code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : List[str] = KandinskyVaaControlnetImgaImgPipeline _UpperCamelCase : Any = ["image_embeds", "negative_image_embeds", "image", "hint"] _UpperCamelCase : Optional[int] = ["image_embeds", "negative_image_embeds", "image", "hint"] _UpperCamelCase : Any = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _UpperCamelCase : Optional[Any] = False @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' return 32 @property def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' return 32 @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' return self.time_input_dim @property def __UpperCAmelCase ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' return 1_00 @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[Any] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _snake_case : List[str] = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Any = self.dummy_unet _snake_case : Optional[Any] = self.dummy_movq _snake_case : int = { 'num_train_timesteps': 10_00, 'beta_schedule': 'linear', 'beta_start': 0.0_0085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _snake_case : int = DDIMScheduler(**lowerCamelCase_ ) _snake_case : Tuple = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any]=0 ): '''simple docstring''' _snake_case : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) _snake_case : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image _snake_case : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) _snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case : int = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((2_56, 2_56) ) # create hint _snake_case : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): _snake_case : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) else: _snake_case : Dict = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) _snake_case : Tuple = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = 'cpu' _snake_case : Any = self.get_dummy_components() _snake_case : List[Any] = self.pipeline_class(**lowerCamelCase_ ) _snake_case : str = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Optional[Any] = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) _snake_case : List[Any] = output.images _snake_case : Any = pipe( **self.get_dummy_inputs(lowerCamelCase_ ) , return_dict=lowerCamelCase_ , )[0] _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : List[str] = np.array( [0.5498_5034, 0.5550_9365, 0.5256_1504, 0.557_0494, 0.559_3818, 0.526_3979, 0.5028_5643, 0.506_9846, 0.5119_6736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) _snake_case : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _snake_case : Dict = init_image.resize((5_12, 5_12) ) _snake_case : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) _snake_case : List[str] = torch.from_numpy(np.array(lowerCamelCase_ ) ).float() / 255.0 _snake_case : str = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _snake_case : Union[str, Any] = 'A robot, 4k photo' _snake_case : Union[str, Any] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) _snake_case : Optional[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) _snake_case : Tuple = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _snake_case , _snake_case : Any = pipe_prior( lowerCamelCase_ , image=lowerCamelCase_ , strength=0.85 , generator=lowerCamelCase_ , negative_prompt='' , ).to_tuple() _snake_case : str = pipeline( image=lowerCamelCase_ , image_embeds=lowerCamelCase_ , negative_image_embeds=lowerCamelCase_ , hint=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type='np' , ) _snake_case : Union[str, Any] = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ )
304
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def A__( __lowerCAmelCase ): _snake_case : Dict = [ 'decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__( __lowerCAmelCase ): _snake_case , _snake_case : Any = emb.weight.shape _snake_case : List[str] = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) _snake_case : Optional[int] = emb.weight.data return lin_layer def A__( __lowerCAmelCase ): _snake_case : List[str] = torch.load(__lowerCAmelCase , map_location='cpu' ) _snake_case : List[Any] = Namespace(**checkpoint['cfg']['model'] ) _snake_case : Optional[Any] = checkpoint['model'] remove_ignore_keys_(__lowerCAmelCase ) _snake_case : List[Any] = state_dict['decoder.embed_tokens.weight'].shape[0] _snake_case : Dict = {key.replace('decoder' , 'model' ): val for key, val in state_dict.items()} _snake_case : Optional[Any] = XGLMConfig( vocab_size=__lowerCAmelCase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='gelu' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) _snake_case : Optional[Any] = XGLMForCausalLM(__lowerCAmelCase ) _snake_case : Any = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) print(__lowerCAmelCase ) _snake_case : Optional[Any] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowercase_ : Optional[Any] = parser.parse_args() lowercase_ : List[Any] = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
