling = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None ,SCREAMING_SNAKE_CASE__ : ChannelDimension = ChannelDimension.FIRST ,**SCREAMING_SNAKE_CASE__ : List[Any] ,): SCREAMING_SNAKE_CASE:Optional[int] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE:List[str] = crop_pct if crop_pct is not None else self.crop_pct SCREAMING_SNAKE_CASE:Union[str, Any] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE:List[str] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE:str = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE:str = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE:Any = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE:Optional[Any] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE:Optional[int] = size if size is not None else self.size SCREAMING_SNAKE_CASE:Tuple = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[Any] = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE:int = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE:Optional[int] = [self.resize(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,crop_pct=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE:Union[str, Any] = [self.rescale(image=SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE:Optional[Any] = [self.normalize(image=SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__ ) for image in images] SCREAMING_SNAKE_CASE:Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for image in images] SCREAMING_SNAKE_CASE:int = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ ,tensor_type=SCREAMING_SNAKE_CASE__ )
465
1
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A = logging.get_logger(__name__) A = Dict[str, Any] A = List[Prediction] @add_end_docstrings(__magic_name__ ) class a__ ( __magic_name__ ): def __init__( self : Optional[int] , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Any): """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch.") requires_backends(self , "vision") self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items())) def a_ ( self : Dict , **UpperCamelCase_ : Tuple): """simple docstring""" __UpperCAmelCase : Optional[Any] = {} if "threshold" in kwargs: __UpperCAmelCase : Dict = kwargs["threshold"] return {}, {}, postprocess_kwargs def __call__( self : str , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Tuple): """simple docstring""" return super().__call__(*UpperCamelCase_ , **UpperCamelCase_) def a_ ( self : int , UpperCamelCase_ : Dict): """simple docstring""" __UpperCAmelCase : Optional[int] = load_image(UpperCamelCase_) __UpperCAmelCase : Optional[int] = torch.IntTensor([[image.height, image.width]]) __UpperCAmelCase : str = self.image_processor(images=[image] , return_tensors="pt") if self.tokenizer is not None: __UpperCAmelCase : Any = self.tokenizer(text=inputs["words"] , boxes=inputs["boxes"] , return_tensors="pt") __UpperCAmelCase : List[Any] = target_size return inputs def a_ ( self : Tuple , UpperCamelCase_ : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Dict = model_inputs.pop("target_size") __UpperCAmelCase : Tuple = self.model(**UpperCamelCase_) __UpperCAmelCase : int = outputs.__class__({"target_size": target_size, **outputs}) if self.tokenizer is not None: __UpperCAmelCase : str = model_inputs["bbox"] return model_outputs def a_ ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple=0.9): """simple docstring""" __UpperCAmelCase : Dict = model_outputs["target_size"] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __UpperCAmelCase , __UpperCAmelCase : str = target_size[0].tolist() def unnormalize(UpperCamelCase_ : List[str]): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ])) __UpperCAmelCase , __UpperCAmelCase : int = model_outputs["logits"].squeeze(0).softmax(dim=-1).max(dim=-1) __UpperCAmelCase : List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __UpperCAmelCase : Optional[Any] = [unnormalize(UpperCamelCase_) for bbox in model_outputs["bbox"].squeeze(0)] __UpperCAmelCase : Union[str, Any] = ["score", "label", "box"] __UpperCAmelCase : Dict = [dict(zip(UpperCamelCase_ , UpperCamelCase_)) for vals in zip(scores.tolist() , UpperCamelCase_ , UpperCamelCase_) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __UpperCAmelCase : List[str] = self.image_processor.post_process_object_detection(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) __UpperCAmelCase : Optional[int] = raw_annotations[0] __UpperCAmelCase : Optional[int] = raw_annotation["scores"] __UpperCAmelCase : Dict = raw_annotation["labels"] __UpperCAmelCase : Tuple = raw_annotation["boxes"] __UpperCAmelCase : List[Any] = scores.tolist() __UpperCAmelCase : Any = [self.model.config.idalabel[label.item()] for label in labels] __UpperCAmelCase : Tuple = [self._get_bounding_box(UpperCamelCase_) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __UpperCAmelCase : Union[str, Any] = ["score", "label", "box"] __UpperCAmelCase : Optional[int] = [ dict(zip(UpperCamelCase_ , UpperCamelCase_)) for vals in zip(raw_annotation["scores"] , raw_annotation["labels"] , raw_annotation["boxes"]) ] return annotation def a_ ( self : int , UpperCamelCase_ : "torch.Tensor"): """simple docstring""" if self.framework != "pt": raise ValueError("The ObjectDetectionPipeline is only available in PyTorch.") __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = box.int().tolist() __UpperCAmelCase : Dict = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
77
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase_ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" snake_case__ : Union[str, Any] =old_name if "patch_embed" in old_name: snake_case__, snake_case__, snake_case__ : int =old_name.split('''.''' ) if layer == "0": snake_case__ : Tuple =old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": snake_case__ : int =old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": snake_case__ : str =old_name.replace('''3''' , '''convolution2''' ) else: snake_case__ : Tuple =old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(R'''\d\.\d''' , SCREAMING_SNAKE_CASE ): snake_case__ : Union[str, Any] =R'''\b\d{2}\b''' if bool(re.search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): snake_case__ : Any =re.search(R'''\d\.\d\d.''' , SCREAMING_SNAKE_CASE ).group() else: snake_case__ : List[Any] =re.search(R'''\d\.\d.''' , SCREAMING_SNAKE_CASE ).group() if int(match[0] ) < 6: snake_case__ : int =old_name.replace(SCREAMING_SNAKE_CASE , '''''' ) snake_case__ : Tuple =trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) snake_case__ : Union[str, Any] ='''intermediate_stages.''' + trimmed_name else: snake_case__ : Optional[int] =old_name.replace(SCREAMING_SNAKE_CASE , '''''' ) if int(match[2] ) < num_meta4D_last_stage: snake_case__ : List[Any] =trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: snake_case__ : Optional[Any] =str(int(match[2] ) - num_meta4D_last_stage ) snake_case__ : List[Any] =trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: snake_case__ : Tuple =trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: snake_case__ : Union[str, Any] =trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: snake_case__ : str =trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: snake_case__ : Optional[Any] =trimmed_name.replace('''fc2''' , '''linear_out''' ) snake_case__ : Dict ='''last_stage.''' + trimmed_name elif "network" in old_name and re.search(R'''.\d.''' , SCREAMING_SNAKE_CASE ): snake_case__ : int =old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: snake_case__ : Union[str, Any] =new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): snake_case__ : Any =new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): snake_case__ : Dict =new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: snake_case__ : List[Any] =new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: snake_case__ : Union[str, Any] =new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: snake_case__ : List[Any] =new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: snake_case__ : Union[str, Any] ='''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": snake_case__ : int =new_name.replace('''norm''' , '''layernorm''' ) snake_case__ : Dict ='''efficientformer.''' + new_name else: snake_case__ : List[Any] ='''efficientformer.encoder.''' + new_name return new_name def lowercase_ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" for key in checkpoint.copy().keys(): snake_case__ : List[Any] =checkpoint.pop(SCREAMING_SNAKE_CASE ) snake_case__ : Any =val return checkpoint def lowercase_ ( ): """simple docstring""" snake_case__ : int ='''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ : Optional[int] =Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image def lowercase_ ( SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : bool ): """simple docstring""" snake_case__ : Union[str, Any] =torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model'''] snake_case__ : int =EfficientFormerConfig.from_json_file(SCREAMING_SNAKE_CASE ) snake_case__ : Dict =EfficientFormerForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] ='''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) snake_case__ : List[Any] =config.depths[-1] - config.num_metaad_blocks + 1 snake_case__ : Dict =convert_torch_checkpoint(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[int] ={ '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image snake_case__ : Any =prepare_img() snake_case__ : str =2_56 snake_case__ : List[Any] =2_24 snake_case__ : Any =EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) snake_case__ : int =processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values # original processing pipeline snake_case__ : List[str] =Compose( [ Resize(SCREAMING_SNAKE_CASE , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(SCREAMING_SNAKE_CASE ), ToTensor(), Normalize(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), ] ) snake_case__ : Tuple =image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =model(SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] =outputs.logits snake_case__ : Optional[Any] =(1, 10_00) if "l1" in model_name: snake_case__ : Union[str, Any] =torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , SCREAMING_SNAKE_CASE , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: snake_case__ : Optional[Any] =torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , SCREAMING_SNAKE_CASE , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: snake_case__ : Dict =torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( F'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message='''Add model''' , use_temp_dir=SCREAMING_SNAKE_CASE , ) processor.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message='''Add image processor''' , use_temp_dir=SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) lowerCamelCase__ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
381
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): def a_ ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = jnp.ones((batch_size, length) ) / length return scores def a_ ( self : Optional[Any] ) -> int: '''simple docstring''' _UpperCAmelCase : int = None _UpperCAmelCase : int = 20 _UpperCAmelCase : List[str] = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase_ ) # tweak scores to not be uniform anymore _UpperCAmelCase : Any = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch _UpperCAmelCase : List[Any] = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax _UpperCAmelCase : int = jax.nn.softmax(UpperCAmelCase_ , axis=-1 ) _UpperCAmelCase : Any = FlaxTemperatureLogitsWarper(temperature=0.5 ) _UpperCAmelCase : Optional[int] = FlaxTemperatureLogitsWarper(temperature=1.3 ) _UpperCAmelCase : List[str] = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase_ , scores.copy() , cur_len=UpperCAmelCase_ ) , axis=-1 ) _UpperCAmelCase : Optional[int] = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase_ , scores.copy() , cur_len=UpperCAmelCase_ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def a_ ( self : List[str] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = None _UpperCAmelCase : int = 10 _UpperCAmelCase : Optional[Any] = 2 # create ramp distribution _UpperCAmelCase : Any = np.broadcast_to(np.arange(UpperCAmelCase_ )[None, :] , (batch_size, vocab_size) ).copy() _UpperCAmelCase : Optional[Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size _UpperCAmelCase : Optional[Any] = FlaxTopKLogitsWarper(3 ) _UpperCAmelCase : int = top_k_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case _UpperCAmelCase : List[Any] = 5 _UpperCAmelCase : List[Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) _UpperCAmelCase : Optional[Any] = np.broadcast_to(np.arange(UpperCAmelCase_ )[None, :] , (batch_size, length) ).copy() _UpperCAmelCase : int = top_k_warp_safety_check(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def a_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Dict = None _UpperCAmelCase : Union[str, Any] = 10 _UpperCAmelCase : Union[str, Any] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) _UpperCAmelCase : str = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) _UpperCAmelCase : List[Any] = FlaxTopPLogitsWarper(0.8 ) _UpperCAmelCase : List[str] = np.exp(top_p_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 _UpperCAmelCase : Any = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) ) # check edge cases with negative and extreme logits _UpperCAmelCase : Any = np.broadcast_to(np.arange(UpperCAmelCase_ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme _UpperCAmelCase : Optional[Any] = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept _UpperCAmelCase : Union[str, Any] = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) _UpperCAmelCase : str = top_p_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def a_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : List[str] = 20 _UpperCAmelCase : Dict = 4 _UpperCAmelCase : Any = 0 _UpperCAmelCase : List[str] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase_ ) # check that min length is applied at length 5 _UpperCAmelCase : Tuple = ids_tensor((batch_size, 20) , vocab_size=20 ) _UpperCAmelCase : Union[str, Any] = 5 _UpperCAmelCase : Dict = self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : str = min_dist_processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 _UpperCAmelCase : Optional[int] = self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : Any = 15 _UpperCAmelCase : Dict = min_dist_processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) self.assertFalse(jnp.isinf(UpperCAmelCase_ ).any() ) def a_ ( self : Tuple ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[int] = 20 _UpperCAmelCase : Dict = 4 _UpperCAmelCase : str = 0 _UpperCAmelCase : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase_ ) # check that all scores are -inf except the bos_token_id score _UpperCAmelCase : List[Any] = ids_tensor((batch_size, 1) , vocab_size=20 ) _UpperCAmelCase : str = 1 _UpperCAmelCase : List[str] = self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : Tuple = logits_processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 _UpperCAmelCase : Optional[Any] = 3 _UpperCAmelCase : Dict = self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = logits_processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) self.assertFalse(jnp.isinf(UpperCAmelCase_ ).any() ) def a_ ( self : int ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = 20 _UpperCAmelCase : List[Any] = 4 _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Optional[int] = 5 _UpperCAmelCase : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) # check that all scores are -inf except the eos_token_id when max_length is reached _UpperCAmelCase : Union[str, Any] = ids_tensor((batch_size, 4) , vocab_size=20 ) _UpperCAmelCase : List[str] = 4 _UpperCAmelCase : Optional[int] = self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : List[str] = logits_processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached _UpperCAmelCase : Optional[Any] = 3 _UpperCAmelCase : Union[str, Any] = self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : List[Any] = logits_processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) self.assertFalse(jnp.isinf(UpperCAmelCase_ ).any() ) def a_ ( self : Optional[int] ) -> Dict: '''simple docstring''' _UpperCAmelCase : Any = 4 _UpperCAmelCase : Dict = 10 _UpperCAmelCase : List[str] = 15 _UpperCAmelCase : int = 2 _UpperCAmelCase : Optional[int] = 1 _UpperCAmelCase : List[str] = 15 # dummy input_ids and scores _UpperCAmelCase : List[str] = ids_tensor((batch_size, sequence_length) , UpperCAmelCase_ ) _UpperCAmelCase : int = input_ids.copy() _UpperCAmelCase : Optional[Any] = self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : Dict = scores.copy() # instantiate all dist processors _UpperCAmelCase : Tuple = FlaxTemperatureLogitsWarper(temperature=0.5 ) _UpperCAmelCase : Optional[Any] = FlaxTopKLogitsWarper(3 ) _UpperCAmelCase : Any = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _UpperCAmelCase : List[str] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase_ ) _UpperCAmelCase : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase_ ) _UpperCAmelCase : str = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) _UpperCAmelCase : str = 10 # no processor list _UpperCAmelCase : Union[str, Any] = temp_dist_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) _UpperCAmelCase : int = top_k_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) _UpperCAmelCase : Optional[Any] = top_p_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) _UpperCAmelCase : Any = min_dist_proc(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) _UpperCAmelCase : List[Any] = bos_dist_proc(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) _UpperCAmelCase : List[str] = eos_dist_proc(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) # with processor list _UpperCAmelCase : Tuple = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _UpperCAmelCase : str = processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def a_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = 4 _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = 15 _UpperCAmelCase : Optional[Any] = 2 _UpperCAmelCase : Tuple = 1 _UpperCAmelCase : Dict = 15 # dummy input_ids and scores _UpperCAmelCase : Any = ids_tensor((batch_size, sequence_length) , UpperCAmelCase_ ) _UpperCAmelCase : Optional[int] = input_ids.copy() _UpperCAmelCase : str = self._get_uniform_logits(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : int = scores.copy() # instantiate all dist processors _UpperCAmelCase : Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5 ) _UpperCAmelCase : Any = FlaxTopKLogitsWarper(3 ) _UpperCAmelCase : Tuple = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _UpperCAmelCase : Any = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase_ ) _UpperCAmelCase : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase_ ) _UpperCAmelCase : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) _UpperCAmelCase : int = 10 # no processor list def run_no_processor_list(UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] ): _UpperCAmelCase : int = temp_dist_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) _UpperCAmelCase : int = top_k_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) _UpperCAmelCase : str = top_p_warp(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) _UpperCAmelCase : Dict = min_dist_proc(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) _UpperCAmelCase : Any = bos_dist_proc(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) _UpperCAmelCase : Dict = eos_dist_proc(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) return scores # with processor list def run_processor_list(UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str ): _UpperCAmelCase : Union[str, Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _UpperCAmelCase : Tuple = processor(UpperCAmelCase_ , UpperCAmelCase_ , cur_len=UpperCAmelCase_ ) return scores _UpperCAmelCase : Optional[Any] = jax.jit(UpperCAmelCase_ ) _UpperCAmelCase : str = jax.jit(UpperCAmelCase_ ) _UpperCAmelCase : Tuple = jitted_run_no_processor_list(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : List[str] = jitted_run_processor_list(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
416
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ : Optional[Any] = 'bart' UpperCAmelCase__ : Optional[Any] = True @st.cache(allow_output_mutation=_UpperCamelCase ) def _A ( ): if LOAD_DENSE_INDEX: _UpperCAmelCase : Any = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _UpperCAmelCase : Tuple = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _UpperCAmelCase : int = qar_model.eval() else: _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = (None, None) if MODEL_TYPE == "bart": _UpperCAmelCase : str = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _UpperCAmelCase : Optional[Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _UpperCAmelCase : Dict = sas_model.eval() else: _UpperCAmelCase , _UpperCAmelCase : Optional[int] = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_UpperCamelCase ) def _A ( ): if LOAD_DENSE_INDEX: _UpperCAmelCase : Optional[int] = faiss.StandardGpuResources() _UpperCAmelCase : Union[str, Any] = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _UpperCAmelCase : str = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) _UpperCAmelCase : Optional[Any] = faiss.IndexFlatIP(128 ) _UpperCAmelCase : str = faiss.index_cpu_to_gpu(_UpperCamelCase , 1 , _UpperCamelCase ) wikiaab_gpu_index_flat.add(_UpperCamelCase ) # TODO fix for larger GPU else: _UpperCAmelCase , _UpperCAmelCase : List[str] = (None, None) _UpperCAmelCase : Dict = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_UpperCamelCase ) def _A ( ): _UpperCAmelCase : int = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _UpperCAmelCase : Dict = elia['''train_eli5'''] _UpperCAmelCase : Dict = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) _UpperCAmelCase : List[Any] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_UpperCamelCase ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = load_indexes() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = load_models() UpperCAmelCase__ , UpperCAmelCase__ : str = load_train_data() def _A ( _UpperCamelCase , _UpperCamelCase=10 ): _UpperCAmelCase : Union[str, Any] = embed_questions_for_retrieval([question] , _UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase : Tuple = eli5_train_q_index.search(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase : Dict = [elia_train[int(_UpperCamelCase )] for i in I[0]] return nn_examples def _A ( _UpperCamelCase , _UpperCamelCase="wiki40b" , _UpperCamelCase="dense" , _UpperCamelCase=10 ): if source == "none": _UpperCAmelCase , _UpperCAmelCase : Tuple = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _UpperCAmelCase , _UpperCAmelCase : Dict = query_qa_dense_index( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: _UpperCAmelCase , _UpperCAmelCase : Optional[int] = query_es_index( _UpperCamelCase , _UpperCamelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=_UpperCamelCase , ) _UpperCAmelCase : List[Any] = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _UpperCAmelCase : Union[str, Any] = '''question: {} context: {}'''.format(_UpperCamelCase , _UpperCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _UpperCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _UpperCamelCase : None), } ) def _A ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=64 , _UpperCamelCase=256 , _UpperCamelCase=False , _UpperCamelCase=2 , _UpperCamelCase=0.95 , _UpperCamelCase=0.8 ): with torch.no_grad(): _UpperCAmelCase : Dict = qa_sas_generate( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , num_answers=1 , num_beams=_UpperCamelCase , min_len=_UpperCamelCase , max_len=_UpperCamelCase , do_sample=_UpperCamelCase , temp=_UpperCamelCase , top_p=_UpperCamelCase , top_k=_UpperCamelCase , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar UpperCAmelCase__ : Tuple = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' UpperCAmelCase__ : Dict = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ : Optional[Any] = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ : Optional[Any] = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] UpperCAmelCase__ : List[Any] = st.sidebar.checkbox('Demo options') if demo_options: UpperCAmelCase__ : int = st.sidebar.selectbox( '', action_list, index=3, ) UpperCAmelCase__ : List[str] = action_list.index(action_st) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) UpperCAmelCase__ : Union[str, Any] = show_type == 'Show full text of passages' else: UpperCAmelCase__ : int = 3 UpperCAmelCase__ : str = True UpperCAmelCase__ : Any = st.sidebar.checkbox('Retrieval options') if retrieval_options: UpperCAmelCase__ : str = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) UpperCAmelCase__ : List[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) UpperCAmelCase__ : int = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: UpperCAmelCase__ : Optional[Any] = 'wiki40b' UpperCAmelCase__ : str = 'dense' UpperCAmelCase__ : Optional[Any] = 'beam' UpperCAmelCase__ : Optional[int] = 2 UpperCAmelCase__ : Tuple = 64 UpperCAmelCase__ : Any = 256 UpperCAmelCase__ : Dict = None UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Dict = st.sidebar.checkbox('Generation options') if generate_options: UpperCAmelCase__ : Dict = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) UpperCAmelCase__ : List[str] = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ : List[str] = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ : Dict = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ : Any = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ : Any = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ : Union[str, Any] = None # start main text UpperCAmelCase__ : Tuple = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] UpperCAmelCase__ : Dict = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ : List[str] = st.text_input('Enter your question here:', '') else: UpperCAmelCase__ : Any = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ , UpperCAmelCase__ : List[str] = make_support(question, source=wiki_source, method='dense', n_results=10) UpperCAmelCase__ , UpperCAmelCase__ : Dict = make_support(question, source=wiki_source, method='sparse', n_results=10) UpperCAmelCase__ : Optional[int] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ : Optional[int] = support_list[:10] UpperCAmelCase__ : Union[str, Any] = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): UpperCAmelCase__ : Optional[int] = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) UpperCAmelCase__ : Optional[Any] = res[1].strip() if sec_titles == "": UpperCAmelCase__ : List[Any] = '[{}]({})'.format(res[0], wiki_url) else: UpperCAmelCase__ : List[Any] = sec_titles.split(' & ') UpperCAmelCase__ : Union[str, Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ : str = find_nearest_training(question) UpperCAmelCase__ : Union[str, Any] = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) UpperCAmelCase__ : List[str] = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) UpperCAmelCase__ : List[str] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
416
1
def A__ ( snake_case_ : int , snake_case_ : int ): while second != 0: SCREAMING_SNAKE_CASE__: Optional[int]= first & second first ^= second SCREAMING_SNAKE_CASE__: Dict= c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowercase_ : Union[str, Any] = int(input('Enter the first number: ').strip()) lowercase_ : List[str] = int(input('Enter the second number: ').strip()) print(f'''{add(first, second) = }''')
64
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: a_ : List[str] = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() a_ : Dict = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) a_ : int = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } a_ : Optional[int] = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6_0_0_0, 'return_attention_mask': False, 'do_normalize': True, } a_ : List[str] = tempfile.mkdtemp() a_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) a_ : List[str] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '\n' ) # load decoder from hub a_ : int = 'hf-internal-testing/ngram-beam-search-decoder' def SCREAMING_SNAKE_CASE ( self : List[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: a_ : List[Any] = self.add_kwargs_tokens_map.copy() kwargs.update(SCREAMING_SNAKE_CASE__ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Any: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> str: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: a_ : Optional[int] = self.get_tokenizer() a_ : Optional[Any] = self.get_feature_extractor() a_ : Any = self.get_decoder() a_ : List[str] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , decoder=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) a_ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE__ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: a_ : Optional[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match a_ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: a_ : List[Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE__ , 'include' ): WavaVecaProcessorWithLM( tokenizer=SCREAMING_SNAKE_CASE__ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: a_ : Any = self.get_feature_extractor() a_ : Tuple = self.get_tokenizer() a_ : Any = self.get_decoder() a_ : str = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , decoder=SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = floats_list((3, 1_0_0_0) ) a_ : List[str] = feature_extractor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) a_ : Optional[int] = processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: a_ : List[Any] = self.get_feature_extractor() a_ : Dict = self.get_tokenizer() a_ : Optional[Any] = self.get_decoder() a_ : Tuple = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , decoder=SCREAMING_SNAKE_CASE__ ) a_ : Dict = 'This is a test string' a_ : Tuple = processor(text=SCREAMING_SNAKE_CASE__ ) a_ : str = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any]=(2, 1_0, 1_6) , SCREAMING_SNAKE_CASE__ : int=7_7 ) -> Optional[int]: np.random.seed(SCREAMING_SNAKE_CASE__ ) return np.random.rand(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Union[str, Any] = self.get_feature_extractor() a_ : Tuple = self.get_tokenizer() a_ : Optional[Any] = self.get_decoder() a_ : List[Any] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , decoder=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = self._get_dummy_logits(shape=(1_0, 1_6) , seed=1_3 ) a_ : Union[str, Any] = processor.decode(SCREAMING_SNAKE_CASE__ ) a_ : int = decoder.decode_beams(SCREAMING_SNAKE_CASE__ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: a_ : Any = self.get_feature_extractor() a_ : Union[str, Any] = self.get_tokenizer() a_ : str = self.get_decoder() a_ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , decoder=SCREAMING_SNAKE_CASE__ ) a_ : str = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: a_ : Optional[int] = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) else: with get_context(SCREAMING_SNAKE_CASE__ ).Pool() as pool: a_ : Dict = processor.batch_decode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : List[str] = list(SCREAMING_SNAKE_CASE__ ) with get_context('fork' ).Pool() as p: a_ : List[Any] = decoder.decode_beams_batch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ , a_ , a_ : List[str] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , decoded_processor.logit_score ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , decoded_processor.lm_score ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : List[Any] = self.get_feature_extractor() a_ : Optional[int] = self.get_tokenizer() a_ : Optional[Any] = self.get_decoder() a_ : List[Any] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , decoder=SCREAMING_SNAKE_CASE__ ) a_ : str = self._get_dummy_logits() a_ : List[str] = 1_5 a_ : Tuple = -20.0 a_ : Dict = -4.0 a_ : Optional[int] = processor.batch_decode( SCREAMING_SNAKE_CASE__ , beam_width=SCREAMING_SNAKE_CASE__ , beam_prune_logp=SCREAMING_SNAKE_CASE__ , token_min_logp=SCREAMING_SNAKE_CASE__ , ) a_ : Union[str, Any] = decoded_processor_out.text a_ : Any = list(SCREAMING_SNAKE_CASE__ ) with get_context('fork' ).Pool() as pool: a_ : List[str] = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , beam_width=SCREAMING_SNAKE_CASE__ , beam_prune_logp=SCREAMING_SNAKE_CASE__ , token_min_logp=SCREAMING_SNAKE_CASE__ , ) a_ : Any = [d[0][0] for d in decoded_decoder_out] a_ : List[Any] = [d[0][2] for d in decoded_decoder_out] a_ : int = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE__ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE__ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: a_ : Any = self.get_feature_extractor() a_ : List[Any] = self.get_tokenizer() a_ : str = self.get_decoder() a_ : int = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , decoder=SCREAMING_SNAKE_CASE__ ) a_ : List[str] = self._get_dummy_logits() a_ : int = 2.0 a_ : Tuple = 5.0 a_ : List[str] = -20.0 a_ : Optional[Any] = True a_ : int = processor.batch_decode( SCREAMING_SNAKE_CASE__ , alpha=SCREAMING_SNAKE_CASE__ , beta=SCREAMING_SNAKE_CASE__ , unk_score_offset=SCREAMING_SNAKE_CASE__ , lm_score_boundary=SCREAMING_SNAKE_CASE__ , ) a_ : str = decoded_processor_out.text a_ : Dict = list(SCREAMING_SNAKE_CASE__ ) decoder.reset_params( alpha=SCREAMING_SNAKE_CASE__ , beta=SCREAMING_SNAKE_CASE__ , unk_score_offset=SCREAMING_SNAKE_CASE__ , lm_score_boundary=SCREAMING_SNAKE_CASE__ , ) with get_context('fork' ).Pool() as pool: a_ : Optional[int] = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) a_ : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : Any = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) a_ : int = processor.decoder.model_container[processor.decoder._model_key] a_ : Optional[Any] = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() a_ : Dict = os.listdir(SCREAMING_SNAKE_CASE__ ) a_ : Dict = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: a_ : List[Any] = snapshot_download('hf-internal-testing/processor_with_lm' ) a_ : Dict = WavaVecaProcessorWithLM.from_pretrained(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = processor.decoder.model_container[processor.decoder._model_key] a_ : List[Any] = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() a_ : List[str] = os.listdir(SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = os.listdir(SCREAMING_SNAKE_CASE__ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: a_ : str = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) a_ : Any = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) a_ : int = floats_list((3, 1_0_0_0) ) a_ : Tuple = processor_wavaveca(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) a_ : List[str] = processor_auto(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) a_ : Dict = self._get_dummy_logits() a_ : Dict = processor_wavaveca.batch_decode(SCREAMING_SNAKE_CASE__ ) a_ : List[str] = processor_auto.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: a_ : int = self.get_feature_extractor() a_ : Dict = self.get_tokenizer() a_ : Tuple = self.get_decoder() a_ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , decoder=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]: a_ : Tuple = [d[key] for d in offsets] return retrieved_list def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: a_ : List[str] = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) a_ : str = self._get_dummy_logits()[0] a_ : str = processor.decode(SCREAMING_SNAKE_CASE__ , output_word_offsets=SCREAMING_SNAKE_CASE__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: a_ : str = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) a_ : Dict = self._get_dummy_logits() a_ : List[Any] = processor.batch_decode(SCREAMING_SNAKE_CASE__ , output_word_offsets=SCREAMING_SNAKE_CASE__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE__ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: import torch a_ : Optional[Any] = load_dataset('common_voice' , 'en' , split='train' , streaming=SCREAMING_SNAKE_CASE__ ) a_ : Dict = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6_0_0_0 ) ) a_ : str = iter(SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = next(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) a_ : Optional[Any] = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train a_ : Optional[Any] = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): a_ : Any = model(SCREAMING_SNAKE_CASE__ ).logits.cpu().numpy() a_ : List[Any] = processor.decode(logits[0] , output_word_offsets=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate a_ : int = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] a_ : Union[str, Any] = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE__ , 'word' ) ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE__ , 'word' ) ) , output.text ) # output times a_ : Optional[Any] = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE__ , 'start_time' ) ) a_ : Any = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE__ , 'end_time' ) ) # fmt: off a_ : Optional[int] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) a_ : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=0.01 ) ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=0.01 ) )
570
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class a ( __UpperCAmelCase ): _snake_case = '''mgp-str''' def __init__( self : Optional[Any], SCREAMING_SNAKE_CASE_ : Optional[Any]=[32, 1_28], SCREAMING_SNAKE_CASE_ : Union[str, Any]=4, SCREAMING_SNAKE_CASE_ : Dict=3, SCREAMING_SNAKE_CASE_ : List[str]=27, SCREAMING_SNAKE_CASE_ : str=38, SCREAMING_SNAKE_CASE_ : Optional[int]=5_02_57, SCREAMING_SNAKE_CASE_ : Any=3_05_22, SCREAMING_SNAKE_CASE_ : str=7_68, SCREAMING_SNAKE_CASE_ : Any=12, SCREAMING_SNAKE_CASE_ : Optional[Any]=12, SCREAMING_SNAKE_CASE_ : Tuple=4.0, SCREAMING_SNAKE_CASE_ : str=True, SCREAMING_SNAKE_CASE_ : List[str]=False, SCREAMING_SNAKE_CASE_ : List[Any]=1e-5, SCREAMING_SNAKE_CASE_ : Any=0.0, SCREAMING_SNAKE_CASE_ : int=0.0, SCREAMING_SNAKE_CASE_ : str=0.0, SCREAMING_SNAKE_CASE_ : Dict=False, SCREAMING_SNAKE_CASE_ : List[str]=0.02, **SCREAMING_SNAKE_CASE_ : str, ): super().__init__(**lowerCAmelCase_ ) snake_case : List[str] = image_size snake_case : Union[str, Any] = patch_size snake_case : Dict = num_channels snake_case : List[Any] = max_token_length snake_case : List[str] = num_character_labels snake_case : Union[str, Any] = num_bpe_labels snake_case : Optional[Any] = num_wordpiece_labels snake_case : str = hidden_size snake_case : List[str] = num_hidden_layers snake_case : Dict = num_attention_heads snake_case : Union[str, Any] = mlp_ratio snake_case : str = distilled snake_case : Optional[int] = layer_norm_eps snake_case : Tuple = drop_rate snake_case : Dict = qkv_bias snake_case : Tuple = attn_drop_rate snake_case : Tuple = drop_path_rate snake_case : Optional[Any] = output_aa_attentions snake_case : Optional[int] = initializer_range
712
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
555
0
import requests def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> None: """simple docstring""" snake_case_ : Tuple = {'''Content-Type''': '''application/json'''} snake_case_ : Any = requests.post(_UpperCamelCase , json={'''text''': message_body} , headers=_UpperCamelCase ) if response.status_code != 200: snake_case_ : List[Any] = ( '''Request to slack returned an error ''' f'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(_UpperCamelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
60
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): if "xprophetnet" in prophetnet_checkpoint_path: UpperCAmelCase_ = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase__ , output_loading_info=lowerCAmelCase__ ) else: UpperCAmelCase_ = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase__ , output_loading_info=lowerCAmelCase__ ) UpperCAmelCase_ = ["key_proj", "value_proj", "query_proj"] UpperCAmelCase_ = { "self_attn": "ngram_self_attn", "cross_attn": "encoder_attn", "cross_attn_layer_norm": "encoder_attn_layer_norm", "feed_forward_layer_norm": "final_layer_norm", "feed_forward": "", "intermediate": "fc1", "output": "fc2", "key_proj": "k_proj", "query_proj": "q_proj", "value_proj": "v_proj", "word_embeddings": "embed_tokens", "embeddings_layer_norm": "emb_layer_norm", "relative_pos_embeddings": "relative_linear", "ngram_embeddings": "ngram_input_embed", "position_embeddings": "embed_positions", } for key in loading_info["missing_keys"]: UpperCAmelCase_ = key.split("." ) if attributes[0] == "lm_head": UpperCAmelCase_ = prophet UpperCAmelCase_ = prophet_old else: UpperCAmelCase_ = prophet.prophetnet UpperCAmelCase_ = prophet_old.model UpperCAmelCase_ = False for attribute in attributes: if attribute in mapping: UpperCAmelCase_ = mapping[attribute] if not hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) > 0: UpperCAmelCase_ = attribute elif hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" UpperCAmelCase_ = old_model.weight logger.info(f"""{attribute} is initialized.""" ) UpperCAmelCase_ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" UpperCAmelCase_ = old_model.bias logger.info(f"""{attribute} is initialized""" ) UpperCAmelCase_ = True break elif attribute in special_keys and hasattr(lowerCAmelCase__ , "in_proj_weight" ): UpperCAmelCase_ = old_model.in_proj_weight.shape[0] // 3 UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": UpperCAmelCase_ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) UpperCAmelCase_ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": UpperCAmelCase_ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) UpperCAmelCase_ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": UpperCAmelCase_ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) UpperCAmelCase_ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) UpperCAmelCase_ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." UpperCAmelCase_ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) UpperCAmelCase_ = True break if attribute.isdigit(): UpperCAmelCase_ = model[int(lowerCAmelCase__ )] UpperCAmelCase_ = old_model[int(lowerCAmelCase__ )] else: UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if old_attribute == "": UpperCAmelCase_ = old_model else: if not hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
82
0
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging UpperCAmelCase__ : str = logging.get_logger(__name__) def A ( ) -> List[str]: '''simple docstring''' # Get the sagemaker specific mp parameters from smp_options variable. __snake_case = os.getenv('SM_HP_MP_PARAMETERS' , '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __snake_case = json.loads(snake_case__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __snake_case = os.getenv('SM_FRAMEWORK_PARAMS' , '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __snake_case = json.loads(snake_case__ ) if not mpi_options.get('sagemaker_mpi_enabled' , snake_case__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def _a ( self) -> List[Any]: super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , lowercase_ , ) @cached_property def _a ( self) -> "torch.device": logger.info('PyTorch: setting up devices') if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch') if self.no_cuda: __snake_case = torch.device('cpu') __snake_case = 0 elif is_sagemaker_model_parallel_available(): __snake_case = smp.local_rank() __snake_case = torch.device('cuda' , lowercase_) __snake_case = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta) __snake_case = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK')) __snake_case = torch.device('cuda' , self.local_rank) __snake_case = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __snake_case = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __snake_case = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta) __snake_case = torch.device('cuda' , self.local_rank) __snake_case = 1 if device.type == "cuda": torch.cuda.set_device(lowercase_) return device @property def _a ( self) -> Optional[int]: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def _a ( self) -> Optional[Any]: return not is_sagemaker_model_parallel_available() @property def _a ( self) -> Any: return False
676
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase__ : Any = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class __lowercase ( unittest.TestCase ): def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Dict: __snake_case = [file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))] if identifier is not None: __snake_case = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_): for n_ in n_identifier: __snake_case = [file for file in files if n_ not in file] else: __snake_case = [file for file in files if n_identifier not in file] __snake_case = ignore_files or [] ignore_files.append('__init__.py') __snake_case = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase_) if only_modules: __snake_case = file.split('.')[0] try: __snake_case = getattr(lowercase_ , lowercase_) __snake_case = doctest.DocTestSuite(lowercase_) __snake_case = unittest.TextTestRunner().run(lowercase_) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(F"{module_identifier} is not a module.") else: __snake_case = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _a ( self) -> str: __snake_case = Path('src/transformers') __snake_case = 'modeling' __snake_case = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_) def _a ( self) -> Optional[Any]: __snake_case = Path('src/transformers') __snake_case = 'tokenization' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> List[str]: __snake_case = Path('src/transformers') __snake_case = 'configuration' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('src/transformers') __snake_case = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase_ , n_identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('docs/source') __snake_case = ['favicon.ico'] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
676
1
"""simple docstring""" import torch def _snake_case ( ): """simple docstring""" if torch.cuda.is_available(): _lowerCamelCase : Tuple = torch.cuda.device_count() else: _lowerCamelCase : str = 0 print(F'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
88
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __lowerCamelCase : str = ( "https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py" ) __lowerCamelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase_() -> str: UpperCAmelCase = "https://pypi.org/pypi/diffusers/json" UpperCAmelCase = json.loads(request.urlopen(lowerCamelCase_ ).read() )["releases"].keys() return sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : version.Version(lowerCamelCase_ ) ) def lowerCamelCase_() -> Optional[int]: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) UpperCAmelCase = Path(lowerCamelCase_ ) / "__init__.py" if not init_path.exists(): init_path.touch() def lowerCamelCase_(lowerCamelCase_ ) -> Dict: init_hf_modules() UpperCAmelCase = Path(lowerCamelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) UpperCAmelCase = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def lowerCamelCase_(lowerCamelCase_ ) -> Optional[Any]: with open(lowerCamelCase_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase = f.read() # Imports of the form `import .xxx` UpperCAmelCase = re.findall("^\s*import\s+\.(\S+)\s*$" , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , lowerCamelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCamelCase_ ) ) def lowerCamelCase_(lowerCamelCase_ ) -> Union[str, Any]: UpperCAmelCase = False UpperCAmelCase = [module_file] UpperCAmelCase = [] # Let's recurse through all relative imports while not no_change: UpperCAmelCase = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCamelCase_ ) ) UpperCAmelCase = Path(lowerCamelCase_ ).parent UpperCAmelCase = [str(module_path / m ) for m in new_imports] UpperCAmelCase = [f for f in new_import_files if f not in all_relative_imports] UpperCAmelCase = [F'{f}.py' for f in new_import_files] UpperCAmelCase = len(lowerCamelCase_ ) == 0 all_relative_imports.extend(lowerCamelCase_ ) return all_relative_imports def lowerCamelCase_(lowerCamelCase_ ) -> List[str]: with open(lowerCamelCase_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase = f.read() # Imports of the form `import xxx` UpperCAmelCase = re.findall("^\s*import\s+(\S+)\s*$" , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import" , lowerCamelCase_ , flags=re.MULTILINE ) # Only keep the top-level module UpperCAmelCase = [imp.split("." )[0] for imp in imports if not imp.startswith("." )] # Unique-ify and test we got them all UpperCAmelCase = list(set(lowerCamelCase_ ) ) UpperCAmelCase = [] for imp in imports: try: importlib.import_module(lowerCamelCase_ ) except ImportError: missing_packages.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " F'{", ".join(lowerCamelCase_ )}. Run `pip install {" ".join(lowerCamelCase_ )}`' ) return get_relative_imports(lowerCamelCase_ ) def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: UpperCAmelCase = module_path.replace(os.path.sep , "." ) UpperCAmelCase = importlib.import_module(lowerCamelCase_ ) if class_name is None: return find_pipeline_class(lowerCamelCase_ ) return getattr(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_(lowerCamelCase_ ) -> Optional[int]: from ..pipelines import DiffusionPipeline UpperCAmelCase = dict(inspect.getmembers(lowerCamelCase_ , inspect.isclass ) ) UpperCAmelCase = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCamelCase_ ) and cls.__module__.split("." )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) UpperCAmelCase = cls return pipeline_class def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Union[str, Any]: UpperCAmelCase = str(lowerCamelCase_ ) UpperCAmelCase = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if os.path.isfile(lowerCamelCase_ ): UpperCAmelCase = module_file_or_url UpperCAmelCase = "local" elif pretrained_model_name_or_path.count("/" ) == 0: UpperCAmelCase = get_diffusers_versions() # cut ".dev0" UpperCAmelCase = "v" + ".".join(__version__.split("." )[:3] ) # retrieve github version that matches if revision is None: UpperCAmelCase = latest_version if latest_version[1:] in available_versions else "main" logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: UpperCAmelCase = F'v{revision}' elif revision == "main": UpperCAmelCase = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub UpperCAmelCase = COMMUNITY_PIPELINES_URL.format(revision=lowerCamelCase_ , pipeline=lowerCamelCase_ ) try: UpperCAmelCase = cached_download( lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) UpperCAmelCase = "git" UpperCAmelCase = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached UpperCAmelCase = hf_hub_download( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) UpperCAmelCase = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment UpperCAmelCase = check_imports(lowerCamelCase_ ) # Now we move the module inside our cached dynamic modules. UpperCAmelCase = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCamelCase_ ) UpperCAmelCase = Path(lowerCamelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCamelCase_ , submodule_path / module_file ) for module_needed in modules_needed: UpperCAmelCase = F'{module_needed}.py' shutil.copy(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase = use_auth_token elif use_auth_token is True: UpperCAmelCase = HfFolder.get_token() else: UpperCAmelCase = None UpperCAmelCase = model_info(lowerCamelCase_ , revision=lowerCamelCase_ , token=lowerCamelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. UpperCAmelCase = submodule_path / commit_hash UpperCAmelCase = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCamelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCamelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCamelCase_ , F'{module_needed}.py' , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return os.path.join(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = False , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = False , **lowerCamelCase_ , ) -> Tuple: UpperCAmelCase = get_cached_module_file( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return get_class_in_module(lowerCamelCase_ , final_module.replace(".py" , "" ) )
323
0
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class __lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , _snake_case : List[str] ) -> int: """simple docstring""" A_ = str(id_ ) A_ = None A_ = None A_ = [] A_ = {} # {vertex:distance} def __lt__( self : str , _snake_case : Union[str, Any] ) -> Any: """simple docstring""" return self.key < other.key def __repr__( self : Dict ) -> str: """simple docstring""" return self.id def lowerCamelCase__ ( self : List[str] , _snake_case : int ) -> int: """simple docstring""" self.neighbors.append(UpperCAmelCase__ ) def lowerCamelCase__ ( self : Dict , _snake_case : List[Any] , _snake_case : List[str] ) -> Any: """simple docstring""" A_ = weight def A_ (__a , __a , __a , __a ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __a ) graph[b - 1].add_edge(graph[a - 1] , __a ) def A_ (__a , __a ): '''simple docstring''' A_ = [] for u in graph: A_ = math.inf A_ = None A_ = 0 A_ = graph[:] while q: A_ = min(__a ) q.remove(__a ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): A_ = u A_ = u.edges[v.id] for i in range(1 , len(__a ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def A_ (__a , __a ): '''simple docstring''' for u in graph: A_ = math.inf A_ = None A_ = 0 A_ = list(__a ) hq.heapify(__a ) while h: A_ = hq.heappop(__a ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): A_ = u A_ = u.edges[v.id] hq.heapify(__a ) for i in range(1 , len(__a ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def A_ (): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" def A_ (__a ): '''simple docstring''' A_ = current_set.copy() for row_index, row in enumerate(__a ): A_ = row[0] for column_index, column in enumerate(__a ): if magnitude == 0: A_ = column continue A_ = column / magnitude # Subtract to cancel term A_ = current_set[0] A_ = [first_row] A_ = current_set[1::] for row in current_set: A_ = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(__a ) continue for column_index in range(len(__a ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(__a ) # Create next recursion iteration set if len(final_set[0] ) != 3: A_ = final_set[0] A_ = [] A_ = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) A_ = simplify(__a ) for i in range(len(__a ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , __a ) A_ = resultant return final_set def A_ (__a ): '''simple docstring''' if len(__a ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) A_ = len(__a ) + 1 if any(len(__a ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(__a , (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(__a ) == 1: return [equations[0][-1] / equations[0][0]] A_ = equations.copy() if any(0 in row for row in data_set ): A_ = data_set.copy() A_ = [] for row_index, row in enumerate(__a ): if 0 not in row: A_ = data_set.pop(__a ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0 , __a ) A_ = data_set.copy() A_ = simplify(__a ) A_ = simplified[::-1] A_ = [] for row in simplified: A_ = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue A_ = row.copy()[: len(__a ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(__a ) == 0: solutions.append(0 ) continue A_ = temp_row[1::] A_ = temp_row[::-1] for column_index, column in enumerate(__a ): current_solution -= column * solutions[column_index] solutions.append(__a ) A_ = [] for item in solutions: final.append(float(round(__a , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ : List[Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