304
1
"""simple docstring""" from typing import Any class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ ): _lowerCamelCase = data _lowerCamelCase = None class lowerCamelCase_: '''simple docstring''' def __init__( self ): _lowerCamelCase = None def snake_case__ ( self ): _lowerCamelCase = self.head while temp is not None: print(temp.data , end=''' ''' ) _lowerCamelCase = temp.next print() def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = Node(lowerCamelCase__ ) _lowerCamelCase = self.head _lowerCamelCase = new_node def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): if node_data_a == node_data_a: return else: _lowerCamelCase = self.head while node_a is not None and node_a.data != node_data_a: _lowerCamelCase = node_a.next _lowerCamelCase = self.head while node_a is not None and node_a.data != node_data_a: _lowerCamelCase = node_a.next if node_a is None or node_a is None: return _lowerCamelCase , _lowerCamelCase = node_a.data, node_a.data if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
705
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__=None , **lowerCamelCase__ ): warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , lowerCamelCase__ , ) super().__init__(args=lowerCamelCase__ , **lowerCamelCase__ )
623
0
from PIL import Image def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): def brightness(lowerCAmelCase__ ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(lowerCAmelCase__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 __SCREAMING_SNAKE_CASE : int =change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
428
import os from distutils.util import strtobool def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): for e in env_keys: lowercase = int(os.environ.get(lowerCAmelCase__ ,-1 ) ) if val >= 0: return val return default def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__=False ): lowercase = os.environ.get(lowerCAmelCase__ ,str(lowerCAmelCase__ ) ) return strtobool(lowerCAmelCase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__="no" ): lowercase = os.environ.get(lowerCAmelCase__ ,str(lowerCAmelCase__ ) ) return value
428
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
717
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _lowerCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = "left" def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : int = 3 _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.remove_space: _lowerCAmelCase : str = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase : Dict = inputs _lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A ) _lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _lowerCAmelCase : Tuple = outputs.lower() return outputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A ) _lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A ) _lowerCAmelCase : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : int = cur_pieces[1:] else: _lowerCAmelCase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) _lowerCAmelCase : Tuple = [] sub_texts.append(_A ) else: current_sub_text.append(_A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase : List[Any] = ''.join(_A ) _lowerCAmelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : int = self.clean_up_tokenization(_A ) return clean_text else: return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
0
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py SCREAMING_SNAKE_CASE = 'src/transformers' SCREAMING_SNAKE_CASE = 'docs/source/en/tasks' def lowercase_ ( __A : Union[str, Any] , __A : str , __A : Any ) -> Tuple: """simple docstring""" with open(__A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase : Optional[int] =f.readlines() # Find the start prompt. lowercase : List[str] =0 while not lines[start_index].startswith(__A ): start_index += 1 start_index += 1 lowercase : List[Any] =start_index while not lines[end_index].startswith(__A ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE = direct_transformers_import(TRANSFORMERS_PATH) SCREAMING_SNAKE_CASE = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). SCREAMING_SNAKE_CASE = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def lowercase_ ( __A : Optional[int] ) -> str: """simple docstring""" lowercase : Dict =TASK_GUIDE_TO_MODELS[task_guide] lowercase : Tuple =SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__A , set() ) lowercase : Optional[Any] ={ code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def lowercase_ ( __A : Optional[int] , __A : Union[str, Any]=False ) -> str: """simple docstring""" lowercase , lowercase , lowercase , lowercase : List[str] =_find_text_in_file( filename=os.path.join(__A , __A ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) lowercase : Dict =get_model_list_for_task(__A ) if current_list != new_list: if overwrite: with open(os.path.join(__A , __A ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' ''' to fix this.''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') SCREAMING_SNAKE_CASE = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
94
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "openai/whisper-base" UpperCAmelCase__ = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) UpperCAmelCase__ = "transcriber" UpperCAmelCase__ = WhisperProcessor UpperCAmelCase__ = WhisperForConditionalGeneration UpperCAmelCase__ = ["audio"] UpperCAmelCase__ = ["text"] def lowerCamelCase__ ( self : Dict , __snake_case : List[str] ) -> Dict: return self.pre_processor(__snake_case , return_tensors="""pt""" ).input_features def lowerCamelCase__ ( self : int , __snake_case : Union[str, Any] ) -> List[str]: return self.model.generate(inputs=__snake_case ) def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : List[Any] ) -> Any: return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0]
96
0
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCamelCase = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Optional[Any] , lowerCamelCase__ :Path , lowerCamelCase__ :Union[str, None] = None , lowerCamelCase__ :Union[List[str], None] = None , lowerCamelCase__ :Union[str, List[str], None] = None , lowerCamelCase__ :bool = True , ): UpperCamelCase__ :str = [file for file in os.listdir(lowerCamelCase__ ) if os.path.isfile(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) )] if identifier is not None: UpperCamelCase__ :Union[str, Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): for n_ in n_identifier: UpperCamelCase__ :int = [file for file in files if n_ not in file] else: UpperCamelCase__ :Dict = [file for file in files if n_identifier not in file] UpperCamelCase__ :Any = ignore_files or [] ignore_files.append("""__init__.py""" ) UpperCamelCase__ :str = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , lowerCamelCase__ ) if only_modules: UpperCamelCase__ :str = file.split(""".""" )[0] try: UpperCamelCase__ :str = getattr(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = doctest.DocTestSuite(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = unittest.TextTestRunner().run(lowerCamelCase__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f"""{module_identifier} is not a module.""" ) else: UpperCamelCase__ :Any = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __a ( self :Any ): UpperCamelCase__ :List[str] = Path("""src/transformers""" ) UpperCamelCase__ :List[Any] = """modeling""" UpperCamelCase__ :Optional[Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(lowerCamelCase__ , identifier=lowerCamelCase__ , ignore_files=lowerCamelCase__ ) def __a ( self :int ): UpperCamelCase__ :int = Path("""src/transformers""" ) UpperCamelCase__ :Optional[Any] = """tokenization""" self.analyze_directory(lowerCamelCase__ , identifier=lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Dict = Path("""src/transformers""" ) UpperCamelCase__ :Optional[Any] = """configuration""" self.analyze_directory(lowerCamelCase__ , identifier=lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Optional[Any] = Path("""src/transformers""" ) UpperCamelCase__ :Dict = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(lowerCamelCase__ , n_identifier=lowerCamelCase__ ) def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = Path("""docs/source""" ) UpperCamelCase__ :Optional[int] = ["""favicon.ico"""] self.analyze_directory(lowerCamelCase__ , ignore_files=lowerCamelCase__ , only_modules=lowerCamelCase__ )
706
def A ( lowercase__ : List[str] , lowercase__ : int , lowercase__ : Union[str, Any] , lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Union[str, Any] ) -> Tuple: if index == r: for j in range(lowercase__ ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCamelCase__ :Union[str, Any] = arr[i] combination_util(lowercase__ , lowercase__ , lowercase__ , index + 1 , lowercase__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def A ( lowercase__ : Dict , lowercase__ : str , lowercase__ : Any ) -> Tuple: # A temporary array to store all combination one by one UpperCamelCase__ :int = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase__ , lowercase__ , lowercase__ , 0 , lowercase__ , 0 ) if __name__ == "__main__": # Driver code to check the function above UpperCamelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
383