482
0
from string import ascii_uppercase lowercase_ = {str(ord(c) - 55): c for c in ascii_uppercase} def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError("int() can't convert non-string with explicit base" ) if num < 0: raise ValueError("parameter must be positive int" ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if base in (0, 1): raise ValueError("base must be >= 2" ) if base > 36: raise ValueError("base must be <= 36" ) lowercase__ = "" lowercase__ = 0 lowercase__ = 0 while div != 1: lowercase__ , lowercase__ = divmod(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if base >= 11 and 9 < mod < 36: lowercase__ = ALPHABET_VALUES[str(SCREAMING_SNAKE_CASE_ )] else: lowercase__ = str(SCREAMING_SNAKE_CASE_ ) new_value += actual_value lowercase__ = num // base lowercase__ = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(SCREAMING_SNAKE_CASE_ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
413
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = 5000_0000 ): lowercase__ = set() lowercase__ = int((limit - 24) ** (1 / 2) ) lowercase__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE_ ) ) ) for primea in primes: lowercase__ = primea * primea for primea in primes: lowercase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowercase__ = primea * primea * primea * primea lowercase__ = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(F'{solution() = }')
413
1
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class A ( unittest.TestCase ): def __lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" _a = get_activation('''swish''' ) self.assertIsInstance(lowerCAmelCase_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _a = get_activation('''silu''' ) self.assertIsInstance(lowerCAmelCase_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _a = get_activation('''mish''' ) self.assertIsInstance(lowerCAmelCase_ , nn.Mish ) self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" _a = get_activation('''gelu''' ) self.assertIsInstance(lowerCAmelCase_ , nn.GELU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
716
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case : List[Any] = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Any = ['BeitFeatureExtractor'] _snake_case : Any = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
377
0
import torch from diffusers import StableDiffusionPipeline lowerCAmelCase_ = 'path-to-your-trained-model' lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") lowerCAmelCase_ = 'A photo of sks dog in a bucket' lowerCAmelCase_ = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
411
"""simple docstring""" def snake_case__ ( _lowerCamelCase ) ->str: """simple docstring""" __lowercase : Dict = [] __lowercase : Optional[int] = [] __lowercase : Any = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator __lowercase : List[Any] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( "Symbol".center(8 ), "Stack".center(_lowerCamelCase ), "Postfix".center(_lowerCamelCase ), sep=" | ", ) print("-" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ), ("".join(_lowerCamelCase )).ljust(_lowerCamelCase ), ("".join(_lowerCamelCase )).ljust(_lowerCamelCase ), sep=" | ", ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( " ".center(8 ), ("".join(_lowerCamelCase )).ljust(_lowerCamelCase ), ("".join(_lowerCamelCase )).ljust(_lowerCamelCase ), sep=" | ", ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def snake_case__ ( _lowerCamelCase ) ->Union[str, Any]: """simple docstring""" __lowercase : List[Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": __lowercase : List[Any] = ")" # change "(" to ")" elif infix[i] == ")": __lowercase : List[Any] = "(" # change ")" to "(" return (infix_2_postfix("".join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __A : Optional[Any] = input('\nEnter an Infix Equation = ') # Input an Infix equation __A : List[Any] = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
575
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() A__ : Optional[int] = logging.get_logger(__name__) A__ : Tuple = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } A__ : Dict = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _snake_case ( lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] ) -> Tuple: for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase_ : List[Any] ="lm_head" lowerCamelCase_ : List[str] =getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: lowerCamelCase_ : Dict =getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: lowerCamelCase_ : List[Any] =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase_ : Optional[Any] =value elif weight_type == "weight_g": lowerCamelCase_ : str =value elif weight_type == "weight_v": lowerCamelCase_ : Tuple =value elif weight_type == "bias": lowerCamelCase_ : int =value else: lowerCamelCase_ : Any =value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _snake_case ( lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : Dict ) -> Tuple: lowerCamelCase_ : Optional[Any] =[] lowerCamelCase_ : Optional[Any] =fairseq_model.state_dict() lowerCamelCase_ : Tuple =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase_ : List[str] =False if "conv_layers" in name: load_conv_layer( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase_ : Optional[Any] =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase_ : Tuple ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase_ : Optional[Any] =True if "*" in mapped_key: lowerCamelCase_ : str =name.split(lowerCamelCase__ )[0].split("." )[-2] lowerCamelCase_ : Any =mapped_key.replace("*" , lowerCamelCase__ ) if "weight_g" in name: lowerCamelCase_ : List[str] ="weight_g" elif "weight_v" in name: lowerCamelCase_ : Dict ="weight_v" elif "bias" in name: lowerCamelCase_ : str ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase_ : Any ="weight" else: lowerCamelCase_ : List[Any] =None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _snake_case ( lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Dict ) -> Tuple: lowerCamelCase_ : List[Any] =full_name.split("conv_layers." )[-1] lowerCamelCase_ : List[Any] =name.split("." ) lowerCamelCase_ : int =int(items[0] ) lowerCamelCase_ : Any =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase_ : Optional[int] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase_ : Union[str, Any] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase_ : List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase_ : List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCamelCase__ ) @torch.no_grad() def _snake_case ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : List[Any]=True ) -> Dict: if config_path is not None: lowerCamelCase_ : Optional[Any] =UniSpeechConfig.from_pretrained(lowerCamelCase__ ) else: lowerCamelCase_ : Any =UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase_ : List[str] =Dictionary.load_from_json(lowerCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase_ : int =target_dict.pad_index lowerCamelCase_ : Union[str, Any] =target_dict.bos_index lowerCamelCase_ : int =target_dict.eos_index lowerCamelCase_ : Any =len(target_dict.symbols ) lowerCamelCase_ : List[Any] =os.path.join(lowerCamelCase__ , "vocab.json" ) if not os.path.isdir(lowerCamelCase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCamelCase__ ) ) return os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) lowerCamelCase_ : Optional[Any] =target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase_ : List[Any] =42 lowerCamelCase_ : Optional[int] =43 with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Optional[Any] =WavaVecaPhonemeCTCTokenizer( lowerCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCamelCase__ , ) lowerCamelCase_ : Any =True if config.feat_extract_norm == "layer" else False lowerCamelCase_ : List[str] =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) lowerCamelCase_ : int =WavaVecaProcessor(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) lowerCamelCase_ : Optional[int] =UniSpeechForCTC(lowerCamelCase__ ) else: lowerCamelCase_ : Tuple =UniSpeechForPreTraining(lowerCamelCase__ ) if is_finetuned: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[Any] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase_ : List[str] =model[0].eval() recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) hf_unispeech.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": A__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) A__ : Dict = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
244
"""simple docstring""" from __future__ import annotations def _snake_case ( lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: if len(lowerCamelCase__ ) == 0: return False lowerCamelCase_ : Dict =len(lowerCamelCase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowerCamelCase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowerCamelCase__ ) if __name__ == "__main__": A__ : Tuple = input('Enter numbers separated by comma:\n').strip() A__ : Union[str, Any] = [int(item.strip()) for item in user_input.split(',')] A__ : Optional[Any] = int(input('Enter the number to be found in the list:\n').strip()) A__ : str = '' if binary_search(sequence, target) else 'not ' print(f'{target} was {not_str}found in {sequence}')
244
1
import argparse import os import re import packaging.version a__ = """examples/""" a__ = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } a__ = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } a__ = """README.md""" def _UpperCAmelCase ( a : List[str] , a : str , a : Dict ): with open(a , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case__ = f.read() snake_case__ , snake_case__ = REPLACE_PATTERNS[pattern] snake_case__ = replace.replace("""VERSION""" , a ) snake_case__ = re_pattern.sub(a , a ) with open(a , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(a ) def _UpperCAmelCase ( a : Union[str, Any] ): for folder, directories, fnames in os.walk(a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(a , a ) , a , pattern="""examples""" ) def _UpperCAmelCase ( a : Union[str, Any] , a : List[str]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(a , a , a ) if not patch: update_version_in_examples(a ) def _UpperCAmelCase ( ): snake_case__ = """🤗 Transformers currently provides the following architectures""" snake_case__ = """1. Want to contribute a new model?""" with open(a , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case__ = f.readlines() # Find the start of the list. snake_case__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 snake_case__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): snake_case__ = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(a , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(a ) def _UpperCAmelCase ( ): with open(REPLACE_FILES["""init"""] , """r""" ) as f: snake_case__ = f.read() snake_case__ = REPLACE_PATTERNS["""init"""][0].search(a ).groups()[0] return packaging.version.parse(a ) def _UpperCAmelCase ( a : str=False ): snake_case__ = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: snake_case__ = default_version.base_version elif patch: snake_case__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: snake_case__ = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. snake_case__ = input(F'''Which version are you releasing? [{default_version}]''' ) if len(a ) == 0: snake_case__ = default_version print(F'''Updating version to {version}.''' ) global_version_update(a , patch=a ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def _UpperCAmelCase ( ): snake_case__ = get_version() snake_case__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' snake_case__ = current_version.base_version # Check with the user we got that right. snake_case__ = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(a ) == 0: snake_case__ = dev_version print(F'''Updating version to {version}.''' ) global_version_update(a ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") a__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
654
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _lowerCAmelCase ( lowercase_ ): """simple docstring""" def __init__( self : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any]): '''simple docstring''' snake_case__ = params snake_case__ = np.array(UpperCamelCase__) snake_case__ = np.array([len(UpperCamelCase__) for t in data]) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Dict , UpperCamelCase__ : Any): '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self : Union[str, Any]): '''simple docstring''' return len(self.lengths) def __magic_name__ ( self : str): '''simple docstring''' assert len(self.token_ids) == len(self.lengths) assert all(self.lengths[i] == len(self.token_ids[i]) for i in range(len(self.lengths))) def __magic_name__ ( self : Optional[int]): '''simple docstring''' snake_case__ = self.params.max_model_input_size snake_case__ = self.lengths > max_len logger.info(F'''Splitting {sum(UpperCamelCase__)} too long sequences.''') def divide_chunks(UpperCamelCase__ : str , UpperCamelCase__ : Tuple): return [l[i : i + n] for i in range(0 , len(UpperCamelCase__) , UpperCamelCase__)] snake_case__ = [] snake_case__ = [] if self.params.mlm: snake_case__ , snake_case__ = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: snake_case__ , snake_case__ = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_) new_lengths.append(len_) else: snake_case__ = [] for sub_s in divide_chunks(seq_ , max_len - 2): if sub_s[0] != cls_id: snake_case__ = np.insert(UpperCamelCase__ , 0 , UpperCamelCase__) if sub_s[-1] != sep_id: snake_case__ = np.insert(UpperCamelCase__ , len(UpperCamelCase__) , UpperCamelCase__) assert len(UpperCamelCase__) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(UpperCamelCase__) new_tok_ids.extend(UpperCamelCase__) new_lengths.extend([len(UpperCamelCase__) for l in sub_seqs]) snake_case__ = np.array(UpperCamelCase__) snake_case__ = np.array(UpperCamelCase__) def __magic_name__ ( self : Any): '''simple docstring''' snake_case__ = len(self) snake_case__ = self.lengths > 1_1 snake_case__ = self.token_ids[indices] snake_case__ = self.lengths[indices] snake_case__ = len(self) logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''') def __magic_name__ ( self : List[str]): '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: snake_case__ = self.params.special_tok_ids["""unk_token"""] snake_case__ = len(self) snake_case__ = np.array([np.count_nonzero(a == unk_token_id) for a in self.token_ids]) snake_case__ = (unk_occs / self.lengths) < 0.5 snake_case__ = self.token_ids[indices] snake_case__ = self.lengths[indices] snake_case__ = len(self) logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''') def __magic_name__ ( self : Optional[Any]): '''simple docstring''' if not self.params.is_master: return logger.info(F'''{len(self)} sequences''') # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __magic_name__ ( self : int , UpperCamelCase__ : Optional[int]): '''simple docstring''' snake_case__ = [t[0] for t in batch] snake_case__ = [t[1] for t in batch] assert len(UpperCamelCase__) == len(UpperCamelCase__) # Max for paddings snake_case__ = max(UpperCamelCase__) # Pad token ids if self.params.mlm: snake_case__ = self.params.special_tok_ids["""pad_token"""] else: snake_case__ = self.params.special_tok_ids["""unk_token"""] snake_case__ = [list(t.astype(UpperCamelCase__)) + [pad_idx] * (max_seq_len_ - len(UpperCamelCase__)) for t in token_ids] assert len(tk_) == len(UpperCamelCase__) assert all(len(UpperCamelCase__) == max_seq_len_ for t in tk_) snake_case__ = torch.tensor(tk_) # (bs, max_seq_len_) snake_case__ = torch.tensor(UpperCamelCase__) # (bs) return tk_t, lg_t
654
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _SCREAMING_SNAKE_CASE: def __init__( self : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple=3 , UpperCamelCase_ : List[Any]=32 , UpperCamelCase_ : Optional[Any]=3 , UpperCamelCase_ : List[Any]=10 , UpperCamelCase_ : Any=[10, 20, 30, 40] , UpperCamelCase_ : List[Any]=[1, 1, 2, 1] , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : str="relu" , UpperCamelCase_ : List[str]=3 , UpperCamelCase_ : Dict=None , ) -> Any: SCREAMING_SNAKE_CASE__ :int = parent SCREAMING_SNAKE_CASE__ :Dict = batch_size SCREAMING_SNAKE_CASE__ :int = image_size SCREAMING_SNAKE_CASE__ :List[Any] = num_channels SCREAMING_SNAKE_CASE__ :List[Any] = embeddings_size SCREAMING_SNAKE_CASE__ :List[Any] = hidden_sizes SCREAMING_SNAKE_CASE__ :Dict = depths SCREAMING_SNAKE_CASE__ :str = is_training SCREAMING_SNAKE_CASE__ :str = use_labels SCREAMING_SNAKE_CASE__ :Dict = hidden_act SCREAMING_SNAKE_CASE__ :Optional[Any] = num_labels SCREAMING_SNAKE_CASE__ :Optional[int] = scope SCREAMING_SNAKE_CASE__ :int = len(UpperCamelCase_ ) def __lowerCamelCase ( self : Any ) -> Dict: SCREAMING_SNAKE_CASE__ :Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ :List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ :Any = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ :Dict = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self : Optional[int] ) -> List[str]: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __lowerCamelCase ( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ :Any = TFResNetModel(config=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = model(UpperCamelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowerCamelCase ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ :str = self.num_labels SCREAMING_SNAKE_CASE__ :List[Any] = TFResNetForImageClassification(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Tuple = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ :int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Any = config_and_inputs SCREAMING_SNAKE_CASE__ :Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ : Dict = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () A_ : int = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) A_ : Union[str, Any] = False A_ : Tuple = False A_ : int = False A_ : Any = False A_ : List[Any] = False def __lowerCamelCase ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE__ :List[Any] = TFResNetModelTester(self ) SCREAMING_SNAKE_CASE__ :List[str] = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ ) def __lowerCamelCase ( self : List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self : List[Any] ) -> List[str]: return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self : List[Any] ) -> List[str]: pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self : Optional[int] ) -> Optional[Any]: pass def __lowerCamelCase ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ :str = model_class(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ :Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ :Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def __lowerCamelCase ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def __lowerCamelCase ( self : str ) -> Any: def check_hidden_states_output(UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Dict ): SCREAMING_SNAKE_CASE__ :List[Any] = model_class(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ :List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE__ :List[Any] = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ :Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE__ :Optional[int] = layer_type SCREAMING_SNAKE_CASE__ :List[str] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ :Tuple = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __lowerCamelCase ( self : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @slow def __lowerCamelCase ( self : Union[str, Any] ) -> List[str]: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ :Tuple = TFResNetModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCamelCase ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @cached_property def __lowerCamelCase ( self : List[Any] ) -> Optional[Any]: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ :Optional[int] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) SCREAMING_SNAKE_CASE__ :List[str] = self.default_image_processor SCREAMING_SNAKE_CASE__ :str = prepare_img() SCREAMING_SNAKE_CASE__ :Dict = image_processor(images=UpperCamelCase_ , return_tensors='tf' ) # forward pass SCREAMING_SNAKE_CASE__ :List[str] = model(**UpperCamelCase_ ) # verify the logits SCREAMING_SNAKE_CASE__ :int = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCamelCase_ , atol=1e-4 ) )
320
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCamelCase_ = logging.getLogger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] ) -> List[Any]: '''simple docstring''' if os.path.exists(UpperCAmelCase__ ): if os.path.exists(os.path.join(UpperCAmelCase__ , 'config.json' ) ) and os.path.isfile( os.path.join(UpperCAmelCase__ , 'config.json' ) ): os.remove(os.path.join(UpperCAmelCase__ , 'config.json' ) ) if os.path.exists(os.path.join(UpperCAmelCase__ , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(UpperCAmelCase__ , 'pytorch_model.bin' ) ): os.remove(os.path.join(UpperCAmelCase__ , 'pytorch_model.bin' ) ) else: os.makedirs(UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any]=False ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = 2 if unlogit: SCREAMING_SNAKE_CASE__ :int = torch.pow(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = p * torch.log(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :str = 0 return -plogp.sum(dim=-1 ) def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(UpperCAmelCase__ ) ) ) ) for row in range(len(UpperCAmelCase__ ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : str=False ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Tuple = model.config.num_hidden_layers, model.config.num_attention_heads SCREAMING_SNAKE_CASE__ :List[str] = torch.zeros(UpperCAmelCase__ , UpperCAmelCase__ ).to(args.device ) SCREAMING_SNAKE_CASE__ :Optional[int] = torch.zeros(UpperCAmelCase__ , UpperCAmelCase__ ).to(args.device ) if head_mask is None: SCREAMING_SNAKE_CASE__ :Any = torch.ones(UpperCAmelCase__ , UpperCAmelCase__ ).to(args.device ) head_mask.requires_grad_(requires_grad=UpperCAmelCase__ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: SCREAMING_SNAKE_CASE__ :Optional[Any] = None SCREAMING_SNAKE_CASE__ :Dict = 0.0 SCREAMING_SNAKE_CASE__ :Any = 0.0 for step, inputs in enumerate(tqdm(UpperCAmelCase__ , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): SCREAMING_SNAKE_CASE__ :Union[str, Any] = tuple(t.to(args.device ) for t in inputs ) ((SCREAMING_SNAKE_CASE__) , ) :Dict = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) SCREAMING_SNAKE_CASE__ :Optional[Any] = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , head_mask=UpperCAmelCase__ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Union[str, Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ :Optional[int] = entropy(attn.detach() , UpperCAmelCase__ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(UpperCAmelCase__ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: SCREAMING_SNAKE_CASE__ :List[str] = 2 SCREAMING_SNAKE_CASE__ :Optional[int] = torch.pow(torch.pow(UpperCAmelCase__ , UpperCAmelCase__ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: SCREAMING_SNAKE_CASE__ :Dict = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(UpperCAmelCase__ ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(UpperCAmelCase__ ) logger.info('Head ranked by importance scores' ) SCREAMING_SNAKE_CASE__ :str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) SCREAMING_SNAKE_CASE__ :Any = torch.arange( head_importance.numel() , device=args.device ) SCREAMING_SNAKE_CASE__ :Optional[Any] = head_ranks.view_as(UpperCAmelCase__ ) print_ad_tensor(UpperCAmelCase__ ) return attn_entropy, head_importance, total_loss def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Optional[int] = compute_heads_importance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , compute_entropy=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :List[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , UpperCAmelCase__ , original_score * args.masking_threshold ) SCREAMING_SNAKE_CASE__ :Optional[int] = torch.ones_like(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) SCREAMING_SNAKE_CASE__ :str = original_score while current_score >= original_score * args.masking_threshold: SCREAMING_SNAKE_CASE__ :Any = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads SCREAMING_SNAKE_CASE__ :str = float('Inf' ) SCREAMING_SNAKE_CASE__ :str = head_importance.view(-1 ).sort()[1] if len(UpperCAmelCase__ ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads SCREAMING_SNAKE_CASE__ :Optional[int] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) SCREAMING_SNAKE_CASE__ :List[Any] = new_head_mask.view(-1 ) SCREAMING_SNAKE_CASE__ :str = 0.0 SCREAMING_SNAKE_CASE__ :Any = new_head_mask.view_as(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :str = new_head_mask.clone().detach() print_ad_tensor(UpperCAmelCase__ ) # Compute metric and head importance again SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :int = compute_heads_importance( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , compute_entropy=UpperCAmelCase__ , head_mask=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Any = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , UpperCAmelCase__ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info('Final head mask' ) print_ad_tensor(UpperCAmelCase__ ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = datetime.now() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :str = compute_heads_importance( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , compute_entropy=UpperCAmelCase__ , compute_importance=UpperCAmelCase__ , head_mask=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Any = 1 / loss SCREAMING_SNAKE_CASE__ :List[Any] = datetime.now() - before_time SCREAMING_SNAKE_CASE__ :Union[str, Any] = sum(p.numel() for p in model.parameters() ) SCREAMING_SNAKE_CASE__ :Dict = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(UpperCAmelCase__ ) ) } for k, v in heads_to_prune.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ :Any = [ v, ] assert sum(len(UpperCAmelCase__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :List[Any] = sum(p.numel() for p in model.parameters() ) SCREAMING_SNAKE_CASE__ :Optional[int] = datetime.now() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Optional[Any] = compute_heads_importance( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , compute_entropy=UpperCAmelCase__ , compute_importance=UpperCAmelCase__ , head_mask=UpperCAmelCase__ , actually_pruned=UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE__ :List[Any] = 1 / loss SCREAMING_SNAKE_CASE__ :Optional[int] = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , UpperCAmelCase__ , UpperCAmelCase__ , pruned_num_params / original_num_params * 1_0_0 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , UpperCAmelCase__ , UpperCAmelCase__ ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_0_0 ) save_model(UpperCAmelCase__ , args.output_dir ) def lowerCamelCase ( ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=UpperCAmelCase__ , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=UpperCAmelCase__ , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=UpperCAmelCase__ , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=UpperCAmelCase__ , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=UpperCAmelCase__ , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=UpperCAmelCase__ , type=UpperCAmelCase__ , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=UpperCAmelCase__ , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=UpperCAmelCase__ , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=UpperCAmelCase__ , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=UpperCAmelCase__ , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_2_8 , type=UpperCAmelCase__ , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=UpperCAmelCase__ , help='Batch size.' ) parser.add_argument('--seed' , type=UpperCAmelCase__ , default=4_2 ) parser.add_argument('--local_rank' , type=UpperCAmelCase__ , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=UpperCAmelCase__ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=UpperCAmelCase__ , default='' , help='Can be used for distant debugging.' ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=UpperCAmelCase__ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: SCREAMING_SNAKE_CASE__ :Tuple = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) SCREAMING_SNAKE_CASE__ :Tuple = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) SCREAMING_SNAKE_CASE__ :Optional[int] = torch.device('cuda' , args.local_rank ) SCREAMING_SNAKE_CASE__ :List[Any] = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) SCREAMING_SNAKE_CASE__ :Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: SCREAMING_SNAKE_CASE__ :Tuple = nn.parallel.DistributedDataParallel( UpperCAmelCase__ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=UpperCAmelCase__ ) elif args.n_gpu > 1: SCREAMING_SNAKE_CASE__ :Optional[int] = nn.DataParallel(UpperCAmelCase__ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=UpperCAmelCase__ ) torch.save(UpperCAmelCase__ , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , UpperCAmelCase__ ) # Prepare dataset SCREAMING_SNAKE_CASE__ :Optional[Any] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) SCREAMING_SNAKE_CASE__ :Optional[Any] = (torch.from_numpy(UpperCAmelCase__ ),) SCREAMING_SNAKE_CASE__ :List[str] = TensorDataset(*UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = RandomSampler(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :int = DataLoader(UpperCAmelCase__ , sampler=UpperCAmelCase__ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: SCREAMING_SNAKE_CASE__ :Tuple = mask_heads(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) prune_heads(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": main()
320
1
'''simple docstring''' from __future__ import annotations from typing import Any def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): create_state_space_tree(SCREAMING_SNAKE_CASE__ , [] , 0 ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if index == len(SCREAMING_SNAKE_CASE__ ): print(SCREAMING_SNAKE_CASE__ ) return create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
597
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE_ = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["BeitFeatureExtractor"] SCREAMING_SNAKE_CASE_ = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
597
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowercase ( _UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''trocr''' __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''past_key_values'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , snake_case=5_0265 , snake_case=1024 , snake_case=12 , snake_case=16 , snake_case=4096 , snake_case="gelu" , snake_case=512 , snake_case=0.1 , snake_case=0.0 , snake_case=0.0 , snake_case=2 , snake_case=0.02 , snake_case=0.0 , snake_case=True , snake_case=False , snake_case=True , snake_case=True , snake_case=1 , snake_case=0 , snake_case=2 , **snake_case , ): snake_case_ = vocab_size snake_case_ = d_model snake_case_ = decoder_layers snake_case_ = decoder_attention_heads snake_case_ = decoder_ffn_dim snake_case_ = activation_function snake_case_ = max_position_embeddings snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = init_std snake_case_ = decoder_layerdrop snake_case_ = use_cache snake_case_ = scale_embedding snake_case_ = use_learned_position_embeddings snake_case_ = layernorm_embedding super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
718
def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError('List is empty' ) snake_case_ = sum(UpperCamelCase__ ) / len(UpperCamelCase__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
108
0
from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=UpperCAmelCase ): """simple docstring""" _UpperCamelCase : List[str] = ['speech'] def __init__( self , *snake_case , **snake_case ): '''simple docstring''' requires_backends(self , ["speech"] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase ): """simple docstring""" _UpperCamelCase : int = ['speech'] def __init__( self , *snake_case , **snake_case ): '''simple docstring''' requires_backends(self , ["speech"] )
551
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def UpperCamelCase_( _A :Tuple , _A :str )-> int: # ===== initialization ===== UpperCamelCase__ = Mock() UpperCamelCase__ = conn, Mock() UpperCamelCase__ = iter([1, None] ) UpperCamelCase__ = lambda _A : next(_A ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=_A ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
551
1
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : BigBirdConfig __magic_name__ : jnp.dtype = jnp.floataa __magic_name__ : bool = True def a__( self : Union[str, Any] )-> str: """simple docstring""" super().setup() UpperCAmelCase = nn.Dense(5 , dtype=self.dtype ) def __call__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : int )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = super().__call__(*lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Dict = FlaxBigBirdForNaturalQuestionsModule def lowerCamelCase__ ( A : str , A : Any , A : int , A : str , A : List[str] , A : List[Any] ): '''simple docstring''' def cross_entropy(A : Optional[int] , A : Tuple , A : int=None ): UpperCAmelCase = logits.shape[-1] UpperCAmelCase = (labels[..., None] == jnp.arange(A )[None]).astype('''f4''' ) UpperCAmelCase = jax.nn.log_softmax(A , axis=-1 ) UpperCAmelCase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: UpperCAmelCase = reduction(A ) return loss UpperCAmelCase = partial(A , reduction=jnp.mean ) UpperCAmelCase = cross_entropy(A , A ) UpperCAmelCase = cross_entropy(A , A ) UpperCAmelCase = cross_entropy(A , A ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCamelCase__: __magic_name__ : str = "google/bigbird-roberta-base" __magic_name__ : int = 3000 __magic_name__ : int = 1_0500 __magic_name__ : int = 128 __magic_name__ : int = 3 __magic_name__ : int = 1 __magic_name__ : int = 5 # tx_args __magic_name__ : float = 3e-5 __magic_name__ : float = 0.0 __magic_name__ : int = 2_0000 __magic_name__ : float = 0.0_0_9_5 __magic_name__ : str = "bigbird-roberta-natural-questions" __magic_name__ : str = "training-expt" __magic_name__ : str = "data/nq-training.jsonl" __magic_name__ : str = "data/nq-validation.jsonl" def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" os.makedirs(self.base_dir , exist_ok=lowerCAmelCase ) UpperCAmelCase = os.path.join(self.base_dir , self.save_dir ) UpperCAmelCase = self.batch_size_per_device * jax.device_count() @dataclass class UpperCamelCase__: __magic_name__ : int __magic_name__ : int = 4096 # no dynamic padding on TPUs def __call__( self : List[str] , lowerCAmelCase : Any )-> Tuple: """simple docstring""" UpperCAmelCase = self.collate_fn(lowerCAmelCase ) UpperCAmelCase = jax.tree_util.tree_map(lowerCAmelCase , lowerCAmelCase ) return batch def a__( self : List[str] , lowerCAmelCase : Any )-> Tuple: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.fetch_inputs(features['''input_ids'''] ) UpperCAmelCase = { '''input_ids''': jnp.array(lowerCAmelCase , dtype=jnp.intaa ), '''attention_mask''': jnp.array(lowerCAmelCase , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def a__( self : Tuple , lowerCAmelCase : list )-> int: """simple docstring""" UpperCAmelCase = [self._fetch_inputs(lowerCAmelCase ) for ids in input_ids] return zip(*lowerCAmelCase ) def a__( self : Dict , lowerCAmelCase : list )-> Optional[Any]: """simple docstring""" UpperCAmelCase = [1 for _ in range(len(lowerCAmelCase ) )] while len(lowerCAmelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def lowerCamelCase__ ( A : str , A : Optional[Any] , A : List[str]=None ): '''simple docstring''' if seed is not None: UpperCAmelCase = dataset.shuffle(seed=A ) for i in range(len(A ) // batch_size ): UpperCAmelCase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(A ) @partial(jax.pmap , axis_name='''batch''' ) def lowerCamelCase__ ( A : List[str] , A : Optional[int] , **A : int ): '''simple docstring''' def loss_fn(A : Dict ): UpperCAmelCase = model_inputs.pop('''start_labels''' ) UpperCAmelCase = model_inputs.pop('''end_labels''' ) UpperCAmelCase = model_inputs.pop('''pooled_labels''' ) UpperCAmelCase = state.apply_fn(**A , params=A , dropout_rng=A , train=A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = outputs return state.loss_fn( A , A , A , A , A , A , ) UpperCAmelCase , UpperCAmelCase = jax.random.split(A ) UpperCAmelCase = jax.value_and_grad(A ) UpperCAmelCase , UpperCAmelCase = grad_fn(state.params ) UpperCAmelCase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) UpperCAmelCase = jax.lax.pmean(A , '''batch''' ) UpperCAmelCase = state.apply_gradients(grads=A ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def lowerCamelCase__ ( A : List[str] , **A : List[str] ): '''simple docstring''' UpperCAmelCase = model_inputs.pop('''start_labels''' ) UpperCAmelCase = model_inputs.pop('''end_labels''' ) UpperCAmelCase = model_inputs.pop('''pooled_labels''' ) UpperCAmelCase = state.apply_fn(**A , params=state.params , train=A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = outputs UpperCAmelCase = state.loss_fn(A , A , A , A , A , A ) UpperCAmelCase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class UpperCamelCase__( train_state.TrainState ): __magic_name__ : Callable = struct.field(pytree_node=lowerCAmelCase ) @dataclass class UpperCamelCase__: __magic_name__ : Args __magic_name__ : Callable __magic_name__ : Callable __magic_name__ : Callable __magic_name__ : Callable __magic_name__ : wandb __magic_name__ : Callable = None def a__( self : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]=None )-> Tuple: """simple docstring""" UpperCAmelCase = model.params UpperCAmelCase = TrainState.create( apply_fn=model.__call__ , params=lowerCAmelCase , tx=lowerCAmelCase , loss_fn=lowerCAmelCase , ) if ckpt_dir is not None: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = restore_checkpoint(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } UpperCAmelCase , UpperCAmelCase = build_tx(**lowerCAmelCase ) UpperCAmelCase = train_state.TrainState( step=lowerCAmelCase , apply_fn=model.__call__ , params=lowerCAmelCase , tx=lowerCAmelCase , opt_state=lowerCAmelCase , ) UpperCAmelCase = args UpperCAmelCase = data_collator UpperCAmelCase = lr UpperCAmelCase = params UpperCAmelCase = jax_utils.replicate(lowerCAmelCase ) return state def a__( self : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : int )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.args UpperCAmelCase = len(lowerCAmelCase ) // args.batch_size UpperCAmelCase = jax.random.PRNGKey(0 ) UpperCAmelCase = jax.random.split(lowerCAmelCase , jax.device_count() ) for epoch in range(args.max_epochs ): UpperCAmelCase = jnp.array(0 , dtype=jnp.floataa ) UpperCAmelCase = get_batched_dataset(lowerCAmelCase , args.batch_size , seed=lowerCAmelCase ) UpperCAmelCase = 0 for batch in tqdm(lowerCAmelCase , total=lowerCAmelCase , desc=F"""Running EPOCH-{epoch}""" ): UpperCAmelCase = self.data_collator(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.train_step_fn(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: UpperCAmelCase = jax_utils.unreplicate(state.step ) UpperCAmelCase = running_loss.item() / i UpperCAmelCase = self.scheduler_fn(state_step - 1 ) UpperCAmelCase = self.evaluate(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(lowerCAmelCase ) ) self.logger.log(lowerCAmelCase , commit=lowerCAmelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=lowerCAmelCase ) def a__( self : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple )-> Any: """simple docstring""" UpperCAmelCase = get_batched_dataset(lowerCAmelCase , self.args.batch_size ) UpperCAmelCase = len(lowerCAmelCase ) // self.args.batch_size UpperCAmelCase = jnp.array(0 , dtype=jnp.floataa ) UpperCAmelCase = 0 for batch in tqdm(lowerCAmelCase , total=lowerCAmelCase , desc='''Evaluating ... ''' ): UpperCAmelCase = self.data_collator(lowerCAmelCase ) UpperCAmelCase = self.val_step_fn(lowerCAmelCase , **lowerCAmelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def a__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str )-> Tuple: """simple docstring""" UpperCAmelCase = jax_utils.unreplicate(lowerCAmelCase ) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=''' ... ''' ) self.model_save_fn(lowerCAmelCase , params=state.params ) with open(os.path.join(lowerCAmelCase , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(lowerCAmelCase , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(lowerCAmelCase , '''data_collator.joblib''' ) ) with open(os.path.join(lowerCAmelCase , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , lowerCAmelCase ) print('''DONE''' ) def lowerCamelCase__ ( A : Tuple , A : Dict ): '''simple docstring''' print(f"""RESTORING CHECKPOINT FROM {save_dir}""" , end=''' ... ''' ) with open(os.path.join(A , '''flax_model.msgpack''' ) , '''rb''' ) as f: UpperCAmelCase = from_bytes(state.params , f.read() ) with open(os.path.join(A , '''opt_state.msgpack''' ) , '''rb''' ) as f: UpperCAmelCase = from_bytes(state.opt_state , f.read() ) UpperCAmelCase = joblib.load(os.path.join(A , '''args.joblib''' ) ) UpperCAmelCase = joblib.load(os.path.join(A , '''data_collator.joblib''' ) ) with open(os.path.join(A , '''training_state.json''' ) , '''r''' ) as f: UpperCAmelCase = json.load(A ) UpperCAmelCase = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def lowerCamelCase__ ( A : Any , A : Any , A : Union[str, Any] , A : Tuple ): '''simple docstring''' UpperCAmelCase = num_train_steps - warmup_steps UpperCAmelCase = optax.linear_schedule(init_value=A , end_value=A , transition_steps=A ) UpperCAmelCase = optax.linear_schedule(init_value=A , end_value=1E-7 , transition_steps=A ) UpperCAmelCase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def lowerCamelCase__ ( A : List[Any] , A : Optional[Any] , A : str , A : Optional[Any] , A : Any ): '''simple docstring''' def weight_decay_mask(A : List[str] ): UpperCAmelCase = traverse_util.flatten_dict(A ) UpperCAmelCase = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(A ) UpperCAmelCase = scheduler_fn(A , A , A , A ) UpperCAmelCase = optax.adamw(learning_rate=A , weight_decay=A , mask=A ) return tx, lr
711
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: dict ): __SCREAMING_SNAKE_CASE : List[Any] = set() # edges = list of graph's edges __SCREAMING_SNAKE_CASE : int = get_edges(_lowerCamelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = edges.pop() chosen_vertices.add(_lowerCamelCase ) chosen_vertices.add(_lowerCamelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_lowerCamelCase ) return chosen_vertices def lowerCAmelCase_ ( _lowerCamelCase: dict ): __SCREAMING_SNAKE_CASE : Any = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
578
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __lt__( self : Union[str, Any] , lowerCAmelCase__ : Any ): """simple docstring""" return self[-1] < other[-1] def __eq__( self : Optional[int] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" return self[-1] == other[-1] def lowerCAmelCase_ ( _lowerCamelCase: list ): __SCREAMING_SNAKE_CASE : list[Stack] = [] # sort into stacks for element in collection: __SCREAMING_SNAKE_CASE : str = Stack([element] ) __SCREAMING_SNAKE_CASE : Tuple = bisect_left(_lowerCamelCase , _lowerCamelCase ) if i != len(_lowerCamelCase ): stacks[i].append(_lowerCamelCase ) else: stacks.append(_lowerCamelCase ) # use a heap-based merge to merge stack efficiently __SCREAMING_SNAKE_CASE : List[Any] = merge(*(reversed(_lowerCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCamelCase__ : List[str] = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ : Any = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
578
1
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } SCREAMING_SNAKE_CASE = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } SCREAMING_SNAKE_CASE = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } SCREAMING_SNAKE_CASE = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } SCREAMING_SNAKE_CASE = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } SCREAMING_SNAKE_CASE = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } SCREAMING_SNAKE_CASE = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } SCREAMING_SNAKE_CASE = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } SCREAMING_SNAKE_CASE = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __a ( _lowerCAmelCase ): UpperCamelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __a ( _lowerCAmelCase ): UpperCamelCase_ : List[Any] = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Optional[int] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Any = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) SCREAMING_SNAKE_CASE = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) SCREAMING_SNAKE_CASE = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(_lowerCAmelCase ) class __a : def __call__( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Union[bool, str] = False , UpperCAmelCase_ : Union[bool, str] = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Optional[bool] = None , **UpperCAmelCase_ : Tuple , )-> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , ) elif titles is None or texts is None: UpperCamelCase = titles if texts is None else texts return super().__call__( UpperCAmelCase_ , UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , ) UpperCamelCase = titles if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else [titles] UpperCamelCase = texts if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else [texts] UpperCamelCase = len(UpperCAmelCase_ ) UpperCamelCase = questions if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else [questions] * n_passages if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( f"There should be as many titles than texts but got {len(UpperCAmelCase_ )} titles and {len(UpperCAmelCase_ )} texts." ) UpperCamelCase = super().__call__(UpperCAmelCase_ , UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ )["input_ids"] UpperCamelCase = super().__call__(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ )["input_ids"] UpperCamelCase = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ] } if return_attention_mask is not False: UpperCamelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCamelCase = attention_mask return self.pad(UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase_ : BatchEncoding , UpperCAmelCase_ : DPRReaderOutput , UpperCAmelCase_ : int = 16 , UpperCAmelCase_ : int = 64 , UpperCAmelCase_ : int = 4 , )-> List[DPRSpanPrediction]: """simple docstring""" UpperCamelCase = reader_input["input_ids"] UpperCamelCase , UpperCamelCase , UpperCamelCase = reader_output[:3] UpperCamelCase = len(UpperCAmelCase_ ) UpperCamelCase = sorted(range(UpperCAmelCase_ ) , reverse=UpperCAmelCase_ , key=relevance_logits.__getitem__ ) UpperCamelCase = [] for doc_id in sorted_docs: UpperCamelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCamelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCamelCase = sequence_ids.index(self.pad_token_id ) else: UpperCamelCase = len(UpperCAmelCase_ ) UpperCamelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase_ , top_spans=UpperCAmelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase_ , start_index=UpperCAmelCase_ , end_index=UpperCAmelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(UpperCAmelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , )-> List[DPRSpanPrediction]: """simple docstring""" UpperCamelCase = [] for start_index, start_score in enumerate(UpperCAmelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCamelCase = sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : x[1] , reverse=UpperCAmelCase_ ) UpperCamelCase = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]" ) UpperCamelCase = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(UpperCAmelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_lowerCAmelCase ) class __a ( _lowerCAmelCase , _lowerCAmelCase ): UpperCamelCase_ : str = VOCAB_FILES_NAMES UpperCamelCase_ : Tuple = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Tuple = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Any = ['''input_ids''', '''attention_mask''']
556
"""simple docstring""" def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ = False )-> bool: """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_31_70_44_06_46_79_88_73_85_96_19_81 and not allow_probable: raise ValueError( "Warning: upper bound of deterministic test is exceeded. " "Pass allow_probable=True to allow probabilistic test. " "A return value of True indicates a probable prime." ) # array bounds provided by analysis UpperCamelCase = [ 20_47, 1_37_36_53, 25_32_60_01, 32_15_03_17_51, 2_15_23_02_89_87_47, 3_47_47_49_66_03_83, 3_41_55_00_71_72_83_21, 1, 3_82_51_23_05_65_46_41_30_51, 1, 1, 31_86_65_85_78_34_03_11_51_16_74_61, 3_31_70_44_06_46_79_88_73_85_96_19_81, ] UpperCamelCase = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(UpperCAmelCase_ , 1 ): if n < _p: # then we have our last prime to check UpperCamelCase = primes[:idx] break UpperCamelCase , UpperCamelCase = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: UpperCamelCase = False for r in range(UpperCAmelCase_ ): UpperCamelCase = pow(UpperCAmelCase_ , d * 2**r , UpperCAmelCase_ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): UpperCamelCase = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowerCamelCase__ ( )-> None: """simple docstring""" assert not miller_rabin(5_61 ) assert miller_rabin(5_63 ) # 2047 assert not miller_rabin(83_82_01 ) assert miller_rabin(83_82_07 ) # 1_373_653 assert not miller_rabin(17_31_60_01 ) assert miller_rabin(17_31_60_17 ) # 25_326_001 assert not miller_rabin(30_78_38_66_41 ) assert miller_rabin(30_78_38_66_53 ) # 3_215_031_751 assert not miller_rabin(1_71_30_45_57_48_01 ) assert miller_rabin(1_71_30_45_57_48_19 ) # 2_152_302_898_747 assert not miller_rabin(2_77_97_99_72_83_07 ) assert miller_rabin(2_77_97_99_72_83_27 ) # 3_474_749_660_383 assert not miller_rabin(1_13_85_00_23_90_94_41 ) assert miller_rabin(1_13_85_00_23_90_95_27 ) # 341_550_071_728_321 assert not miller_rabin(1_27_50_41_01_88_48_80_43_51 ) assert miller_rabin(1_27_50_41_01_88_48_80_43_91 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_96_66_46_44_58_50_77_87_79_18_67 ) assert miller_rabin(7_96_66_46_44_58_50_77_87_79_19_51 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(55_28_40_67_74_46_64_78_97_66_03_33 ) assert miller_rabin(55_28_40_67_74_46_64_78_97_66_03_59 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
556
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
6
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :Union[str, Any] , __A :int = 3 , __A :int = 3 , __A :Tuple[str] = ("DownEncoderBlock2D",) , __A :Tuple[str] = ("UpDecoderBlock2D",) , __A :Tuple[int] = (64,) , __A :int = 1 , __A :str = "silu" , __A :int = 3 , __A :int = 32 , __A :int = 256 , __A :int = 32 , __A :Optional[int] = None , __A :float = 0.1_8_2_1_5 , __A :str = "group" , ) -> Any: """simple docstring""" super().__init__() # pass init params to Encoder SCREAMING_SNAKE_CASE__ = Encoder( in_channels=__A , out_channels=__A , down_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , double_z=__A , ) SCREAMING_SNAKE_CASE__ = vq_embed_dim if vq_embed_dim is not None else latent_channels SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = VectorQuantizer(__A , __A , beta=0.2_5 , remap=__A , sane_index_shape=__A ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) # pass init params to Decoder SCREAMING_SNAKE_CASE__ = Decoder( in_channels=__A , out_channels=__A , up_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , norm_type=__A , ) @apply_forward_hook def _snake_case ( self :Union[str, Any] , __A :torch.FloatTensor , __A :bool = True ) -> VQEncoderOutput: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.encoder(__A ) SCREAMING_SNAKE_CASE__ = self.quant_conv(__A ) if not return_dict: return (h,) return VQEncoderOutput(latents=__A ) @apply_forward_hook def _snake_case ( self :Tuple , __A :torch.FloatTensor , __A :bool = False , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if not force_not_quantize: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.quantize(__A ) else: SCREAMING_SNAKE_CASE__ = h SCREAMING_SNAKE_CASE__ = self.post_quant_conv(__A ) SCREAMING_SNAKE_CASE__ = self.decoder(__A , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__A ) def _snake_case ( self :int , __A :torch.FloatTensor , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" SCREAMING_SNAKE_CASE__ = sample SCREAMING_SNAKE_CASE__ = self.encode(__A ).latents SCREAMING_SNAKE_CASE__ = self.decode(__A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__A )
6
1
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _A = random.Random() def lowercase (_snake_case ,_snake_case=1.0 ,_snake_case=None ,_snake_case=None ) -> Optional[int]: '''simple docstring''' if rng is None: __UpperCamelCase = global_rng __UpperCamelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str , A_ : Tuple , A_ : List[Any]=7 , A_ : Optional[Any]=4_00 , A_ : Dict=20_00 , A_ : Union[str, Any]=20_48 , A_ : str=1_28 , A_ : Tuple=1 , A_ : Dict=5_12 , A_ : Dict=30 , A_ : List[Any]=4_41_00 , )-> int: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = min_seq_length __UpperCamelCase = max_seq_length __UpperCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCamelCase = spectrogram_length __UpperCamelCase = feature_size __UpperCamelCase = num_audio_channels __UpperCamelCase = hop_length __UpperCamelCase = chunk_length __UpperCamelCase = sampling_rate def A ( self : str )-> str: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def A ( self : Optional[Any] , A_ : List[Any]=False , A_ : Optional[Any]=False )-> Optional[Any]: def _flatten(A_ : Union[str, Any] ): return list(itertools.chain(*A_ ) ) if equal_length: __UpperCamelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __UpperCamelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCamelCase = [np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __UpperCAmelCase ( snake_case__ , unittest.TestCase ): """simple docstring""" _snake_case : int = TvltFeatureExtractor def A ( self : Optional[int] )-> Tuple: __UpperCamelCase = TvltFeatureExtractionTester(self ) def A ( self : Optional[Any] )-> Dict: __UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(A_ , "spectrogram_length" ) ) self.assertTrue(hasattr(A_ , "feature_size" ) ) self.assertTrue(hasattr(A_ , "num_audio_channels" ) ) self.assertTrue(hasattr(A_ , "hop_length" ) ) self.assertTrue(hasattr(A_ , "chunk_length" ) ) self.assertTrue(hasattr(A_ , "sampling_rate" ) ) def A ( self : str )-> Optional[int]: __UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) __UpperCamelCase = self.feature_extraction_class.from_pretrained(A_ ) __UpperCamelCase = feat_extract_first.to_dict() __UpperCamelCase = feat_extract_second.to_dict() __UpperCamelCase = dict_first.pop("mel_filters" ) __UpperCamelCase = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def A ( self : List[str] )-> int: __UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = os.path.join(A_ , "feat_extract.json" ) feat_extract_first.to_json_file(A_ ) __UpperCamelCase = self.feature_extraction_class.from_json_file(A_ ) __UpperCamelCase = feat_extract_first.to_dict() __UpperCamelCase = feat_extract_second.to_dict() __UpperCamelCase = dict_first.pop("mel_filters" ) __UpperCamelCase = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def A ( self : Union[str, Any] )-> Optional[Any]: # Initialize feature_extractor __UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __UpperCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __UpperCamelCase = [np.asarray(A_ ) for speech_input in speech_inputs] # Test not batched input __UpperCamelCase = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __UpperCamelCase = feature_extractor(A_ , return_tensors="np" , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __UpperCamelCase = feature_extractor( A_ , return_tensors="np" , sampling_rate=4_41_00 , mask_audio=A_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __UpperCamelCase = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __UpperCamelCase = np.asarray(A_ ) __UpperCamelCase = feature_extractor(A_ , return_tensors="np" , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def A ( self : List[str] , A_ : Union[str, Any] )-> List[str]: __UpperCamelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __UpperCamelCase = ds.sort("id" ).select(range(A_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def A ( self : Tuple )-> Dict: __UpperCamelCase = self._load_datasamples(1 ) __UpperCamelCase = TvltFeatureExtractor() __UpperCamelCase = feature_extractor(A_ , return_tensors="pt" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_92, 1_28) ) __UpperCamelCase = torch.tensor([[-0.3_032, -0.2_708], [-0.4_434, -0.4_007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , A_ , atol=1e-4 ) )
715
"""simple docstring""" from collections.abc import Sequence from queue import Queue class __UpperCAmelCase : """simple docstring""" def __init__( self : int , A_ : Dict , A_ : List[str] , A_ : Optional[int] , A_ : Any=None , A_ : List[Any]=None )-> Dict: __UpperCamelCase = start __UpperCamelCase = end __UpperCamelCase = val __UpperCamelCase = (start + end) // 2 __UpperCamelCase = left __UpperCamelCase = right def __repr__( self : Dict )-> Tuple: return f"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})""" class __UpperCAmelCase : """simple docstring""" def __init__( self : Any , A_ : Sequence , A_ : List[str] )-> str: __UpperCamelCase = collection __UpperCamelCase = function if self.collection: __UpperCamelCase = self._build_tree(0 , len(A_ ) - 1 ) def A ( self : List[Any] , A_ : Union[str, Any] , A_ : Tuple )-> Tuple: self._update_tree(self.root , A_ , A_ ) def A ( self : str , A_ : Union[str, Any] , A_ : Any )-> Optional[Any]: return self._query_range(self.root , A_ , A_ ) def A ( self : int , A_ : Optional[Any] , A_ : Union[str, Any] )-> Optional[int]: if start == end: return SegmentTreeNode(A_ , A_ , self.collection[start] ) __UpperCamelCase = (start + end) // 2 __UpperCamelCase = self._build_tree(A_ , A_ ) __UpperCamelCase = self._build_tree(mid + 1 , A_ ) return SegmentTreeNode(A_ , A_ , self.fn(left.val , right.val ) , A_ , A_ ) def A ( self : str , A_ : Union[str, Any] , A_ : Optional[int] , A_ : Dict )-> List[str]: if node.start == i and node.end == i: __UpperCamelCase = val return if i <= node.mid: self._update_tree(node.left , A_ , A_ ) else: self._update_tree(node.right , A_ , A_ ) __UpperCamelCase = self.fn(node.left.val , node.right.val ) def A ( self : Tuple , A_ : Tuple , A_ : Any , A_ : Union[str, Any] )-> Union[str, Any]: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , A_ , A_ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , A_ , node.mid ) , self._query_range(node.right , node.mid + 1 , A_ ) , ) else: # range in right child tree return self._query_range(node.right , A_ , A_ ) def A ( self : Any )-> str: if self.root is not None: __UpperCamelCase = Queue() queue.put(self.root ) while not queue.empty(): __UpperCamelCase = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("*" * 50) _A = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
228
0
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = TypeVar("""DatasetType""", Dataset, IterableDataset) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' 'is an empty dataset dictionary.' ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(UpperCamelCase__ ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.''' ) if i == 0: snake_case_ , snake_case_ = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) else: return _interleave_iterable_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = 0 , ): '''simple docstring''' if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' 'is an empty dataset dictionary.' ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(UpperCamelCase__ ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.''' ) if i == 0: snake_case_ , snake_case_ = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ ) else: return _concatenate_iterable_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
362
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : Dict = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class lowercase ( lowercase_ , lowercase_ ): __SCREAMING_SNAKE_CASE : List[str] = '''resnet''' __SCREAMING_SNAKE_CASE : Dict = ['''basic''', '''bottleneck'''] def __init__( self , snake_case=3 , snake_case=64 , snake_case=[256, 512, 1024, 2048] , snake_case=[3, 4, 6, 3] , snake_case="bottleneck" , snake_case="relu" , snake_case=False , snake_case=None , snake_case=None , **snake_case , ): super().__init__(**snake_case ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = downsample_in_first_stage snake_case_ = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(snake_case ) + 1 )] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : List[Any] = version.parse('''1.11''' ) @property def a ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def a ( self ): return 1e-3
362
1
from ..utils import DummyObject, requires_backends class UpperCamelCase_ ( metaclass=UpperCamelCase__ ): lowerCamelCase_ = ["note_seq"] def __init__( self :Any , *__A :Union[str, Any] , **__A :Optional[Any] ) -> Any: """simple docstring""" requires_backends(self , ["""note_seq"""] ) @classmethod def _snake_case ( cls :Union[str, Any] , *__A :Optional[int] , **__A :Optional[int] ) -> List[Any]: """simple docstring""" requires_backends(cls , ["""note_seq"""] ) @classmethod def _snake_case ( cls :List[str] , *__A :str , **__A :Optional[int] ) -> Dict: """simple docstring""" requires_backends(cls , ["""note_seq"""] )
59
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _lowerCamelCase = data_utils.TransfoXLTokenizer _lowerCamelCase = data_utils.TransfoXLCorpus _lowerCamelCase = data_utils _lowerCamelCase = data_utils def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Any , UpperCamelCase__: Any , UpperCamelCase__: Tuple ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCamelCase__ , """rb""" ) as fp: SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase__ , encoding="""latin1""" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) SCREAMING_SNAKE_CASE__ = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""] print(f'''Save vocabulary to {pytorch_vocab_dump_path}''' ) SCREAMING_SNAKE_CASE__ = corpus.vocab.__dict__ torch.save(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""" , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = pytorch_dump_folder_path + """/""" + CORPUS_NAME print(f'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model SCREAMING_SNAKE_CASE__ = os.path.abspath(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = os.path.abspath(UpperCamelCase__ ) print(f'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": SCREAMING_SNAKE_CASE__ = TransfoXLConfig() else: SCREAMING_SNAKE_CASE__ = TransfoXLConfig.from_json_file(UpperCamelCase__ ) print(f'''Building PyTorch model from configuration: {config}''' ) SCREAMING_SNAKE_CASE__ = TransfoXLLMHeadModel(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = load_tf_weights_in_transfo_xl(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) print(f'''Save PyTorch model to {os.path.abspath(UpperCamelCase__ )}''' ) torch.save(model.state_dict() , UpperCamelCase__ ) print(f'''Save configuration file to {os.path.abspath(UpperCamelCase__ )}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) _lowerCamelCase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
59
1
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _snake_case : def __init__( self : Any, __lowercase : Any, __lowercase : int=2, __lowercase : Tuple=32, __lowercase : List[Any]=16, __lowercase : Any=3, __lowercase : Dict=True, __lowercase : str=True, __lowercase : Any=32, __lowercase : Union[str, Any]=4, __lowercase : Optional[int]=[0, 1, 2, 3], __lowercase : Dict=4, __lowercase : Union[str, Any]=37, __lowercase : Any="gelu", __lowercase : List[Any]=0.1, __lowercase : int=0.1, __lowercase : str=0.02, __lowercase : List[str]=3, __lowercase : int=[1, 384, 24, 24], __lowercase : List[Any]=True, __lowercase : Any=None, ): lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = backbone_out_indices lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = backbone_featmap_shape lowercase__ = scope lowercase__ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def A__ ( self : Optional[Any] ): lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def A__ ( self : List[Any] ): lowercase__ = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, backbone_out_indices=self.backbone_out_indices, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__lowercase, initializer_range=self.initializer_range, is_hybrid=self.is_hybrid, backbone_config=__lowercase, backbone_featmap_shape=self.backbone_featmap_shape, ) def A__ ( self : Optional[int], __lowercase : Optional[Any], __lowercase : str, __lowercase : Any ): lowercase__ = DPTModel(config=__lowercase ) model.to(__lowercase ) model.eval() lowercase__ = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Optional[int], __lowercase : Dict, __lowercase : Optional[Any], __lowercase : int ): lowercase__ = self.num_labels lowercase__ = DPTForDepthEstimation(__lowercase ) model.to(__lowercase ) model.eval() lowercase__ = model(__lowercase ) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size) ) def A__ ( self : Dict, __lowercase : Optional[int], __lowercase : List[str], __lowercase : Any ): lowercase__ = self.num_labels lowercase__ = DPTForSemanticSegmentation(__lowercase ) model.to(__lowercase ) model.eval() lowercase__ = model(__lowercase, labels=__lowercase ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A__ ( self : Optional[int] ): lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( lowercase__ , lowercase__ , unittest.TestCase): UpperCamelCase__ : Union[str, Any] =(DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () UpperCamelCase__ : int =( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase__ : Union[str, Any] =False UpperCamelCase__ : Optional[int] =False UpperCamelCase__ : Dict =False def A__ ( self : Union[str, Any] ): lowercase__ = DPTModelTester(self ) lowercase__ = ConfigTester(self, config_class=__lowercase, has_text_modality=__lowercase, hidden_size=37 ) def A__ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def A__ ( self : Optional[int] ): pass def A__ ( self : str ): lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(__lowercase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowercase, nn.Linear ) ) def A__ ( self : Dict ): lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(__lowercase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["pixel_values"] self.assertListEqual(arg_names[:1], __lowercase ) def A__ ( self : Any ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def A__ ( self : Tuple ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__lowercase ) def A__ ( self : Union[str, Any] ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase ) def A__ ( self : Tuple ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True if model_class in get_values(__lowercase ): continue lowercase__ = model_class(__lowercase ) model.to(__lowercase ) model.train() lowercase__ = self._prepare_for_class(__lowercase, __lowercase, return_labels=__lowercase ) lowercase__ = model(**__lowercase ).loss loss.backward() def A__ ( self : Optional[Any] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = False lowercase__ = True if model_class in get_values(__lowercase ) or not model_class.supports_gradient_checkpointing: continue lowercase__ = model_class(__lowercase ) model.to(__lowercase ) model.gradient_checkpointing_enable() model.train() lowercase__ = self._prepare_for_class(__lowercase, __lowercase, return_labels=__lowercase ) lowercase__ = model(**__lowercase ).loss loss.backward() def A__ ( self : Tuple ): lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = _config_zero_init(__lowercase ) for model_class in self.all_model_classes: lowercase__ = model_class(config=__lowercase ) # Skip the check for the backbone lowercase__ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": lowercase__ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A__ ( self : Optional[int] ): pass @slow def A__ ( self : str ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: lowercase__ = DPTModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def A__ ( self : Optional[int] ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = "add" with self.assertRaises(__lowercase ): lowercase__ = DPTForDepthEstimation(__lowercase ) def __lowerCAmelCase ( ): lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class _snake_case ( unittest.TestCase): def A__ ( self : str ): lowercase__ = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) lowercase__ = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(__lowercase ) lowercase__ = prepare_img() lowercase__ = image_processor(images=__lowercase, return_tensors="pt" ).to(__lowercase ) # forward pass with torch.no_grad(): lowercase__ = model(**__lowercase ) lowercase__ = outputs.predicted_depth # verify the predicted depth lowercase__ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape, __lowercase ) lowercase__ = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100, __lowercase, atol=1e-4 ) )
413
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class _snake_case ( lowercase__): UpperCamelCase__ : List[str] =ComputeEnvironment.AMAZON_SAGEMAKER UpperCamelCase__ : Tuple =True UpperCamelCase__ : int ="""ml.p3.2xlarge""" UpperCamelCase__ : Any ="""accelerate_sagemaker_execution_role""" UpperCamelCase__ : Dict ="""hf-sm""" UpperCamelCase__ : Optional[int] ="""us-east-1""" UpperCamelCase__ : Optional[Any] =1 UpperCamelCase__ : int ="""accelerate-sagemaker-1""" UpperCamelCase__ : Union[str, Any] ="""1.6""" UpperCamelCase__ : str ="""4.4""" UpperCamelCase__ : str ="""train.py""" UpperCamelCase__ : Union[str, Any] =[ """--model_name_or_path""", """bert""", """--do_train""", """False""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] UpperCamelCase__ : str =[ """--model_name_or_path""", """bert""", """--do_train""", """--do_test""", """False""", """--do_predict""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] class _snake_case ( unittest.TestCase): def A__ ( self : Optional[int] ): # If no defaults are changed, `to_kwargs` returns an empty dict. lowercase__ = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["model_name_or_path"], __lowercase ) assert isinstance(converted_args["do_train"], __lowercase ) assert isinstance(converted_args["epochs"], __lowercase ) assert isinstance(converted_args["learning_rate"], __lowercase ) assert isinstance(converted_args["max_steps"], __lowercase ) with pytest.raises(__lowercase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
413
1
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml snake_case : Any = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : bool , __lowerCAmelCase : bool ): def run_func(__lowerCAmelCase : Optional[int] ): @wraps(__UpperCamelCase ) def run_in_eager_mode(*__lowerCAmelCase : Tuple , **__lowerCAmelCase : Tuple ): return func(*__UpperCamelCase , **__UpperCamelCase ) @wraps(__UpperCamelCase ) @tf.function(experimental_compile=__UpperCamelCase ) def run_in_graph_mode(*__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Optional[int] ): return func(*__UpperCamelCase , **__UpperCamelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): a__ = random.Random() a__ = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__UpperCamelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class snake_case_ (SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ : int = 4_2 UpperCAmelCase__ : Optional[int] = 4_2 UpperCAmelCase__ : Optional[Any] = '''TensorFlow''' @property def lowerCamelCase__( self :Any ) -> List[str]: return tf.__version__ def lowerCamelCase__( self :List[str] ,__snake_case :List[str] ,__snake_case :Optional[int] ,__snake_case :Optional[Any] ) -> List[str]: # initialize GPU on separate process a__ = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) a__ = self._prepare_inference_func(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) return self._measure_speed(_inference ) def lowerCamelCase__( self :List[str] ,__snake_case :Dict ,__snake_case :str ,__snake_case :Tuple ) -> Any: a__ = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) a__ = self._prepare_train_func(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) return self._measure_speed(_train ) def lowerCamelCase__( self :List[Any] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Tuple ) -> str: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] ,UpperCamelCase__ ) a__ = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) a__ = self._prepare_inference_func(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) return self._measure_memory(_inference ) def lowerCamelCase__( self :Tuple ,__snake_case :Tuple ,__snake_case :Union[str, Any] ,__snake_case :Dict ) -> List[str]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] ,UpperCamelCase__ ) a__ = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) a__ = self._prepare_train_func(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) return self._measure_memory(_train ) def lowerCamelCase__( self :Tuple ,__snake_case :str ,__snake_case :Optional[Any] ,__snake_case :int ) -> Union[str, Any]: a__ = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) a__ = ( hasattr(UpperCamelCase__ ,'architectures' ) and isinstance(config.architectures ,UpperCamelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: a__ = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model a__ = __import__('transformers' ,fromlist=[model_class] ) a__ = getattr(UpperCamelCase__ ,UpperCamelCase__ ) a__ = model_cls(UpperCamelCase__ ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: a__ = TF_MODEL_MAPPING[config.__class__](UpperCamelCase__ ) # encoder-decoder has vocab size saved differently a__ = config.vocab_size if hasattr(UpperCamelCase__ ,'vocab_size' ) else config.encoder.vocab_size a__ = random_input_ids(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_decoder_forward(): return model(UpperCamelCase__ ,decoder_input_ids=UpperCamelCase__ ,training=UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_forward(): return model(UpperCamelCase__ ,training=UpperCamelCase__ ) a__ = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :Optional[int] ,__snake_case :Tuple ) -> List[str]: a__ = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' ) if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) a__ = ( hasattr(UpperCamelCase__ ,'architectures' ) and isinstance(config.architectures ,UpperCamelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: a__ = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model a__ = __import__('transformers' ,fromlist=[model_class] ) a__ = getattr(UpperCamelCase__ ,UpperCamelCase__ ) a__ = model_cls(UpperCamelCase__ ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: a__ = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](UpperCamelCase__ ) # encoder-decoder has vocab size saved differently a__ = config.vocab_size if hasattr(UpperCamelCase__ ,'vocab_size' ) else config.encoder.vocab_size a__ = random_input_ids(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_decoder_train(): a__ = model(UpperCamelCase__ ,decoder_input_ids=UpperCamelCase__ ,labels=UpperCamelCase__ ,training=UpperCamelCase__ )[0] a__ = tf.gradients(UpperCamelCase__ ,model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_train(): a__ = model(UpperCamelCase__ ,labels=UpperCamelCase__ ,training=UpperCamelCase__ )[0] a__ = tf.gradients(UpperCamelCase__ ,model.trainable_variables ) return gradients a__ = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCamelCase__( self :Any ,__snake_case :Tuple ) -> List[str]: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' ) timeit.repeat(UpperCamelCase__ ,repeat=1 ,number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average a__ = timeit.repeat( UpperCamelCase__ ,repeat=self.args.repeat ,number=10 ,) return min(UpperCamelCase__ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) def lowerCamelCase__( self :str ,__snake_case :Optional[Any] ) -> Tuple: logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.' ) a__ = start_memory_tracing('transformers' ) if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.' ) a__ = '''N/A''' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.' ) # init nvml nvml.nvmlInit() func() a__ = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) a__ = nvml.nvmlDeviceGetMemoryInfo(UpperCamelCase__ ) a__ = meminfo.used a__ = Memory(UpperCamelCase__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.' ) a__ = None else: a__ = measure_peak_memory_cpu(UpperCamelCase__ ) a__ = Memory(UpperCamelCase__ ) if isinstance(UpperCamelCase__ ,UpperCamelCase__ ) else memory_bytes if self.args.trace_memory_line_by_line: a__ = stop_memory_tracing(UpperCamelCase__ ) if memory is None: a__ = summary.total else: a__ = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) return "N/A", None
711
from decimal import Decimal, getcontext from math import ceil, factorial def __lowercase ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) a__ = precision a__ = ceil(precision / 1_4 ) a__ = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() a__ = 1 a__ = 1_3_5_9_1_4_0_9 a__ = Decimal(__lowerCAmelCase ) for k in range(1 , __lowerCAmelCase ): a__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__lowerCAmelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case : Tuple = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
657
0
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class _a ( lowerCAmelCase__ ): '''simple docstring''' def __UpperCAmelCase( self ): __A : List[str] = SMALL_MODEL_IDENTIFIER __A : Tuple = "pt" __A : int = "tf" def __UpperCAmelCase( self , __UpperCAmelCase ): __A : Optional[int] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__UpperCAmelCase ) def __UpperCAmelCase( self , __UpperCAmelCase ): __A : Any = TFAutoModel.from_pretrained(self.test_model , from_pt=__UpperCAmelCase ) model_tf.save_pretrained(__UpperCAmelCase ) def __UpperCAmelCase( self ): __A : List[str] = "mock_framework" # Framework provided - return whatever the user provides __A : Tuple = FeaturesManager.determine_framework(self.test_model , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__UpperCAmelCase ) __A : List[str] = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__UpperCAmelCase ) __A : Optional[Any] = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def __UpperCAmelCase( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__UpperCAmelCase ) __A : Dict = FeaturesManager.determine_framework(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__UpperCAmelCase ) __A : List[str] = FeaturesManager.determine_framework(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__UpperCAmelCase ): __A : Optional[int] = FeaturesManager.determine_framework(__UpperCAmelCase ) def __UpperCAmelCase( self ): __A : Tuple = MagicMock(return_value=__UpperCAmelCase ) with patch("transformers.onnx.features.is_tf_available" , __UpperCAmelCase ): __A : Union[str, Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __A : Tuple = MagicMock(return_value=__UpperCAmelCase ) with patch("transformers.onnx.features.is_torch_available" , __UpperCAmelCase ): __A : Optional[int] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch __A : Tuple = MagicMock(return_value=__UpperCAmelCase ) __A : Optional[Any] = MagicMock(return_value=__UpperCAmelCase ) with patch("transformers.onnx.features.is_tf_available" , __UpperCAmelCase ), patch( "transformers.onnx.features.is_torch_available" , __UpperCAmelCase ): __A : List[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCAmelCase , self.framework_pt ) # Both not in environment -> raise error __A : Any = MagicMock(return_value=__UpperCAmelCase ) __A : Optional[int] = MagicMock(return_value=__UpperCAmelCase ) with patch("transformers.onnx.features.is_tf_available" , __UpperCAmelCase ), patch( "transformers.onnx.features.is_torch_available" , __UpperCAmelCase ): with self.assertRaises(__UpperCAmelCase ): __A : Union[str, Any] = FeaturesManager.determine_framework(self.test_model )
520
from math import isqrt, loga def lowerCamelCase_ ( _lowercase ) -> list[int]: __A : Dict = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowercase , _lowercase ): __A : List[str] = False return [i for i in range(2 , _lowercase ) if is_prime[i]] def lowerCamelCase_ ( _lowercase = 800_800 , _lowercase = 800_800 ) -> int: __A : List[str] = degree * loga(_lowercase ) __A : List[Any] = int(_lowercase ) __A : Optional[Any] = calculate_prime_numbers(_lowercase ) __A : Optional[int] = 0 __A : Optional[int] = 0 __A : List[Any] = len(_lowercase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'''{solution() = }''')
520
1
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = 50 ): lowercase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'{solution() = }')
37
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __lowerCAmelCase ( ): lowercase__ = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=SCREAMING_SNAKE_CASE_ ) lowercase__ = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=SCREAMING_SNAKE_CASE_ ) env_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) launch_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) tpu_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) test_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) # Let's go lowercase__ = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE_ , "func" ): parser.print_help() exit(1 ) # Run args.func(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
37
1
from __future__ import annotations from dataclasses import dataclass @dataclass class __lowerCAmelCase : _a = 42 _a = None _a = None def a ( A__ : TreeNode | None ) -> bool: """simple docstring""" def is_valid_tree(A__ : TreeNode | None ) -> bool: if node is None: return True if not isinstance(A__ , A__ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(A__ ): raise ValueError( 'Each node should be type of TreeNode and data should be float.' ) def is_binary_search_tree_recursive_check( A__ : TreeNode | None , A__ : float , A__ : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , A__ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , A__ ) ) return is_binary_search_tree_recursive_check(A__ , -float('inf' ) , float('inf' ) ) if __name__ == "__main__": import doctest doctest.testmod()
291
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): _a = StableDiffusionDiffEditPipeline _a = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} _a = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} _a = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _a = frozenset([] ) def A__ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) _lowercase =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase , ) _lowercase =DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) _lowercase =DDIMInverseScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase , set_alpha_to_zero=lowerCAmelCase , ) torch.manual_seed(0 ) _lowercase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _lowercase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) _lowercase =CLIPTextModel(lowerCAmelCase ) _lowercase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowercase ={ 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 ) -> Tuple: '''simple docstring''' _lowercase =floats_tensor((1, 16, 16) , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) _lowercase =floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if str(lowerCAmelCase ).startswith('mps' ): _lowercase =torch.manual_seed(lowerCAmelCase ) else: _lowercase =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) _lowercase ={ 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 ) -> Optional[Any]: '''simple docstring''' _lowercase =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) _lowercase =image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowercase =Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('RGB' ) if str(lowerCAmelCase ).startswith('mps' ): _lowercase =torch.manual_seed(lowerCAmelCase ) else: _lowercase =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) _lowercase ={ 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 ) -> List[Any]: '''simple docstring''' _lowercase =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) _lowercase =image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowercase =Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('RGB' ) if str(lowerCAmelCase ).startswith('mps' ): _lowercase =torch.manual_seed(lowerCAmelCase ) else: _lowercase =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) _lowercase ={ 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def A__ ( self ) -> Any: '''simple docstring''' if not hasattr(self.pipeline_class , '_optional_components' ): return _lowercase =self.get_dummy_components() _lowercase =self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) _lowercase =self.get_dummy_inputs(lowerCAmelCase ) _lowercase =pipe(**lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase ) _lowercase =self.pipeline_class.from_pretrained(lowerCAmelCase ) pipe_loaded.to(lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCAmelCase , lowerCAmelCase ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) _lowercase =self.get_dummy_inputs(lowerCAmelCase ) _lowercase =pipe_loaded(**lowerCAmelCase )[0] _lowercase =np.abs(output - output_loaded ).max() self.assertLess(lowerCAmelCase , 1e-4 ) def A__ ( self ) -> int: '''simple docstring''' _lowercase ='cpu' _lowercase =self.get_dummy_components() _lowercase =self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) _lowercase =self.get_dummy_mask_inputs(lowerCAmelCase ) _lowercase =pipe.generate_mask(**lowerCAmelCase ) _lowercase =mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) _lowercase =np.array([0] * 9 ) _lowercase =np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A__ ( self ) -> Dict: '''simple docstring''' _lowercase ='cpu' _lowercase =self.get_dummy_components() _lowercase =self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) _lowercase =self.get_dummy_inversion_inputs(lowerCAmelCase ) _lowercase =pipe.invert(**lowerCAmelCase ).images _lowercase =image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) _lowercase =np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) _lowercase =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase , 1e-3 ) def A__ ( self ) -> List[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A__ ( self ) -> Any: '''simple docstring''' _lowercase ='cpu' _lowercase =self.get_dummy_components() _lowercase ={'beta_start': 0.00085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} _lowercase =DPMSolverMultistepScheduler(**lowerCAmelCase ) _lowercase =DPMSolverMultistepInverseScheduler(**lowerCAmelCase ) _lowercase =self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) _lowercase =self.get_dummy_inversion_inputs(lowerCAmelCase ) _lowercase =pipe.invert(**lowerCAmelCase ).images _lowercase =image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) _lowercase =np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) _lowercase =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase , 1e-3 ) @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): def A__ ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A__ ( cls ) -> int: '''simple docstring''' _lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) _lowercase =raw_image.convert('RGB' ).resize((768, 768) ) _lowercase =raw_image def A__ ( self ) -> Dict: '''simple docstring''' _lowercase =torch.manual_seed(0 ) _lowercase =StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=lowerCAmelCase , torch_dtype=torch.floataa ) _lowercase =DDIMScheduler.from_config(pipe.scheduler.config ) _lowercase =DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase ) _lowercase ='a bowl of fruit' _lowercase ='a bowl of pears' _lowercase =pipe.generate_mask( image=self.raw_image , source_prompt=lowerCAmelCase , target_prompt=lowerCAmelCase , generator=lowerCAmelCase , ) _lowercase =pipe.invert( prompt=lowerCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=lowerCAmelCase ).latents _lowercase =pipe( prompt=lowerCAmelCase , mask_image=lowerCAmelCase , image_latents=lowerCAmelCase , generator=lowerCAmelCase , negative_prompt=lowerCAmelCase , inpaint_strength=0.7 , output_type='numpy' , ).images[0] _lowercase =( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A__ ( self ) -> Any: '''simple docstring''' _lowercase =torch.manual_seed(0 ) _lowercase =StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=lowerCAmelCase , torch_dtype=torch.floataa ) _lowercase =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _lowercase =DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase ) _lowercase ='a bowl of fruit' _lowercase ='a bowl of pears' _lowercase =pipe.generate_mask( image=self.raw_image , source_prompt=lowerCAmelCase , target_prompt=lowerCAmelCase , generator=lowerCAmelCase , ) _lowercase =pipe.invert( prompt=lowerCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=lowerCAmelCase , num_inference_steps=25 , ).latents _lowercase =pipe( prompt=lowerCAmelCase , mask_image=lowerCAmelCase , image_latents=lowerCAmelCase , generator=lowerCAmelCase , negative_prompt=lowerCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0] _lowercase =( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
291
1
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __A ( lowerCAmelCase_ ): for i in range(0 , lowerCAmelCase_ ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __A ( lowerCAmelCase_ ): for i in range(lowerCAmelCase_ , 0 , -1 ): for _ in range(lowerCAmelCase_ , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __A ( lowerCAmelCase_ ): if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(lowerCAmelCase_ ) # upper half reverse_floyd(lowerCAmelCase_ ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') lowerCAmelCase_ : List[str] = 1 while K: lowerCAmelCase_ : int = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) lowerCAmelCase_ : Any = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
156
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase_ : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } lowerCAmelCase_ : int = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def __A ( lowerCAmelCase_ ): _UpperCAmelCase : Tuple = {} with open(lowerCAmelCase_ , """r""" ) as file: for line_number, line in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : List[Any] = line.strip() if line: _UpperCAmelCase : Any = line.split() _UpperCAmelCase : Union[str, Any] = line_number _UpperCAmelCase : Optional[Any] = words[0] _UpperCAmelCase : str = value return result def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): for attribute in key.split(""".""" ): _UpperCAmelCase : Optional[int] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase_ ): _UpperCAmelCase : List[Any] = PARAM_MAPPING[full_name.split(""".""" )[-1]] _UpperCAmelCase : str = """param""" if weight_type is not None and weight_type != "param": _UpperCAmelCase : Optional[int] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape elif weight_type is not None and weight_type == "param": _UpperCAmelCase : Tuple = hf_pointer for attribute in hf_param_name.split(""".""" ): _UpperCAmelCase : Any = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : str = shape_pointer.shape # let's reduce dimension _UpperCAmelCase : Union[str, Any] = value[0] else: _UpperCAmelCase : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": _UpperCAmelCase : int = value elif weight_type == "weight_g": _UpperCAmelCase : Optional[int] = value elif weight_type == "weight_v": _UpperCAmelCase : Tuple = value elif weight_type == "bias": _UpperCAmelCase : Any = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _UpperCAmelCase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Tuple = value else: _UpperCAmelCase : Optional[int] = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase_ ): _UpperCAmelCase : Dict = PARAM_MAPPING[full_name.split(""".""" )[-1]] _UpperCAmelCase : int = """param""" if weight_type is not None and weight_type != "param": _UpperCAmelCase : Dict = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _UpperCAmelCase : Union[str, Any] = """.""".join([key, hf_param_name] ) else: _UpperCAmelCase : Any = key _UpperCAmelCase : int = value if """lm_head""" in full_key else value[0] lowerCAmelCase_ : Optional[Any] = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None ): _UpperCAmelCase : List[str] = False for key, mapped_key in MAPPING.items(): _UpperCAmelCase : Union[str, Any] = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: _UpperCAmelCase : List[str] = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] _UpperCAmelCase : Tuple = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "weight_g" in name: _UpperCAmelCase : Any = """weight_g""" elif "weight_v" in name: _UpperCAmelCase : Union[str, Any] = """weight_v""" elif "bias" in name: _UpperCAmelCase : Optional[Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCAmelCase : Optional[int] = """weight""" else: _UpperCAmelCase : Dict = None if hf_dict is not None: rename_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return is_used return is_used def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Any = [] _UpperCAmelCase : str = fairseq_model.state_dict() _UpperCAmelCase : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) _UpperCAmelCase : List[str] = True else: _UpperCAmelCase : List[Any] = load_wavaveca_layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(f"Unused weights: {unused_weights}" ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Tuple = full_name.split("""conv_layers.""" )[-1] _UpperCAmelCase : str = name.split(""".""" ) _UpperCAmelCase : Optional[Any] = int(items[0] ) _UpperCAmelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _UpperCAmelCase : Optional[int] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _UpperCAmelCase : Optional[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) _UpperCAmelCase : List[str] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) _UpperCAmelCase : List[str] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=False ): if config_path is not None: _UpperCAmelCase : List[Any] = WavaVecaConfig.from_pretrained(lowerCAmelCase_ ) else: _UpperCAmelCase : Optional[int] = WavaVecaConfig() if is_seq_class: _UpperCAmelCase : Any = read_txt_into_dict(lowerCAmelCase_ ) _UpperCAmelCase : int = idalabel _UpperCAmelCase : Optional[int] = WavaVecaForSequenceClassification(lowerCAmelCase_ ) _UpperCAmelCase : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) feature_extractor.save_pretrained(lowerCAmelCase_ ) elif is_finetuned: if dict_path: _UpperCAmelCase : int = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCAmelCase : Union[str, Any] = target_dict.pad_index _UpperCAmelCase : Dict = target_dict.bos_index _UpperCAmelCase : Dict = target_dict.eos_index _UpperCAmelCase : Tuple = len(target_dict.symbols ) _UpperCAmelCase : Union[str, Any] = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = target_dict.indices # fairseq has the <pad> and <s> switched _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : List[str] = 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Any = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) _UpperCAmelCase : Tuple = True if config.feat_extract_norm == """layer""" else False _UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) _UpperCAmelCase : Tuple = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = WavaVecaForCTC(lowerCAmelCase_ ) else: _UpperCAmelCase : Union[str, Any] = WavaVecaForPreTraining(lowerCAmelCase_ ) if is_finetuned or is_seq_class: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _UpperCAmelCase : int = argparse.Namespace(task="""audio_pretraining""" ) _UpperCAmelCase : Optional[Any] = fairseq.tasks.setup_task(lowerCAmelCase_ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) _UpperCAmelCase : Tuple = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) lowerCAmelCase_ : Optional[Any] = parser.parse_args() lowerCAmelCase_ : Union[str, Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
156
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCAmelCase : List[str] ={ '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] =['''ConvNextFeatureExtractor'''] _lowerCAmelCase : Optional[Any] =['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple =[ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str =[ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _lowerCAmelCase : Any =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
113
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowercase : List[Any] = re.compile(r'''\s+''') def lowerCAmelCase__ ( _a : int ): return {"hash": hashlib.mda(re.sub(_a , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def lowerCAmelCase__ ( _a : Optional[int] ): snake_case_ : Optional[int] = [len(_a ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_a ), "line_max": max(_a )} def lowerCAmelCase__ ( _a : Optional[int] ): snake_case_ : str = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def lowerCAmelCase__ ( _a : str , _a : Tuple ): if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def lowerCAmelCase__ ( _a : Tuple , _a : Any=5 ): snake_case_ : Union[str, Any] = ["auto-generated", "autogenerated", "automatically generated"] snake_case_ : Union[str, Any] = example["content"].splitlines() for _, line in zip(range(_a ) , _a ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCAmelCase__ ( _a : List[str] , _a : Dict=5 , _a : Union[str, Any]=0.05 ): snake_case_ : Optional[Any] = ["unit tests", "test file", "configuration file"] snake_case_ : Optional[Any] = example["content"].splitlines() snake_case_ : List[str] = 0 snake_case_ : List[Any] = 0 # first test for _, line in zip(range(_a ) , _a ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test snake_case_ : List[str] = example["content"].count("\n" ) snake_case_ : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCAmelCase__ ( _a : Optional[Any] ): snake_case_ : Optional[int] = ["def ", "class ", "for ", "while "] snake_case_ : Optional[Any] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCAmelCase__ ( _a : List[Any] , _a : Tuple=4 ): snake_case_ : List[Any] = example["content"].splitlines() snake_case_ : Tuple = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCAmelCase__ ( _a : Optional[Any] ): snake_case_ : Dict = tokenizer(example["content"] , truncation=_a )["input_ids"] snake_case_ : Dict = len(example["content"] ) / len(_a ) return {"ratio": ratio} def lowerCAmelCase__ ( _a : Dict ): snake_case_ : Any = {} results.update(get_hash(_a ) ) results.update(line_stats(_a ) ) results.update(alpha_stats(_a ) ) results.update(char_token_ratio(_a ) ) results.update(is_autogenerated(_a ) ) results.update(is_config_or_test(_a ) ) results.update(has_no_keywords(_a ) ) results.update(has_few_assignments(_a ) ) return results def lowerCAmelCase__ ( _a : Union[str, Any] , _a : Dict , _a : Any ): if not check_uniques(_a , _a ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCAmelCase__ ( _a : Optional[int] ): with open(_a , "rb" ) as f_in: with gzip.open(str(_a ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_a , _a ) os.unlink(_a ) # Settings lowercase : Union[str, Any] = HfArgumentParser(PreprocessingArguments) lowercase : List[Any] = parser.parse_args() if args.num_workers is None: lowercase : str = multiprocessing.cpu_count() lowercase : int = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowercase : Any = time.time() lowercase : Dict = load_dataset(args.dataset_name, split='''train''') print(F"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing lowercase : str = time.time() lowercase : List[Any] = ds.map(preprocess, num_proc=args.num_workers) print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes lowercase : Optional[int] = set(ds.unique('''hash''')) lowercase : List[str] = len(uniques) / len(ds) print(F"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics lowercase : str = time.time() lowercase : List[str] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F"""Time to filter dataset: {time.time()-t_start:.2f}""") print(F"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowercase : Dict = time.time() lowercase ,lowercase : Any = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(F"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file lowercase : Dict = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) lowercase : str = output_dir / '''data''' data_dir.mkdir(exist_ok=True) lowercase : Optional[int] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowercase : Optional[int] = str(data_dir / F"""file-{file_number+1:012}.json""") lowercase : int = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
568
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __UpperCamelCase : int = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __UpperCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
719
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Union[str, Any] ) -> List[str]: """simple docstring""" __a = botoa.client('iam' ) __a = { 'Version': '2012-10-17', 'Statement': [ {'Effect': 'Allow', 'Principal': {'Service': 'sagemaker.amazonaws.com'}, 'Action': 'sts:AssumeRole'} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=SCREAMING_SNAKE_CASE__, AssumeRolePolicyDocument=json.dumps(SCREAMING_SNAKE_CASE__, indent=2 ) ) __a = { 'Version': '2012-10-17', 'Statement': [ { 'Effect': 'Allow', 'Action': [ 'sagemaker:*', 'ecr:GetDownloadUrlForLayer', 'ecr:BatchGetImage', 'ecr:BatchCheckLayerAvailability', 'ecr:GetAuthorizationToken', 'cloudwatch:PutMetricData', 'cloudwatch:GetMetricData', 'cloudwatch:GetMetricStatistics', 'cloudwatch:ListMetrics', 'logs:CreateLogGroup', 'logs:CreateLogStream', 'logs:DescribeLogStreams', 'logs:PutLogEvents', 'logs:GetLogEvents', 's3:CreateBucket', 's3:ListBucket', 's3:GetBucketLocation', 's3:GetObject', 's3:PutObject', ], 'Resource': '*', } ], } # attach policy to role iam_client.put_role_policy( RoleName=SCREAMING_SNAKE_CASE__, PolicyName=f"""{role_name}_policy_permission""", PolicyDocument=json.dumps(SCREAMING_SNAKE_CASE__, indent=2 ), ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"""role {role_name} already exists. Using existing one""" ) def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: List[str] ) -> Optional[Any]: """simple docstring""" __a = botoa.client('iam' ) return iam_client.get_role(RoleName=SCREAMING_SNAKE_CASE__ )["Role"]["Arn"] def __UpperCAmelCase ( ) -> Any: """simple docstring""" __a = _ask_options( 'How do you want to authorize?', ['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '], SCREAMING_SNAKE_CASE__, ) __a = None if credentials_configuration == 0: __a = _ask_field('Enter your AWS Profile name: [default] ', default='default' ) __a = aws_profile else: print( 'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,' '`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' ) __a = _ask_field('AWS Access Key ID: ' ) __a = aws_access_key_id __a = _ask_field('AWS Secret Access Key: ' ) __a = aws_secret_access_key __a = _ask_field('Enter your AWS Region: [us-east-1]', default='us-east-1' ) __a = aws_region __a = _ask_options( 'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?', ['Provide IAM Role name', 'Create new IAM role using credentials'], SCREAMING_SNAKE_CASE__, ) if role_management == 0: __a = _ask_field('Enter your IAM role name: ' ) else: __a = 'accelerate_sagemaker_execution_role' print(f"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(SCREAMING_SNAKE_CASE__ ) __a = _ask_field( 'Do you want to use custom Docker image? [yes/NO]: ', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) __a = None if is_custom_docker_image: __a = _ask_field('Enter your Docker image: ', lambda SCREAMING_SNAKE_CASE__ : str(SCREAMING_SNAKE_CASE__ ).lower() ) __a = _ask_field( 'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) __a = None if is_sagemaker_inputs_enabled: __a = _ask_field( 'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ', lambda SCREAMING_SNAKE_CASE__ : str(SCREAMING_SNAKE_CASE__ ).lower(), ) __a = _ask_field( 'Do you want to enable SageMaker metrics? [yes/NO]: ', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) __a = None if is_sagemaker_metrics_enabled: __a = _ask_field( 'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ', lambda SCREAMING_SNAKE_CASE__ : str(SCREAMING_SNAKE_CASE__ ).lower(), ) __a = _ask_options( 'What is the distributed mode?', ['No distributed training', 'Data parallelism'], _convert_sagemaker_distributed_mode, ) __a = {} __a = _ask_field( 'Do you wish to optimize your script with torch dynamo?[yes/NO]:', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) if use_dynamo: __a = 'dynamo_' __a = _ask_options( 'Which dynamo backend would you like to use?', [x.lower() for x in DYNAMO_BACKENDS], _convert_dynamo_backend, default=2, ) __a = _ask_field( 'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) if use_custom_options: __a = _ask_options( 'Which mode do you want to use?', SCREAMING_SNAKE_CASE__, lambda SCREAMING_SNAKE_CASE__ : TORCH_DYNAMO_MODES[int(SCREAMING_SNAKE_CASE__ )], default='default', ) __a = _ask_field( 'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) __a = _ask_field( 'Do you want to enable dynamic shape tracing? [yes/NO]: ', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) __a = 'Which EC2 instance type you want to use for your training?' if distributed_type != SageMakerDistributedType.NO: __a = _ask_options( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, lambda SCREAMING_SNAKE_CASE__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(SCREAMING_SNAKE_CASE__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __a = _ask_field(SCREAMING_SNAKE_CASE__, lambda SCREAMING_SNAKE_CASE__ : str(SCREAMING_SNAKE_CASE__ ).lower(), default='ml.p3.2xlarge' ) __a = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __a = _ask_field( 'How many machines do you want use? [1]: ', SCREAMING_SNAKE_CASE__, default=1, ) __a = _ask_options( 'Do you wish to use FP16 or BF16 (mixed precision)?', ['no', 'fp16', 'bf16', 'fp8'], _convert_mixed_precision, ) if use_dynamo and mixed_precision == "no": print( 'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' ) return SageMakerConfig( image_uri=SCREAMING_SNAKE_CASE__, compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER, distributed_type=SCREAMING_SNAKE_CASE__, use_cpu=SCREAMING_SNAKE_CASE__, dynamo_config=SCREAMING_SNAKE_CASE__, eca_instance_type=SCREAMING_SNAKE_CASE__, profile=SCREAMING_SNAKE_CASE__, region=SCREAMING_SNAKE_CASE__, iam_role_name=SCREAMING_SNAKE_CASE__, mixed_precision=SCREAMING_SNAKE_CASE__, num_machines=SCREAMING_SNAKE_CASE__, sagemaker_inputs_file=SCREAMING_SNAKE_CASE__, sagemaker_metrics_file=SCREAMING_SNAKE_CASE__, )
270
0
from __future__ import annotations def __lowercase ( __lowerCAmelCase : int | str ): a__ = str(__lowerCAmelCase ) return n == n[::-1] def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 ): a__ = 0 for i in range(1 , __lowerCAmelCase ): if is_palindrome(__lowerCAmelCase ) and is_palindrome(bin(__lowerCAmelCase ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
335