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : int = "▁" SCREAMING_SNAKE_CASE : Union[str, Any] = {"vocab_file": "spiece.model"} SCREAMING_SNAKE_CASE : Optional[int] = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } SCREAMING_SNAKE_CASE : List[Any] = { "google/pegasus-xsum": 512, } SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) class _lowerCamelCase( _a ): lowercase_ : Tuple = VOCAB_FILES_NAMES lowercase_ : Union[str, Any] = VOCAB_FILES_NAMES lowercase_ : Dict = PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : List[Any] = ["""input_ids""", """attention_mask"""] def __init__( self, lowerCamelCase, lowerCamelCase="<pad>", lowerCamelCase="</s>", lowerCamelCase="<unk>", lowerCamelCase="<mask_2>", lowerCamelCase="<mask_1>", lowerCamelCase=None, lowerCamelCase=1_03, lowerCamelCase = None, **lowerCamelCase, ) -> None: """simple docstring""" _lowercase : str = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase, lowerCamelCase): raise TypeError( F'''additional_special_tokens should be of type {type(lowerCamelCase)}, but is''' F''' {type(lowerCamelCase)}''') _lowercase : Any = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(lowerCamelCase), self.offset - 1) ] if len(set(lowerCamelCase)) != len(lowerCamelCase): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''') _lowercase : Optional[int] = additional_special_tokens_extended else: _lowercase : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2, self.offset)] _lowercase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCamelCase, unk_token=lowerCamelCase, mask_token=lowerCamelCase, pad_token=lowerCamelCase, mask_token_sent=lowerCamelCase, offset=lowerCamelCase, additional_special_tokens=lowerCamelCase, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase, ) _lowercase : str = mask_token_sent _lowercase : Optional[int] = vocab_file _lowercase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase) # add special tokens to encoder dict _lowercase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, }) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1, self.offset - 1)}) _lowercase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def UpperCamelCase ( self) -> int: """simple docstring""" return len(self.sp_model) + self.offset def UpperCamelCase ( self) -> Dict[str, int]: """simple docstring""" _lowercase : Union[str, Any] = {self.convert_ids_to_tokens(lowerCamelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: """simple docstring""" _lowercase : Optional[Any] = self.__dict__.copy() _lowercase : Union[str, Any] = None return state def __setstate__( self, lowerCamelCase) -> str: """simple docstring""" _lowercase : Dict = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs'): _lowercase : Any = {} _lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCamelCase, out_type=lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] _lowercase : Any = self.sp_model.piece_to_id(lowerCamelCase) return sp_id + self.offset def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: _lowercase : Tuple = self.sp_model.IdToPiece(index - self.offset) return token def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Union[str, Any] = [] _lowercase : Optional[int] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCamelCase) + token _lowercase : List[str] = [] else: current_sub_tokens.append(lowerCamelCase) out_string += self.sp_model.decode(lowerCamelCase) return out_string.strip() def UpperCamelCase ( self, lowerCamelCase=False) -> Optional[Any]: """simple docstring""" return 1 def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" _lowercase : str = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(lowerCamelCase) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=None) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return _lowercase : Tuple = os.path.join( lowerCamelCase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, lowerCamelCase) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase, 'wb') as fi: _lowercase : Tuple = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase) return (out_vocab_file,)
89
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: # Initialise PyTorch model _lowercase : Optional[int] = TaConfig.from_json_file(lowerCamelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) _lowercase : Union[str, Any] = TaForConditionalGeneration(lowerCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
89
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
277