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case : Optional[Any] = logging.get_logger(__name__) snake_case : Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED snake_case : Tuple = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } snake_case : Tuple = { '''allenai/led-base-16384''': 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __lowercase ( ): a__ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) a__ = bs[:] a__ = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCAmelCase ) cs.append(2**8 + n ) n += 1 a__ = [chr(__lowerCAmelCase ) for n in cs] return dict(zip(__lowerCAmelCase , __lowerCAmelCase ) ) def __lowercase ( __lowerCAmelCase : List[Any] ): a__ = set() a__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a__ = char return pairs class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = VOCAB_FILES_NAMES UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Any = ['''input_ids''', '''attention_mask'''] def __init__( self :Dict ,__snake_case :List[Any] ,__snake_case :Optional[Any] ,__snake_case :Tuple="replace" ,__snake_case :Tuple="<s>" ,__snake_case :Tuple="</s>" ,__snake_case :Dict="</s>" ,__snake_case :Any="<s>" ,__snake_case :List[str]="<unk>" ,__snake_case :Tuple="<pad>" ,__snake_case :Dict="<mask>" ,__snake_case :Dict=False ,**__snake_case :Union[str, Any] ,) -> Optional[Any]: a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else bos_token a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else eos_token a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else sep_token a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else cls_token a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else unk_token a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it a__ = AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ) if isinstance(__snake_case ,__snake_case ) else mask_token super().__init__( errors=__snake_case ,bos_token=__snake_case ,eos_token=__snake_case ,unk_token=__snake_case ,sep_token=__snake_case ,cls_token=__snake_case ,pad_token=__snake_case ,mask_token=__snake_case ,add_prefix_space=__snake_case ,**__snake_case ,) with open(__snake_case ,encoding='utf-8' ) as vocab_handle: a__ = json.load(__snake_case ) a__ = {v: k for k, v in self.encoder.items()} a__ = errors # how to handle errors in decoding a__ = bytes_to_unicode() a__ = {v: k for k, v in self.byte_encoder.items()} with open(__snake_case ,encoding='utf-8' ) as merges_handle: a__ = merges_handle.read().split('\n' )[1:-1] a__ = [tuple(merge.split() ) for merge in bpe_merges] a__ = dict(zip(__snake_case ,range(len(__snake_case ) ) ) ) a__ = {} a__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a__ = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCamelCase__( self :Union[str, Any] ) -> List[Any]: return len(self.encoder ) def lowerCamelCase__( self :List[Any] ) -> str: return dict(self.encoder ,**self.added_tokens_encoder ) def lowerCamelCase__( self :List[str] ,__snake_case :int ) -> List[Any]: if token in self.cache: return self.cache[token] a__ = tuple(__snake_case ) a__ = get_pairs(__snake_case ) if not pairs: return token while True: a__ = min(__snake_case ,key=lambda __snake_case : self.bpe_ranks.get(__snake_case ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break a__ , a__ = bigram a__ = [] a__ = 0 while i < len(__snake_case ): try: a__ = word.index(__snake_case ,__snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a__ = j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a__ = tuple(__snake_case ) a__ = new_word if len(__snake_case ) == 1: break else: a__ = get_pairs(__snake_case ) a__ = ' '.join(__snake_case ) a__ = word return word def lowerCamelCase__( self :List[Any] ,__snake_case :Tuple ) -> Any: a__ = [] for token in re.findall(self.pat ,__snake_case ): a__ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__snake_case ).split(' ' ) ) return bpe_tokens def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Tuple ) -> Tuple: return self.encoder.get(__snake_case ,self.encoder.get(self.unk_token ) ) def lowerCamelCase__( self :str ,__snake_case :str ) -> Tuple: return self.decoder.get(__snake_case ) def lowerCamelCase__( self :int ,__snake_case :Optional[int] ) -> Any: a__ = ''.join(__snake_case ) a__ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' ,errors=self.errors ) return text def lowerCamelCase__( self :Union[str, Any] ,__snake_case :str ,__snake_case :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ = os.path.join( __snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) a__ = os.path.join( __snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__snake_case ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=__snake_case ,ensure_ascii=__snake_case ) + '\n' ) a__ = 0 with open(__snake_case ,'w' ,encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) a__ = token_index writer.write(' '.join(__snake_case ) + '\n' ) index += 1 return vocab_file, merge_file def lowerCamelCase__( self :Union[str, Any] ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a__ = [self.cls_token_id] a__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__( self :Tuple ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ,__snake_case :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case ,token_ids_a=__snake_case ,already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def lowerCamelCase__( self :int ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ) -> List[int]: a__ = [self.sep_token_id] a__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__( self :List[Any] ,__snake_case :List[str] ,__snake_case :Dict=False ,**__snake_case :Optional[Any] ) -> Tuple: a__ = kwargs.pop('add_prefix_space' ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__snake_case ) > 0 and not text[0].isspace()): a__ = ' ' + text return (text, kwargs) def lowerCamelCase__( self :Optional[Any] ,__snake_case :Union[Dict[str, EncodedInput], BatchEncoding] ,__snake_case :Optional[int] = None ,__snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,__snake_case :Optional[int] = None ,__snake_case :Optional[bool] = None ,) -> dict: a__ = super()._pad( encoded_inputs=__snake_case ,max_length=__snake_case ,padding_strategy=__snake_case ,pad_to_multiple_of=__snake_case ,return_attention_mask=__snake_case ,) # Load from model defaults if return_attention_mask is None: a__ = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: a__ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. a__ = len(encoded_inputs['global_attention_mask'] ) != len(__snake_case ) if needs_to_be_padded: a__ = len(__snake_case ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` a__ = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": a__ = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
335
1
'''simple docstring''' from __future__ import annotations import math def A_( A : Optional[Any] , A : List[str]): UpperCamelCase = u for i in range(1 , _lowercase): UpperCamelCase = temp * (u - i) return temp def A_( ): UpperCamelCase = int(input('enter the numbers of values: ')) UpperCamelCase = [] for _ in range(_lowercase): y.append([]) for i in range(_lowercase): for j in range(_lowercase): y[i].append(_lowercase) UpperCamelCase = 0 print('enter the values of parameters in a list: ') UpperCamelCase = list(map(_lowercase , input().split())) print('enter the values of corresponding parameters: ') for i in range(_lowercase): UpperCamelCase = float(input()) UpperCamelCase = int(input('enter the value to interpolate: ')) UpperCamelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , _lowercase): for j in range(n - i): UpperCamelCase = y[j + 1][i - 1] - y[j][i - 1] UpperCamelCase = y[0][0] for i in range(1 , _lowercase): summ += (ucal(_lowercase , _lowercase) * y[0][i]) / math.factorial(_lowercase) print(f'''the value at {value} is {summ}''') if __name__ == "__main__": main()
704
'''simple docstring''' import argparse import copy def A_( A : Optional[int]): UpperCamelCase = {} with open(A) as f: for line in f: if line.split()[0] not in dict_of_neighbours: UpperCamelCase = [] _list.append([line.split()[1], line.split()[2]]) UpperCamelCase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]]) if line.split()[1] not in dict_of_neighbours: UpperCamelCase = [] _list.append([line.split()[0], line.split()[2]]) UpperCamelCase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]]) return dict_of_neighbours def A_( A : Union[str, Any] , A : str): with open(A) as f: UpperCamelCase = f.read(1) UpperCamelCase = start_node UpperCamelCase = [] UpperCamelCase = start_node UpperCamelCase = 0 while visiting not in first_solution: UpperCamelCase = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1]) < int(A) and k[0] not in first_solution: UpperCamelCase = k[1] UpperCamelCase = k[0] first_solution.append(A) UpperCamelCase = distance_of_first_solution + int(A) UpperCamelCase = best_node first_solution.append(A) UpperCamelCase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 UpperCamelCase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1]) - 1_0000 ) return first_solution, distance_of_first_solution def A_( A : List[Any] , A : str): UpperCamelCase = [] for n in solution[1:-1]: UpperCamelCase = solution.index(A) for kn in solution[1:-1]: UpperCamelCase = solution.index(A) if n == kn: continue UpperCamelCase = copy.deepcopy(A) UpperCamelCase = kn UpperCamelCase = n UpperCamelCase = 0 for k in _tmp[:-1]: UpperCamelCase = _tmp[_tmp.index(A) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: UpperCamelCase = distance + int(i[1]) _tmp.append(A) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp) UpperCamelCase = len(neighborhood_of_solution[0]) - 1 neighborhood_of_solution.sort(key=lambda A: x[index_of_last_item_in_the_list]) return neighborhood_of_solution def A_( A : List[str] , A : Any , A : Any , A : List[Any] , A : Any): UpperCamelCase = 1 UpperCamelCase = first_solution UpperCamelCase = [] UpperCamelCase = distance_of_first_solution UpperCamelCase = solution while count <= iters: UpperCamelCase = find_neighborhood(A , A) UpperCamelCase = 0 UpperCamelCase = neighborhood[index_of_best_solution] UpperCamelCase = len(A) - 1 UpperCamelCase = False while not found: UpperCamelCase = 0 while i < len(A): if best_solution[i] != solution[i]: UpperCamelCase = best_solution[i] UpperCamelCase = solution[i] break UpperCamelCase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node]) UpperCamelCase = True UpperCamelCase = best_solution[:-1] UpperCamelCase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: UpperCamelCase = cost UpperCamelCase = solution else: UpperCamelCase = index_of_best_solution + 1 UpperCamelCase = neighborhood[index_of_best_solution] if len(A) >= size: tabu_list.pop(0) UpperCamelCase = count + 1 return best_solution_ever, best_cost def A_( A : Optional[Any]=None): UpperCamelCase = generate_neighbours(args.File) UpperCamelCase , UpperCamelCase = generate_first_solution( args.File , A) UpperCamelCase , UpperCamelCase = tabu_search( A , A , A , args.Iterations , args.Size , ) print(f'''Best solution: {best_sol}, with total distance: {best_cost}.''') if __name__ == "__main__": lowerCAmelCase : Any = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
432
0
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=16 , __snake_case=2 , __snake_case=0.02 , __snake_case=3 , __snake_case=4 , __snake_case=None , ) -> List[Any]: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_mask __a =use_token_type_ids __a =use_labels __a =vocab_size __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_vocab_size __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =scope def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =None if self.use_input_mask: __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self ) -> str: '''simple docstring''' return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Optional[int]: '''simple docstring''' __a =NystromformerModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) __a =model(__snake_case , token_type_ids=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Optional[int]: '''simple docstring''' __a =NystromformerForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> List[Any]: '''simple docstring''' __a =NystromformerForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: '''simple docstring''' __a =self.num_labels __a =NystromformerForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =self.num_labels __a =NystromformerForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Any: '''simple docstring''' __a =self.num_choices __a =NystromformerForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() __a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =NystromformerModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __a =type self.model_tester.create_and_check_model(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =NystromformerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> str: '''simple docstring''' __a =NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) __a =torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): __a =model(__snake_case )[0] __a =torch.Size((1, 6, 768) ) self.assertEqual(output.shape , __snake_case ) __a =torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) ) @slow def __magic_name__ ( self ) -> int: '''simple docstring''' __a ='the [MASK] of Belgium is Brussels' __a =AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) __a =NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) __a =tokenizer(__snake_case , return_tensors='pt' ) with torch.no_grad(): __a =model(encoding.input_ids ).logits __a =token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(__snake_case ) , 'capital' )
242
import torch from transformers import AutoModel class __magic_name__ ( torch.nn.Module ): def __init__( self , __snake_case="sayef/fsner-bert-base-uncased" ) -> str: '''simple docstring''' super(__snake_case , self ).__init__() __a =AutoModel.from_pretrained(__snake_case , return_dict=__snake_case ) __a =torch.nn.CosineSimilarity(3 , 1e-08 ) __a =torch.nn.Softmax(dim=1 ) def __magic_name__ ( self , **__snake_case ) -> Tuple: '''simple docstring''' return self.bert(**__snake_case ).last_hidden_state def __magic_name__ ( self , __snake_case ) -> Any: '''simple docstring''' return token_embeddings.sum(2 , keepdim=__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=1 ) -> List[str]: '''simple docstring''' return self.softmax(T * self.cos(__snake_case , __snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case ) -> str: '''simple docstring''' __a =W_supports['sizes'].tolist() __a =W_supports['start_token_id'].item() __a =W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __a =self.BERT(**__snake_case ) __a =self.BERT(**__snake_case ) __a =None __a =None __a =W_supports['input_ids'] == start_token_id __a =W_supports['input_ids'] == end_token_id for i, size in enumerate(__snake_case ): if i == 0: __a =0 else: __a =support_sizes[i - 1] __a =S[s : s + size][start_token_masks[s : s + size]] __a =S[s : s + size][end_token_masks[s : s + size]] __a =torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) __a =torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __a =torch.vstack((p_starts, p_start) ) __a =torch.vstack((p_ends, p_end) ) else: __a =p_start __a =p_end return p_starts, p_ends
242
1
'''simple docstring''' from collections import defaultdict def _a( UpperCamelCase__ : str, UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =first_str.lower().strip() SCREAMING_SNAKE_CASE__ : Optional[Any] =second_str.lower().strip() # Remove whitespace SCREAMING_SNAKE_CASE__ : Tuple =first_str.replace(''' ''', '''''' ) SCREAMING_SNAKE_CASE__ : List[str] =second_str.replace(''' ''', '''''' ) # Strings of different lengths are not anagrams if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): return False # Default values for count should be 0 SCREAMING_SNAKE_CASE__ : defaultdict[str, int] =defaultdict(UpperCamelCase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(UpperCamelCase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() a_ = input('Enter the first string ').strip() a_ = input('Enter the second string ').strip() a_ = check_anagrams(input_a, input_b) print(F'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
708
'''simple docstring''' def _a( UpperCamelCase__ : Optional[int], UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] =0 SCREAMING_SNAKE_CASE__ : Union[str, Any] =len(UpperCamelCase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None SCREAMING_SNAKE_CASE__ : Union[str, Any] =left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase__ ): return None SCREAMING_SNAKE_CASE__ : Optional[int] =sorted_collection[point] if current_item == item: return point else: if point < left: SCREAMING_SNAKE_CASE__ : Union[str, Any] =left SCREAMING_SNAKE_CASE__ : Optional[Any] =point elif point > right: SCREAMING_SNAKE_CASE__ : Optional[int] =right SCREAMING_SNAKE_CASE__ : Tuple =point else: if item < current_item: SCREAMING_SNAKE_CASE__ : str =point - 1 else: SCREAMING_SNAKE_CASE__ : Tuple =point + 1 return None def _a( UpperCamelCase__ : List[str], UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None SCREAMING_SNAKE_CASE__ : Dict =left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) elif point > right: return interpolation_search_by_recursion(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, point - 1 ) else: return interpolation_search_by_recursion( UpperCamelCase__, UpperCamelCase__, point + 1, UpperCamelCase__ ) def _a( UpperCamelCase__ : Dict ): '''simple docstring''' if collection != sorted(UpperCamelCase__ ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys a_ = 0 if debug == 1: a_ = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') a_ = 6_7 a_ = interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print('Not found')
665
0
"""simple docstring""" import random def UpperCAmelCase ( snake_case : int , snake_case : float , snake_case : bool = False ): _lowerCAmelCase:dict = {i: [] for i in range(snake_case )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(snake_case ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(snake_case ): for j in range(i + 1 , snake_case ): if random.random() < probability: graph[i].append(snake_case ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(snake_case ) return graph def UpperCAmelCase ( snake_case : int ): return { i: [j for j in range(snake_case ) if i != j] for i in range(snake_case ) } if __name__ == "__main__": import doctest doctest.testmod()
227
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {} class a__ ( UpperCamelCase_ ): snake_case__ = '''llama''' snake_case__ = ['''past_key_values'''] def __init__( self : str ,a__ : Union[str, Any]=3_2000 ,a__ : Any=4096 ,a__ : int=1_1008 ,a__ : int=32 ,a__ : Optional[Any]=32 ,a__ : List[Any]=None ,a__ : List[Any]="silu" ,a__ : Union[str, Any]=2048 ,a__ : Any=0.02 ,a__ : Any=1E-6 ,a__ : int=True ,a__ : Optional[int]=0 ,a__ : Any=1 ,a__ : Any=2 ,a__ : str=1 ,a__ : str=False ,a__ : Union[str, Any]=None ,**a__ : List[Any] ,) -> str: """simple docstring""" _lowerCAmelCase:Tuple = vocab_size _lowerCAmelCase:Optional[int] = max_position_embeddings _lowerCAmelCase:int = hidden_size _lowerCAmelCase:Dict = intermediate_size _lowerCAmelCase:List[Any] = num_hidden_layers _lowerCAmelCase:List[Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: _lowerCAmelCase:List[Any] = num_attention_heads _lowerCAmelCase:Any = num_key_value_heads _lowerCAmelCase:Union[str, Any] = hidden_act _lowerCAmelCase:int = initializer_range _lowerCAmelCase:Any = rms_norm_eps _lowerCAmelCase:Optional[Any] = pretraining_tp _lowerCAmelCase:str = use_cache _lowerCAmelCase:Union[str, Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=a__ ,bos_token_id=a__ ,eos_token_id=a__ ,tie_word_embeddings=a__ ,**a__ ,) def __UpperCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,a__) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F'got {self.rope_scaling}') _lowerCAmelCase:Optional[Any] = self.rope_scaling.get('''type''' ,a__) _lowerCAmelCase:Any = self.rope_scaling.get('''factor''' ,a__) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}') if rope_scaling_factor is None or not isinstance(a__ ,a__) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}')
227
1
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _lowerCamelCase : Dict = logging.get_logger(__name__) class __snake_case (UpperCamelCase_ ): def __init__( self : List[str] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> None: '''simple docstring''' warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
719
import numpy as np def _UpperCAmelCase (UpperCamelCase_ : np.array ): '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
196
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
14
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin snake_case : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') snake_case : Tuple = {'target_lang': 'fi', 'source_lang': 'en'} snake_case : str = '>>zh<<' snake_case : Optional[Any] = 'Helsinki-NLP/' if is_torch_available(): snake_case : Optional[Any] = 'pt' elif is_tf_available(): snake_case : Optional[int] = 'tf' else: snake_case : Optional[Any] = 'jax' @require_sentencepiece class lowerCamelCase__( snake_case_ , unittest.TestCase ): UpperCamelCase : Any = MarianTokenizer UpperCamelCase : Optional[Any] = False UpperCamelCase : Any = True def __magic_name__ ( self ): """simple docstring""" super().setUp() __lowercase = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] __lowercase = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __lowercase = Path(self.tmpdirname ) save_json(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) __lowercase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self , **__UpperCAmelCase ): """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" return ( "This is a test", "This is a test", ) def __magic_name__ ( self ): """simple docstring""" __lowercase = """</s>""" __lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(__UpperCAmelCase ) , 9 ) def __magic_name__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __magic_name__ ( self ): """simple docstring""" __lowercase = MarianTokenizer.from_pretrained(F'''{ORG_NAME}opus-mt-en-de''' ) __lowercase = en_de_tokenizer(["""I am a small frog"""] , return_tensors=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0] self.assertListEqual(__UpperCAmelCase , batch.input_ids[0] ) __lowercase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(__UpperCAmelCase ) __lowercase = [x.name for x in Path(__UpperCAmelCase ).glob("""*""" )] self.assertIn("""source.spm""" , __UpperCAmelCase ) MarianTokenizer.from_pretrained(__UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = tok( ["""I am a small frog""" * 1_0_0_0, """I am a small frog"""] , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2) ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) ) @slow def __magic_name__ ( self ): """simple docstring""" __lowercase = {"""input_ids""": [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __magic_name__ ( self ): """simple docstring""" __lowercase = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) __lowercase = """Tämä on testi""" __lowercase = """This is a test""" __lowercase = [7_6, 7, 2_0_4_7, 2] __lowercase = [6_9, 1_2, 1_1, 9_4_0, 2] __lowercase = tokenizer(__UpperCAmelCase ).input_ids self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer(text_target=__UpperCAmelCase ).input_ids self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
566
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __UpperCamelCase : Optional[Any] = HfArgumentParser(InitializationArguments) __UpperCamelCase : str = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __UpperCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __UpperCamelCase : Optional[int] = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) __UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __UpperCamelCase : Optional[Any] = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
53
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
379
'''simple docstring''' def lowerCAmelCase_ ( a : list , a : int , a : int = 0 , a : int = 0 ): a__ = right or len(a ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(a , a , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
394
0
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = len(_UpperCamelCase ) for _ in range(_UpperCamelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __lowerCAmelCase , __lowerCAmelCase = arr[i + 1], arr[i] return arr if __name__ == "__main__": A : List[Any] = list(range(1_0, 0, -1)) print(f'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
282
"""simple docstring""" import tensorflow as tf from ...tf_utils import shape_list class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , __a , __a , __a , __a , __a=1 , __a=False , **__a ): super().__init__(**__a ) __lowerCAmelCase = vocab_size __lowerCAmelCase = d_embed __lowerCAmelCase = d_proj __lowerCAmelCase = cutoffs + [vocab_size] __lowerCAmelCase = [0] + self.cutoffs __lowerCAmelCase = div_val __lowerCAmelCase = self.cutoffs[0] __lowerCAmelCase = len(self.cutoffs ) - 1 __lowerCAmelCase = self.shortlist_size + self.n_clusters __lowerCAmelCase = keep_order __lowerCAmelCase = [] __lowerCAmelCase = [] def snake_case ( self , __a ): if self.n_clusters > 0: __lowerCAmelCase = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="zeros" , trainable=__a , name="cluster_weight" ) __lowerCAmelCase = self.add_weight( shape=(self.n_clusters,) , initializer="zeros" , trainable=__a , name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: __lowerCAmelCase = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="zeros" , trainable=__a , name=f"out_projs_._{i}" , ) self.out_projs.append(__a ) else: self.out_projs.append(__a ) __lowerCAmelCase = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="zeros" , trainable=__a , name=f"out_layers_._{i}_._weight" , ) __lowerCAmelCase = self.add_weight( shape=(self.vocab_size,) , initializer="zeros" , trainable=__a , name=f"out_layers_._{i}_._bias" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): __lowerCAmelCase , __lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowerCAmelCase = self.d_embed // (self.div_val**i) __lowerCAmelCase = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="zeros" , trainable=__a , name=f"out_projs_._{i}" ) self.out_projs.append(__a ) __lowerCAmelCase = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="zeros" , trainable=__a , name=f"out_layers_._{i}_._weight" , ) __lowerCAmelCase = self.add_weight( shape=(r_idx - l_idx,) , initializer="zeros" , trainable=__a , name=f"out_layers_._{i}_._bias" , ) self.out_layers.append((weight, bias) ) super().build(__a ) @staticmethod def snake_case ( __a , __a , __a , __a=None ): __lowerCAmelCase = x if proj is not None: __lowerCAmelCase = tf.einsum("ibd,ed->ibe" , __a , __a ) return tf.einsum("ibd,nd->ibn" , __a , __a ) + b @staticmethod def snake_case ( __a , __a ): __lowerCAmelCase = shape_list(__a ) __lowerCAmelCase = tf.range(lp_size[0] , dtype=target.dtype ) __lowerCAmelCase = tf.stack([r, target] , 1 ) return tf.gather_nd(__a , __a ) def snake_case ( self , __a , __a , __a=True , __a=False ): __lowerCAmelCase = 0 if self.n_clusters == 0: __lowerCAmelCase = self._logit(__a , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: __lowerCAmelCase = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=__a , logits=__a ) __lowerCAmelCase = tf.nn.log_softmax(__a , axis=-1 ) else: __lowerCAmelCase = shape_list(__a ) __lowerCAmelCase = [] __lowerCAmelCase = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): __lowerCAmelCase , __lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: __lowerCAmelCase = (target >= l_idx) & (target < r_idx) __lowerCAmelCase = tf.where(__a ) __lowerCAmelCase = tf.boolean_mask(__a , __a ) - l_idx if self.div_val == 1: __lowerCAmelCase = self.out_layers[0][0][l_idx:r_idx] __lowerCAmelCase = self.out_layers[0][1][l_idx:r_idx] else: __lowerCAmelCase = self.out_layers[i][0] __lowerCAmelCase = self.out_layers[i][1] if i == 0: __lowerCAmelCase = tf.concat([cur_W, self.cluster_weight] , 0 ) __lowerCAmelCase = tf.concat([cur_b, self.cluster_bias] , 0 ) __lowerCAmelCase = self._logit(__a , __a , __a , self.out_projs[0] ) __lowerCAmelCase = tf.nn.log_softmax(__a ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: __lowerCAmelCase = tf.boolean_mask(__a , __a ) __lowerCAmelCase = self._gather_logprob(__a , __a ) else: __lowerCAmelCase = self._logit(__a , __a , __a , self.out_projs[i] ) __lowerCAmelCase = tf.nn.log_softmax(__a ) __lowerCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster __lowerCAmelCase = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(__a ) if target is not None: __lowerCAmelCase = tf.boolean_mask(__a , __a ) __lowerCAmelCase = tf.boolean_mask(__a , __a ) __lowerCAmelCase = self._gather_logprob(__a , __a ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(__a , -cur_logprob , shape_list(__a ) ) __lowerCAmelCase = tf.concat(__a , axis=-1 ) if target is not None: if return_mean: __lowerCAmelCase = tf.reduce_mean(__a ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(__a ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(__a , name=self.name , aggregation="mean" if return_mean else "" ) return out
282
1
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): _A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'embed_dim' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_heads' ) ) class lowercase_ : '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : str=3 , _UpperCAmelCase : List[Any]=[16, 48, 96] , _UpperCAmelCase : Any=[1, 3, 6] , _UpperCAmelCase : Optional[int]=[1, 2, 10] , _UpperCAmelCase : Optional[Any]=[7, 3, 3] , _UpperCAmelCase : List[Any]=[4, 2, 2] , _UpperCAmelCase : Optional[Any]=[2, 1, 1] , _UpperCAmelCase : Optional[Any]=[2, 2, 2] , _UpperCAmelCase : Dict=[False, False, True] , _UpperCAmelCase : Optional[Any]=[0.0, 0.0, 0.0] , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Tuple=1E-1_2 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=2 , ): _A = parent _A = batch_size _A = image_size _A = patch_sizes _A = patch_stride _A = patch_padding _A = is_training _A = use_labels _A = num_labels _A = num_channels _A = embed_dim _A = num_heads _A = stride_kv _A = depth _A = cls_token _A = attention_drop_rate _A = initializer_range _A = layer_norm_eps def lowerCAmelCase_ ( self : Dict ): _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.num_labels ) _A = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : Optional[int] ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ): _A = CvtModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase ) _A = (self.image_size, self.image_size) _A , _A = image_size[0], image_size[1] for i in range(len(self.depth ) ): _A = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _A = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ): _A = self.num_labels _A = CvtForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Tuple ): _A = self.prepare_config_and_inputs() _A , _A , _A = config_and_inputs _A = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Any = (CvtModel, CvtForImageClassification) if is_torch_available() else () UpperCAmelCase : List[Any] = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) UpperCAmelCase : Tuple = False UpperCAmelCase : Optional[Any] = False UpperCAmelCase : List[Any] = False UpperCAmelCase : Optional[Any] = False UpperCAmelCase : List[Any] = False def lowerCAmelCase_ ( self : Any ): _A = CvtModelTester(self ) _A = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Optional[int] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase_ ( self : List[str] ): return @unittest.skip(reason='Cvt does not output attentions' ) def lowerCAmelCase_ ( self : Dict ): pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def lowerCAmelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : List[str] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : str ): def check_hidden_states_output(_UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] ): _A = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _A = outputs.hidden_states _A = len(self.model_tester.depth ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase_ ( self : Optional[int] ): pass @slow def lowerCAmelCase_ ( self : Optional[Any] ): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = CvtModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _snake_case ( ) -> List[Any]: '''simple docstring''' _A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : int ): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCAmelCase_ ( self : str ): _A = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_UpperCAmelCase ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _A = model(**_UpperCAmelCase ) # verify the logits _A = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _A = torch.tensor([0.9285, 0.9015, -0.3150] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
7
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
0
"""simple docstring""" def _snake_case ( UpperCamelCase : str , UpperCamelCase : str ): assert x is not None assert y is not None UpperCAmelCase : List[Any] = len(UpperCamelCase ) UpperCAmelCase : int = len(UpperCamelCase ) # declaring the array for storing the dp values UpperCAmelCase : Dict = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): UpperCAmelCase : Optional[int] = 1 if x[i - 1] == y[j - 1] else 0 UpperCAmelCase : Any = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) UpperCAmelCase : Union[str, Any] = """""" UpperCAmelCase , UpperCAmelCase : Tuple = m, n while i > 0 and j > 0: UpperCAmelCase : Tuple = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: UpperCAmelCase : Dict = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": A: str = "AGGTAB" A: Any = "GXTXAYB" A: int = 4 A: Optional[int] = "GTAB" A , A: Dict = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
359
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. A: Union[str, Any] = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. A: int = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. A: Tuple = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def _snake_case ( UpperCamelCase : str , UpperCamelCase : str ): UpperCAmelCase : Tuple = len([g for position, g in enumerate(UpperCamelCase ) if g == main_target[position]] ) return (item, float(UpperCamelCase )) def _snake_case ( UpperCamelCase : str , UpperCamelCase : str ): UpperCAmelCase : List[str] = random.randint(0 , len(UpperCamelCase ) - 1 ) UpperCAmelCase : List[str] = parent_a[:random_slice] + parent_a[random_slice:] UpperCAmelCase : List[str] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _snake_case ( UpperCamelCase : str , UpperCamelCase : list[str] ): UpperCAmelCase : str = list(UpperCamelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: UpperCAmelCase : int = random.choice(UpperCamelCase ) return "".join(UpperCamelCase ) def _snake_case ( UpperCamelCase : tuple[str, float] , UpperCamelCase : list[tuple[str, float]] , UpperCamelCase : list[str] , ): UpperCAmelCase : Optional[Any] = [] # Generate more children proportionally to the fitness score. UpperCAmelCase : Optional[Any] = int(parent_a[1] * 100 ) + 1 UpperCAmelCase : List[str] = 10 if child_n >= 10 else child_n for _ in range(UpperCamelCase ): UpperCAmelCase : List[str] = population_score[random.randint(0 , UpperCamelCase )][0] UpperCAmelCase , UpperCAmelCase : Any = crossover(parent_a[0] , UpperCamelCase ) # Append new string to the population list. pop.append(mutate(UpperCamelCase , UpperCamelCase ) ) pop.append(mutate(UpperCamelCase , UpperCamelCase ) ) return pop def _snake_case ( UpperCamelCase : str , UpperCamelCase : list[str] , UpperCamelCase : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: UpperCAmelCase : Dict = F"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(UpperCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. UpperCAmelCase : str = sorted({c for c in target if c not in genes} ) if not_in_genes_list: UpperCAmelCase : Optional[Any] = F"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(UpperCamelCase ) # Generate random starting population. UpperCAmelCase : Optional[int] = [] for _ in range(UpperCamelCase ): population.append("""""".join([random.choice(UpperCamelCase ) for i in range(len(UpperCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. UpperCAmelCase , UpperCAmelCase : Any = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(UpperCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. UpperCAmelCase : str = [evaluate(UpperCamelCase , UpperCamelCase ) for item in population] # Check if there is a matching evolution. UpperCAmelCase : Union[str, Any] = sorted(UpperCamelCase , key=lambda UpperCamelCase : x[1] , reverse=UpperCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"\nGeneration: {generation}" F"\nTotal Population:{total_population}" F"\nBest score: {population_score[0][1]}" F"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. UpperCAmelCase : Tuple = population[: int(N_POPULATION / 3 )] population.clear() population.extend(UpperCamelCase ) # Normalize population score to be between 0 and 1. UpperCAmelCase : List[str] = [ (item, score / len(UpperCamelCase )) for item, score in population_score ] # This is selection for i in range(UpperCamelCase ): population.extend(select(population_score[int(UpperCamelCase )] , UpperCamelCase , UpperCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(UpperCamelCase ) > N_POPULATION: break if __name__ == "__main__": A: Union[str, Any] = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) A: Dict = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) A , A , A: List[Any] = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
359
1
class lowerCAmelCase_ : # Public class to implement a graph """simple docstring""" def __init__( self :List[Any] , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :list[list[bool]] ): UpperCamelCase__ :List[str] = row UpperCamelCase__ :List[Any] = col UpperCamelCase__ :Dict = graph def __a ( self :Dict , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :list[list[bool]] ): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __a ( self :str , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :list[list[bool]] ): # Checking all 8 elements surrounding nth element UpperCamelCase__ :Union[str, Any] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCamelCase__ :Optional[Any] = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCamelCase__ :List[Any] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , lowerCamelCase__ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , lowerCamelCase__ ) def __a ( self :str ): # And finally, count all islands. UpperCamelCase__ :List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCamelCase__ :str = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) count += 1 return count
45
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = parent UpperCamelCase__ :int = 13 UpperCamelCase__ :Optional[int] = 7 UpperCamelCase__ :Dict = True UpperCamelCase__ :Dict = True UpperCamelCase__ :str = True UpperCamelCase__ :List[Any] = True UpperCamelCase__ :Any = True UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Tuple = False UpperCamelCase__ :Optional[int] = 2 UpperCamelCase__ :List[str] = 99 UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Any = 32 UpperCamelCase__ :List[str] = 2 UpperCamelCase__ :int = 4 UpperCamelCase__ :List[str] = 0.1 UpperCamelCase__ :Union[str, Any] = 0.1 UpperCamelCase__ :Union[str, Any] = 5_12 UpperCamelCase__ :List[str] = 16 UpperCamelCase__ :str = 2 UpperCamelCase__ :Optional[int] = 0.02 UpperCamelCase__ :Optional[int] = 3 UpperCamelCase__ :Optional[int] = 4 UpperCamelCase__ :Optional[int] = """last""" UpperCamelCase__ :Tuple = True UpperCamelCase__ :int = None UpperCamelCase__ :Dict = 0 def __a ( self :int ): UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Any = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCamelCase__ :Union[str, Any] = None if self.use_input_lengths: UpperCamelCase__ :Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase__ :List[str] = None if self.use_token_type_ids: UpperCamelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase__ :int = None UpperCamelCase__ :List[str] = None UpperCamelCase__ :List[str] = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :str = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCamelCase__ :int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ :List[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , ): UpperCamelCase__ :int = TFFlaubertModel(config=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = [input_ids, input_mask] UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Tuple , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , ): UpperCamelCase__ :List[str] = TFFlaubertWithLMHeadModel(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Dict , lowerCamelCase__ :List[str] , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :Tuple , ): UpperCamelCase__ :int = TFFlaubertForQuestionAnsweringSimple(lowerCamelCase__ ) UpperCamelCase__ :int = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , ): UpperCamelCase__ :List[Any] = TFFlaubertForSequenceClassification(lowerCamelCase__ ) UpperCamelCase__ :List[str] = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Any , ): UpperCamelCase__ :Any = self.num_labels UpperCamelCase__ :Tuple = TFFlaubertForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase__ :List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self :Tuple , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = self.num_choices UpperCamelCase__ :Dict = TFFlaubertForMultipleChoice(config=lowerCamelCase__ ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :str = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self :Tuple ): UpperCamelCase__ :str = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :str = config_and_inputs UpperCamelCase__ :Optional[Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : List[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _snake_case : Optional[int] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : List[Any] = False _snake_case : Tuple = False def __a ( self :Optional[int] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :int , lowerCamelCase__ :str , lowerCamelCase__ :List[Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self :List[str] ): UpperCamelCase__ :List[str] = TFFlaubertModelTester(self ) UpperCamelCase__ :Tuple = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=37 ) def __a ( self :int ): self.config_tester.run_common_tests() def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase__ ) def __a ( self :Tuple ): UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCamelCase__ ) @slow def __a ( self :str ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFFlaubertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :str ): UpperCamelCase__ :Tuple = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) UpperCamelCase__ :Optional[int] = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ )[0] UpperCamelCase__ :Optional[int] = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice. UpperCamelCase__ :str = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
45
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _a ( SCREAMING_SNAKE_CASE_ ): a_ : torch.FloatTensor class _a ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): @register_to_config def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : Tuple[str] = ("DownEncoderBlock2D",) , SCREAMING_SNAKE_CASE__ : Tuple[str] = ("UpDecoderBlock2D",) , SCREAMING_SNAKE_CASE__ : Tuple[int] = (64,) , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = "silu" , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 32 , SCREAMING_SNAKE_CASE__ : int = 2_56 , SCREAMING_SNAKE_CASE__ : int = 32 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : float = 0.1_82_15 , SCREAMING_SNAKE_CASE__ : str = "group" , ): super().__init__() # pass init params to Encoder lowerCamelCase__ = Encoder( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , down_block_types=SCREAMING_SNAKE_CASE__ , block_out_channels=SCREAMING_SNAKE_CASE__ , layers_per_block=SCREAMING_SNAKE_CASE__ , act_fn=SCREAMING_SNAKE_CASE__ , norm_num_groups=SCREAMING_SNAKE_CASE__ , double_z=SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCamelCase__ = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) lowerCamelCase__ = VectorQuantizer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , beta=0.25 , remap=SCREAMING_SNAKE_CASE__ , sane_index_shape=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) # pass init params to Decoder lowerCamelCase__ = Decoder( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , up_block_types=SCREAMING_SNAKE_CASE__ , block_out_channels=SCREAMING_SNAKE_CASE__ , layers_per_block=SCREAMING_SNAKE_CASE__ , act_fn=SCREAMING_SNAKE_CASE__ , norm_num_groups=SCREAMING_SNAKE_CASE__ , norm_type=SCREAMING_SNAKE_CASE__ , ) @apply_forward_hook def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : bool = True ): lowerCamelCase__ = self.encoder(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.quant_conv(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (h,) return VQEncoderOutput(latents=SCREAMING_SNAKE_CASE__ ) @apply_forward_hook def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = True ): # also go through quantization layer if not force_not_quantize: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.quantize(SCREAMING_SNAKE_CASE__ ) else: lowerCamelCase__ = h lowerCamelCase__ = self.post_quant_conv(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.decoder(SCREAMING_SNAKE_CASE__ , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : bool = True ): lowerCamelCase__ = sample lowerCamelCase__ = self.encode(SCREAMING_SNAKE_CASE__ ).latents lowerCamelCase__ = self.decode(SCREAMING_SNAKE_CASE__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE__ )
659
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar _snake_case = TypeVar("KEY") _snake_case = TypeVar("VAL") @dataclass(frozen=SCREAMING_SNAKE_CASE_ , slots=SCREAMING_SNAKE_CASE_ ) class _a ( Generic[KEY, VAL] ): a_ : KEY a_ : VAL class _a ( _Item ): def __init__( self : List[str] ): super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : str ): return False _snake_case = _DeletedItem() class _a ( MutableMapping[KEY, VAL] ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ): lowerCamelCase__ = initial_block_size lowerCamelCase__ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ = capacity_factor lowerCamelCase__ = 0 def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY ): return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : int ): return (ind + 1) % len(self._buckets ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): lowerCamelCase__ = self._buckets[ind] if not stored: lowerCamelCase__ = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : int ): lowerCamelCase__ = self._buckets lowerCamelCase__ = [None] * new_size lowerCamelCase__ = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _UpperCamelCase ( self : List[str] ): self._resize(len(self._buckets ) * 2 ) def _UpperCamelCase ( self : Optional[int] ): self._resize(len(self._buckets ) // 2 ) def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ): lowerCamelCase__ = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Dict , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ): if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : Dict , SCREAMING_SNAKE_CASE__ : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , SCREAMING_SNAKE_CASE__ : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : List[Any] ): return self._len def __iter__( self : Optional[int] ): yield from (item.key for item in self._buckets if item) def __repr__( self : str ): lowerCamelCase__ = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
659
1
"""simple docstring""" from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Any: """simple docstring""" lowerCAmelCase__ :Dict = k_size // 2 lowerCAmelCase__ , lowerCAmelCase__ :Tuple = mgrid[0 - center : k_size - center, 0 - center : k_size - center] lowerCAmelCase__ :List[Any] = 1 / (2 * pi * sigma) * exp(-(square(_SCREAMING_SNAKE_CASE ) + square(_SCREAMING_SNAKE_CASE )) / (2 * square(_SCREAMING_SNAKE_CASE )) ) return g def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = image.shape[0], image.shape[1] # dst image height and width lowerCAmelCase__ :Union[str, Any] = height - k_size + 1 lowerCAmelCase__ :Optional[Any] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows lowerCAmelCase__ :Optional[int] = zeros((dst_height * dst_width, k_size * k_size) ) lowerCAmelCase__ :Tuple = 0 for i, j in product(range(_SCREAMING_SNAKE_CASE ) , range(_SCREAMING_SNAKE_CASE ) ): lowerCAmelCase__ :Union[str, Any] = ravel(image[i : i + k_size, j : j + k_size] ) lowerCAmelCase__ :Optional[Any] = window row += 1 # turn the kernel into shape(k*k, 1) lowerCAmelCase__ :str = gen_gaussian_kernel(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :str = ravel(_SCREAMING_SNAKE_CASE ) # reshape and get the dst image lowerCAmelCase__ :Optional[Any] = dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).reshape(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).astype(_SCREAMING_SNAKE_CASE ) return dst if __name__ == "__main__": # read original image __A = imread(R"""../image_data/lena.jpg""") # turn image in gray scale value __A = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __A = gaussian_filter(gray, 3, sigma=1) __A = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("""gaussian filter with 3x3 mask""", gaussianaxa) imshow("""gaussian filter with 5x5 mask""", gaussianaxa) waitKey()
93
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self , _A ): __A : Any = 3 __A : Union[str, Any] = 250 __A : int = ids_tensor((batch_size, length) , _A ) __A : List[Any] = torch.ones((batch_size, length) , device=_A , dtype=torch.float ) / length return input_ids, scores def UpperCAmelCase_ ( self ): __A , __A : Tuple = self._get_tensors(5 ) __A : Optional[Any] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_A , _A ) ) __A , __A : List[str] = self._get_tensors(9 ) self.assertFalse(criteria(_A , _A ) ) __A , __A : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(_A , _A ) ) def UpperCAmelCase_ ( self ): __A : List[str] = MaxLengthCriteria(max_length=10 ) __A , __A : Optional[Any] = self._get_tensors(5 ) self.assertFalse(criteria(_A , _A ) ) __A , __A : str = self._get_tensors(9 ) self.assertFalse(criteria(_A , _A ) ) __A , __A : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(_A , _A ) ) def UpperCAmelCase_ ( self ): __A : Tuple = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __A , __A : Optional[int] = self._get_tensors(5 ) self.assertFalse(criteria(_A , _A ) ) __A , __A : str = self._get_tensors(9 ) self.assertFalse(criteria(_A , _A ) ) __A , __A : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(_A , _A ) ) __A : Tuple = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def UpperCAmelCase_ ( self ): __A , __A : Any = self._get_tensors(5 ) __A : Any = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_A , _A ) ) __A : Optional[Any] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_A , _A ) ) def UpperCAmelCase_ ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(_A ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __A : Dict = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(_A ) , 1 )
239
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" A__ = StableDiffusionInpaintPipeline A__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ = frozenset([] ) def __magic_name__ ( self ): torch.manual_seed(0 ) lowerCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_lowerCAmelCase , ) lowerCamelCase__ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) torch.manual_seed(0 ) lowerCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) lowerCamelCase__ = CLIPTextModel(_lowerCAmelCase ) lowerCamelCase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase__ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched lowerCamelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) lowerCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((64, 64) ) lowerCamelCase__ = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) ) if str(_lowerCAmelCase ).startswith("mps" ): lowerCamelCase__ = torch.manual_seed(_lowerCAmelCase ) else: lowerCamelCase__ = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) lowerCamelCase__ = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __magic_name__ ( self ): lowerCamelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = StableDiffusionInpaintPipeline(**_lowerCAmelCase ) lowerCamelCase__ = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCamelCase__ = self.get_dummy_inputs(_lowerCAmelCase ) lowerCamelCase__ = sd_pipe(**_lowerCAmelCase ).images lowerCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __magic_name__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ): lowerCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) lowerCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) lowerCamelCase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) lowerCamelCase__ = "stabilityai/stable-diffusion-2-inpainting" lowerCamelCase__ = StableDiffusionInpaintPipeline.from_pretrained(_lowerCAmelCase , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowerCamelCase__ = "Face of a yellow cat, high resolution, sitting on a park bench" lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , generator=_lowerCAmelCase , output_type="np" , ) lowerCamelCase__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __magic_name__ ( self ): lowerCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) lowerCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) lowerCamelCase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) lowerCamelCase__ = "stabilityai/stable-diffusion-2-inpainting" lowerCamelCase__ = StableDiffusionInpaintPipeline.from_pretrained( _lowerCAmelCase , torch_dtype=torch.floataa , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowerCamelCase__ = "Face of a yellow cat, high resolution, sitting on a park bench" lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , generator=_lowerCAmelCase , output_type="np" , ) lowerCamelCase__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __magic_name__ ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) lowerCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) lowerCamelCase__ = "stabilityai/stable-diffusion-2-inpainting" lowerCamelCase__ = PNDMScheduler.from_pretrained(_lowerCAmelCase , subfolder="scheduler" ) lowerCamelCase__ = StableDiffusionInpaintPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , scheduler=_lowerCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase__ = "Face of a yellow cat, high resolution, sitting on a park bench" lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=2 , output_type="np" , ) lowerCamelCase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
360
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger A_ = get_logger(__name__) A_ = r"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class SCREAMING_SNAKE_CASE_ : """simple docstring""" @add_start_docstrings(_lowerCAmelCase ) def __call__( self , _lowerCAmelCase , _lowerCAmelCase ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class SCREAMING_SNAKE_CASE_ : """simple docstring""" @add_start_docstrings(_lowerCAmelCase ) def __call__( self , _lowerCAmelCase , _lowerCAmelCase ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" @add_start_docstrings(_lowerCAmelCase ) def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ): for processor in self: lowerCamelCase__ = inspect.signature(processor.__call__ ).parameters if len(_lowerCAmelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F"Make sure that all the required parameters: {list(function_args.keys() )} for " F"{processor.__class__} are passed to the logits processor." ) lowerCamelCase__ = processor(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) else: lowerCamelCase__ = processor(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return scores class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" def __init__( self , _lowerCAmelCase ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not (temperature > 0): raise ValueError(F"`temperature` has to be a strictly positive float, but is {temperature}" ) lowerCamelCase__ = temperature def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = scores / self.temperature return scores class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase = -float("Inf" ) , _lowerCAmelCase = 1 ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(F"`top_p` has to be a float > 0 and < 1, but is {top_p}" ) if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or (min_tokens_to_keep < 1): raise ValueError(F"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}" ) lowerCamelCase__ = top_p lowerCamelCase__ = filter_value lowerCamelCase__ = min_tokens_to_keep def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ , lowerCamelCase__ = lax.top_k(_lowerCAmelCase , scores.shape[-1] ) lowerCamelCase__ = jnp.full_like(_lowerCAmelCase , self.filter_value ) lowerCamelCase__ = jax.nn.softmax(_lowerCAmelCase , axis=-1 ).cumsum(axis=-1 ) lowerCamelCase__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well lowerCamelCase__ = jnp.roll(_lowerCAmelCase , 1 ) score_mask |= score_mask.at[:, 0].set(_lowerCAmelCase ) # min tokens to keep lowerCamelCase__ = score_mask.at[:, : self.min_tokens_to_keep].set(_lowerCAmelCase ) lowerCamelCase__ = jnp.where(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase__ = jax.lax.sort_key_val(_lowerCAmelCase , _lowerCAmelCase )[-1] return next_scores class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase = -float("Inf" ) , _lowerCAmelCase = 1 ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or top_k <= 0: raise ValueError(F"`top_k` has to be a strictly positive integer, but is {top_k}" ) lowerCamelCase__ = max(_lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase__ = filter_value def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ , lowerCamelCase__ = scores.shape lowerCamelCase__ = jnp.full(batch_size * vocab_size , self.filter_value ) lowerCamelCase__ = min(self.top_k , scores.shape[-1] ) # Safety check lowerCamelCase__ , lowerCamelCase__ = lax.top_k(_lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase__ = jnp.broadcast_to((jnp.arange(_lowerCAmelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() lowerCamelCase__ = topk_scores.flatten() lowerCamelCase__ = topk_indices.flatten() + shift lowerCamelCase__ = next_scores_flat.at[topk_indices_flat].set(_lowerCAmelCase ) lowerCamelCase__ = next_scores_flat.reshape(_lowerCAmelCase , _lowerCAmelCase ) return next_scores class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" def __init__( self , _lowerCAmelCase ): lowerCamelCase__ = bos_token_id def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = jnp.full(scores.shape , -float("inf" ) ) lowerCamelCase__ = 1 - jnp.bool_(cur_len - 1 ) lowerCamelCase__ = jnp.where(_lowerCAmelCase , new_scores.at[:, self.bos_token_id].set(0 ) , _lowerCAmelCase ) return scores class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = max_length lowerCamelCase__ = eos_token_id def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = jnp.full(scores.shape , -float("inf" ) ) lowerCamelCase__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) lowerCamelCase__ = jnp.where(_lowerCAmelCase , new_scores.at[:, self.eos_token_id].set(0 ) , _lowerCAmelCase ) return scores class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or min_length < 0: raise ValueError(F"`min_length` has to be a positive integer, but is {min_length}" ) if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or eos_token_id < 0: raise ValueError(F"`eos_token_id` has to be a positive integer, but is {eos_token_id}" ) lowerCamelCase__ = min_length lowerCamelCase__ = eos_token_id def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # create boolean flag to decide if min length penalty should be applied lowerCamelCase__ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) lowerCamelCase__ = jnp.where(_lowerCAmelCase , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , _lowerCAmelCase ) return scores class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = list(_lowerCAmelCase ) lowerCamelCase__ = begin_index def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = 1 - jnp.bool_(cur_len - self.begin_index ) lowerCamelCase__ = jnp.where(_lowerCAmelCase , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , _lowerCAmelCase ) return scores class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" def __init__( self , _lowerCAmelCase ): lowerCamelCase__ = list(_lowerCAmelCase ) def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" def __init__( self , _lowerCAmelCase ): lowerCamelCase__ = dict(_lowerCAmelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. lowerCamelCase__ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: lowerCamelCase__ = force_token_array.at[index].set(_lowerCAmelCase ) lowerCamelCase__ = jnp.intaa(_lowerCAmelCase ) def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): def _force_token(_lowerCAmelCase ): lowerCamelCase__ = scores.shape[0] lowerCamelCase__ = self.force_token_array[generation_idx] lowerCamelCase__ = jnp.ones_like(_lowerCAmelCase , dtype=scores.dtype ) * -float("inf" ) lowerCamelCase__ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) lowerCamelCase__ = lax.dynamic_update_slice(_lowerCAmelCase , _lowerCAmelCase , (0, current_token) ) return new_scores lowerCamelCase__ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_lowerCAmelCase ) , lambda: scores , ) , ) return scores class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = generate_config.eos_token_id lowerCamelCase__ = generate_config.no_timestamps_token_id lowerCamelCase__ = generate_config.no_timestamps_token_id + 1 lowerCamelCase__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_lowerCAmelCase , "max_initial_timestamp_index" ): lowerCamelCase__ = generate_config.max_initial_timestamp_index else: lowerCamelCase__ = model_config.vocab_size if self.max_initial_timestamp_index is None: lowerCamelCase__ = model_config.vocab_size def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # suppress <|notimestamps|> which is handled by without_timestamps lowerCamelCase__ = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(_lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = jnp.where((cur_len - self.begin_index) >= 1 , _lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _lowerCAmelCase , ) lowerCamelCase__ = jnp.where((cur_len - self.begin_index) < 2 , _lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _lowerCAmelCase , _lowerCAmelCase , ) return jnp.where( _lowerCAmelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , _lowerCAmelCase , ) lowerCamelCase__ = jax.vmap(_lowerCAmelCase )(_lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase__ = jnp.where(cur_len == self.begin_index , _lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase__ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _lowerCAmelCase , ) lowerCamelCase__ = self.timestamp_begin + self.max_initial_timestamp_index lowerCamelCase__ = jnp.where( _lowerCAmelCase , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , _lowerCAmelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp lowerCamelCase__ = jax.nn.log_softmax(_lowerCAmelCase , axis=-1 ) def handle_cumulative_probs(_lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) lowerCamelCase__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , _lowerCAmelCase , ) lowerCamelCase__ = jax.vmap(_lowerCAmelCase )(_lowerCAmelCase , _lowerCAmelCase ) return scores
360
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __a: Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = ['''pixel_values'''] def __init__( self : Any , lowerCamelCase : bool = True , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase : bool = True , lowerCamelCase : Union[int, float] = 1 / 255 , lowerCamelCase : bool = True , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : bool = True , **lowerCamelCase : List[Any] , ) -> None: """simple docstring""" super().__init__(**lowerCamelCase ) _UpperCAmelCase = size if size is not None else {"""height""": 384, """width""": 384} _UpperCAmelCase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCAmelCase = do_convert_rgb def lowerCamelCase ( self : Any , lowerCamelCase : np.ndarray , lowerCamelCase : Dict[str, int] , lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : str , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) _UpperCAmelCase = (size["""height"""], size["""width"""]) return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : Tuple , lowerCamelCase : np.ndarray , lowerCamelCase : Union[int, float] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Dict , ) -> Union[str, Any]: """simple docstring""" return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : Tuple , lowerCamelCase : np.ndarray , lowerCamelCase : Union[float, List[float]] , lowerCamelCase : Union[float, List[float]] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : List[Any] , ) -> np.ndarray: """simple docstring""" return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : Dict , lowerCamelCase : ImageInput , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[Dict[str, int]] = None , lowerCamelCase : PILImageResampling = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[float] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : bool = None , lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase : List[str] , ) -> PIL.Image.Image: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) _UpperCAmelCase = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCAmelCase = [convert_to_rgb(lowerCamelCase ) for image in images] # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] _UpperCAmelCase = BatchFeature(data={"""pixel_values""": images} , tensor_type=lowerCamelCase ) return encoded_outputs
108
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = 0 @slow def a__ ( self ) -> Any: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) ,0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) ,0 ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,20 ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Check that tokenizer_type ≠ model_type UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,config=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def a__ ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.txt''' ) ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''bert''' ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''merges.txt''' ) ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''gpt2''' ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) @require_tokenizers def a__ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.txt''' ) ) UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''bert''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''merges.txt''' ) ) UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''gpt2''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> int: with pytest.raises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.from_pretrained('''./''' ,tokenizer_type='''xxx''' ) @require_tokenizers def a__ ( self ) -> Optional[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCAmelCase_ : Any = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case ,_SCREAMING_SNAKE_CASE ) else: self.assertEqual(tokenizer.do_lower_case ,_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length ,512 ) @require_tokenizers def a__ ( self ) -> List[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,'''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' ,): UpperCAmelCase_ : int = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def a__ ( self ) -> Optional[Any]: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai UpperCAmelCase_ : int = TOKENIZER_MAPPING.values() UpperCAmelCase_ : List[Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_SCREAMING_SNAKE_CASE ) @require_tokenizers def a__ ( self ) -> Tuple: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ,use_fast=_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) ,_SCREAMING_SNAKE_CASE ) @require_tokenizers def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' ,do_lower_case=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = '''Hello, world. How are you?''' UpperCAmelCase_ : List[Any] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertEqual('''[UNK]''' ,tokens[0] ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' ,do_lower_case=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertEqual('''[UNK]''' ,tokens[0] ) @require_tokenizers def a__ ( self ) -> Dict: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length ,512 ) self.assertEqual(tokenizer.vocab_size ,30_000 ) self.assertEqual(tokenizer.unk_token ,'''[UNK]''' ) self.assertEqual(tokenizer.padding_side ,'''right''' ) self.assertEqual(tokenizer.truncation_side ,'''right''' ) def a__ ( self ) -> Dict: UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size ,12 ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: # Check we can load the tokenizer config of an online model. UpperCAmelCase_ : int = get_tokenizer_config('''bert-base-cased''' ) UpperCAmelCase_ : Optional[int] = config.pop('''_commit_hash''' ,_SCREAMING_SNAKE_CASE ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_SCREAMING_SNAKE_CASE ,{'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCAmelCase_ : Any = get_tokenizer_config(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(_SCREAMING_SNAKE_CASE ,{} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = get_tokenizer_config(_SCREAMING_SNAKE_CASE ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] ,'''BertTokenizer''' ) def a__ ( self ) -> str: try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = CustomTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def a__ ( self ) -> int: try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) # Can register in two steps AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, None) ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[str] = BertTokenizerFast.from_pretrained(_SCREAMING_SNAKE_CASE ) bert_tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = CustomTokenizerFast.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def a__ ( self ) -> Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizer''' ) @require_tokenizers def a__ ( self ) -> Optional[int]: class __a( _a ): """simple docstring""" lowerCAmelCase = False class __a( _a ): """simple docstring""" lowerCAmelCase = NewTokenizer lowerCAmelCase = False try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local UpperCAmelCase_ : int = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def a__ ( self ) -> int: UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) def a__ ( self ) -> Optional[Any]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,'''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('''bert-base''' ) def a__ ( self ) -> List[Any]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,revision='''aaaaaa''' ) def a__ ( self ) -> Any: # Make sure we have cached the tokenizer. UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 )
30
0
"""simple docstring""" from datetime import datetime as dt import os from github import Github A_ : Optional[Any] = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[int] = Github(os.environ['GITHUB_TOKEN'] ) lowerCamelCase__ : Dict = g.get_repo('huggingface/transformers' ) lowerCamelCase__ : Union[str, Any] = repo.get_issues(state='open' ) for issue in open_issues: lowerCamelCase__ : Any = sorted([comment for comment in issue.get_comments()] , key=lambda _lowerCamelCase : i.created_at , reverse=_lowerCamelCase ) lowerCamelCase__ : Any = comments[0] if len(_lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
696
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A_ : str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=1 ): '''simple docstring''' lowerCamelCase__ : Any = tokenizer lowerCamelCase__ : Optional[Any] = dataset lowerCamelCase__ : int = len(lowerCamelCase_ ) if n_tasks is None else n_tasks lowerCamelCase__ : Any = n_copies def __iter__(self ): '''simple docstring''' lowerCamelCase__ : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ : Optional[int] = self.tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = start_length lowerCamelCase__ : List[str] = eof_strings lowerCamelCase__ : List[str] = tokenizer def __call__(self, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ : Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ): lowerCamelCase__ : List[str] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): lowerCamelCase__ : str = batch['ids'].shape[-1] lowerCamelCase__ : int = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times lowerCamelCase__ : Optional[Any] = batch['task_id'].repeat(_lowerCamelCase ) lowerCamelCase__ : List[Any] = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ : List[Any] = generated_tokens.cpu().numpy() lowerCamelCase__ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) lowerCamelCase__ : str = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ : Optional[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase_ ( ): # Setup configuration lowerCamelCase__ : int = HfArgumentParser(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ : Tuple = 'false' if args.num_workers is None: lowerCamelCase__ : List[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ : List[Any] = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ : Optional[int] = tokenizer.eos_token lowerCamelCase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ : Optional[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric lowerCamelCase__ : Any = load_dataset('openai_humaneval' ) lowerCamelCase__ : Optional[int] = load_metric('code_eval' ) lowerCamelCase__ : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ : Optional[int] = args.n_samples // args.batch_size lowerCamelCase__ : Tuple = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ : Union[str, Any] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ : List[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ : str = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: lowerCamelCase__ : List[str] = [] for task in tqdm(range(_lowerCamelCase ) ): lowerCamelCase__ : int = human_eval['test'][task]['test'] lowerCamelCase__ : Union[str, Any] = f'''check({human_eval['test'][task]['entry_point']})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ : Any = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
696
1
'''simple docstring''' import random from typing import Any def _lowerCAmelCase ( lowercase : List[str] ) ->Optional[Any]: """simple docstring""" for _ in range(len(lowercase ) ): lowercase__ = random.randint(0 , len(lowercase ) - 1 ) lowercase__ = random.randint(0 , len(lowercase ) - 1 ) lowercase__ = data[b], data[a] return data if __name__ == "__main__": _lowerCAmelCase = [0, 1, 2, 3, 4, 5, 6, 7] _lowerCAmelCase = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
161
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = True , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) A_ : str = False if main_process_only: A_ : Union[str, Any] = PartialState().local_process_index == 0 return _tqdm(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , disable=SCREAMING_SNAKE_CASE )
590
0
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCAmelCase ( snake_case : Optional[int] , snake_case : str , snake_case : str ): # Construct model if gpta_config_file == "": _lowerCAmelCase:Dict = GPTaConfig() else: _lowerCAmelCase:Dict = GPTaConfig.from_json_file(snake_case ) _lowerCAmelCase:List[Any] = GPTaModel(snake_case ) # Load weights from numpy load_tf_weights_in_gpta(snake_case , snake_case , snake_case ) # Save pytorch-model _lowerCAmelCase:Optional[int] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME _lowerCAmelCase:Optional[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , snake_case ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) UpperCamelCase__ = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
714
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor UpperCamelCase__ = logging.get_logger(__name__) class a__ ( UpperCamelCase_ ): def __init__( self : Dict ,*a__ : List[str] ,**a__ : str) -> None: """simple docstring""" warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' ,a__ ,) super().__init__(*a__ ,**a__)
439
0
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" return max(metric_fn(__lowercase , __lowercase ) for gt in ground_truths ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ : Tuple = [line.strip() for line in open(__lowercase , '''r''' ).readlines()] snake_case_ : int = [] if args.gold_data_mode == "qa": snake_case_ : Union[str, Any] = pd.read_csv(__lowercase , sep='''\t''' , header=__lowercase ) for answer_list in data[1]: snake_case_ : Any = ast.literal_eval(__lowercase ) answers.append(__lowercase ) else: snake_case_ : int = [line.strip() for line in open(__lowercase , '''r''' ).readlines()] snake_case_ : Optional[int] = [[reference] for reference in references] snake_case_ : int = 0 for prediction, ground_truths in zip(__lowercase , __lowercase ): total += 1 em += metric_max_over_ground_truths(__lowercase , __lowercase , __lowercase ) fa += metric_max_over_ground_truths(__lowercase , __lowercase , __lowercase ) snake_case_ : str = 100.0 * em / total snake_case_ : Any = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" snake_case_ : List[str] = args.k snake_case_ : Any = [line.strip() for line in open(__lowercase , '''r''' ).readlines()] snake_case_ : str = [line.strip() for line in open(__lowercase , '''r''' ).readlines()] snake_case_ : Optional[Any] = 0 for hypo, reference in zip(__lowercase , __lowercase ): snake_case_ : int = set(hypo.split('''\t''' )[:k] ) snake_case_ : str = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k snake_case_ : Tuple = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: """simple docstring""" def strip_title(_UpperCamelCase ): if title.startswith('''"''' ): snake_case_ : int = title[1:] if title.endswith('''"''' ): snake_case_ : Optional[Any] = title[:-1] return title snake_case_ : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowercase , return_tensors='''pt''' , padding=__lowercase , truncation=__lowercase , )['input_ids'].to(args.device ) snake_case_ : Union[str, Any] = rag_model.rag.question_encoder(__lowercase ) snake_case_ : Any = question_enc_outputs[0] snake_case_ : Tuple = rag_model.retriever( __lowercase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) snake_case_ : Tuple = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) snake_case_ : Dict = [] for docs in all_docs: snake_case_ : Tuple = [strip_title(__lowercase ) for title in docs['title']] provenance_strings.append('''\t'''.join(__lowercase ) ) return provenance_strings def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[str]: """simple docstring""" with torch.no_grad(): snake_case_ : List[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowercase , return_tensors='''pt''' , padding=__lowercase , truncation=__lowercase ) snake_case_ : str = inputs_dict.input_ids.to(args.device ) snake_case_ : Tuple = inputs_dict.attention_mask.to(args.device ) snake_case_ : Any = rag_model.generate( # rag_model overwrites generate __lowercase , attention_mask=__lowercase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__lowercase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) snake_case_ : List[str] = rag_model.retriever.generator_tokenizer.batch_decode(__lowercase , skip_special_tokens=__lowercase ) if args.print_predictions: for q, a in zip(__lowercase , __lowercase ): logger.info('''Q: {} - A: {}'''.format(__lowercase , __lowercase ) ) return answers def lowerCamelCase_ ( ) -> str: """simple docstring""" snake_case_ : str = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=__lowercase , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=__lowercase , choices=['''exact''', '''compressed''', '''legacy'''] , type=__lowercase , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=__lowercase , type=__lowercase , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=__lowercase , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=__lowercase , type=__lowercase , required=__lowercase , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=__lowercase , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=__lowercase , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=__lowercase , type=__lowercase , required=__lowercase , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=__lowercase , type=__lowercase , required=__lowercase , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=__lowercase , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=__lowercase , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=__lowercase , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=__lowercase , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=__lowercase , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=__lowercase , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) snake_case_ : List[Any] = parser.parse_args() snake_case_ : List[Any] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = {} if args.model_type is None: snake_case_ : List[Any] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): snake_case_ : Dict = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration snake_case_ : List[Any] = args.n_docs if args.index_name is not None: snake_case_ : Dict = args.index_name if args.index_path is not None: snake_case_ : List[Any] = args.index_path else: snake_case_ : List[Any] = BartForConditionalGeneration snake_case_ : Union[str, Any] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , __lowercase ) snake_case_ : Dict = get_scores if args.eval_mode == 'e2e' else get_precision_at_k snake_case_ : Tuple = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(__lowercase , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(__lowercase ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): snake_case_ : Union[str, Any] = RagRetriever.from_pretrained(__lowercase , **__lowercase ) snake_case_ : Optional[Any] = model_class.from_pretrained(__lowercase , retriever=__lowercase , **__lowercase ) model.retriever.init_retrieval() else: snake_case_ : List[str] = model_class.from_pretrained(__lowercase , **__lowercase ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: snake_case_ : Union[str, Any] = [] for line in tqdm(__lowercase ): questions.append(line.strip() ) if len(__lowercase ) == args.eval_batch_size: snake_case_ : Tuple = evaluate_batch_fn(__lowercase , __lowercase , __lowercase ) preds_file.write('''\n'''.join(__lowercase ) + '''\n''' ) preds_file.flush() snake_case_ : int = [] if len(__lowercase ) > 0: snake_case_ : Union[str, Any] = evaluate_batch_fn(__lowercase , __lowercase , __lowercase ) preds_file.write('''\n'''.join(__lowercase ) ) preds_file.flush() score_fn(__lowercase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowerCAmelCase_ = get_args() main(args)
60
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''deit''' def __init__( self , lowercase=7_6_8 , lowercase=1_2 , lowercase=1_2 , lowercase=3_0_7_2 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1E-12 , lowercase=2_2_4 , lowercase=1_6 , lowercase=3 , lowercase=True , lowercase=1_6 , **lowercase , ): """simple docstring""" super().__init__(**lowercase ) A_ : Dict = hidden_size A_ : List[Any] = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : List[str] = intermediate_size A_ : int = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : List[str] = initializer_range A_ : List[Any] = layer_norm_eps A_ : List[str] = image_size A_ : str = patch_size A_ : str = num_channels A_ : Dict = qkv_bias A_ : Optional[Any] = encoder_stride class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = version.parse('''1.11''' ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return 1E-4
558
0
from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter UpperCAmelCase_ ="Create a default config file for Accelerate with only a few flags set." def UpperCAmelCase ( _snake_case="no" , _snake_case = default_json_config_file , _snake_case = False ): lowerCAmelCase = Path(__lowerCAmelCase ) path.parent.mkdir(parents=__lowerCAmelCase , exist_ok=__lowerCAmelCase ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False lowerCAmelCase = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}""" ) lowerCAmelCase = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): lowerCAmelCase = torch.cuda.device_count() lowerCAmelCase = num_gpus lowerCAmelCase = False if num_gpus > 1: lowerCAmelCase = """MULTI_GPU""" else: lowerCAmelCase = """NO""" elif is_xpu_available() and use_xpu: lowerCAmelCase = torch.xpu.device_count() lowerCAmelCase = num_xpus lowerCAmelCase = False if num_xpus > 1: lowerCAmelCase = """MULTI_XPU""" else: lowerCAmelCase = """NO""" elif is_npu_available(): lowerCAmelCase = torch.npu.device_count() lowerCAmelCase = num_npus lowerCAmelCase = False if num_npus > 1: lowerCAmelCase = """MULTI_NPU""" else: lowerCAmelCase = """NO""" else: lowerCAmelCase = 0 lowerCAmelCase = True lowerCAmelCase = 1 lowerCAmelCase = """NO""" lowerCAmelCase = ClusterConfig(**__lowerCAmelCase ) config.to_json_file(__lowerCAmelCase ) return path def UpperCAmelCase ( _snake_case , _snake_case ): lowerCAmelCase = parser.add_parser('''default''' , parents=__lowerCAmelCase , help=__lowerCAmelCase , formatter_class=__lowerCAmelCase ) parser.add_argument( '''--config_file''' , default=__lowerCAmelCase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=__lowerCAmelCase , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=__lowerCAmelCase ) return parser def UpperCAmelCase ( _snake_case ): lowerCAmelCase = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
712
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase_ =logging.get_logger(__name__) class __UpperCamelCase ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __a : Optional[Any] ="""maskformer-swin""" __a : Optional[int] ={ """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , UpperCAmelCase_=2_24 , UpperCAmelCase_=4 , UpperCAmelCase_=3 , UpperCAmelCase_=96 , UpperCAmelCase_=[2, 2, 6, 2] , UpperCAmelCase_=[3, 6, 12, 24] , UpperCAmelCase_=7 , UpperCAmelCase_=4.0 , UpperCAmelCase_=True , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.1 , UpperCAmelCase_="gelu" , UpperCAmelCase_=False , UpperCAmelCase_=0.02 , UpperCAmelCase_=1E-5 , UpperCAmelCase_=None , UpperCAmelCase_=None , **UpperCAmelCase_ , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = embed_dim lowerCAmelCase = depths lowerCAmelCase = len(UpperCAmelCase_ ) lowerCAmelCase = num_heads lowerCAmelCase = window_size lowerCAmelCase = mlp_ratio lowerCAmelCase = qkv_bias lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = drop_path_rate lowerCAmelCase = hidden_act lowerCAmelCase = use_absolute_embeddings lowerCAmelCase = layer_norm_eps lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) lowerCAmelCase = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
33
0
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCAmelCase__ = 50003 lowerCAmelCase__ = 50002 @require_sentencepiece @require_tokenizers class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Tuple = PLBartTokenizer snake_case__ : Optional[int] = None snake_case__ : List[str] = False def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : Optional[int] = PLBartTokenizer(__lowerCAmelCase , language_codes='''base''' , keep_accents=__lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Optional[int] = PLBartTokenizer(__lowerCAmelCase , language_codes='''base''' , keep_accents=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowerCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _lowerCamelCase : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _lowerCamelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) _lowerCamelCase : Dict = tokenizer.vocab_size _lowerCamelCase : Union[str, Any] = [tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) for x in range(end - 4 , __lowerCAmelCase )] self.assertListEqual(__lowerCAmelCase , ['''__java__''', '''__python__''', '''__en_XX__''', '''<mask>'''] ) _lowerCamelCase : Tuple = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' _lowerCamelCase : Any = tokenizer(__lowerCAmelCase ).input_ids self.assertEqual( tokenizer.decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) , __lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = PLBartTokenizer(__lowerCAmelCase , language_codes='''multi''' , keep_accents=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowerCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _lowerCamelCase : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _lowerCamelCase : Tuple = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _lowerCamelCase : Optional[int] = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) _lowerCamelCase : str = tokenizer.vocab_size _lowerCamelCase : Any = [tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) for x in range(end - 7 , __lowerCAmelCase )] self.assertListEqual( __lowerCAmelCase , ['''__java__''', '''__python__''', '''__en_XX__''', '''__javascript__''', '''__php__''', '''__ruby__''', '''__go__'''] ) _lowerCamelCase : Tuple = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' _lowerCamelCase : Optional[Any] = tokenizer(__lowerCAmelCase ).input_ids self.assertEqual( tokenizer.decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) , __lowerCAmelCase , ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase): snake_case__ : Optional[Any] = "uclanlp/plbart-python-en_XX" snake_case__ : Optional[int] = [ "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])", "def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])", ] snake_case__ : List[Any] = [ "Returns the maximum value of a b c.", "Sums the values of a b c.", ] snake_case__ : Union[str, Any] = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def SCREAMING_SNAKE_CASE ( cls : List[str] ): """simple docstring""" _lowerCamelCase : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='''base''' , src_lang='''python''' , tgt_lang='''en_XX''' ) _lowerCamelCase : int = 1 return cls def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__java__'''] , 5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__python__'''] , 5_0_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__en_XX__'''] , 5_0_0_0_3 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" self.assertIn(__lowerCAmelCase , self.tokenizer.all_special_ids ) _lowerCamelCase : List[Any] = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] _lowerCamelCase : str = self.tokenizer.decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : int = ['''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''' * 2_0] self.assertIsInstance(src_text[0] , __lowerCAmelCase ) _lowerCamelCase : List[str] = 1_0 _lowerCamelCase : List[Any] = self.tokenizer(__lowerCAmelCase , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''__java__'''] ) , [5_0_0_0_4, 5_0_0_0_1] ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : List[str] = tempfile.mkdtemp() _lowerCamelCase : Optional[int] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = PLBartTokenizer.from_pretrained(__lowerCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowerCAmelCase ) @require_torch def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowerCAmelCase , return_tensors='''pt''' ) _lowerCamelCase : int = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , __lowerCAmelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Any = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) _lowerCamelCase : Union[str, Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual((2, 2_6) , batch.input_ids.shape ) self.assertEqual((2, 2_6) , batch.attention_mask.shape ) _lowerCamelCase : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowerCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Optional[Any] = self.tokenizer(self.src_text , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=3 , return_tensors='''pt''' ) _lowerCamelCase : str = self.tokenizer( text_target=self.tgt_text , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=1_0 , return_tensors='''pt''' ) _lowerCamelCase : Tuple = targets['''input_ids'''] _lowerCamelCase : Union[str, Any] = shift_tokens_right(__lowerCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : List[Any] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''java''' ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , { # A, test, EOS, en_XX '''input_ids''': [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], '''attention_mask''': [[1, 1, 1, 1]], # java '''forced_bos_token_id''': 5_0_0_0_1, } , )
83
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowerCAmelCase__ = '''hf-internal-testing/tiny-random-bert''' lowerCAmelCase__ = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowerCAmelCase__ = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Optional[Any] = cached_file(__lowerCAmelCase , __lowerCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__lowerCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) ) with open(os.path.join(__lowerCAmelCase , '''refs''' , '''main''' ) ) as f: _lowerCamelCase : Optional[int] = f.read() self.assertEqual(__lowerCAmelCase , os.path.join(__lowerCAmelCase , '''snapshots''' , __lowerCAmelCase , __lowerCAmelCase ) ) self.assertTrue(os.path.isfile(__lowerCAmelCase ) ) # File is cached at the same place the second time. _lowerCamelCase : Tuple = cached_file(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) # Using a specific revision to test the full commit hash. _lowerCamelCase : Dict = cached_file(__lowerCAmelCase , __lowerCAmelCase , revision='''9b8c223''' ) self.assertEqual(__lowerCAmelCase , os.path.join(__lowerCAmelCase , '''snapshots''' , __lowerCAmelCase , __lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" with self.assertRaisesRegex(__lowerCAmelCase , '''is not a valid model identifier''' ): _lowerCamelCase : Optional[int] = cached_file('''tiny-random-bert''' , __lowerCAmelCase ) with self.assertRaisesRegex(__lowerCAmelCase , '''is not a valid git identifier''' ): _lowerCamelCase : str = cached_file(__lowerCAmelCase , __lowerCAmelCase , revision='''aaaa''' ) with self.assertRaisesRegex(__lowerCAmelCase , '''does not appear to have a file named''' ): _lowerCamelCase : int = cached_file(__lowerCAmelCase , '''conf''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" with self.assertRaisesRegex(__lowerCAmelCase , '''does not appear to have a file named''' ): _lowerCamelCase : Dict = cached_file(__lowerCAmelCase , '''conf''' ) with open(os.path.join(__lowerCAmelCase , '''refs''' , '''main''' ) ) as f: _lowerCamelCase : List[Any] = f.read() self.assertTrue(os.path.isfile(os.path.join(__lowerCAmelCase , '''.no_exist''' , __lowerCAmelCase , '''conf''' ) ) ) _lowerCamelCase : str = cached_file(__lowerCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=__lowerCAmelCase ) self.assertIsNone(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = cached_file(__lowerCAmelCase , '''conf''' , local_files_only=__lowerCAmelCase , _raise_exceptions_for_missing_entries=__lowerCAmelCase ) self.assertIsNone(__lowerCAmelCase ) _lowerCamelCase : Any = mock.Mock() _lowerCamelCase : Optional[Any] = 5_0_0 _lowerCamelCase : Dict = {} _lowerCamelCase : List[Any] = HTTPError _lowerCamelCase : int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=__lowerCAmelCase ) as mock_head: _lowerCamelCase : Union[str, Any] = cached_file(__lowerCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=__lowerCAmelCase ) self.assertIsNone(__lowerCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __lowerCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __lowerCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__lowerCAmelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , __lowerCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__lowerCAmelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , __lowerCAmelCase , revision='''ahaha''' ) _lowerCamelCase : Dict = get_file_from_repo('''bert-base-cased''' , __lowerCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. _lowerCamelCase : Dict = json.loads(open(__lowerCAmelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 7_6_8 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Any = Path(__lowerCAmelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(__lowerCAmelCase , '''a.txt''' ) , str(__lowerCAmelCase ) ) self.assertIsNone(get_file_from_repo(__lowerCAmelCase , '''b.txt''' ) )
83
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A : Optional[int] = logging.get_logger(__name__) A : str = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] ="""biogpt""" def __init__( self , __a=4_23_84 , __a=10_24 , __a=24 , __a=16 , __a=40_96 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10_24 , __a=0.0_2 , __a=1e-1_2 , __a=True , __a=True , __a=0.0 , __a=0.0 , __a=1 , __a=0 , __a=2 , **__a , ): __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = scale_embedding __lowerCAmelCase = use_cache __lowerCAmelCase = layerdrop __lowerCAmelCase = activation_dropout super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a )
710
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _UpperCamelCase : '''simple docstring''' def snake_case ( self , __a , __a , __a ): return None class _UpperCamelCase : '''simple docstring''' def snake_case ( self , __a , __a , __a , __a ): return None class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Tuple =[ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def snake_case ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__a , "tf" , 12 , **__a ) @require_torch @slow def snake_case ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__a , "pt" , 12 , **__a ) @require_torch @slow def snake_case ( self ): from transformers import BertModel __lowerCAmelCase = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(__a ) ) vocab_file.flush() __lowerCAmelCase = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: __lowerCAmelCase = BertModel(BertConfig(vocab_size=len(__a ) ) ) model.save_pretrained(__a ) self._test_export(__a , "pt" , 12 , __a ) @require_tf @slow def snake_case ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __lowerCAmelCase = self._test_export(__a , "tf" , 12 , **__a ) __lowerCAmelCase = quantize(Path(__a ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__a ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def snake_case ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __lowerCAmelCase = self._test_export(__a , "pt" , 12 , **__a ) __lowerCAmelCase = quantize(__a ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__a ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def snake_case ( self , __a , __a , __a , __a=None , **__a ): try: # Compute path with TemporaryDirectory() as tempdir: __lowerCAmelCase = Path(__a ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__a , __a , __a , __a , __a , **__a ) return path except Exception as e: self.fail(__a ) @require_torch @require_tokenizers @slow def snake_case ( self ): from transformers import BertModel __lowerCAmelCase = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) __lowerCAmelCase = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__a , __a , "pt" ) @require_tf @require_tokenizers @slow def snake_case ( self ): from transformers import TFBertModel __lowerCAmelCase = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) __lowerCAmelCase = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__a , __a , "tf" ) def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = FeatureExtractionPipeline(__a , __a ) __lowerCAmelCase = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = infer_shapes(__a , __a ) # Assert all variables are present self.assertEqual(len(__a ) , len(__a ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __a ) self.assertSequenceEqual(variable_names[3:] , __a ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def snake_case ( self ): __lowerCAmelCase = ["input_ids", "attention_mask", "token_type_ids"] __lowerCAmelCase = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} __lowerCAmelCase , __lowerCAmelCase = ensure_valid_input(FuncContiguousArgs() , __a , __a ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__a ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__a ) , set(__a ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__a , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) __lowerCAmelCase , __lowerCAmelCase = ensure_valid_input(FuncNonContiguousArgs() , __a , __a ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__a ) , 1 ) self.assertEqual(len(__a ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def snake_case ( self ): __lowerCAmelCase = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
282
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return base * power(lowerCAmelCase__ ,(exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") A_ = int(input("""Enter the base: """).strip()) A_ = int(input("""Enter the exponent: """).strip()) A_ = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents A_ = 1 / result print(f"{base} to the power of {exponent} is {result}")
29
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Tuple = ["transformers", "torch", "note_seq"] def __init__( self : List[Any] , *lowercase : List[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[str] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
686
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase = UNetaDModel( sample_size=(3_2, 6_4) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=1_0 , ) return model @property def UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL( sample_size=(1_2_8, 6_4) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) UpperCamelCase = UNetaDModel( sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) UpperCamelCase = DDPMScheduler() UpperCamelCase = AudioDiffusionPipeline(vqvae=lowerCamelCase__ , unet=self.dummy_unet , mel=lowerCamelCase__ , scheduler=lowerCamelCase__ ) UpperCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(4_2 ) UpperCamelCase = pipe(generator=lowerCamelCase__ , steps=4 ) UpperCamelCase = output.audios[0] UpperCamelCase = output.images[0] UpperCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(4_2 ) UpperCamelCase = pipe(generator=lowerCamelCase__ , steps=4 , return_dict=lowerCamelCase__ ) UpperCamelCase = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) UpperCamelCase = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:1_0] UpperCamelCase = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:1_0] UpperCamelCase = np.array([6_9, 2_5_5, 2_5_5, 2_5_5, 0, 0, 7_7, 1_8_1, 1_2, 1_2_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 UpperCamelCase = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) UpperCamelCase = DDIMScheduler() UpperCamelCase = self.dummy_vqvae_and_unet UpperCamelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=lowerCamelCase__ , scheduler=lowerCamelCase__ ) UpperCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) np.random.seed(0 ) UpperCamelCase = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) UpperCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(4_2 ) UpperCamelCase = pipe(raw_audio=lowerCamelCase__ , generator=lowerCamelCase__ , start_step=5 , steps=1_0 ) UpperCamelCase = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) UpperCamelCase = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:1_0] UpperCamelCase = np.array([1_2_0, 1_1_7, 1_1_0, 1_0_9, 1_3_8, 1_6_7, 1_3_8, 1_4_8, 1_3_2, 1_2_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 UpperCamelCase = self.dummy_unet_condition UpperCamelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=lowerCamelCase__ , mel=lowerCamelCase__ , scheduler=lowerCamelCase__ ) UpperCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) np.random.seed(0 ) UpperCamelCase = torch.rand((1, 1, 1_0) ) UpperCamelCase = pipe(generator=lowerCamelCase__ , encoding=lowerCamelCase__ ) UpperCamelCase = output.images[0] UpperCamelCase = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:1_0] UpperCamelCase = np.array([1_0_7, 1_0_3, 1_2_0, 1_2_7, 1_4_2, 1_2_2, 1_1_3, 1_2_2, 9_7, 1_1_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = torch_device UpperCamelCase = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) UpperCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(4_2 ) UpperCamelCase = pipe(generator=lowerCamelCase__ ) UpperCamelCase = output.audios[0] UpperCamelCase = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] UpperCamelCase = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:1_0] UpperCamelCase = np.array([1_5_1, 1_6_7, 1_5_4, 1_4_4, 1_2_2, 1_3_4, 1_2_1, 1_0_5, 7_0, 2_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
350
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract snake_case_ : Tuple = logging.get_logger(__name__) def __snake_case ( _UpperCAmelCase : str, _UpperCAmelCase : int, _UpperCAmelCase : Optional[int]): return [ int(1000 * (box[0] / width)), int(1000 * (box[1] / height)), int(1000 * (box[2] / width)), int(1000 * (box[3] / height)), ] def __snake_case ( _UpperCAmelCase : np.ndarray, _UpperCAmelCase : Optional[str], _UpperCAmelCase : Optional[str]): UpperCamelCase = to_pil_image(_UpperCAmelCase) UpperCamelCase , UpperCamelCase = pil_image.size UpperCamelCase = pytesseract.image_to_data(_UpperCAmelCase, lang=_UpperCAmelCase, output_type='''dict''', config=_UpperCAmelCase) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates UpperCamelCase = [idx for idx, word in enumerate(_UpperCAmelCase) if not word.strip()] UpperCamelCase = [word for idx, word in enumerate(_UpperCAmelCase) if idx not in irrelevant_indices] UpperCamelCase = [coord for idx, coord in enumerate(_UpperCAmelCase) if idx not in irrelevant_indices] UpperCamelCase = [coord for idx, coord in enumerate(_UpperCAmelCase) if idx not in irrelevant_indices] UpperCamelCase = [coord for idx, coord in enumerate(_UpperCAmelCase) if idx not in irrelevant_indices] UpperCamelCase = [coord for idx, coord in enumerate(_UpperCAmelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCamelCase = [] for x, y, w, h in zip(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase): UpperCamelCase = [x, y, x + w, y + h] actual_boxes.append(_UpperCAmelCase) # finally, normalize the bounding boxes UpperCamelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase)) assert len(_UpperCAmelCase) == len(_UpperCAmelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = ['''pixel_values'''] def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = PILImageResampling.BILINEAR , lowerCamelCase__ = True , lowerCamelCase__ = 1 / 2_5_5 , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = "" , **lowerCamelCase__ , ): '''simple docstring''' super().__init__(**lowerCamelCase__ ) UpperCamelCase = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} UpperCamelCase = get_size_dict(lowerCamelCase__ ) UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = resample UpperCamelCase = do_rescale UpperCamelCase = rescale_value UpperCamelCase = do_normalize UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD UpperCamelCase = apply_ocr UpperCamelCase = ocr_lang UpperCamelCase = tesseract_config def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = PILImageResampling.BILINEAR , lowerCamelCase__ = None , **lowerCamelCase__ , ): '''simple docstring''' UpperCamelCase = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) UpperCamelCase = (size['''height'''], size['''width''']) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): '''simple docstring''' return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): '''simple docstring''' return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__=None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ): '''simple docstring''' UpperCamelCase = do_resize if do_resize is not None else self.do_resize UpperCamelCase = size if size is not None else self.size UpperCamelCase = get_size_dict(lowerCamelCase__ ) UpperCamelCase = resample if resample is not None else self.resample UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase = image_mean if image_mean is not None else self.image_mean UpperCamelCase = image_std if image_std is not None else self.image_std UpperCamelCase = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCamelCase = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCamelCase = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCamelCase = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(lowerCamelCase__ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) UpperCamelCase = [] UpperCamelCase = [] for image in images: UpperCamelCase , UpperCamelCase = apply_tesseract(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) words_batch.append(lowerCamelCase__ ) boxes_batch.append(lowerCamelCase__ ) if do_resize: UpperCamelCase = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_rescale: UpperCamelCase = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: UpperCamelCase = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] UpperCamelCase = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] UpperCamelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=lowerCamelCase__ ) if apply_ocr: UpperCamelCase = words_batch UpperCamelCase = boxes_batch return data
350
1
'''simple docstring''' def A_( A : int = 1000): return sum(e for e in range(3 , UpperCamelCase__) if e % 3 == 0 or e % 5 == 0) if __name__ == "__main__": print(f"""{solution() = }""")
3
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowercase ( A, unittest.TestCase ): '''simple docstring''' _A : Dict = RoCBertTokenizer _A : Optional[Any] = None _A : Dict = False _A : List[str] = True _A : Optional[int] = filter_non_english def A_ ( self : int ): super().setUp() UpperCamelCase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] UpperCamelCase__ = {} UpperCamelCase__ = {} for i, value in enumerate(_a ): UpperCamelCase__ = i UpperCamelCase__ = i UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(_a , _a , ensure_ascii=_a ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(_a , _a , ensure_ascii=_a ) def A_ ( self : List[str] ): UpperCamelCase__ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCamelCase__ = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(_a , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(_a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(_a ) , [5, 6, 2, 5, 7, 8] ) def A_ ( self : Tuple ): UpperCamelCase__ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def A_ ( self : Optional[Any] ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A_ ( self : Optional[int] ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def A_ ( self : List[Any] ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A_ ( self : Any ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A_ ( self : str ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A_ ( self : List[Any] ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A_ ( self : Any ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A_ ( self : Optional[int] ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def A_ ( self : Optional[int] ): UpperCamelCase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] UpperCamelCase__ = {} for i, token in enumerate(_a ): UpperCamelCase__ = i UpperCamelCase__ = RoCBertWordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def A_ ( self : Union[str, Any] ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def A_ ( self : Optional[Any] ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def A_ ( self : List[str] ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def A_ ( self : Union[str, Any] ): UpperCamelCase__ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: UpperCamelCase__ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def A_ ( self : Tuple ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) UpperCamelCase__ = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCamelCase__ = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) UpperCamelCase__ = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False UpperCamelCase__ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def A_ ( self : Any ): UpperCamelCase__ = ['''的''', '''人''', '''有'''] UpperCamelCase__ = ''''''.join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase__ = True UpperCamelCase__ = self.tokenizer_class.from_pretrained(_a , **_a ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) UpperCamelCase__ = tokenizer_p.encode(_a , add_special_tokens=_a ) UpperCamelCase__ = tokenizer_r.encode(_a , add_special_tokens=_a ) UpperCamelCase__ = tokenizer_r.convert_ids_to_tokens(_a ) UpperCamelCase__ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) UpperCamelCase__ = False UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) UpperCamelCase__ = self.tokenizer_class.from_pretrained(_a , **_a ) UpperCamelCase__ = tokenizer_r.encode(_a , add_special_tokens=_a ) UpperCamelCase__ = tokenizer_p.encode(_a , add_special_tokens=_a ) UpperCamelCase__ = tokenizer_r.convert_ids_to_tokens(_a ) UpperCamelCase__ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". UpperCamelCase__ = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) @slow def A_ ( self : str ): UpperCamelCase__ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCamelCase__ = tokenizer.encode('''你好''' , add_special_tokens=_a ) UpperCamelCase__ = tokenizer.encode('''你是谁''' , add_special_tokens=_a ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(_a ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def A_ ( self : List[Any] ): UpperCamelCase__ = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): UpperCamelCase__ = '''你好,你是谁''' UpperCamelCase__ = tokenizer.tokenize(_a ) UpperCamelCase__ = tokenizer.convert_tokens_to_ids(_a ) UpperCamelCase__ = tokenizer.convert_tokens_to_shape_ids(_a ) UpperCamelCase__ = tokenizer.convert_tokens_to_pronunciation_ids(_a ) UpperCamelCase__ = tokenizer.prepare_for_model( _a , _a , _a , add_special_tokens=_a ) UpperCamelCase__ = tokenizer.encode_plus(_a , add_special_tokens=_a ) self.assertEqual(_a , _a )
240
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor a : Union[str, Any] = logging.get_logger(__name__) class __UpperCamelCase ( a__ ): def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> None: warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
31
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _SCREAMING_SNAKE_CASE ( _lowercase : str=None ) ->Optional[Any]: '''simple docstring''' if subparsers is not None: a : Dict = subparsers.add_parser("test" ) else: a : Tuple = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=_lowercase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=_lowercase ) return parser def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->str: '''simple docstring''' a : List[Any] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: a : int = script_name else: a : int = F"""--config_file={args.config_file} {script_name}""" a : Optional[int] = ["accelerate-launch"] + test_args.split() a : Optional[int] = execute_subprocess_async(_lowercase , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def _SCREAMING_SNAKE_CASE ( ) ->Tuple: '''simple docstring''' a : Any = test_command_parser() a : Union[str, Any] = parser.parse_args() test_command(_lowercase ) if __name__ == "__main__": main()
31
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCamelCase_ ( ) -> Any: a__ : str = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=__a ) a__ : Optional[Any] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=__a ) env_command_parser(subparsers=__a ) launch_command_parser(subparsers=__a ) tpu_command_parser(subparsers=__a ) test_command_parser(subparsers=__a ) # Let's go a__ : List[Any] = parser.parse_args() if not hasattr(__a , "func" ): parser.print_help() exit(1 ) # Run args.func(__a ) if __name__ == "__main__": main()
37
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A__ : Optional[Any] = None A__ : str = logging.get_logger(__name__) A__ : Optional[int] = '▁' A__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A__ : Dict = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A__ : int = { 'google/pegasus-xsum': 5_12, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PegasusTokenizer lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict, lowerCamelCase : str=None, lowerCamelCase : List[str]=None, lowerCamelCase : int="<pad>", lowerCamelCase : str="</s>", lowerCamelCase : Optional[Any]="<unk>", lowerCamelCase : Any="<mask_2>", lowerCamelCase : Optional[Any]="<mask_1>", lowerCamelCase : int=None, lowerCamelCase : Dict=103, **lowerCamelCase : List[Any], ): '''simple docstring''' lowercase__ = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase, lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(lowerCamelCase )}, but is""" F""" {type(lowerCamelCase )}""" ) lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(lowerCamelCase ), self.offset - 1 ) ] if len(set(lowerCamelCase ) ) != len(lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2, self.offset )] super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, pad_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, mask_token=lowerCamelCase, mask_token_sent=lowerCamelCase, offset=lowerCamelCase, additional_special_tokens=lowerCamelCase, **lowerCamelCase, ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowercase__ ( self : Optional[Any], lowerCamelCase : int ): '''simple docstring''' lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' F""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase__ ( self : Optional[Any], lowerCamelCase : List, lowerCamelCase : Optional[List] = None, lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[int], lowerCamelCase : Optional[Any]=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self : Optional[Any], lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file, lowerCamelCase ) return (out_vocab_file,)
183
0
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging __snake_case = logging.get_logger(__name__) def a ( __a , __a ) -> Any: '''simple docstring''' try: with open(__a , '''rb''' ) as flax_state_f: UpperCamelCase__ :Any = from_bytes(__a , flax_state_f.read() ) except UnpicklingError as e: try: with open(__a ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(__a , __a ) def a ( __a , __a ) -> Dict: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights UpperCamelCase__ :str = flatten_dict(jax.tree_util.tree_map(lambda __a : x.dtype == jnp.bfloataa , __a ) ).values() if any(__a ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) UpperCamelCase__ :List[str] = jax.tree_util.tree_map( lambda __a : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __a ) UpperCamelCase__ :Optional[Any] = '''''' UpperCamelCase__ :Tuple = flatten_dict(__a , sep='''.''' ) UpperCamelCase__ :Dict = pt_model.state_dict() # keep track of unexpected & missing keys UpperCamelCase__ :Any = [] UpperCamelCase__ :List[str] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase__ :Union[str, Any] = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: UpperCamelCase__ :Dict = flax_key_tuple_array[:-1] + ['''weight'''] UpperCamelCase__ :List[Any] = jnp.transpose(__a , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": UpperCamelCase__ :int = flax_key_tuple_array[:-1] + ['''weight'''] UpperCamelCase__ :int = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": UpperCamelCase__ :Dict = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(__a ): UpperCamelCase__ :List[str] = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) UpperCamelCase__ :List[Any] = '''.'''.join(__a ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' f'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict UpperCamelCase__ :List[Any] = np.asarray(__a ) if not isinstance(__a , np.ndarray ) else flax_tensor UpperCamelCase__ :Optional[Any] = torch.from_numpy(__a ) # remove from missing keys missing_keys.remove(__a ) else: # weight is not expected by PyTorch model unexpected_keys.append(__a ) pt_model.load_state_dict(__a ) # re-transform missing_keys to list UpperCamelCase__ :int = list(__a ) if len(__a ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' f''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(__a ) > 0: logger.warning( f'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' f''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' ''' use it for predictions and inference.''' ) return pt_model
280
'''simple docstring''' import torch from torch import nn class lowercase ( nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=1 , UpperCamelCase_=False ): '''simple docstring''' super().__init__() UpperCamelCase__ :Dict = n_token UpperCamelCase__ :List[Any] = d_embed UpperCamelCase__ :Dict = d_proj UpperCamelCase__ :Dict = cutoffs + [n_token] UpperCamelCase__ :Union[str, Any] = [0] + self.cutoffs UpperCamelCase__ :Any = div_val UpperCamelCase__ :int = self.cutoffs[0] UpperCamelCase__ :List[Any] = len(self.cutoffs ) - 1 UpperCamelCase__ :List[Any] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCamelCase__ :Any = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) UpperCamelCase__ :Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCamelCase__ :Union[str, Any] = nn.ModuleList() UpperCamelCase__ :str = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCamelCase_ , UpperCamelCase_ ) ) ) else: self.out_projs.append(UpperCamelCase_ ) self.out_layers.append(nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) ) else: for i in range(len(self.cutoffs ) ): UpperCamelCase__ , UpperCamelCase__ :List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase__ :Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCamelCase_ , UpperCamelCase_ ) ) ) self.out_layers.append(nn.Linear(UpperCamelCase_ , r_idx - l_idx ) ) UpperCamelCase__ :Tuple = keep_order def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if proj is None: UpperCamelCase__ :List[str] = nn.functional.linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCamelCase__ :Any = nn.functional.linear(UpperCamelCase_ , proj.t().contiguous() ) UpperCamelCase__ :Union[str, Any] = nn.functional.linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n UpperCamelCase__ :Optional[Any] = hidden[..., :-1, :].contiguous() UpperCamelCase__ :Optional[Any] = labels[..., 1:].contiguous() UpperCamelCase__ :Optional[Any] = hidden.view(-1 , hidden.size(-1 ) ) UpperCamelCase__ :str = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: UpperCamelCase__ :int = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: UpperCamelCase__ :Optional[int] = self._compute_logit(UpperCamelCase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: UpperCamelCase__ :int = labels != -100 UpperCamelCase__ :List[Any] = torch.zeros_like(UpperCamelCase_ , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase__ :str = ( -nn.functional.log_softmax(UpperCamelCase_ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCamelCase__ :Dict = nn.functional.log_softmax(UpperCamelCase_ , dim=-1 ) else: # construct weights and biases UpperCamelCase__ , UpperCamelCase__ :Dict = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase__ :str = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase__ :Optional[int] = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase__ :Optional[Any] = self.out_layers[i].weight UpperCamelCase__ :Optional[int] = self.out_layers[i].bias if i == 0: UpperCamelCase__ :str = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase__ :List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCamelCase_ ) biases.append(UpperCamelCase_ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = weights[0], biases[0], self.out_projs[0] UpperCamelCase__ :str = self._compute_logit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :List[Any] = nn.functional.log_softmax(UpperCamelCase_ , dim=1 ) if labels is None: UpperCamelCase__ :Union[str, Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCamelCase__ :Any = torch.zeros_like(UpperCamelCase_ , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase__ :Any = 0 UpperCamelCase__ :str = [0] + self.cutoffs for i in range(len(UpperCamelCase_ ) - 1 ): UpperCamelCase__ , UpperCamelCase__ :Optional[int] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCamelCase__ :Any = (labels >= l_idx) & (labels < r_idx) UpperCamelCase__ :int = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCamelCase__ :Tuple = labels.index_select(0 , UpperCamelCase_ ) - l_idx UpperCamelCase__ :str = head_logprob.index_select(0 , UpperCamelCase_ ) UpperCamelCase__ :int = hidden.index_select(0 , UpperCamelCase_ ) else: UpperCamelCase__ :Dict = hidden if i == 0: if labels is not None: UpperCamelCase__ :Any = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase__ :List[str] = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Dict = weights[i], biases[i], self.out_projs[i] UpperCamelCase__ :str = self._compute_logit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = nn.functional.log_softmax(UpperCamelCase_ , dim=1 ) UpperCamelCase__ :Any = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCamelCase__ :List[Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase__ :List[str] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCamelCase__ :Dict = logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , UpperCamelCase_ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if self.n_clusters == 0: UpperCamelCase__ :Optional[Any] = self._compute_logit(UpperCamelCase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(UpperCamelCase_ , dim=-1 ) else: # construct weights and biases UpperCamelCase__ , UpperCamelCase__ :List[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase__ , UpperCamelCase__ :Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase__ :Union[str, Any] = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase__ :str = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase__ :List[Any] = self.out_layers[i].weight UpperCamelCase__ :List[Any] = self.out_layers[i].bias if i == 0: UpperCamelCase__ :Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase__ :Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCamelCase_ ) biases.append(UpperCamelCase_ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :str = weights[0], biases[0], self.out_projs[0] UpperCamelCase__ :Optional[int] = self._compute_logit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :int = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCamelCase__ :Union[str, Any] = nn.functional.log_softmax(UpperCamelCase_ , dim=1 ) UpperCamelCase__ :int = [0] + self.cutoffs for i in range(len(UpperCamelCase_ ) - 1 ): UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCamelCase__ :str = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Dict = weights[i], biases[i], self.out_projs[i] UpperCamelCase__ :List[str] = self._compute_logit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :Tuple = nn.functional.log_softmax(UpperCamelCase_ , dim=1 ) UpperCamelCase__ :Optional[Any] = head_logprob[:, -i] + tail_logprob_i UpperCamelCase__ :Union[str, Any] = logprob_i return out
280
1
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> str: return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
477
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case ( enum.Enum ): '''simple docstring''' snake_case_ : Any = 0 snake_case_ : Tuple = 1 snake_case_ : int = 2 @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__( self : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" super().__init__(*lowerCAmelCase , **lowerCAmelCase) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _snake_case : int = None if self.model.config.prefix is not None: _snake_case : Any = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _snake_case : List[str] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _snake_case , _snake_case , _snake_case : Optional[int] = self._sanitize_parameters(prefix=lowerCAmelCase , **self._forward_params) _snake_case : Dict = {**self._preprocess_params, **preprocess_params} _snake_case : Optional[int] = {**self._forward_params, **forward_params} def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : int=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Tuple=None , **lowerCAmelCase : str , ) -> Union[str, Any]: """simple docstring""" _snake_case : List[Any] = {} if prefix is not None: _snake_case : Tuple = prefix if prefix: _snake_case : Optional[int] = self.tokenizer( lowerCAmelCase , padding=lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=self.framework) _snake_case : Any = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' """ [None, 'hole']""") _snake_case : Tuple = handle_long_generation preprocess_params.update(lowerCAmelCase) _snake_case : str = generate_kwargs _snake_case : Optional[int] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""") if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""") _snake_case : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""") _snake_case : Tuple = ReturnType.TENSORS if return_type is not None: _snake_case : List[Any] = return_type if clean_up_tokenization_spaces is not None: _snake_case : List[str] = clean_up_tokenization_spaces if stop_sequence is not None: _snake_case : str = self.tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) if len(lowerCAmelCase) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""") _snake_case : Optional[int] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCamelCase_ ( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True}) return super()._parse_and_tokenize(*lowerCAmelCase , **lowerCAmelCase) def __call__( self : Tuple , lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" return super().__call__(lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Dict , lowerCAmelCase : str="" , lowerCAmelCase : Any=None , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" _snake_case : Dict = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=self.framework) _snake_case : Tuple = prompt_text if handle_long_generation == "hole": _snake_case : int = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: _snake_case : Optional[int] = generate_kwargs["""max_new_tokens"""] else: _snake_case : Dict = generate_kwargs.get("""max_length""" , self.model.config.max_length) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""") if cur_len + new_tokens > self.tokenizer.model_max_length: _snake_case : Optional[Any] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""") _snake_case : List[Any] = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: _snake_case : Optional[int] = inputs["""attention_mask"""][:, -keep_length:] return inputs def UpperCamelCase_ ( self : int , lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" _snake_case : Dict = model_inputs["""input_ids"""] _snake_case : List[Any] = model_inputs.get("""attention_mask""" , lowerCAmelCase) # Allow empty prompts if input_ids.shape[1] == 0: _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Any = 1 else: _snake_case : List[Any] = input_ids.shape[0] _snake_case : Tuple = model_inputs.pop("""prompt_text""") # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _snake_case : Any = generate_kwargs.pop("""prefix_length""" , 0) if prefix_length > 0: _snake_case : Dict = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: _snake_case : Optional[int] = generate_kwargs.get("""max_length""") or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _snake_case : str = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _snake_case : Optional[int] = self.model.generate(input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase , **lowerCAmelCase) _snake_case : Tuple = generated_sequence.shape[0] if self.framework == "pt": _snake_case : List[Any] = generated_sequence.reshape(lowerCAmelCase , out_b // in_b , *generated_sequence.shape[1:]) elif self.framework == "tf": _snake_case : Dict = tf.reshape(lowerCAmelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:])) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def UpperCamelCase_ ( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]=ReturnType.FULL_TEXT , lowerCAmelCase : Union[str, Any]=True) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = model_outputs["""generated_sequence"""][0] _snake_case : List[str] = model_outputs["""input_ids"""] _snake_case : Optional[Any] = model_outputs["""prompt_text"""] _snake_case : str = generated_sequence.numpy().tolist() _snake_case : Any = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _snake_case : Union[str, Any] = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _snake_case : int = self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _snake_case : str = 0 else: _snake_case : List[Any] = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , )) if return_type == ReturnType.FULL_TEXT: _snake_case : Any = prompt_text + text[prompt_length:] else: _snake_case : Union[str, Any] = text[prompt_length:] _snake_case : List[str] = {"""generated_text""": all_text} records.append(lowerCAmelCase) return records
477
1
"""simple docstring""" def __a ( A ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(A , A ): raise TypeError("Input value must be a 'int' type" ) return bin(A ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
668
"""simple docstring""" lowerCAmelCase_: Union[str, Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase_: Dict = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase_: Optional[int] = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase_: Tuple = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase_: str = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase_: int = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
668
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCamelCase = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = ["pixel_values"] def __init__( self : Any , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PIL.Image.BICUBIC , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : Union[int, float] = 1 / 2_5_5 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , **__snake_case : Optional[Any] , ) -> None: super().__init__(**__snake_case ) __magic_name__: Optional[Any] = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} __magic_name__: Dict = get_size_dict(__snake_case ) __magic_name__: Tuple = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} __magic_name__: Optional[Any] = get_size_dict(__snake_case , param_name="""crop_size""" ) __magic_name__: Any = do_resize __magic_name__: Optional[Any] = size __magic_name__: Union[str, Any] = resample __magic_name__: List[Any] = do_center_crop __magic_name__: Union[str, Any] = crop_size __magic_name__: int = do_rescale __magic_name__: Optional[Any] = rescale_factor __magic_name__: Any = do_normalize __magic_name__: List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__: int = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self : int , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PIL.Image.BICUBIC , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : int , ) -> np.ndarray: __magic_name__: List[str] = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( __snake_case , size=(size["""height"""], size["""width"""]) , resample=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : List[str] , ) -> np.ndarray: __magic_name__: Optional[Any] = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(__snake_case , size=(size["""height"""], size["""width"""]) , data_format=__snake_case , **__snake_case ) def lowerCamelCase__ ( self : Any , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Union[str, Any] , ) -> Any: return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCamelCase__ ( self : Optional[Any] , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[Any] , ) -> np.ndarray: return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCamelCase__ ( self : Tuple , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : Dict=None , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : ChannelDimension = ChannelDimension.FIRST , **__snake_case : List[Any] , ) -> PIL.Image.Image: __magic_name__: Optional[int] = do_resize if do_resize is not None else self.do_resize __magic_name__: Dict = resample if resample is not None else self.resample __magic_name__: Dict = do_center_crop if do_center_crop is not None else self.do_center_crop __magic_name__: Any = do_rescale if do_rescale is not None else self.do_rescale __magic_name__: Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__: str = do_normalize if do_normalize is not None else self.do_normalize __magic_name__: Any = image_mean if image_mean is not None else self.image_mean __magic_name__: Dict = image_std if image_std is not None else self.image_std __magic_name__: Optional[Any] = size if size is not None else self.size __magic_name__: List[str] = get_size_dict(__snake_case ) __magic_name__: int = crop_size if crop_size is not None else self.crop_size __magic_name__: str = get_size_dict(__snake_case , param_name="""crop_size""" ) __magic_name__: Optional[Any] = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __magic_name__: Optional[Any] = [to_numpy_array(__snake_case ) for image in images] if do_resize: __magic_name__: str = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_center_crop: __magic_name__: List[str] = [self.center_crop(image=__snake_case , size=__snake_case ) for image in images] if do_rescale: __magic_name__: Union[str, Any] = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: __magic_name__: Optional[int] = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] __magic_name__: List[str] = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] __magic_name__: Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
96
from random import randint from tempfile import TemporaryFile import numpy as np def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Any: lowerCAmelCase__ : Optional[Any] = 0 if start < end: lowerCAmelCase__ : Union[str, Any] = randint(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[str] = a[end] lowerCAmelCase__ : List[Any] = a[pivot] lowerCAmelCase__ : str = temp lowerCAmelCase__ , lowerCAmelCase__ : Tuple = _in_place_partition(UpperCamelCase , UpperCamelCase , UpperCamelCase ) count += _in_place_quick_sort(UpperCamelCase , UpperCamelCase , p - 1 ) count += _in_place_quick_sort(UpperCamelCase , p + 1 , UpperCamelCase ) return count def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[Any]: lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : List[Any] = randint(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : str = a[end] lowerCAmelCase__ : Optional[int] = a[pivot] lowerCAmelCase__ : List[str] = temp lowerCAmelCase__ : str = start - 1 for index in range(UpperCamelCase , UpperCamelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCAmelCase__ : List[str] = new_pivot_index + 1 lowerCAmelCase__ : int = a[new_pivot_index] lowerCAmelCase__ : int = a[index] lowerCAmelCase__ : Tuple = temp lowerCAmelCase__ : Optional[Any] = a[new_pivot_index + 1] lowerCAmelCase__ : List[str] = a[end] lowerCAmelCase__ : Union[str, Any] = temp return new_pivot_index + 1, count lowerCAmelCase_ = TemporaryFile() lowerCAmelCase_ = 1_00 # 1000 elements are to be sorted lowerCAmelCase_ , lowerCAmelCase_ = 0, 1 # mean and standard deviation lowerCAmelCase_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array lowerCAmelCase_ = np.load(outfile) lowerCAmelCase_ = len(M) - 1 lowerCAmelCase_ = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
678
0
from __future__ import annotations import math from collections.abc import Callable def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 100 , ) -> float: lowerCAmelCase__ : int = x_start lowerCAmelCase__ : Tuple = fnc(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = 0.0 for _ in range(UpperCamelCase ): # Approximates curve as a sequence of linear lines and sums their length lowerCAmelCase__ : Optional[int] = (x_end - x_start) / steps + xa lowerCAmelCase__ : Tuple = fnc(UpperCamelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowerCAmelCase__ : Optional[int] = xa lowerCAmelCase__ : List[str] = fxa return length if __name__ == "__main__": def __lowerCAmelCase ( UpperCamelCase ) -> str: return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") lowerCAmelCase_ = 10 while i <= 10_00_00: print(F"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
700
from datetime import datetime import matplotlib.pyplot as plt import torch def __lowerCAmelCase ( UpperCamelCase ) -> str: for param in module.parameters(): lowerCAmelCase__ : int = False def __lowerCAmelCase ( ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCAmelCase__ : Optional[Any] = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def __lowerCAmelCase ( UpperCamelCase ) -> List[Any]: lowerCAmelCase__ : str = plt.imshow(UpperCamelCase ) fig.axes.get_xaxis().set_visible(UpperCamelCase ) fig.axes.get_yaxis().set_visible(UpperCamelCase ) plt.show() def __lowerCAmelCase ( ) -> str: lowerCAmelCase__ : Dict = datetime.now() lowerCAmelCase__ : Optional[int] = current_time.strftime('''%H:%M:%S''' ) return timestamp
470
0
'''simple docstring''' def A_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any ) -> int: __SCREAMING_SNAKE_CASE : Tuple = word.split() def justify(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : Tuple = max_width - width __SCREAMING_SNAKE_CASE : Optional[Any] = len(UpperCamelCase__ ) if len(UpperCamelCase__ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: __SCREAMING_SNAKE_CASE : Any = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] __SCREAMING_SNAKE_CASE : int = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] __SCREAMING_SNAKE_CASE : List[str] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCamelCase__ ): num_spaces_between_words_list[i] += 1 __SCREAMING_SNAKE_CASE : Tuple = [] for i in range(UpperCamelCase__ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = [] __SCREAMING_SNAKE_CASE : list[str] = [] __SCREAMING_SNAKE_CASE : Optional[Any] = 0 for word in words: if width + len(UpperCamelCase__ ) + len(UpperCamelCase__ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCamelCase__ ) width += len(UpperCamelCase__ ) else: # justify the line and add it to result answer.append(justify(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) # reset new line and new width __SCREAMING_SNAKE_CASE : Union[str, Any] = [word], len(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = max_width - width - len(UpperCamelCase__ ) answer.append(''' '''.join(UpperCamelCase__ ) + (remaining_spaces + 1) * ''' ''' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
158
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = '''rwkv''' UpperCamelCase : Optional[int] = {'''max_position_embeddings''': '''context_length'''} def __init__( self : List[Any] , UpperCAmelCase__ : Optional[int]=50277 , UpperCAmelCase__ : List[Any]=1024 , UpperCAmelCase__ : Dict=4096 , UpperCAmelCase__ : Optional[Any]=32 , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : int=1E-5 , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : Any=6 , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : Optional[int]=True , **UpperCAmelCase__ : List[Any] , ) -> Optional[int]: _a : Dict = vocab_size _a : List[Any] = context_length _a : int = hidden_size _a : Dict = num_hidden_layers _a : List[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size _a : Any = intermediate_size if intermediate_size is not None else 4 * hidden_size _a : int = layer_norm_epsilon _a : List[str] = rescale_every _a : List[str] = use_cache _a : List[str] = bos_token_id _a : Optional[int] = eos_token_id super().__init__( tie_word_embeddings=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ )
389
0
"""simple docstring""" from torch import nn def lowerCAmelCase__ ( lowerCamelCase__ ) -> List[Any]: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""" )
706
"""simple docstring""" import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) def lowerCAmelCase__ ( lowerCamelCase__ ) -> Union[str, Any]: A = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError('Quantized models are not supported.' ) A = re.match(R'^mobilenet_v1_([^_]*)_([^_]*)$' , lowerCamelCase__ ) if matches: A = float(matches[1] ) A = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". A = 1001 A = 'imagenet-1k-id2label.json' A = 'huggingface/label-files' A = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type='dataset' ) , 'r' ) ) A = {int(lowerCamelCase__ ) + 1: v for k, v in idalabel.items()} A = 'background' A = idalabel A = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase__ ( ) -> List[Any]: A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Dict: A = get_mobilenet_va_config(lowerCamelCase__ ) # Load 🤗 model A = MobileNetVaForImageClassification(lowerCamelCase__ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor A = MobileNetVaImageProcessor( crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 32} , ) A = image_processor(images=prepare_img() , return_tensors='pt' ) A = model(**lowerCamelCase__ ) A = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": A = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: A = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print('Pushing to the hub...' ) A = 'google/' + model_name image_processor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
109
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { 'configuration_chinese_clip': [ 'CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ChineseCLIPConfig', 'ChineseCLIPOnnxConfig', 'ChineseCLIPTextConfig', 'ChineseCLIPVisionConfig', ], 'processing_chinese_clip': ['ChineseCLIPProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['ChineseCLIPFeatureExtractor'] a_ = ['ChineseCLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ChineseCLIPModel', 'ChineseCLIPPreTrainedModel', 'ChineseCLIPTextModel', 'ChineseCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
296
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar a_ = TypeVar('_T') class __SCREAMING_SNAKE_CASE ( Generic[_T] ): def __init__( self : Union[str, Any] , __lowercase : Iterable[_T] | None = None ) -> None: SCREAMING_SNAKE_CASE__ : list[_T] =list(iterable or [] ) SCREAMING_SNAKE_CASE__ : list[_T] =[] def __len__( self : Union[str, Any] ) -> int: return len(self._stacka ) + len(self._stacka ) def __repr__( self : Dict ) -> str: return F"Queue({tuple(self._stacka[::-1] + self._stacka )})" def __magic_name__ ( self : str , __lowercase : _T ) -> None: self._stacka.append(__lowercase ) def __magic_name__ ( self : List[Any] ) -> _T: SCREAMING_SNAKE_CASE__ : Optional[int] =self._stacka.pop SCREAMING_SNAKE_CASE__ : Optional[Any] =self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
296
1
'''simple docstring''' import os from pathlib import Path def lowercase ( ): '''simple docstring''' from torch.utils.cpp_extension import load UpperCAmelCase : Optional[Any] = Path(__magic_name__ ).resolve().parent.parent.parent / "kernels" / "deformable_detr" UpperCAmelCase : str = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , __magic_name__ , with_cuda=__magic_name__ , extra_include_paths=[str(__magic_name__ )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
609
'''simple docstring''' from __future__ import annotations from typing import TypedDict class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : str SCREAMING_SNAKE_CASE__ : int def lowercase ( __magic_name__ ): '''simple docstring''' if not isinstance(__magic_name__ , __magic_name__ ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(__magic_name__ ) )] def lowercase ( __magic_name__ ): '''simple docstring''' if not isinstance(__magic_name__ , __magic_name__ ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) UpperCAmelCase : List[Any] = all_rotations(__magic_name__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation UpperCAmelCase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__magic_name__ ), } return response def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' if not isinstance(__magic_name__ , __magic_name__ ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: UpperCAmelCase : Optional[int] = int(__magic_name__ ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(__magic_name__ ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) UpperCAmelCase : str = [""] * len(__magic_name__ ) for _ in range(len(__magic_name__ ) ): for i in range(len(__magic_name__ ) ): UpperCAmelCase : int = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a : Tuple = "Provide a string that I will generate its BWT transform: " a : str = input(entry_msg).strip() a : Tuple = bwt_transform(s) print( F'Burrows Wheeler transform for string \'{s}\' results ' F'in \'{result["bwt_string"]}\'' ) a : Any = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( F'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' F'we get original string \'{original_string}\'' )
609
1
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml __magic_name__ : Optional[Any] = logging.get_logger(__name__) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def run_func(SCREAMING_SNAKE_CASE ): @wraps(SCREAMING_SNAKE_CASE ) def run_in_eager_mode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): return func(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @wraps(SCREAMING_SNAKE_CASE ) @tf.function(experimental_compile=SCREAMING_SNAKE_CASE ) def run_in_graph_mode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): return func(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = random.Random() UpperCamelCase : Tuple = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(SCREAMING_SNAKE_CASE , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase : TensorFlowBenchmarkArguments __lowerCAmelCase : PretrainedConfig __lowerCAmelCase : str = "TensorFlow" @property def _a ( self ): '''simple docstring''' return tf.__version__ def _a ( self , _A , _A , _A ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase : Optional[int] = self._prepare_inference_func(_A , _A , _A ) return self._measure_speed(_inference ) def _a ( self , _A , _A , _A ): '''simple docstring''' UpperCamelCase : Dict = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase : str = self._prepare_train_func(_A , _A , _A ) return self._measure_speed(_train ) def _a ( self , _A , _A , _A ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _A ) UpperCamelCase : int = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase : Dict = self._prepare_inference_func(_A , _A , _A ) return self._measure_memory(_inference ) def _a ( self , _A , _A , _A ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _A ) UpperCamelCase : List[str] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase : Any = self._prepare_train_func(_A , _A , _A ) return self._measure_memory(_train ) def _a ( self , _A , _A , _A ): '''simple docstring''' UpperCamelCase : List[str] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) UpperCamelCase : Optional[int] = ( hasattr(_A , """architectures""" ) and isinstance(config.architectures , _A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase : List[str] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase : Optional[int] = __import__("""transformers""" , fromlist=[model_class] ) UpperCamelCase : str = getattr(_A , _A ) UpperCamelCase : Dict = model_cls(_A ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: UpperCamelCase : Optional[int] = TF_MODEL_MAPPING[config.__class__](_A ) # encoder-decoder has vocab size saved differently UpperCamelCase : Optional[Any] = config.vocab_size if hasattr(_A , """vocab_size""" ) else config.encoder.vocab_size UpperCamelCase : Dict = random_input_ids(_A , _A , _A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(_A , decoder_input_ids=_A , training=_A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(_A , training=_A ) UpperCamelCase : str = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def _a ( self , _A , _A , _A ): '''simple docstring''' UpperCamelCase : Tuple = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) UpperCamelCase : int = ( hasattr(_A , """architectures""" ) and isinstance(config.architectures , _A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase : Optional[int] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase : Any = __import__("""transformers""" , fromlist=[model_class] ) UpperCamelCase : Optional[int] = getattr(_A , _A ) UpperCamelCase : Union[str, Any] = model_cls(_A ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: UpperCamelCase : str = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_A ) # encoder-decoder has vocab size saved differently UpperCamelCase : str = config.vocab_size if hasattr(_A , """vocab_size""" ) else config.encoder.vocab_size UpperCamelCase : Union[str, Any] = random_input_ids(_A , _A , _A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCamelCase : str = model(_A , decoder_input_ids=_A , labels=_A , training=_A )[0] UpperCamelCase : Any = tf.gradients(_A , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCamelCase : List[str] = model(_A , labels=_A , training=_A )[0] UpperCamelCase : int = tf.gradients(_A , model.trainable_variables ) return gradients UpperCamelCase : Tuple = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def _a ( self , _A ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(_A , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCamelCase : int = timeit.repeat( _A , repeat=self.args.repeat , number=1_0 , ) return min(_A ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def _a ( self , _A ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) UpperCamelCase : List[str] = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) UpperCamelCase : str = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() UpperCamelCase : Dict = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCamelCase : List[str] = nvml.nvmlDeviceGetMemoryInfo(_A ) UpperCamelCase : Union[str, Any] = meminfo.used UpperCamelCase : Tuple = Memory(_A ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) UpperCamelCase : Dict = None else: UpperCamelCase : List[Any] = measure_peak_memory_cpu(_A ) UpperCamelCase : Dict = Memory(_A ) if isinstance(_A , _A ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCamelCase : List[str] = stop_memory_tracing(_A ) if memory is None: UpperCamelCase : str = summary.total else: UpperCamelCase : Tuple = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
102
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase :Optional[Any] = logging.get_logger(__name__) lowerCAmelCase :Optional[Any] = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Optional[int] = """instructblip_vision_model""" def __init__( self : List[Any] , _A : Dict=1408 , _A : Union[str, Any]=6144 , _A : Optional[int]=39 , _A : Optional[int]=16 , _A : Optional[int]=224 , _A : Any=14 , _A : Optional[int]="gelu" , _A : str=1E-6 , _A : str=0.0 , _A : str=1E-10 , _A : Optional[Any]=True , **_A : List[Any] , ) -> Dict: super().__init__(**_A ) __magic_name__ : Optional[int] = hidden_size __magic_name__ : int = intermediate_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : int = num_attention_heads __magic_name__ : Any = patch_size __magic_name__ : Tuple = image_size __magic_name__ : int = initializer_range __magic_name__ : str = attention_dropout __magic_name__ : int = layer_norm_eps __magic_name__ : Optional[int] = hidden_act __magic_name__ : Tuple = qkv_bias @classmethod def __lowerCAmelCase ( cls : List[Any] , _A : Union[str, os.PathLike] , **_A : Union[str, Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(_A ) __magic_name__ , __magic_name__ : Union[str, Any] = cls.get_config_dict(_A , **_A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __magic_name__ : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_A , **_A ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = """instructblip_qformer""" def __init__( self : Dict , _A : Dict=30522 , _A : List[str]=768 , _A : Tuple=12 , _A : List[Any]=12 , _A : Optional[int]=3072 , _A : Optional[Any]="gelu" , _A : Tuple=0.1 , _A : Any=0.1 , _A : int=512 , _A : Tuple=0.02 , _A : Optional[Any]=1E-12 , _A : List[Any]=0 , _A : Tuple="absolute" , _A : Dict=2 , _A : Tuple=1408 , **_A : int , ) -> Optional[int]: super().__init__(pad_token_id=_A , **_A ) __magic_name__ : Any = vocab_size __magic_name__ : str = hidden_size __magic_name__ : Optional[int] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : str = hidden_act __magic_name__ : List[str] = intermediate_size __magic_name__ : List[str] = hidden_dropout_prob __magic_name__ : Tuple = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : List[str] = layer_norm_eps __magic_name__ : Union[str, Any] = position_embedding_type __magic_name__ : Any = cross_attention_frequency __magic_name__ : int = encoder_hidden_size @classmethod def __lowerCAmelCase ( cls : int , _A : Union[str, os.PathLike] , **_A : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(_A ) __magic_name__ , __magic_name__ : str = cls.get_config_dict(_A , **_A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __magic_name__ : Union[str, Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_A , **_A ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : int = """instructblip""" A_ : Any = True def __init__( self : int , _A : Optional[int]=None , _A : List[str]=None , _A : Union[str, Any]=None , _A : Any=32 , **_A : int ) -> Any: super().__init__(**_A ) if vision_config is None: __magic_name__ : Any = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __magic_name__ : Union[str, Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __magic_name__ : List[str] = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __magic_name__ : Union[str, Any] = InstructBlipVisionConfig(**_A ) __magic_name__ : str = InstructBlipQFormerConfig(**_A ) __magic_name__ : int = text_config['model_type'] if 'model_type' in text_config else 'opt' __magic_name__ : Tuple = CONFIG_MAPPING[text_model_type](**_A ) __magic_name__ : Optional[Any] = self.text_config.tie_word_embeddings __magic_name__ : int = self.text_config.is_encoder_decoder __magic_name__ : List[Any] = num_query_tokens __magic_name__ : Tuple = self.vision_config.hidden_size __magic_name__ : int = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __magic_name__ : int = 1.0 __magic_name__ : List[Any] = 0.02 @classmethod def __lowerCAmelCase ( cls : str , _A : InstructBlipVisionConfig , _A : InstructBlipQFormerConfig , _A : PretrainedConfig , **_A : int , ) -> Union[str, Any]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_A , ) def __lowerCAmelCase ( self : List[Any] ) -> int: __magic_name__ : int = copy.deepcopy(self.__dict__ ) __magic_name__ : str = self.vision_config.to_dict() __magic_name__ : List[str] = self.qformer_config.to_dict() __magic_name__ : Tuple = self.text_config.to_dict() __magic_name__ : str = self.__class__.model_type return output
561
0
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class a__ ( __SCREAMING_SNAKE_CASE ): def __get__( self : List[Any] , A_ : Tuple , A_ : Tuple=None ) -> int: """simple docstring""" # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("""unreadable attribute""" ) lowerCamelCase_: Optional[Any] = """__cached_""" + self.fget.__name__ lowerCamelCase_: Union[str, Any] = getattr(A_ , A_ , A_ ) if cached is None: lowerCamelCase_: str = self.fget(A_ ) setattr(A_ , A_ , A_ ) return cached def UpperCAmelCase_ ( _UpperCAmelCase ): lowerCamelCase_: List[Any] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"""invalid truth value {val!r}""" ) def UpperCAmelCase_ ( _UpperCAmelCase ): if is_torch_fx_proxy(_UpperCAmelCase ): return True if is_torch_available(): import torch if isinstance(_UpperCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_UpperCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_UpperCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(_UpperCAmelCase , np.ndarray ) def UpperCAmelCase_ ( _UpperCAmelCase ): return isinstance(_UpperCAmelCase , np.ndarray ) def UpperCAmelCase_ ( _UpperCAmelCase ): return _is_numpy(_UpperCAmelCase ) def UpperCAmelCase_ ( _UpperCAmelCase ): import torch return isinstance(_UpperCAmelCase , torch.Tensor ) def UpperCAmelCase_ ( _UpperCAmelCase ): return False if not is_torch_available() else _is_torch(_UpperCAmelCase ) def UpperCAmelCase_ ( _UpperCAmelCase ): import torch return isinstance(_UpperCAmelCase , torch.device ) def UpperCAmelCase_ ( _UpperCAmelCase ): return False if not is_torch_available() else _is_torch_device(_UpperCAmelCase ) def UpperCAmelCase_ ( _UpperCAmelCase ): import torch if isinstance(_UpperCAmelCase , _UpperCAmelCase ): if hasattr(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase_: Optional[Any] = getattr(_UpperCAmelCase , _UpperCAmelCase ) else: return False return isinstance(_UpperCAmelCase , torch.dtype ) def UpperCAmelCase_ ( _UpperCAmelCase ): return False if not is_torch_available() else _is_torch_dtype(_UpperCAmelCase ) def UpperCAmelCase_ ( _UpperCAmelCase ): import tensorflow as tf return isinstance(_UpperCAmelCase , tf.Tensor ) def UpperCAmelCase_ ( _UpperCAmelCase ): return False if not is_tf_available() else _is_tensorflow(_UpperCAmelCase ) def UpperCAmelCase_ ( _UpperCAmelCase ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_UpperCAmelCase , """is_symbolic_tensor""" ): return tf.is_symbolic_tensor(_UpperCAmelCase ) return type(_UpperCAmelCase ) == tf.Tensor def UpperCAmelCase_ ( _UpperCAmelCase ): return False if not is_tf_available() else _is_tf_symbolic_tensor(_UpperCAmelCase ) def UpperCAmelCase_ ( _UpperCAmelCase ): import jax.numpy as jnp # noqa: F811 return isinstance(_UpperCAmelCase , jnp.ndarray ) def UpperCAmelCase_ ( _UpperCAmelCase ): return False if not is_flax_available() else _is_jax(_UpperCAmelCase ) def UpperCAmelCase_ ( _UpperCAmelCase ): if isinstance(_UpperCAmelCase , (dict, UserDict) ): return {k: to_py_obj(_UpperCAmelCase ) for k, v in obj.items()} elif isinstance(_UpperCAmelCase , (list, tuple) ): return [to_py_obj(_UpperCAmelCase ) for o in obj] elif is_tf_tensor(_UpperCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(_UpperCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(_UpperCAmelCase ): return np.asarray(_UpperCAmelCase ).tolist() elif isinstance(_UpperCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def UpperCAmelCase_ ( _UpperCAmelCase ): if isinstance(_UpperCAmelCase , (dict, UserDict) ): return {k: to_numpy(_UpperCAmelCase ) for k, v in obj.items()} elif isinstance(_UpperCAmelCase , (list, tuple) ): return np.array(_UpperCAmelCase ) elif is_tf_tensor(_UpperCAmelCase ): return obj.numpy() elif is_torch_tensor(_UpperCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(_UpperCAmelCase ): return np.asarray(_UpperCAmelCase ) else: return obj class a__ ( __SCREAMING_SNAKE_CASE ): def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase_: List[Any] = fields(self ) # Safety and consistency checks if not len(A_ ): raise ValueError(f"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""" ) lowerCamelCase_: Optional[Any] = getattr(self , class_fields[0].name ) lowerCamelCase_: List[str] = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(A_ ): if isinstance(A_ , A_ ): lowerCamelCase_: List[str] = first_field.items() lowerCamelCase_: List[str] = True else: try: lowerCamelCase_: Any = iter(A_ ) lowerCamelCase_: Dict = True except TypeError: lowerCamelCase_: Union[str, Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(A_ ): if ( not isinstance(A_ , (list, tuple) ) or not len(A_ ) == 2 or not isinstance(element[0] , A_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowerCamelCase_: Tuple = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: lowerCamelCase_: int = element[1] elif first_field is not None: lowerCamelCase_: Dict = first_field else: for field in class_fields: lowerCamelCase_: Tuple = getattr(self , field.name ) if v is not None: lowerCamelCase_: int = v def __delitem__( self : str , *A_ : List[str] , **A_ : int ) -> List[Any]: """simple docstring""" raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def lowerCAmelCase ( self : Optional[Any] , *A_ : Tuple , **A_ : Union[str, Any] ) -> str: """simple docstring""" raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def lowerCAmelCase ( self : List[Any] , *A_ : Any , **A_ : str ) -> str: """simple docstring""" raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def lowerCAmelCase ( self : List[str] , *A_ : Optional[int] , **A_ : Optional[int] ) -> Any: """simple docstring""" raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self : Optional[Any] , A_ : Tuple ) -> str: """simple docstring""" if isinstance(A_ , A_ ): lowerCamelCase_: Union[str, Any] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : List[Any] , A_ : List[Any] , A_ : str ) -> Any: """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(A_ , A_ ) super().__setattr__(A_ , A_ ) def __setitem__( self : int , A_ : Any , A_ : Tuple ) -> Dict: """simple docstring""" super().__setitem__(A_ , A_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(A_ , A_ ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple[Any]: """simple docstring""" return tuple(self[k] for k in self.keys() ) class a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): @classmethod def lowerCAmelCase ( cls : Tuple , A_ : List[str] ) -> Optional[int]: """simple docstring""" raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class a__ ( __SCREAMING_SNAKE_CASE ): _A = "longest" _A = "max_length" _A = "do_not_pad" class a__ ( __SCREAMING_SNAKE_CASE ): _A = "pt" _A = "tf" _A = "np" _A = "jax" class a__ : def __init__( self : List[Any] , A_ : List[ContextManager] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_: Tuple = context_managers lowerCamelCase_: Any = ExitStack() def __enter__( self : List[Any] ) -> Optional[Any]: """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(A_ ) def __exit__( self : Union[str, Any] , *A_ : Dict , **A_ : List[str] ) -> List[str]: """simple docstring""" self.stack.__exit__(*A_ , **A_ ) def UpperCAmelCase_ ( _UpperCAmelCase ): lowerCamelCase_: List[Any] = infer_framework(_UpperCAmelCase ) if framework == "tf": lowerCamelCase_: Optional[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase_: List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase_: Tuple = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def UpperCAmelCase_ ( _UpperCAmelCase ): lowerCamelCase_: Tuple = model_class.__name__ lowerCamelCase_: Optional[Any] = infer_framework(_UpperCAmelCase ) if framework == "tf": lowerCamelCase_: str = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase_: Tuple = inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase_: int = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase = "" , _UpperCAmelCase = "." ): def _flatten_dict(_UpperCAmelCase , _UpperCAmelCase="" , _UpperCAmelCase="." ): for k, v in d.items(): lowerCamelCase_: Optional[int] = str(_UpperCAmelCase ) + delimiter + str(_UpperCAmelCase ) if parent_key else k if v and isinstance(_UpperCAmelCase , _UpperCAmelCase ): yield from flatten_dict(_UpperCAmelCase , _UpperCAmelCase , delimiter=_UpperCAmelCase ).items() else: yield key, v return dict(_flatten_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) @contextmanager def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase=None ): if is_numpy_array(_UpperCAmelCase ): return np.transpose(_UpperCAmelCase , axes=_UpperCAmelCase ) elif is_torch_tensor(_UpperCAmelCase ): return array.T if axes is None else array.permute(*_UpperCAmelCase ) elif is_tf_tensor(_UpperCAmelCase ): import tensorflow as tf return tf.transpose(_UpperCAmelCase , perm=_UpperCAmelCase ) elif is_jax_tensor(_UpperCAmelCase ): return jnp.transpose(_UpperCAmelCase , axes=_UpperCAmelCase ) else: raise ValueError(f"""Type not supported for transpose: {type(_UpperCAmelCase )}.""" ) def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase ): if is_numpy_array(_UpperCAmelCase ): return np.reshape(_UpperCAmelCase , _UpperCAmelCase ) elif is_torch_tensor(_UpperCAmelCase ): return array.reshape(*_UpperCAmelCase ) elif is_tf_tensor(_UpperCAmelCase ): import tensorflow as tf return tf.reshape(_UpperCAmelCase , _UpperCAmelCase ) elif is_jax_tensor(_UpperCAmelCase ): return jnp.reshape(_UpperCAmelCase , _UpperCAmelCase ) else: raise ValueError(f"""Type not supported for reshape: {type(_UpperCAmelCase )}.""" ) def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase=None ): if is_numpy_array(_UpperCAmelCase ): return np.squeeze(_UpperCAmelCase , axis=_UpperCAmelCase ) elif is_torch_tensor(_UpperCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=_UpperCAmelCase ) elif is_tf_tensor(_UpperCAmelCase ): import tensorflow as tf return tf.squeeze(_UpperCAmelCase , axis=_UpperCAmelCase ) elif is_jax_tensor(_UpperCAmelCase ): return jnp.squeeze(_UpperCAmelCase , axis=_UpperCAmelCase ) else: raise ValueError(f"""Type not supported for squeeze: {type(_UpperCAmelCase )}.""" ) def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase ): if is_numpy_array(_UpperCAmelCase ): return np.expand_dims(_UpperCAmelCase , _UpperCAmelCase ) elif is_torch_tensor(_UpperCAmelCase ): return array.unsqueeze(dim=_UpperCAmelCase ) elif is_tf_tensor(_UpperCAmelCase ): import tensorflow as tf return tf.expand_dims(_UpperCAmelCase , axis=_UpperCAmelCase ) elif is_jax_tensor(_UpperCAmelCase ): return jnp.expand_dims(_UpperCAmelCase , axis=_UpperCAmelCase ) else: raise ValueError(f"""Type not supported for expand_dims: {type(_UpperCAmelCase )}.""" ) def UpperCAmelCase_ ( _UpperCAmelCase ): if is_numpy_array(_UpperCAmelCase ): return np.size(_UpperCAmelCase ) elif is_torch_tensor(_UpperCAmelCase ): return array.numel() elif is_tf_tensor(_UpperCAmelCase ): import tensorflow as tf return tf.size(_UpperCAmelCase ) elif is_jax_tensor(_UpperCAmelCase ): return array.size else: raise ValueError(f"""Type not supported for expand_dims: {type(_UpperCAmelCase )}.""" ) def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase ): for key, value in auto_map.items(): if isinstance(_UpperCAmelCase , (tuple, list) ): lowerCamelCase_: Any = [f"""{repo_id}--{v}""" if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: lowerCamelCase_: Union[str, Any] = f"""{repo_id}--{value}""" return auto_map def UpperCAmelCase_ ( _UpperCAmelCase ): for base_class in inspect.getmro(_UpperCAmelCase ): lowerCamelCase_: List[str] = base_class.__module__ lowerCamelCase_: Optional[Any] = base_class.__name__ if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("""torch""" ) or name == "PreTrainedModel": return "pt" elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"""Could not infer framework from class {model_class}.""" )
717
def UpperCAmelCase_ ( _UpperCAmelCase ): lowerCamelCase_: List[str] = len(_UpperCAmelCase ) for i in range(1 , _UpperCAmelCase ): lowerCamelCase_: str = collection[i] lowerCamelCase_: str = 0 lowerCamelCase_: Optional[Any] = i - 1 while low <= high: lowerCamelCase_: str = (low + high) // 2 if val < collection[mid]: lowerCamelCase_: str = mid - 1 else: lowerCamelCase_: Optional[int] = mid + 1 for j in range(_UpperCAmelCase , _UpperCAmelCase , -1 ): lowerCamelCase_: Optional[int] = collection[j - 1] lowerCamelCase_: Optional[Any] = val return collection if __name__ == "__main__": lowercase : List[str] = input("""Enter numbers separated by a comma:\n""").strip() lowercase : Dict = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
584
0
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(A ) , 'Tatoeba directory does not exist.' ) class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ) -> List[str]: """simple docstring""" _a = tempfile.mkdtemp() return TatoebaConverter(save_dir=A ) @slow def a__ (self ) -> Dict: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def a__ (self ) -> Tuple: """simple docstring""" _a , _a = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A ) assert mmeta["long_pair"] == "heb-eng"
11
import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return vector * sigmoid(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
33
0
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCamelCase : str = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 1_3_1_0_7_2, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, } def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: return torch.atana(lowercase ,lowercase ) / math.pi * 2 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: snake_case : Tuple = torch.sin(t * math.pi / 2 ) ** 2 snake_case : Tuple = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowercase ,lowercase ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass class __lowercase (nn.Module ): """simple docstring""" def __init__( self , A ) -> Any: super().__init__() snake_case : Optional[int] = DiffusionAttnUnetaD(A , n_attn_layers=4 ) snake_case : Tuple = deepcopy(self.diffusion ) snake_case : List[Any] = torch.quasirandom.SobolEngine(1 , scramble=A ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: snake_case : str = MODELS_MAP[model_name]["""url"""] os.system(f"""wget {url} ./""" ) return f"""./{model_name}.ckpt""" lowerCamelCase : int = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } lowerCamelCase : Optional[Any] = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } lowerCamelCase : int = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } lowerCamelCase : Optional[Any] = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } lowerCamelCase : int = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } lowerCamelCase : Dict = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: if name.startswith("""skip""" ): return name.replace("""skip""" ,RES_CONV_MAP["""skip"""] ) # name has to be of format main.{digit} if not name.startswith("""main.""" ): raise ValueError(f"""ResConvBlock error with {name}""" ) return name.replace(name[:6] ,RES_CONV_MAP[name[:6]] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: for key, value in ATTN_MAP.items(): if name.startswith(lowercase ) and not isinstance(lowercase ,lowercase ): return name.replace(lowercase ,lowercase ) elif name.startswith(lowercase ): return [name.replace(lowercase ,lowercase ) for v in value] raise ValueError(f"""Attn error with {name}""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=13 ) -> Any: snake_case : List[Any] = input_string if string.split(""".""" )[0] == "timestep_embed": return string.replace("""timestep_embed""" ,"""time_proj""" ) snake_case : Optional[Any] = 0 if string.startswith("""net.3.""" ): depth += 1 snake_case : Union[str, Any] = string[6:] elif string.startswith("""net.""" ): snake_case : Tuple = string[4:] while string.startswith("""main.7.""" ): depth += 1 snake_case : List[Any] = string[7:] if string.startswith("""main.""" ): snake_case : Union[str, Any] = string[5:] # mid block if string[:2].isdigit(): snake_case : List[str] = string[:2] snake_case : str = string[2:] else: snake_case : Optional[Any] = string[0] snake_case : str = string[1:] if depth == max_depth: snake_case : str = MID_NUM_TO_LAYER[layer_num] snake_case : Optional[Any] = """mid_block""" elif depth > 0 and int(lowercase ) < 7: snake_case : Optional[int] = DOWN_NUM_TO_LAYER[layer_num] snake_case : List[Any] = f"""down_blocks.{depth}""" elif depth > 0 and int(lowercase ) > 7: snake_case : Optional[int] = UP_NUM_TO_LAYER[layer_num] snake_case : Dict = f"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: snake_case : Tuple = DEPTH_0_TO_LAYER[layer_num] snake_case : Union[str, Any] = f"""up_blocks.{max_depth - 1}""" if int(lowercase ) > 3 else """down_blocks.0""" if not string_left.startswith(""".""" ): raise ValueError(f"""Naming error with {input_string} and string_left: {string_left}.""" ) snake_case : Any = string_left[1:] if "resnets" in new_layer: snake_case : Any = convert_resconv_naming(lowercase ) elif "attentions" in new_layer: snake_case : int = convert_attn_naming(lowercase ) snake_case : Optional[Any] = new_string_left if not isinstance(lowercase ,lowercase ): snake_case : Optional[Any] = prefix + """.""" + new_layer + """.""" + string_left else: snake_case : Union[str, Any] = [prefix + """.""" + new_layer + """.""" + s for s in string_left] return new_string def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: snake_case : Optional[Any] = {} for k, v in state_dict.items(): if k.endswith("""kernel""" ): # up- and downsample layers, don't have trainable weights continue snake_case : List[str] = rename(lowercase ) # check if we need to transform from Conv => Linear for attention if isinstance(lowercase ,lowercase ): snake_case : Any = transform_conv_attns(lowercase ,lowercase ,lowercase ) else: snake_case : Optional[Any] = v return new_state_dict def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if len(lowercase ) == 1: if len(v.shape ) == 3: # weight snake_case : int = v[:, :, 0] else: # bias snake_case : Any = v else: # qkv matrices snake_case : str = v.shape[0] snake_case : Tuple = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case : Union[str, Any] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case : Tuple = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: snake_case : Any = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) snake_case : Dict = args.model_path.split("""/""" )[-1].split(""".""" )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" snake_case : Union[str, Any] = download(lowercase ) snake_case : Tuple = MODELS_MAP[model_name]["""sample_rate"""] snake_case : Tuple = MODELS_MAP[model_name]["""sample_size"""] snake_case : Tuple = Object() snake_case : int = sample_size snake_case : List[str] = sample_rate snake_case : int = 0 snake_case : List[Any] = UNetaDModel(sample_size=lowercase ,sample_rate=lowercase ) snake_case : Optional[Any] = diffusers_model.state_dict() snake_case : Optional[Any] = DiffusionUncond(lowercase ) orig_model.load_state_dict(torch.load(args.model_path ,map_location=lowercase )["""state_dict"""] ) snake_case : Union[str, Any] = orig_model.diffusion_ema.eval() snake_case : Optional[Any] = orig_model.state_dict() snake_case : Union[str, Any] = rename_orig_weights(lowercase ) snake_case : List[str] = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case : Tuple = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowercase ) == 0, f"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith("""kernel""" ) for k in list(lowercase ) ), f"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": snake_case : Optional[int] = value.squeeze() snake_case : int = value diffusers_model.load_state_dict(lowercase ) snake_case : List[Any] = 100 snake_case : List[str] = 33 snake_case : Optional[Any] = IPNDMScheduler(num_train_timesteps=lowercase ) snake_case : Tuple = torch.manual_seed(lowercase ) snake_case : Optional[int] = torch.randn([1, 2, config.sample_size] ,generator=lowercase ).to(lowercase ) snake_case : Union[str, Any] = torch.linspace(1 ,0 ,steps + 1 ,device=lowercase )[:-1] snake_case : Optional[Any] = get_crash_schedule(lowercase ) snake_case : Tuple = DanceDiffusionPipeline(unet=lowercase ,scheduler=lowercase ) snake_case : Dict = torch.manual_seed(33 ) snake_case : str = pipe(num_inference_steps=lowercase ,generator=lowercase ).audios snake_case : Tuple = sampling.iplms_sample(lowercase ,lowercase ,lowercase ,{} ) snake_case : Any = generated.clamp(-1 ,1 ) snake_case : List[Any] = (generated - audio).abs().sum() snake_case : Tuple = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("""Diff sum""" ,lowercase ) print("""Diff max""" ,lowercase ) assert diff_max < 1E-3, f"""Diff max: {diff_max} is too much :-/""" print(f"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') lowerCamelCase : List[str] = parser.parse_args() main(args)
684
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
1
'''simple docstring''' import fcntl import os import socket import torch import torch.distributed as dist def lowerCAmelCase (*__A): """simple docstring""" with open(_lowerCAmelCase , '''r''') as fh: fcntl.flock(_lowerCAmelCase , fcntl.LOCK_EX) try: print(*_lowerCAmelCase) finally: fcntl.flock(_lowerCAmelCase , fcntl.LOCK_UN) lowercase_ = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) lowercase_ = torch.device("cuda", local_rank) lowercase_ = socket.gethostname() lowercase_ = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank lowercase_ = dist.get_rank() lowercase_ = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
11
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _UpperCamelCase : Any = False class UpperCAmelCase_ ( unittest.TestCase): pass @nightly @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase__ : Optional[int] = torch.manual_seed(0 ) lowercase__ : int = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a ) lowercase__ : Tuple = VersatileDiffusionPipeline.from_pretrained(a , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ : Any = generator.manual_seed(0 ) lowercase__ : List[Any] = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ : Optional[int] = 'cyberpunk 2077' lowercase__ : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase__ : Dict = torch.manual_seed(0 ) lowercase__ : List[Any] = pipe.dual_guided( prompt=a , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images lowercase__ : Any = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowercase__ : List[str] = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 lowercase__ : Any = 'A painting of a squirrel eating a burger ' lowercase__ : Optional[int] = torch.manual_seed(0 ) lowercase__ : str = pipe.text_to_image( prompt=a , generator=a , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' ).images lowercase__ : Optional[Any] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowercase__ : Optional[int] = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 lowercase__ : List[Any] = pipe.image_variation(a , generator=a , output_type='numpy' ).images lowercase__ : int = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowercase__ : Optional[int] = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
599
0
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _a ( _lowercase : int ): '''simple docstring''' def is_in_circle(_lowercase : float , _lowercase : float ) -> bool: __UpperCAmelCase : str = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __UpperCAmelCase : Any = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_lowercase ) ) # The ratio of the area for circle to square is pi/4. __UpperCAmelCase : List[Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def _a ( _lowercase : int , _lowercase : Callable[[float], float] , _lowercase : float = 0.0 , _lowercase : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(_lowercase , _lowercase ) ) for _ in range(_lowercase ) ) * (max_value - min_value) def _a ( _lowercase : int , _lowercase : float = 0.0 , _lowercase : float = 1.0 ): '''simple docstring''' def identity_function(_lowercase : float ) -> float: return x __UpperCAmelCase : Tuple = area_under_curve_estimator( _lowercase , _lowercase , _lowercase , _lowercase ) __UpperCAmelCase : Any = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print('''******************''' ) def _a ( _lowercase : int ): '''simple docstring''' def function_to_integrate(_lowercase : float ) -> float: return sqrt(4.0 - x * x ) __UpperCAmelCase : Union[str, Any] = area_under_curve_estimator( _lowercase , _lowercase , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
266
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase :List[Any] = logging.get_logger(__name__) def _a ( _lowercase : Tuple ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''huggingface/label-files''' __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(_lowercase ): v for k, v in idalabel.items()} __UpperCAmelCase : int = {v: k for k, v in idalabel.items()} __UpperCAmelCase : Optional[Any] = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __UpperCAmelCase : int = BitConfig( conv_layer=_lowercase , num_labels=1000 , idalabel=_lowercase , labelaid=_lowercase , ) return config def _a ( _lowercase : Tuple ): '''simple docstring''' if "stem.conv" in name: __UpperCAmelCase : Any = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: __UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' ) if "head.fc" in name: __UpperCAmelCase : Dict = name.replace('''head.fc''' , '''classifier.1''' ) if name.startswith('''norm''' ): __UpperCAmelCase : List[Any] = '''bit.''' + name if "bit" not in name and "classifier" not in name: __UpperCAmelCase : List[str] = '''bit.encoder.''' + name return name def _a ( ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def _a ( _lowercase : Tuple , _lowercase : Dict , _lowercase : Tuple=False ): '''simple docstring''' __UpperCAmelCase : Any = get_config(_lowercase ) # load original model from timm __UpperCAmelCase : Tuple = create_model(_lowercase , pretrained=_lowercase ) timm_model.eval() # load state_dict of original model __UpperCAmelCase : List[Any] = timm_model.state_dict() for key in state_dict.copy().keys(): __UpperCAmelCase : Optional[Any] = state_dict.pop(_lowercase ) __UpperCAmelCase : int = val.squeeze() if '''head''' in key else val # load HuggingFace model __UpperCAmelCase : Any = BitForImageClassification(_lowercase ) model.eval() model.load_state_dict(_lowercase ) # create image processor __UpperCAmelCase : Optional[int] = create_transform(**resolve_data_config({} , model=_lowercase ) ) __UpperCAmelCase : Union[str, Any] = transform.transforms __UpperCAmelCase : str = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } __UpperCAmelCase : List[Any] = BitImageProcessor( do_resize=_lowercase , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowercase , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=_lowercase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : Any = transform(_lowercase ).unsqueeze(0 ) __UpperCAmelCase : List[Any] = processor(_lowercase , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(_lowercase , _lowercase ) # verify logits with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(_lowercase ) __UpperCAmelCase : Union[str, Any] = outputs.logits print('''Logits:''' , logits[0, :3] ) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1 ).item()] ) __UpperCAmelCase : Optional[int] = timm_model(_lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowercase , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) if push_to_hub: print(F'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(F'ybelkada/{model_name}' ) processor.push_to_hub(F'ybelkada/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) __UpperCAmelCase :str = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
266
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_:Optional[Any] = { """configuration_roc_bert""": ["""ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoCBertConfig"""], """tokenization_roc_bert""": ["""RoCBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Optional[int] = [ """ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoCBertForCausalLM""", """RoCBertForMaskedLM""", """RoCBertForMultipleChoice""", """RoCBertForPreTraining""", """RoCBertForQuestionAnswering""", """RoCBertForSequenceClassification""", """RoCBertForTokenClassification""", """RoCBertLayer""", """RoCBertModel""", """RoCBertPreTrainedModel""", """load_tf_weights_in_roc_bert""", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys SCREAMING_SNAKE_CASE_:str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
662
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_:Union[str, Any] = """tiny-wmt19-en-ru""" # Build # borrowed from a test SCREAMING_SNAKE_CASE_:Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] SCREAMING_SNAKE_CASE_:Any = dict(zip(vocab, range(len(vocab)))) SCREAMING_SNAKE_CASE_:Dict = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_:List[Any] = Path(tmpdirname) SCREAMING_SNAKE_CASE_:str = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""] SCREAMING_SNAKE_CASE_:Union[str, Any] = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""] SCREAMING_SNAKE_CASE_:Any = build_dir / VOCAB_FILES_NAMES["""merges_file"""] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) SCREAMING_SNAKE_CASE_:Optional[int] = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) SCREAMING_SNAKE_CASE_:Optional[int] = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) SCREAMING_SNAKE_CASE_:Optional[Any] = FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test SCREAMING_SNAKE_CASE_:Tuple = tokenizer(["""Making tiny model"""], return_tensors="""pt""") SCREAMING_SNAKE_CASE_:str = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-ru
662
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow _snake_case = False class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self , _UpperCAmelCase=32): set_seed(0) lowerCAmelCase_ = UNetaDModel(sample_size=_UpperCAmelCase , in_channels=3 , out_channels=3) lowerCAmelCase_ = torch.optim.SGD(model.parameters() , lr=0.0001) return model, optimizer @slow def lowercase__ ( self): lowerCAmelCase_ = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCAmelCase_ = DDPMScheduler( num_train_timesteps=1_000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=_UpperCAmelCase , ) lowerCAmelCase_ = DDIMScheduler( num_train_timesteps=1_000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=_UpperCAmelCase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) lowerCAmelCase_ = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(_UpperCAmelCase) for _ in range(4)] lowerCAmelCase_ = [torch.randn((4, 3, 32, 32)).to(_UpperCAmelCase) for _ in range(4)] lowerCAmelCase_ = [torch.randint(0 , 1_000 , (4,)).long().to(_UpperCAmelCase) for _ in range(4)] # train with a DDPM scheduler lowerCAmelCase_ , lowerCAmelCase_ = self.get_model_optimizer(resolution=32) model.train().to(_UpperCAmelCase) for i in range(4): optimizer.zero_grad() lowerCAmelCase_ = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) lowerCAmelCase_ = model(_UpperCAmelCase , timesteps[i]).sample lowerCAmelCase_ = torch.nn.functional.mse_loss(_UpperCAmelCase , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCAmelCase_ , lowerCAmelCase_ = self.get_model_optimizer(resolution=32) model.train().to(_UpperCAmelCase) for i in range(4): optimizer.zero_grad() lowerCAmelCase_ = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) lowerCAmelCase_ = model(_UpperCAmelCase , timesteps[i]).sample lowerCAmelCase_ = torch.nn.functional.mse_loss(_UpperCAmelCase , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5)) self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5))
413
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _snake_case = logging.get_logger(__name__) def lowerCamelCase_ ( A : List[str] , A : Optional[int] ): """simple docstring""" lowerCAmelCase_ = nn.functional.normalize(A ) lowerCAmelCase_ = nn.functional.normalize(A ) return torch.mm(A , normalized_text_embeds.t() ) class UpperCamelCase_ ( A ): '''simple docstring''' a :Tuple = CLIPConfig a :int = ['CLIPEncoderLayer'] def __init__( self , _UpperCAmelCase): super().__init__(_UpperCAmelCase) lowerCAmelCase_ = CLIPVisionModel(config.vision_config) lowerCAmelCase_ = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase) lowerCAmelCase_ = nn.Parameter(torch.ones(17 , config.projection_dim) , requires_grad=_UpperCAmelCase) lowerCAmelCase_ = nn.Parameter(torch.ones(3 , config.projection_dim) , requires_grad=_UpperCAmelCase) lowerCAmelCase_ = nn.Parameter(torch.ones(17) , requires_grad=_UpperCAmelCase) lowerCAmelCase_ = nn.Parameter(torch.ones(3) , requires_grad=_UpperCAmelCase) @torch.no_grad() def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase): lowerCAmelCase_ = self.vision_model(_UpperCAmelCase)[1] # pooled_output lowerCAmelCase_ = self.visual_projection(_UpperCAmelCase) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase_ = cosine_distance(_UpperCAmelCase , self.special_care_embeds).cpu().float().numpy() lowerCAmelCase_ = cosine_distance(_UpperCAmelCase , self.concept_embeds).cpu().float().numpy() lowerCAmelCase_ = [] lowerCAmelCase_ = image_embeds.shape[0] for i in range(_UpperCAmelCase): lowerCAmelCase_ = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowerCAmelCase_ = 0.0 for concept_idx in range(len(special_cos_dist[0])): lowerCAmelCase_ = special_cos_dist[i][concept_idx] lowerCAmelCase_ = self.special_care_embeds_weights[concept_idx].item() lowerCAmelCase_ = round(concept_cos - concept_threshold + adjustment , 3) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]}) lowerCAmelCase_ = 0.01 for concept_idx in range(len(cos_dist[0])): lowerCAmelCase_ = cos_dist[i][concept_idx] lowerCAmelCase_ = self.concept_embeds_weights[concept_idx].item() lowerCAmelCase_ = round(concept_cos - concept_threshold + adjustment , 3) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase) result.append(_UpperCAmelCase) lowerCAmelCase_ = [len(res['''bad_concepts''']) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase): lowerCAmelCase_ = self.vision_model(_UpperCAmelCase)[1] # pooled_output lowerCAmelCase_ = self.visual_projection(_UpperCAmelCase) lowerCAmelCase_ = cosine_distance(_UpperCAmelCase , self.special_care_embeds) lowerCAmelCase_ = cosine_distance(_UpperCAmelCase , self.concept_embeds) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowerCAmelCase_ = 0.0 lowerCAmelCase_ = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowerCAmelCase_ = torch.any(special_scores > 0 , dim=1) lowerCAmelCase_ = special_care * 0.01 lowerCAmelCase_ = special_adjustment.unsqueeze(1).expand(-1 , cos_dist.shape[1]) lowerCAmelCase_ = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowerCAmelCase_ = torch.any(concept_scores > 0 , dim=1) return images, has_nsfw_concepts
413
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCamelCase__ : Optional[Any] = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def UpperCAmelCase_ ( __UpperCAmelCase : List[str]=None ) -> Optional[int]: if subparsers is not None: SCREAMING_SNAKE_CASE_ = subparsers.add_parser('tpu-config' , description=_description ) else: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments SCREAMING_SNAKE_CASE_ = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=__UpperCAmelCase , default=__UpperCAmelCase , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=__UpperCAmelCase , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=__UpperCAmelCase , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) SCREAMING_SNAKE_CASE_ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=__UpperCAmelCase , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=__UpperCAmelCase ) return parser def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Dict: SCREAMING_SNAKE_CASE_ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: SCREAMING_SNAKE_CASE_ = defaults.command_file if not args.command and defaults.commands is not None: SCREAMING_SNAKE_CASE_ = defaults.commands if not args.tpu_name: SCREAMING_SNAKE_CASE_ = defaults.tpu_name if not args.tpu_zone: SCREAMING_SNAKE_CASE_ = defaults.tpu_zone if args.accelerate_version == "dev": SCREAMING_SNAKE_CASE_ = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": SCREAMING_SNAKE_CASE_ = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = f"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: SCREAMING_SNAKE_CASE_ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate SCREAMING_SNAKE_CASE_ = ['cd /usr/share'] if args.install_accelerate: new_cmd += [f"pip install {args.accelerate_version}"] new_cmd += args.command SCREAMING_SNAKE_CASE_ = '; '.join(__UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess SCREAMING_SNAKE_CASE_ = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f"Running {' '.join(__UpperCAmelCase )}" ) return subprocess.run(__UpperCAmelCase ) print('Successfully setup pod.' ) def UpperCAmelCase_ ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = tpu_command_parser() SCREAMING_SNAKE_CASE_ = parser.parse_args() tpu_command_launcher(__UpperCAmelCase )
31
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A = logging.get_logger(__name__) def _UpperCamelCase ( UpperCamelCase ) -> Dict: """simple docstring""" if isinstance(UpperCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(UpperCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(UpperCAmelCase__ ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class a__ ( _a ): lowercase_ = ["pixel_values"] def __init__( self : Any , UpperCamelCase_ : List[Any] = True , UpperCamelCase_ : Tuple = None , UpperCamelCase_ : str = PILImageResampling.BILINEAR , UpperCamelCase_ : Any = True , UpperCamelCase_ : str = None , UpperCamelCase_ : Dict = True , UpperCamelCase_ : Any = 1 / 255 , UpperCamelCase_ : List[Any] = True , UpperCamelCase_ : Any = None , UpperCamelCase_ : List[Any] = None , **UpperCamelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**_A) __UpperCAmelCase : List[Any] = size if size is not None else {"shortest_edge": 224} __UpperCAmelCase : Optional[Any] = get_size_dict(_A , default_to_square=_A) __UpperCAmelCase : str = crop_size if crop_size is not None else {"height": 224, "width": 224} __UpperCAmelCase : int = get_size_dict(_A , param_name="crop_size") __UpperCAmelCase : List[str] = do_resize __UpperCAmelCase : int = size __UpperCAmelCase : Union[str, Any] = do_center_crop __UpperCAmelCase : Optional[Any] = crop_size __UpperCAmelCase : str = resample __UpperCAmelCase : Optional[Any] = do_rescale __UpperCAmelCase : Union[str, Any] = rescale_factor __UpperCAmelCase : Union[str, Any] = do_normalize __UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def a_ ( self : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] = PILImageResampling.BILINEAR , UpperCamelCase_ : Union[str, Any] = None , **UpperCamelCase_ : Optional[Any] , ): """simple docstring""" __UpperCAmelCase : Tuple = get_size_dict(_A , default_to_square=_A) if "shortest_edge" in size: __UpperCAmelCase : Optional[Any] = get_resize_output_image_size(_A , size["shortest_edge"] , default_to_square=_A) elif "height" in size and "width" in size: __UpperCAmelCase : Dict = (size["height"], size["width"]) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}") return resize(_A , size=_A , resample=_A , data_format=_A , **_A) def a_ ( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] = None , **UpperCamelCase_ : List[str] , ): """simple docstring""" __UpperCAmelCase : List[str] = get_size_dict(_A) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}") return center_crop(_A , size=(size["height"], size["width"]) , data_format=_A , **_A) def a_ ( self : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] = None , **UpperCamelCase_ : Tuple , ): """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A) def a_ ( self : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Dict = None , **UpperCamelCase_ : Tuple , ): """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A) def a_ ( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] = None , UpperCamelCase_ : Any = None , UpperCamelCase_ : List[str] = None , UpperCamelCase_ : Any = None , UpperCamelCase_ : Optional[Any] = None , UpperCamelCase_ : List[str] = None , UpperCamelCase_ : Union[str, Any] = None , UpperCamelCase_ : Dict = None , UpperCamelCase_ : Optional[Any] = None , UpperCamelCase_ : Optional[Any] = None , UpperCamelCase_ : Union[str, Any] = ChannelDimension.FIRST , ): """simple docstring""" if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. __UpperCAmelCase : Optional[int] = to_numpy_array(_A) if do_resize: __UpperCAmelCase : List[str] = self.resize(image=_A , size=_A , resample=_A) if do_center_crop: __UpperCAmelCase : Optional[int] = self.center_crop(_A , size=_A) if do_rescale: __UpperCAmelCase : Union[str, Any] = self.rescale(image=_A , scale=_A) if do_normalize: __UpperCAmelCase : int = self.normalize(image=_A , mean=_A , std=_A) __UpperCAmelCase : Union[str, Any] = to_channel_dimension_format(_A , _A) return image def a_ ( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : int = None , UpperCamelCase_ : Union[str, Any] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Union[str, Any] = None , UpperCamelCase_ : str = None , UpperCamelCase_ : Any = None , UpperCamelCase_ : Tuple = None , UpperCamelCase_ : Tuple = None , UpperCamelCase_ : List[Any] = ChannelDimension.FIRST , **UpperCamelCase_ : Union[str, Any] , ): """simple docstring""" __UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Any = resample if resample is not None else self.resample __UpperCAmelCase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : List[Any] = image_std if image_std is not None else self.image_std __UpperCAmelCase : str = size if size is not None else self.size __UpperCAmelCase : str = get_size_dict(_A , default_to_square=_A) __UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : List[str] = get_size_dict(_A , param_name="crop_size") if not valid_images(_A): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") __UpperCAmelCase : Dict = make_batched(_A) __UpperCAmelCase : Dict = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] __UpperCAmelCase : List[str] = {"pixel_values": videos} return BatchFeature(data=_A , tensor_type=_A)
714
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { """bigcode/gpt_bigcode-santacoder""": """https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json""", } class a__ ( __magic_name__ ): lowercase_ = "gpt_bigcode" lowercase_ = ["past_key_values"] lowercase_ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Any , UpperCamelCase_ : Tuple=50257 , UpperCamelCase_ : Dict=1024 , UpperCamelCase_ : Optional[Any]=768 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : Any=12 , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : List[Any]="gelu_pytorch_tanh" , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Tuple=1e-5 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : str=50256 , UpperCamelCase_ : Union[str, Any]=50256 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : Union[str, Any]=True , **UpperCamelCase_ : Union[str, Any] , ): """simple docstring""" __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Optional[int] = n_positions __UpperCAmelCase : Tuple = n_embd __UpperCAmelCase : str = n_layer __UpperCAmelCase : Dict = n_head __UpperCAmelCase : Optional[Any] = n_inner __UpperCAmelCase : Optional[Any] = activation_function __UpperCAmelCase : List[str] = resid_pdrop __UpperCAmelCase : List[Any] = embd_pdrop __UpperCAmelCase : Optional[Any] = attn_pdrop __UpperCAmelCase : Dict = layer_norm_epsilon __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : int = scale_attn_weights __UpperCAmelCase : Tuple = use_cache __UpperCAmelCase : List[Any] = attention_softmax_in_fpaa __UpperCAmelCase : Any = scale_attention_softmax_in_fpaa __UpperCAmelCase : str = multi_query __UpperCAmelCase : int = bos_token_id __UpperCAmelCase : str = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_)
487
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = '''▁''' UpperCAmelCase_ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCAmelCase_ = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } UpperCAmelCase_ = { '''facebook/m2m100_418M''': 10_24, } # fmt: off UpperCAmelCase_ = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class __UpperCamelCase ( A__ ): __A : Optional[Any] = VOCAB_FILES_NAMES __A : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __A : Any = ["input_ids", "attention_mask"] __A : List[int] = [] __A : List[int] = [] def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<unk>" , _UpperCamelCase="m2m100" , _UpperCamelCase = None , _UpperCamelCase=8 , **_UpperCamelCase , ): _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _UpperCAmelCase = language_codes _UpperCAmelCase = FAIRSEQ_LANGUAGE_CODES[language_codes] _UpperCAmelCase = {lang_code: f'''__{lang_code}__''' for lang_code in fairseq_language_code} _UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(UpperCAmelCase__ ) for lang_code in fairseq_language_code if self.get_lang_token(UpperCAmelCase__ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=UpperCAmelCase__ , tgt_lang=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , language_codes=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=UpperCAmelCase__ , **UpperCAmelCase__ , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = load_json(UpperCAmelCase__ ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} _UpperCAmelCase = spm_file _UpperCAmelCase = load_spm(UpperCAmelCase__ , self.sp_model_kwargs ) _UpperCAmelCase = len(self.encoder ) _UpperCAmelCase = { self.get_lang_token(UpperCAmelCase__ ): self.encoder_size + i for i, lang_code in enumerate(UpperCAmelCase__ ) } _UpperCAmelCase = {lang_code: self.encoder_size + i for i, lang_code in enumerate(UpperCAmelCase__ )} _UpperCAmelCase = {v: k for k, v in self.lang_token_to_id.items()} _UpperCAmelCase = src_lang if src_lang is not None else '''en''' _UpperCAmelCase = tgt_lang _UpperCAmelCase = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _UpperCAmelCase = num_madeup_words @property def UpperCamelCase( self ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def UpperCamelCase( self ): return self._src_lang @src_lang.setter def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase( self , _UpperCamelCase ): return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__ ) def UpperCamelCase( self , _UpperCamelCase ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(UpperCAmelCase__ , self.encoder[self.unk_token] ) def UpperCamelCase( self , _UpperCamelCase ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(UpperCAmelCase__ , self.unk_token ) def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = [] _UpperCAmelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase__ ) + token _UpperCAmelCase = [] else: current_sub_tokens.append(UpperCAmelCase__ ) out_string += self.sp_model.decode(UpperCAmelCase__ ) return out_string.strip() def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) _UpperCAmelCase = [1] * len(self.prefix_tokens ) _UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(UpperCAmelCase__ )) + ([0] * len(UpperCAmelCase__ )) + suffix_ones def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _UpperCamelCase ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = Path(UpperCAmelCase__ ) if not save_dir.is_dir(): raise OSError(f'''{save_directory} should be a directory''' ) _UpperCAmelCase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) _UpperCAmelCase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , UpperCAmelCase__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , UpperCAmelCase__ ) elif not os.path.isfile(self.spm_file ): with open(UpperCAmelCase__ , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (str(UpperCAmelCase__ ), str(UpperCAmelCase__ )) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = "en" , _UpperCamelCase = None , _UpperCamelCase = "ro" , **_UpperCamelCase , ): _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _UpperCAmelCase = src_lang _UpperCAmelCase = self(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ ) _UpperCAmelCase = self.get_lang_id(UpperCAmelCase__ ) _UpperCAmelCase = tgt_lang_id return inputs def UpperCamelCase( self ): self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase( self ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = self.get_lang_token(UpperCAmelCase__ ) _UpperCAmelCase = self.lang_token_to_id[lang_token] _UpperCAmelCase = [self.cur_lang_id] _UpperCAmelCase = [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = self.get_lang_token(UpperCAmelCase__ ) _UpperCAmelCase = self.lang_token_to_id[lang_token] _UpperCAmelCase = [self.cur_lang_id] _UpperCAmelCase = [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase ): return self.lang_code_to_token[lang] def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = self.get_lang_token(UpperCAmelCase__ ) return self.lang_token_to_id[lang_token] def A__ ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = sentencepiece.SentencePieceProcessor(**lowerCAmelCase_ ) spm.Load(str(lowerCAmelCase_ ) ) return spm def A__ ( SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple: """simple docstring""" with open(lowerCAmelCase_ , '''r''' ) as f: return json.load(lowerCAmelCase_ ) def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(lowerCAmelCase_ , '''w''' ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ , indent=2 )
32
"""simple docstring""" import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ : """simple docstring""" def __init__( self : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any]=1_3 , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Tuple=9_9 , UpperCAmelCase__ : Dict=3_2 , UpperCAmelCase__ : int=5 , UpperCAmelCase__ : str=4 , UpperCAmelCase__ : List[Any]=3_7 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Tuple=1_2_8 , UpperCAmelCase__ : Union[str, Any]=3_2 , UpperCAmelCase__ : Any=1_6 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : str=3 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : List[str]=None , ) -> Optional[int]: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase_ ( self : str ) -> Any: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE = NezhaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , ) -> Tuple: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = NezhaModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] ) -> int: __SCREAMING_SNAKE_CASE = NezhaForMaskedLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any ) -> Tuple: __SCREAMING_SNAKE_CASE = NezhaForNextSentencePrediction(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] ) -> List[str]: __SCREAMING_SNAKE_CASE = NezhaForPreTraining(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , next_sentence_label=UpperCAmelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = NezhaForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = NezhaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = NezhaForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict ) -> str: __SCREAMING_SNAKE_CASE = self.num_choices __SCREAMING_SNAKE_CASE = NezhaForMultipleChoice(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : str = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) snake_case__ : Tuple = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : int = True def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any]=False ) -> Dict: __SCREAMING_SNAKE_CASE = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) if return_labels: if model_class in get_values(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) return inputs_dict def UpperCAmelCase_ ( self : List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE = NezhaModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def UpperCAmelCase_ ( self : int ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : List[str] ) -> Dict: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: # This regression test was failing with PyTorch < 1.3 ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __SCREAMING_SNAKE_CASE = None self.model_tester.create_and_check_model_as_decoder( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : List[Any] ) -> int: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = NezhaModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @slow @require_torch_gpu def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(config=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.jit.trace( UpperCAmelCase__ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , "bert.pt" ) ) __SCREAMING_SNAKE_CASE = torch.jit.load(os.path.join(UpperCAmelCase__ , "bert.pt" ) , map_location=UpperCAmelCase__ ) loaded(inputs_dict["input_ids"].to(UpperCAmelCase__ ) , inputs_dict["attention_mask"].to(UpperCAmelCase__ ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" @slow def UpperCAmelCase_ ( self : List[Any] ) -> str: __SCREAMING_SNAKE_CASE = NezhaModel.from_pretrained("sijunhe/nezha-cn-base" ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1E-4 ) ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base" ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1E-4 ) )
682
0
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _SCREAMING_SNAKE_CASE ( yaml.SafeLoader): def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Dict: lowerCamelCase_ =[self.constructed_objects[key_node] for key_node, _ in node.value] lowerCamelCase_ =[tuple(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else key for key in keys] lowerCamelCase_ =Counter(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =[key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'Got duplicate yaml keys: {duplicate_keys}' ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False )-> int: lowerCamelCase_ =super().construct_mapping(_SCREAMING_SNAKE_CASE , deep=_SCREAMING_SNAKE_CASE ) self._check_no_duplicates_on_constructed_node(_SCREAMING_SNAKE_CASE ) return mapping def __UpperCamelCase ( _A : str ) ->Tuple[Optional[str], str]: """simple docstring""" lowerCamelCase_ =list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowerCamelCase_ =full_content[1:].index("""---""" ) + 1 lowerCamelCase_ ="""\n""".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_A ) class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): # class attributes _UpperCamelCase:str = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def _snake_case ( cls , _SCREAMING_SNAKE_CASE )-> "DatasetMetadata": with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as readme_file: lowerCamelCase_ , lowerCamelCase_ =_split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_SCREAMING_SNAKE_CASE ) else: return cls() def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Tuple: if path.exists(): with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as readme_file: lowerCamelCase_ =readme_file.read() else: lowerCamelCase_ =None lowerCamelCase_ =self._to_readme(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as readme_file: readme_file.write(_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE = None )-> str: if readme_content is not None: lowerCamelCase_ , lowerCamelCase_ =_split_yaml_from_readme(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ ="""---\n""" + self.to_yaml_string() + """---\n""" + content else: lowerCamelCase_ ="""---\n""" + self.to_yaml_string() + """---\n""" return full_content @classmethod def _snake_case ( cls , _SCREAMING_SNAKE_CASE )-> "DatasetMetadata": lowerCamelCase_ =yaml.load(_SCREAMING_SNAKE_CASE , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields lowerCamelCase_ ={ (key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> str: return yaml.safe_dump( { (key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=_SCREAMING_SNAKE_CASE , allow_unicode=_SCREAMING_SNAKE_CASE , encoding="""utf-8""" , ).decode("""utf-8""" ) __A : List[str] = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser __A : Tuple = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') __A : Any = ap.parse_args() __A : Dict = Path(args.readme_filepath) __A : Dict = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
75
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __A : Optional[Any] = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' __A : Tuple = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' __A : str = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def __UpperCamelCase ( _A : List[Any] , _A : Union[str, Any] ) ->Dict: """simple docstring""" return float((preds == labels).mean() ) def __UpperCamelCase ( _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any]="binary" ) ->List[Any]: """simple docstring""" lowerCamelCase_ =simple_accuracy(_A , _A ) lowerCamelCase_ =float(fa_score(y_true=_A , y_pred=_A , average=_A ) ) return { "accuracy": acc, "f1": fa, } def __UpperCamelCase ( _A : int , _A : Union[str, Any] ) ->int: """simple docstring""" lowerCamelCase_ ={} for id_pred, label in zip(_A , _A ): lowerCamelCase_ =f'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' lowerCamelCase_ =id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCamelCase_ =[(pred, label)] lowerCamelCase_ , lowerCamelCase_ =[], [] for question, preds_labels in question_map.items(): lowerCamelCase_ , lowerCamelCase_ =zip(*_A ) lowerCamelCase_ =fa_score(y_true=_A , y_pred=_A , average="""macro""" ) fas.append(_A ) lowerCamelCase_ =int(sum(pred == label for pred, label in preds_labels ) == len(_A ) ) ems.append(_A ) lowerCamelCase_ =float(sum(_A ) / len(_A ) ) lowerCamelCase_ =sum(_A ) / len(_A ) lowerCamelCase_ =float(fa_score(y_true=_A , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _SCREAMING_SNAKE_CASE ( datasets.Metric): def _snake_case ( self )-> Union[str, Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def _snake_case ( self )-> Optional[Any]: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[int]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="""macro""" ) elif self.config_name == "record": lowerCamelCase_ =[ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] lowerCamelCase_ ={pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
75
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __UpperCAmelCase = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
65
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCAmelCase = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __lowercase : snake_case_ = PegasusConfig snake_case_ = {} snake_case_ = """gelu""" def __init__( self : List[Any] ,A : int ,A : Optional[Any]=13 ,A : Dict=7 ,A : Dict=True ,A : Any=False ,A : Dict=99 ,A : int=32 ,A : Optional[int]=5 ,A : Union[str, Any]=4 ,A : Union[str, Any]=37 ,A : str=0.1 ,A : int=0.1 ,A : Optional[int]=20 ,A : Tuple=2 ,A : str=1 ,A : Optional[Any]=0 ,): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Union[str, Any] = batch_size UpperCAmelCase__ : List[Any] = seq_length UpperCAmelCase__ : int = is_training UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : int = vocab_size UpperCAmelCase__ : Dict = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Any = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Union[str, Any] = eos_token_id UpperCAmelCase__ : Union[str, Any] = pad_token_id UpperCAmelCase__ : List[str] = bos_token_id def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ).clip(3 ,self.vocab_size ) UpperCAmelCase__ : List[str] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) ,1 ) UpperCAmelCase__ : Any = np.concatenate([input_ids, eos_tensor] ,axis=1 ) UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ : str = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) UpperCAmelCase__ : Optional[Any] = prepare_pegasus_inputs_dict(A ,A ,A ) return config, inputs_dict def __lowercase ( self : Any ,A : Optional[int] ,A : str ,A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = 20 UpperCAmelCase__ : Dict = model_class_name(A ) UpperCAmelCase__ : str = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase__ : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] ,A ,A ) UpperCAmelCase__ : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) ,dtype="""i4""" ) UpperCAmelCase__ : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) UpperCAmelCase__ : Optional[int] = model.decode( decoder_input_ids[:, :-1] ,A ,decoder_attention_mask=A ,past_key_values=A ,decoder_position_ids=A ,) UpperCAmelCase__ : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype="""i4""" ) UpperCAmelCase__ : int = model.decode( decoder_input_ids[:, -1:] ,A ,decoder_attention_mask=A ,past_key_values=outputs_cache.past_key_values ,decoder_position_ids=A ,) UpperCAmelCase__ : Dict = model.decode(A ,A ) UpperCAmelCase__ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=f"Max diff is {diff}" ) def __lowercase ( self : Optional[int] ,A : str ,A : Dict ,A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = 20 UpperCAmelCase__ : str = model_class_name(A ) UpperCAmelCase__ : Any = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase__ : Optional[int] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] ,axis=-1 ,) UpperCAmelCase__ : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] ,A ,A ) UpperCAmelCase__ : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) UpperCAmelCase__ : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] ,A ,decoder_attention_mask=A ,past_key_values=A ,decoder_position_ids=A ,) UpperCAmelCase__ : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype="""i4""" ) UpperCAmelCase__ : Dict = model.decode( decoder_input_ids[:, -1:] ,A ,past_key_values=outputs_cache.past_key_values ,decoder_attention_mask=A ,decoder_position_ids=A ,) UpperCAmelCase__ : Union[str, Any] = model.decode(A ,A ,decoder_attention_mask=A ) UpperCAmelCase__ : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=f"Max diff is {diff}" ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase__ : Union[str, Any] = np.not_equal(__UpperCamelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: UpperCAmelCase__ : Tuple = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) snake_case_ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = FlaxPegasusModelTester(self ) UpperCAmelCase__ : Optional[Any] = ConfigTester(self ,config_class=A ) def __lowercase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(A ,A ,A ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(A ,A ,A ) def __lowercase ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : List[Any] = self._prepare_for_class(A ,A ) UpperCAmelCase__ : int = model_class(A ) @jax.jit def encode_jitted(A : Optional[int] ,A : Union[str, Any]=None ,**A : Optional[Any] ): return model.encode(input_ids=A ,attention_mask=A ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase__ : int = encode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase__ : Dict = encode_jitted(**A ).to_tuple() self.assertEqual(len(A ) ,len(A ) ) for jitted_output, output in zip(A ,A ): self.assertEqual(jitted_output.shape ,output.shape ) def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : Dict = model_class(A ) UpperCAmelCase__ : str = model.encode(inputs_dict["""input_ids"""] ,inputs_dict["""attention_mask"""] ) UpperCAmelCase__ : Dict = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(A : List[Any] ,A : Any ,A : List[Any] ): return model.decode( decoder_input_ids=A ,decoder_attention_mask=A ,encoder_outputs=A ,) with self.subTest("""JIT Enabled""" ): UpperCAmelCase__ : Tuple = decode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase__ : str = decode_jitted(**A ).to_tuple() self.assertEqual(len(A ) ,len(A ) ) for jitted_output, output in zip(A ,A ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def __lowercase ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class_name.from_pretrained("""google/pegasus-large""" ,from_pt=A ) UpperCAmelCase__ : Any = np.ones((1, 1) ) UpperCAmelCase__ : Optional[Any] = model(A ) self.assertIsNotNone(A ) @slow def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) UpperCAmelCase__ : Optional[Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) UpperCAmelCase__ : Union[str, Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] UpperCAmelCase__ : str = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] UpperCAmelCase__ : str = tokenizer(A ,return_tensors="""np""" ,truncation=A ,max_length=512 ,padding=A ) UpperCAmelCase__ : Union[str, Any] = model.generate(**A ,num_beams=2 ).sequences UpperCAmelCase__ : int = tokenizer.batch_decode(A ,skip_special_tokens=A ) assert tgt_text == decoded
65
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def UpperCAmelCase_ ( __a : Callable[[int | float], int | float] , __a : int | float , __a : int | float , __a : int = 1_00 , ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = x_start _lowerCamelCase : str = fnc(__a ) _lowerCamelCase : List[Any] = 0.0 for _ in range(__a ): # Approximates small segments of curve as linear and solve # for trapezoidal area _lowerCamelCase : Any = (x_end - x_start) / steps + xa _lowerCamelCase : Tuple = fnc(__a ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _lowerCamelCase : str = xa _lowerCamelCase : Optional[Any] = fxa return area if __name__ == "__main__": def UpperCAmelCase_ ( __a : List[str] ): '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") a_ = 10 while i <= 10_00_00: print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 10
704
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A_(SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ : Any = DebertaTokenizer a_ : Dict = True a_ : Optional[Any] = DebertaTokenizerFast def _lowerCAmelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] _lowerCamelCase : int = dict(zip(A , range(len(A ) ) ) ) _lowerCamelCase : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowerCamelCase : List[str] = {'unk_token': '[UNK]'} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A ) ) def _lowerCAmelCase ( self , **A ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) def _lowerCAmelCase ( self , A ): _lowerCamelCase : Union[str, Any] = 'lower newer' _lowerCamelCase : Optional[int] = 'lower newer' return input_text, output_text def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : List[Any] = 'lower newer' _lowerCamelCase : Optional[int] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowerCamelCase : Union[str, Any] = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _lowerCamelCase : List[Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = tokenizer('Hello' , 'World' ) _lowerCamelCase : Tuple = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , A ) @slow def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) _lowerCamelCase : Dict = tokenizer.encode('sequence builders' , add_special_tokens=A ) _lowerCamelCase : Optional[int] = tokenizer.encode('multi-sequence build' , add_special_tokens=A ) _lowerCamelCase : str = tokenizer.encode( 'sequence builders' , add_special_tokens=A , add_prefix_space=A ) _lowerCamelCase : Tuple = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=A , add_prefix_space=A ) _lowerCamelCase : str = tokenizer.build_inputs_with_special_tokens(A ) _lowerCamelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowerCAmelCase ( self ): _lowerCamelCase : Union[str, Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: _lowerCamelCase : List[Any] = tokenizer_class.from_pretrained('microsoft/deberta-base' ) _lowerCamelCase : Optional[Any] = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] _lowerCamelCase : Optional[Any] = tokenizer(A , padding=A ) _lowerCamelCase : List[Any] = [tokenizer.decode(A , skip_special_tokens=A ) for seq in encoding['input_ids']] # fmt: off _lowerCamelCase : Optional[Any] = { 'input_ids': [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on _lowerCamelCase : Tuple = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , A ) for expected, decoded in zip(A , A ): self.assertEqual(A , A )
349
0
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _lowercase ( unittest.TestCase ): def a ( self : Optional[Any] ) -> None: __snake_case = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) __snake_case = Vector() def a ( self : List[str] ) -> None: __snake_case = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(SCREAMING_SNAKE_CASE_ ) , '(0,0,0,0,0,1)' ) def a ( self : Optional[Any] ) -> None: __snake_case = Vector([1, 2, 3, 4] ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 4 ) def a ( self : Union[str, Any] ) -> None: __snake_case = Vector([1, 2] ) __snake_case = Vector([1, 2, 3, 4, 5] ) __snake_case = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __snake_case = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def a ( self : int ) -> None: __snake_case = Vector([1, 2, 3] ) __snake_case = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def a ( self : int ) -> None: __snake_case = Vector([1, 2, 3] ) __snake_case = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def a ( self : Union[str, Any] ) -> None: __snake_case = Vector([1, 2, 3] ) __snake_case = Vector([2, -1, 4] ) # for test of dot product __snake_case = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def a ( self : int ) -> None: self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def a ( self : Any ) -> None: self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def a ( self : int ) -> None: __snake_case = Vector([1, 2, 3] ) __snake_case = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) , '(3,4,7)' ) def a ( self : Optional[Any] ) -> None: __snake_case = Vector([1, 0, 0, 0, 0, 0] ) __snake_case = x.copy() self.assertEqual(str(SCREAMING_SNAKE_CASE_ ) , str(SCREAMING_SNAKE_CASE_ ) ) def a ( self : Optional[Any] ) -> None: __snake_case = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(SCREAMING_SNAKE_CASE_ ) , '(0,1,0)' ) def a ( self : Any ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(SCREAMING_SNAKE_CASE_ ) ) def a ( self : Tuple ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __snake_case = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def a ( self : str ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __snake_case = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def a ( self : Optional[Any] ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def a ( self : Any ) -> None: __snake_case = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) __snake_case = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def a ( self : Union[str, Any] ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(SCREAMING_SNAKE_CASE_ ) ) def a ( self : Any ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def a ( self : Tuple ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __snake_case = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def a ( self : int ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __snake_case = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def a ( self : Any ) -> None: self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
56
"""simple docstring""" def A_ ( lowercase = 1 , lowercase = 1000 ) -> int: """simple docstring""" UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : List[str] = 0 for divide_by_number in range(lowercase , digit + 1 ): UpperCAmelCase_ : list[int] = [] UpperCAmelCase_ : Optional[int] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(lowercase ): UpperCAmelCase_ : Dict = len(lowercase ) UpperCAmelCase_ : Optional[int] = divide_by_number else: has_been_divided.append(lowercase ) UpperCAmelCase_ : List[str] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
470
0
'''simple docstring''' from collections.abc import Sequence def lowercase__ ( __UpperCamelCase : Sequence[float] , __UpperCamelCase : bool = False ): '''simple docstring''' if not arr: return 0 __lowercase = 0 if allow_empty_subarrays else float("""-inf""" ) __lowercase = 0.0 for num in arr: __lowercase = max(0 if allow_empty_subarrays else num , curr_sum + num ) __lowercase = max(__UpperCamelCase , __UpperCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() snake_case : Union[str, Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"""{max_subarray_sum(nums) = }""")
711
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def lowercase__ ( __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict ): '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ): __lowercase = np.full((len(__UpperCamelCase ), sequence_length, 2) , __UpperCamelCase ) else: __lowercase = np.full((len(__UpperCamelCase ), sequence_length) , __UpperCamelCase ) for i, tensor in enumerate(__UpperCamelCase ): if padding_side == "right": if isinstance(__UpperCamelCase , __UpperCamelCase ): __lowercase = tensor[:sequence_length] else: __lowercase = tensor[:sequence_length] else: if isinstance(__UpperCamelCase , __UpperCamelCase ): __lowercase = tensor[:sequence_length] else: __lowercase = tensor[:sequence_length] return out_tensor.tolist() def lowercase__ ( __UpperCamelCase : Dict ): '''simple docstring''' __lowercase = ord(__UpperCamelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __lowercase = unicodedata.category(__UpperCamelCase ) if cat.startswith("""P""" ): return True return False @dataclass class lowerCamelCase__( snake_case_ ): UpperCamelCase : PreTrainedTokenizerBase UpperCamelCase : Union[bool, str, PaddingStrategy] = True UpperCamelCase : Optional[int] = None UpperCamelCase : Optional[int] = None UpperCamelCase : int = -100 UpperCamelCase : str = "pt" def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" import torch __lowercase = """label""" if """label""" in features[0].keys() else """labels""" __lowercase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __lowercase = self.tokenizer.pad( __UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch __lowercase = torch.tensor(batch["""entity_ids"""] ).shape[1] __lowercase = self.tokenizer.padding_side if padding_side == "right": __lowercase = [ list(__UpperCAmelCase ) + [self.label_pad_token_id] * (sequence_length - len(__UpperCAmelCase )) for label in labels ] else: __lowercase = [ [self.label_pad_token_id] * (sequence_length - len(__UpperCAmelCase )) + list(__UpperCAmelCase ) for label in labels ] __lowercase = [feature["""ner_tags"""] for feature in features] __lowercase = padding_tensor(__UpperCAmelCase , -1 , __UpperCAmelCase , __UpperCAmelCase ) __lowercase = [feature["""original_entity_spans"""] for feature in features] __lowercase = padding_tensor(__UpperCAmelCase , (-1, -1) , __UpperCAmelCase , __UpperCAmelCase ) __lowercase = {k: torch.tensor(__UpperCAmelCase , dtype=torch.intaa ) for k, v in batch.items()} return batch
339
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ) -> str: return "\n".join( F"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
159
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" SCREAMING_SNAKE_CASE__ = model(_snake_case )["last_hidden_state"] SCREAMING_SNAKE_CASE__ = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _snake_case ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
159
1
'''simple docstring''' import qiskit def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Tuple: lowerCamelCase_ = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register lowerCamelCase_ = qiskit.QuantumCircuit(lowerCamelCase__ ,lowerCamelCase__ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] ,[0, 1] ) # Execute the circuit on the qasm simulator lowerCamelCase_ = qiskit.execute(lowerCamelCase__ ,lowerCamelCase__ ,shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCamelCase__ ) if __name__ == "__main__": A_ : List[str] = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
715
'''simple docstring''' from ...configuration_utils import PretrainedConfig class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'bert-generation' def __init__( self , SCREAMING_SNAKE_CASE_=50358 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = position_embedding_type lowerCamelCase_ = use_cache
384
0
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def lowerCamelCase (a_ :Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: lowercase :Dict = [] lowercase :Tuple = [] lowercase :Union[str, Any] = [] for rt in rc.restypes: lowercase :List[Any] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names]) lowercase :int = {name: i for i, name in enumerate(a_)} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types]) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names]) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14) restype_atomaa_to_atomaa_list.append([0] * 37) restype_atomaa_mask_list.append([0.0] * 14) lowercase :Optional[Any] = torch.tensor( a_ , dtype=torch.intaa , device=protein['''aatype'''].device , ) lowercase :Any = torch.tensor( a_ , dtype=torch.intaa , device=protein['''aatype'''].device , ) lowercase :Union[str, Any] = torch.tensor( a_ , dtype=torch.floataa , device=protein['''aatype'''].device , ) lowercase :Optional[Any] = protein['''aatype'''].to(torch.long) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowercase :Union[str, Any] = restype_atomaa_to_atomaa[protein_aatype] lowercase :str = restype_atomaa_mask[protein_aatype] lowercase :Union[str, Any] = residx_atomaa_mask lowercase :int = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowercase :List[Any] = restype_atomaa_to_atomaa[protein_aatype] lowercase :Optional[Any] = residx_atomaa_to_atomaa.long() # create the corresponding mask lowercase :Optional[int] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device) for restype, restype_letter in enumerate(rc.restypes): lowercase :Dict = rc.restype_atoa[restype_letter] lowercase :Any = rc.residue_atoms[restype_name] for atom_name in atom_names: lowercase :Dict = rc.atom_order[atom_name] lowercase :Union[str, Any] = 1 lowercase :Tuple = restype_atomaa_mask[protein_aatype] lowercase :Tuple = residx_atomaa_mask return protein def lowerCamelCase (a_ :Dict[str, torch.Tensor]) -> Dict[str, np.ndarray]: lowercase :str = tree_map(lambda a_: torch.tensor(a_ , device=batch['''aatype'''].device) , a_ , np.ndarray) lowercase :int = tensor_tree_map(lambda a_: np.array(a_) , make_atomaa_masks(a_)) return out
677
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
677
1
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class a ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" A__ : str = MvpTokenizer A__ : Union[str, Any] = MvpTokenizerFast A__ : int = True A__ : Any = filter_roberta_detectors def __A ( self ) -> List[Any]: super().setUp() _UpperCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] _UpperCAmelCase = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _UpperCAmelCase = {"unk_token": "<unk>"} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case_ ) ) def __A ( self , **snake_case_ ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) def __A ( self , **snake_case_ ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) def __A ( self , snake_case_ ) -> Union[str, Any]: return "lower newer", "lower newer" @cached_property def __A ( self ) -> int: return MvpTokenizer.from_pretrained("RUCAIBox/mvp" ) @cached_property def __A ( self ) -> Union[str, Any]: return MvpTokenizerFast.from_pretrained("RUCAIBox/mvp" ) @require_torch def __A ( self ) -> str: _UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] _UpperCAmelCase = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) # Test that special tokens are reset @require_torch def __A ( self ) -> Tuple: _UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) # check if input_ids are returned and no labels self.assertIn("input_ids" , snake_case_ ) self.assertIn("attention_mask" , snake_case_ ) self.assertNotIn("labels" , snake_case_ ) self.assertNotIn("decoder_attention_mask" , snake_case_ ) @require_torch def __A ( self ) -> Tuple: _UpperCAmelCase = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(text_target=snake_case_ , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def __A ( self ) -> Dict: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer( ["I am a small frog" * 1024, "I am a small frog"] , padding=snake_case_ , truncation=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def __A ( self ) -> List[str]: _UpperCAmelCase = ["A long paragraph for summarization."] _UpperCAmelCase = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(snake_case_ , text_target=snake_case_ , return_tensors="pt" ) _UpperCAmelCase = inputs["input_ids"] _UpperCAmelCase = inputs["labels"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def __A ( self ) -> Optional[Any]: pass def __A ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) _UpperCAmelCase = self.tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) _UpperCAmelCase = "A, <mask> AllenNLP sentence." _UpperCAmelCase = tokenizer_r.encode_plus(snake_case_ , add_special_tokens=snake_case_ , return_token_type_ids=snake_case_ ) _UpperCAmelCase = tokenizer_p.encode_plus(snake_case_ , add_special_tokens=snake_case_ , return_token_type_ids=snake_case_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) _UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) _UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( snake_case_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( snake_case_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
716
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. SCREAMING_SNAKE_CASE_ = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class a ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[int]: _UpperCAmelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) _UpperCAmelCase = self.diffusers_dir shutil.copy( os.path.join(snake_case_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __A ( self ) -> List[str]: _UpperCAmelCase = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ) -> Optional[int]: _UpperCAmelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _UpperCAmelCase = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _UpperCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCAmelCase = black.format_str(snake_case_ , mode=snake_case_ ) _UpperCAmelCase = os.path.join(self.diffusers_dir , "new_code.py" ) with open(snake_case_ , "w" , newline="\n" ) as f: f.write(snake_case_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case_ ) with open(snake_case_ , "r" ) as f: self.assertTrue(f.read() , snake_case_ ) def __A ( self ) -> int: _UpperCAmelCase = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(snake_case_ , snake_case_ ) def __A ( self ) -> List[str]: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , snake_case_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , snake_case_ ) , ) # Copy consistency with a really long name _UpperCAmelCase = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , snake_case_ , snake_case_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , snake_case_ , overwrite_result=re.sub("DDPM" , "Test" , snake_case_ ) , )
579
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): for param, grad_param in zip(model_a.parameters(), model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=True ): model.train() _SCREAMING_SNAKE_CASE : List[Any] = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = F.mse_loss(__lowerCamelCase, target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__lowerCamelCase ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=False ): set_seed(42 ) _SCREAMING_SNAKE_CASE : str = RegressionModel() _SCREAMING_SNAKE_CASE : List[str] = deepcopy(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = RegressionDataset(length=80 ) _SCREAMING_SNAKE_CASE : List[str] = DataLoader(__lowerCamelCase, batch_size=16 ) model.to(accelerator.device ) if sched: _SCREAMING_SNAKE_CASE : Optional[Any] = AdamW(params=model.parameters(), lr=1e-3 ) _SCREAMING_SNAKE_CASE : str = AdamW(params=ddp_model.parameters(), lr=1e-3 ) _SCREAMING_SNAKE_CASE : List[Any] = LambdaLR(__lowerCamelCase, lr_lambda=lambda __lowerCamelCase : epoch**0.65 ) _SCREAMING_SNAKE_CASE : Tuple = LambdaLR(__lowerCamelCase, lr_lambda=lambda __lowerCamelCase : epoch**0.65 ) # Make a copy of `model` if sched: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = accelerator.prepare(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = accelerator.prepare(__lowerCamelCase, __lowerCamelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCamelCase__ (__lowerCamelCase ): # Test when on a single CPU or GPU that the context manager does nothing _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = get_training_setup(__lowerCamelCase ) # Use a single batch _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Tuple = next(iter(__lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = accelerator.gather((ddp_input, ddp_target) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCamelCase ): step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: # Sync grads step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad, ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ddp_input[torch.randperm(len(__lowerCamelCase ) )] def lowerCamelCase__ (__lowerCamelCase ): # Test on distributed setup that context manager behaves properly _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = get_training_setup(__lowerCamelCase ) # Use a single batch _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Tuple = next(iter(__lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = accelerator.gather((ddp_input, ddp_target) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCamelCase ): step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: # Sync grads step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ddp_input[torch.randperm(len(__lowerCamelCase ) )] def lowerCamelCase__ (__lowerCamelCase=False, __lowerCamelCase=False ): _SCREAMING_SNAKE_CASE : str = Accelerator( split_batches=__lowerCamelCase, dispatch_batches=__lowerCamelCase, gradient_accumulation_steps=2 ) # Test that context manager behaves properly _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Tuple = get_training_setup(__lowerCamelCase ) for iteration, batch in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = batch.values() # Gather the distributed inputs and targs for the base model _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = accelerator.gather((ddp_input, ddp_target) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__lowerCamelCase ): step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__lowerCamelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) _SCREAMING_SNAKE_CASE : Optional[Any] = ddp_input[torch.randperm(len(__lowerCamelCase ) )] GradientState._reset_state() def lowerCamelCase__ (__lowerCamelCase=False, __lowerCamelCase=False ): _SCREAMING_SNAKE_CASE : str = Accelerator( split_batches=__lowerCamelCase, dispatch_batches=__lowerCamelCase, gradient_accumulation_steps=2 ) # Test that context manager behaves properly _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = get_training_setup(__lowerCamelCase, __lowerCamelCase ) for iteration, batch in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = batch.values() # Gather the distributed inputs and targs for the base model _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = accelerator.gather((ddp_input, ddp_target) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__lowerCamelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__lowerCamelCase ): step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" _SCREAMING_SNAKE_CASE : List[Any] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__lowerCamelCase )) if accelerator.num_processes > 1: check_model_parameters(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : str = Accelerator() _SCREAMING_SNAKE_CASE : int = RegressionDataset(length=80 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = DataLoader(__lowerCamelCase, batch_size=16 ) _SCREAMING_SNAKE_CASE : int = RegressionDataset(length=96 ) _SCREAMING_SNAKE_CASE : List[str] = DataLoader(__lowerCamelCase, batch_size=16 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = accelerator.prepare(__lowerCamelCase, __lowerCamelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCamelCase ) if iteration < len(__lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCamelCase ) if batch_num < len(__lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Tuple = Accelerator() _SCREAMING_SNAKE_CASE : List[str] = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(__lowerCamelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(__lowerCamelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, ", f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""", ) test_gradient_accumulation(__lowerCamelCase, __lowerCamelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<", "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, ", "`split_batches=False`, `dispatch_batches=False`**", ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, ", f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""", ) test_gradient_accumulation_with_opt_and_scheduler(__lowerCamelCase, __lowerCamelCase ) def lowerCamelCase__ (__lowerCamelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
249
from __future__ import annotations def lowerCamelCase__ (__lowerCamelCase ): # This function is recursive _SCREAMING_SNAKE_CASE : Tuple = len(__lowerCamelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else _SCREAMING_SNAKE_CASE : List[str] = array[0] _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: _SCREAMING_SNAKE_CASE : Tuple = True _SCREAMING_SNAKE_CASE : Optional[Any] = [element for element in array[i:] if element >= array[i]] _SCREAMING_SNAKE_CASE : Dict = longest_subsequence(__lowerCamelCase ) if len(__lowerCamelCase ) > len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = temp_array else: i += 1 _SCREAMING_SNAKE_CASE : int = [element for element in array[1:] if element >= pivot] _SCREAMING_SNAKE_CASE : Any = [pivot, *longest_subsequence(__lowerCamelCase )] if len(__lowerCamelCase ) > len(__lowerCamelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
249
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = '''▁''' _lowerCamelCase : str = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} _lowerCamelCase : Union[str, Any] = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } _lowerCamelCase : Any = {'''vinai/bartpho-syllable''': 1024} class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__ , lowercase__ , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__ = None , **lowercase__ , ): '''simple docstring''' __A =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token __A ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , ) __A =vocab_file __A =monolingual_vocab_file __A =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase__ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility __A ={} __A =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowercase__ ) not in self.fairseq_tokens_to_ids: __A =cnt cnt += 1 with open(lowercase__ , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): __A =line.strip().split()[0] __A =len(self.fairseq_tokens_to_ids ) if str(lowercase__ ) not in self.fairseq_tokens_to_ids: __A =len(self.fairseq_tokens_to_ids ) __A ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' __A =self.__dict__.copy() __A =None __A =self.sp_model.serialized_model_proto() return state def __setstate__( self , lowercase__ ): '''simple docstring''' __A =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __A ={} __A =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __UpperCamelCase ( self , lowercase__ , lowercase__ = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A =[self.cls_token_id] __A =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self , lowercase__ , lowercase__ = None , lowercase__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) if token_ids_a is None: return [1] + ([0] * len(lowercase__ )) + [1] return [1] + ([0] * len(lowercase__ )) + [1, 1] + ([0] * len(lowercase__ )) + [1] def __UpperCamelCase ( self , lowercase__ , lowercase__ = None ): '''simple docstring''' __A =[self.sep_token_id] __A =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __UpperCamelCase ( self ): '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def __UpperCamelCase ( self ): '''simple docstring''' __A ={self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' return self.fairseq_ids_to_tokens[index] def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' __A =''''''.join(lowercase__ ).replace(lowercase__ , ''' ''' ).strip() return out_string def __UpperCamelCase ( self , lowercase__ , lowercase__ = None ): '''simple docstring''' if not os.path.isdir(lowercase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A =os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __A =os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , '''wb''' ) as fi: __A =self.sp_model.serialized_model_proto() fi.write(lowercase__ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowercase__ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowercase__ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowercase__ , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(lowercase__ )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
516
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _lowerCamelCase : str = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. _lowerCamelCase : int = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _lowerCamelCase : Union[str, Any] = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') _lowerCamelCase : Union[str, Any] = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowerCamelCase : List[Any] = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _lowerCamelCase : int = [ ('''pretraining''', '''MODEL_FOR_PRETRAINING_MAPPING_NAMES''', '''AutoModelForPreTraining'''), ('''feature-extraction''', '''MODEL_MAPPING_NAMES''', '''AutoModel'''), ('''audio-classification''', '''MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioClassification'''), ('''text-generation''', '''MODEL_FOR_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForCausalLM'''), ('''automatic-speech-recognition''', '''MODEL_FOR_CTC_MAPPING_NAMES''', '''AutoModelForCTC'''), ('''image-classification''', '''MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForImageClassification'''), ('''image-segmentation''', '''MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES''', '''AutoModelForImageSegmentation'''), ('''fill-mask''', '''MODEL_FOR_MASKED_LM_MAPPING_NAMES''', '''AutoModelForMaskedLM'''), ('''object-detection''', '''MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForObjectDetection'''), ( '''zero-shot-object-detection''', '''MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForZeroShotObjectDetection''', ), ('''question-answering''', '''MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForQuestionAnswering'''), ('''text2text-generation''', '''MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForSeq2SeqLM'''), ('''text-classification''', '''MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForSequenceClassification'''), ('''automatic-speech-recognition''', '''MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES''', '''AutoModelForSpeechSeq2Seq'''), ( '''table-question-answering''', '''MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForTableQuestionAnswering''', ), ('''token-classification''', '''MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForTokenClassification'''), ('''multiple-choice''', '''MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES''', '''AutoModelForMultipleChoice'''), ( '''next-sentence-prediction''', '''MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES''', '''AutoModelForNextSentencePrediction''', ), ( '''audio-frame-classification''', '''MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioFrameClassification''', ), ('''audio-xvector''', '''MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES''', '''AutoModelForAudioXVector'''), ( '''document-question-answering''', '''MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForDocumentQuestionAnswering''', ), ( '''visual-question-answering''', '''MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForVisualQuestionAnswering''', ), ('''image-to-text''', '''MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES''', '''AutoModelForVision2Seq'''), ( '''zero-shot-image-classification''', '''MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForZeroShotImageClassification''', ), ('''depth-estimation''', '''MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES''', '''AutoModelForDepthEstimation'''), ('''video-classification''', '''MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForVideoClassification'''), ('''mask-generation''', '''MODEL_FOR_MASK_GENERATION_MAPPING_NAMES''', '''AutoModelForMaskGeneration'''), ] def A__ ( __A : List[str] ) ->List[str]: __A =re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , __A ) return [m.group(0 ) for m in matches] def A__ ( ) ->Tuple: __A =transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __A ={ config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __A =collections.defaultdict(__A ) __A =collections.defaultdict(__A ) __A =collections.defaultdict(__A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(__A ): __A =None if _re_tf_models.match(__A ) is not None: __A =tf_models __A =_re_tf_models.match(__A ).groups()[0] elif _re_flax_models.match(__A ) is not None: __A =flax_models __A =_re_flax_models.match(__A ).groups()[0] elif _re_pt_models.match(__A ) is not None: __A =pt_models __A =_re_pt_models.match(__A ).groups()[0] if lookup_dict is not None: while len(__A ) > 0: if attr_name in model_prefix_to_model_type: __A =True break # Try again after removing the last word in the name __A =''''''.join(camel_case_split(__A )[:-1] ) __A =set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __A =list(__A ) all_models.sort() __A ={'''model_type''': all_models} __A =[pt_models[t] for t in all_models] __A =[tf_models[t] for t in all_models] __A =[flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __A ={} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __A ='''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __A ='''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __A ='''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __A ='''AutoTokenizer''' __A =[processors[t] for t in all_models] return pd.DataFrame(__A ) def A__ ( __A : List[Any] ) ->Union[str, Any]: __A =[ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __A =[model_mapping, F'''TF_{model_mapping}''', F'''FLAX_{model_mapping}'''] __A =[auto_class, F'''TF_{auto_class}''', F'''Flax_{auto_class}'''] # Loop through all three frameworks for module, cls, mapping in zip(__A , __A , __A ): # The type of pipeline may not exist in this framework if not hasattr(__A , __A ): continue # First extract all model_names __A =[] for name in getattr(__A , __A ).values(): if isinstance(__A , __A ): model_names.append(__A ) else: model_names.extend(list(__A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def A__ ( __A : int , __A : Optional[Any] ) ->Dict: __A =get_frameworks_table() __A =Dataset.from_pandas(__A ) __A =hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=__A ) __A =Dataset.from_json(__A ) __A ={ tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(__A ) ) } __A =update_pipeline_and_auto_class_table(__A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __A =sorted(table.keys() ) __A =pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __A =Dataset.from_pandas(__A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(__A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(__A , '''pipeline_tags.json''' ) ) if commit_sha is not None: __A =( F'''Update with commit {commit_sha}\n\nSee: ''' F'''https://github.com/huggingface/transformers/commit/{commit_sha}''' ) else: __A ='''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=__A , repo_type='''dataset''' , token=__A , commit_message=__A , ) def A__ ( ) ->str: __A ={tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __A =transformers_module.pipelines.SUPPORTED_TASKS __A =[] for key in pipeline_tasks: if key not in in_table: __A =pipeline_tasks[key]['''pt'''] if isinstance(__A , (list, tuple) ): __A =model[0] __A =model.__name__ if model not in in_table.values(): missing.append(__A ) if len(__A ) > 0: __A =''', '''.join(__A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F'''`utils/update_metadata.py`: {msg}. Please add them!''' ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--token''', type=str, help='''The token to use to push to the transformers-metadata dataset.''') parser.add_argument('''--commit_sha''', type=str, help='''The sha of the commit going with this update.''') parser.add_argument('''--check-only''', action='''store_true''', help='''Activate to just check all pipelines are present.''') _lowerCamelCase : Optional[Any] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
516
1
"""simple docstring""" import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> int: monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set() ) @pytest.fixture def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> int: class lowerCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase__ ) -> Optional[int]: SCREAMING_SNAKE_CASE = metric_id class lowerCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = [MetricMock(lowerCamelCase_ ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]] def __A ( self ) -> List[str]: return self._metrics monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock() ) @pytest.mark.parametrize( 'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))] ) def lowercase (SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: if "tmp_path" in args: SCREAMING_SNAKE_CASE = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args ) with pytest.warns(SCREAMING_SNAKE_CASE_ , match='https://huggingface.co/docs/evaluate' ): func(*SCREAMING_SNAKE_CASE_ )
247
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = CLIPConfig SCREAMING_SNAKE_CASE_ : Optional[int] = ["""CLIPEncoderLayer"""] def __init__( self , lowerCAmelCase__ ) -> Union[str, Any]: super().__init__(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = CLIPVisionModelWithProjection(config.vision_config ) SCREAMING_SNAKE_CASE = nn.Linear(config.vision_config.projection_dim , 1 ) SCREAMING_SNAKE_CASE = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=0.5 , lowerCAmelCase__=0.5 ) -> List[str]: SCREAMING_SNAKE_CASE = self.vision_model(lowerCAmelCase__ )[0] SCREAMING_SNAKE_CASE = self.p_head(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = nsfw_detected.flatten() SCREAMING_SNAKE_CASE = nsfw_detected > p_threshold SCREAMING_SNAKE_CASE = nsfw_detected.tolist() if any(lowerCAmelCase__ ): logger.warning( 'Potential NSFW content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, nsfw_detected_ in enumerate(lowerCAmelCase__ ): if nsfw_detected_: SCREAMING_SNAKE_CASE = np.zeros(images[idx].shape ) SCREAMING_SNAKE_CASE = self.w_head(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = watermark_detected.flatten() SCREAMING_SNAKE_CASE = watermark_detected > w_threshold SCREAMING_SNAKE_CASE = watermark_detected.tolist() if any(lowerCAmelCase__ ): logger.warning( 'Potential watermarked content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, watermark_detected_ in enumerate(lowerCAmelCase__ ): if watermark_detected_: SCREAMING_SNAKE_CASE = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
247
1
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class snake_case ( unittest.TestCase ): UpperCAmelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) SCREAMING_SNAKE_CASE_ = VideoClassificationPipeline(model=_A , image_processor=_A , top_k=2 ) SCREAMING_SNAKE_CASE_ = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" for example in examples: SCREAMING_SNAKE_CASE_ = video_classifier(_A ) self.assertEqual( _A , [ {'''score''': ANY(_A ), '''label''': ANY(_A )}, {'''score''': ANY(_A ), '''label''': ANY(_A )}, ] , ) @require_torch def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' SCREAMING_SNAKE_CASE_ = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) SCREAMING_SNAKE_CASE_ = pipeline( '''video-classification''' , model=_A , feature_extractor=_A , frame_sampling_rate=4 ) SCREAMING_SNAKE_CASE_ = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) SCREAMING_SNAKE_CASE_ = video_classifier(_A , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [{'''score''': 0.51_99, '''label''': '''LABEL_0'''}, {'''score''': 0.48_01, '''label''': '''LABEL_1'''}] , ) SCREAMING_SNAKE_CASE_ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [{'''score''': 0.51_99, '''label''': '''LABEL_0'''}, {'''score''': 0.48_01, '''label''': '''LABEL_1'''}], [{'''score''': 0.51_99, '''label''': '''LABEL_0'''}, {'''score''': 0.48_01, '''label''': '''LABEL_1'''}], ] , ) @require_tf def _lowercase (self ): """simple docstring""" pass
705
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class snake_case ( __lowercase ): UpperCAmelCase__ = '''glpn''' def __init__(self , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=[2, 2, 2, 2] , SCREAMING_SNAKE_CASE_=[8, 4, 2, 1] , SCREAMING_SNAKE_CASE_=[32, 64, 1_60, 2_56] , SCREAMING_SNAKE_CASE_=[7, 3, 3, 3] , SCREAMING_SNAKE_CASE_=[4, 2, 2, 2] , SCREAMING_SNAKE_CASE_=[1, 2, 5, 8] , SCREAMING_SNAKE_CASE_=[4, 4, 4, 4] , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1e-6 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=-1 , **SCREAMING_SNAKE_CASE_ , ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = num_encoder_blocks SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = sr_ratios SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = patch_sizes SCREAMING_SNAKE_CASE_ = strides SCREAMING_SNAKE_CASE_ = mlp_ratios SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = decoder_hidden_size SCREAMING_SNAKE_CASE_ = max_depth SCREAMING_SNAKE_CASE_ = head_in_index
628
0
'''simple docstring''' from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __lowerCAmelCase = [ 'Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] __lowerCAmelCase = [ 'Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .' ' Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def _UpperCAmelCase ( ): a_ : List[Any] = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , bootstrap_aggregation=lowerCAmelCase_ , rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Optional[int] = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , bootstrap_aggregation=lowerCAmelCase_ , rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def _UpperCAmelCase ( ): a_ : Optional[Any] = '''rougeLsum''' a_ : Optional[Any] = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , newline_sep=lowerCAmelCase_ , rouge_keys=[k] )[k] a_ : Optional[Any] = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , newline_sep=lowerCAmelCase_ , rouge_keys=[k] )[k] assert score > score_no_sep def _UpperCAmelCase ( ): a_ : int = ['''rouge1''', '''rouge2''', '''rougeL'''] a_ : List[str] = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , newline_sep=lowerCAmelCase_ , rouge_keys=lowerCAmelCase_ ) a_ : Union[str, Any] = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , newline_sep=lowerCAmelCase_ , rouge_keys=lowerCAmelCase_ ) assert score_sep == score_no_sep def _UpperCAmelCase ( ): a_ : int = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .''', ] a_ : Dict = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , newline_sep=lowerCAmelCase_ ) == calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , newline_sep=lowerCAmelCase_ ) def _UpperCAmelCase ( ): a_ : Dict = [ '''\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" ''' ] a_ : str = [ ''' Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] a_ : List[Any] = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , rouge_keys=['''rougeLsum'''] , newline_sep=lowerCAmelCase_ )['''rougeLsum'''] a_ : List[str] = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def _UpperCAmelCase ( ): a_ : Any = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) a_ : List[Any] = calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) ) assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) a_ : str = calculate_rouge_path( data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=lowerCAmelCase_ ) assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ )
466
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __a = re.compile("""[^A-Za-z_0-9]""") # parameters used in DuplicationIndex __a = 10 __a = 256 def _UpperCamelCase ( lowerCAmelCase_ ) ->Optional[MinHash]: if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None UpperCAmelCase = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def _UpperCamelCase ( lowerCAmelCase_ ) ->Set[str]: return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class __lowercase : def __init__( self : List[str] , *, __lowerCamelCase : float = 0.85 , ) -> Any: """simple docstring""" UpperCAmelCase = duplication_jaccard_threshold UpperCAmelCase = NUM_PERM UpperCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) UpperCAmelCase = defaultdict(__lowerCamelCase ) def _lowercase ( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : MinHash ) -> None: """simple docstring""" UpperCAmelCase = self._index.query(__lowerCamelCase ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__lowerCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__lowerCamelCase ) def _lowercase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" UpperCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): UpperCAmelCase = [base] + list(__lowerCamelCase ) # reformat the cluster to be a list of dict UpperCAmelCase = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__lowerCamelCase ) return duplicate_clusters def _lowercase ( self : Tuple , __lowerCamelCase : Optional[int] ) -> None: """simple docstring""" UpperCAmelCase = self.get_duplicate_clusters() with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def _UpperCamelCase ( lowerCAmelCase_ ) ->Tuple: UpperCAmelCase , UpperCAmelCase = element UpperCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _UpperCamelCase ( lowerCAmelCase_ ) ->int: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->Any: UpperCAmelCase = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=1_0_0 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->float: UpperCAmelCase = get_tokens(lowerCAmelCase_ ) UpperCAmelCase = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __a = None def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->Dict: UpperCAmelCase = [] for elementa in cluster: UpperCAmelCase = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: UpperCAmelCase = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: UpperCAmelCase = 1 extremes.append(lowerCAmelCase_ ) return extremes def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ->Optional[int]: global _shared_dataset UpperCAmelCase = dataset UpperCAmelCase = [] UpperCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ = 0.85 ) ->Tuple[Type[Dataset], List[List[Dict]]]: UpperCAmelCase = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} UpperCAmelCase = {} UpperCAmelCase = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: UpperCAmelCase = element UpperCAmelCase = duplicate_indices - set(extreme_dict.keys() ) UpperCAmelCase = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: UpperCAmelCase = element["""base_index"""] in extreme_dict if element["is_extreme"]: UpperCAmelCase = extreme_dict[element["""base_index"""]]["""copies"""] print(F"""Original dataset size: {len(lowerCAmelCase_ )}""" ) print(F"""Number of duplicate clusters: {len(lowerCAmelCase_ )}""" ) print(F"""Files in duplicate cluster: {len(lowerCAmelCase_ )}""" ) print(F"""Unique files in duplicate cluster: {len(lowerCAmelCase_ )}""" ) print(F"""Filtered dataset size: {len(lowerCAmelCase_ )}""" ) return ds_filter, duplicate_clusters
377
0
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _snake_case ( a__ ): def __init__( self : List[Any] , UpperCAmelCase : pyspark.sql.DataFrame , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : bool = True , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : str = None , UpperCAmelCase : bool = True , UpperCAmelCase : str = "arrow" , **UpperCAmelCase : List[Any] , ): super().__init__( split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , **UpperCAmelCase , ) __lowerCamelCase : List[Any] = load_from_cache_file __lowerCamelCase : Union[str, Any] = file_format __lowerCamelCase : List[Any] = Spark( df=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , working_dir=UpperCAmelCase , **UpperCAmelCase , ) def lowerCamelCase__ ( self : str ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) __lowerCamelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=UpperCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
720
"""simple docstring""" from __future__ import annotations def lowercase_ ( _lowerCamelCase: list[list[int]] ) -> bool: '''simple docstring''' __lowerCamelCase : str = len(_lowerCamelCase ) # We need to create solution object to save path. __lowerCamelCase : List[Any] = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] __lowerCamelCase : Dict = run_maze(_lowerCamelCase , 0 , 0 , _lowerCamelCase ) if solved: print("\n".join(str(_lowerCamelCase ) for row in solutions ) ) else: print("No solution exists!" ) return solved def lowercase_ ( _lowerCamelCase: list[list[int]] , _lowerCamelCase: int , _lowerCamelCase: int , _lowerCamelCase: list[list[int]] ) -> bool: '''simple docstring''' __lowerCamelCase : Dict = len(_lowerCamelCase ) # Final check point. if i == j == (size - 1): __lowerCamelCase : Optional[Any] = 1 return True __lowerCamelCase : int = (not i < 0) and (not j < 0) # Check lower bounds __lowerCamelCase : Union[str, Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __lowerCamelCase : List[Any] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __lowerCamelCase : Dict = 1 # check for directions if ( run_maze(_lowerCamelCase , i + 1 , _lowerCamelCase , _lowerCamelCase ) or run_maze(_lowerCamelCase , _lowerCamelCase , j + 1 , _lowerCamelCase ) or run_maze(_lowerCamelCase , i - 1 , _lowerCamelCase , _lowerCamelCase ) or run_maze(_lowerCamelCase , _lowerCamelCase , j - 1 , _lowerCamelCase ) ): return True __lowerCamelCase : List[str] = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
366
0
from math import factorial, pi def a ( a , a = 30 ) ->float: '''simple docstring''' if not isinstance(a__ , (int, float) ): raise ValueError('''maclaurin_sin() requires either an int or float for theta''' ) if not isinstance(a__ , a__ ) or accuracy <= 0: raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' ) SCREAMING_SNAKE_CASE = float(a__ ) SCREAMING_SNAKE_CASE = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(a__ ) ) def a ( a , a = 30 ) ->float: '''simple docstring''' if not isinstance(a__ , (int, float) ): raise ValueError('''maclaurin_cos() requires either an int or float for theta''' ) if not isinstance(a__ , a__ ) or accuracy <= 0: raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' ) SCREAMING_SNAKE_CASE = float(a__ ) SCREAMING_SNAKE_CASE = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(a__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(1_0)) print(maclaurin_sin(-1_0)) print(maclaurin_sin(1_0, 1_5)) print(maclaurin_sin(-1_0, 1_5)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(1_0, 1_5)) print(maclaurin_cos(-1_0, 1_5))
201
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() A : str = logging.get_logger() @dataclass class __A: snake_case_ = 42 snake_case_ = field(default_factory=a ) snake_case_ = field(default_factory=a ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = len(list(m.modules() ) ) == 1 or isinstance(_snake_case , nn.Convad ) or isinstance(_snake_case , nn.BatchNormad ) if has_not_submodules: self.traced.append(_snake_case ) def __call__( self , _snake_case ) -> Any: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_snake_case ) [x.remove() for x in self.handles] return self @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' return list(filter(lambda _snake_case : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __A: snake_case_ = 42 snake_case_ = 42 snake_case_ = 0 snake_case_ = field(default_factory=a ) snake_case_ = field(default_factory=a ) def __call__( self , _snake_case ) -> Dict: '''simple docstring''' __a = Tracker(self.dest )(_snake_case ).parametrized __a = Tracker(self.src )(_snake_case ).parametrized __a = list(filter(lambda _snake_case : type(_snake_case ) not in self.src_skip , _snake_case ) ) __a = list(filter(lambda _snake_case : type(_snake_case ) not in self.dest_skip , _snake_case ) ) if len(_snake_case ) != len(_snake_case ): raise Exception( F"""Numbers of operations are different. Source module has {len(_snake_case )} operations while""" F""" destination module has {len(_snake_case )}.""" ) for dest_m, src_m in zip(_snake_case , _snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ = True ) -> str: print(F"""Converting {name}...""" ) with torch.no_grad(): __a = timm.create_model(a__ , pretrained=a__ ).eval() __a = ResNetForImageClassification(a__ ).eval() __a = ModuleTransfer(src=a__ , dest=a__ ) __a = torch.randn((1, 3, 224, 224) ) module_transfer(a__ ) assert torch.allclose(from_model(a__ ) , our_model(a__ ).logits ), "The model logits don't match the original one." __a = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(a__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=a__ , ) # we can use the convnext one __a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=a__ , ) print(F"""Pushed {checkpoint_name}""" ) def __lowerCAmelCase ( a__ , a__ = None , a__ = True ) -> List[Any]: __a = '''imagenet-1k-id2label.json''' __a = 1000 __a = (1, num_labels) __a = '''huggingface/label-files''' __a = num_labels __a = json.load(open(hf_hub_download(a__ , a__ , repo_type='''dataset''' ) , '''r''' ) ) __a = {int(a__ ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = partial(a__ , num_labels=a__ , idalabel=a__ , labelaid=a__ ) __a = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(a__ , names_to_config[model_name] , a__ , a__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(a__ , a__ , a__ , a__ ) return config, expected_shape if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) A : List[Any] = parser.parse_args() A : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
219
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ : Any = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
'''simple docstring''' import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ : Any = '''▁''' UpperCamelCase__ : Dict = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class _UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' _A : Dict = BertGenerationTokenizer _A : List[Any] = False _A : Union[str, Any] = True def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" super().setUp() __SCREAMING_SNAKE_CASE : Dict = BertGenerationTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = """<s>""" __SCREAMING_SNAKE_CASE : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_0_2 ) def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = BertGenerationTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __SCREAMING_SNAKE_CASE : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) __SCREAMING_SNAKE_CASE : Any = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCamelCase__ ( self : List[str] ): """simple docstring""" return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = """Hello World!""" __SCREAMING_SNAKE_CASE : Dict = [1_8_5_3_6, 2_2_6_0, 1_0_1] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __SCREAMING_SNAKE_CASE : Optional[int] = [ 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, ] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @require_torch @slow def UpperCamelCase__ ( self : str ): """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __SCREAMING_SNAKE_CASE : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:1_0] __SCREAMING_SNAKE_CASE : int = """ """.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.big_tokenizer.encode_plus(lowerCAmelCase__ , return_tensors="""pt""" , return_token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = BertGenerationConfig() __SCREAMING_SNAKE_CASE : Any = BertGenerationEncoder(lowerCAmelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCAmelCase__ ) model(**lowerCAmelCase__ ) @slow def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = {"""input_ids""": [[3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4], [4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
178
0