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch A = logging.get_logger(__name__) class lowercase__ : def __init__( self : List[str] , _lowercase : str = None , _lowercase : uuid.UUID = None , _lowercase : Dict=None , _lowercase : Any=None ): """simple docstring""" if not conversation_id: UpperCAmelCase__ = uuid.uuida() if past_user_inputs is None: UpperCAmelCase__ = [] if generated_responses is None: UpperCAmelCase__ = [] UpperCAmelCase__ = conversation_id UpperCAmelCase__ = past_user_inputs UpperCAmelCase__ = generated_responses UpperCAmelCase__ = text def __eq__( self : Any , _lowercase : str ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _UpperCAmelCase ( self : Any , _lowercase : str , _lowercase : bool = False ): """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) UpperCAmelCase__ = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: UpperCAmelCase__ = text def _UpperCAmelCase ( self : int ): """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) UpperCAmelCase__ = None def _UpperCAmelCase ( self : List[str] , _lowercase : str ): """simple docstring""" self.generated_responses.append(_lowercase ) def _UpperCAmelCase ( self : List[str] ): """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): UpperCAmelCase__ = "user" if is_user else "bot" output += F"""{name} >> {text} \n""" return output @add_end_docstrings( __SCREAMING_SNAKE_CASE , R'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class lowercase__ ( __SCREAMING_SNAKE_CASE ): def __init__( self : str , *_lowercase : Union[str, Any] , **_lowercase : Any ): """simple docstring""" super().__init__(*_lowercase , **_lowercase ) if self.tokenizer.pad_token_id is None: UpperCAmelCase__ = self.tokenizer.eos_token def _UpperCAmelCase ( self : List[str] , _lowercase : int=None , _lowercase : Any=None , _lowercase : List[str]=None , **_lowercase : Dict ): """simple docstring""" UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = {} if min_length_for_response is not None: UpperCAmelCase__ = min_length_for_response if minimum_tokens is not None: UpperCAmelCase__ = minimum_tokens if "max_length" in generate_kwargs: UpperCAmelCase__ = generate_kwargs["max_length"] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: UpperCAmelCase__ = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_lowercase ) return preprocess_params, forward_params, postprocess_params def __call__( self : Dict , _lowercase : Union[Conversation, List[Conversation]] , _lowercase : List[str]=0 , **_lowercase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = super().__call__(_lowercase , num_workers=_lowercase , **_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) == 1: return outputs[0] return outputs def _UpperCAmelCase ( self : Optional[Any] , _lowercase : Conversation , _lowercase : List[Any]=32 ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise ValueError("ConversationalPipeline, expects Conversation as inputs" ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ "Add user inputs with the conversation's `add_user_input` method" ) if hasattr(self.tokenizer , "_build_conversation_input_ids" ): UpperCAmelCase__ = self.tokenizer._build_conversation_input_ids(_lowercase ) else: # If the tokenizer cannot handle conversations, we default to only the old version UpperCAmelCase__ = self._legacy_parse_and_tokenize(_lowercase ) if self.framework == "pt": UpperCAmelCase__ = torch.LongTensor([input_ids] ) elif self.framework == "tf": UpperCAmelCase__ = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _UpperCAmelCase ( self : Optional[Any] , _lowercase : List[Any] , _lowercase : List[Any]=10 , **_lowercase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = generate_kwargs.get("max_length" , self.model.config.max_length ) UpperCAmelCase__ = model_inputs["input_ids"].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) UpperCAmelCase__ = max_length - minimum_tokens UpperCAmelCase__ = model_inputs["input_ids"][:, -trim:] if "attention_mask" in model_inputs: UpperCAmelCase__ = model_inputs["attention_mask"][:, -trim:] UpperCAmelCase__ = model_inputs.pop("conversation" ) UpperCAmelCase__ = max_length UpperCAmelCase__ = self.model.generate(**_lowercase , **_lowercase ) if self.model.config.is_encoder_decoder: UpperCAmelCase__ = 1 else: UpperCAmelCase__ = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _UpperCAmelCase ( self : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[Any]=True ): """simple docstring""" UpperCAmelCase__ = model_outputs["output_ids"] UpperCAmelCase__ = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) UpperCAmelCase__ = model_outputs["conversation"] conversation.mark_processed() conversation.append_response(_lowercase ) return conversation def _UpperCAmelCase ( self : List[str] , _lowercase : Conversation ): """simple docstring""" UpperCAmelCase__ = self.tokenizer.eos_token_id UpperCAmelCase__ = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) if len(_lowercase ) > self.tokenizer.model_max_length: UpperCAmelCase__ = input_ids[-self.tokenizer.model_max_length :] return input_ids
277
1
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase ( snake_case__ , unittest.TestCase ): __UpperCamelCase = ProphetNetTokenizer __UpperCamelCase = False def UpperCamelCase_ ( self : Tuple ): """simple docstring""" super().setUp() __snake_case = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __snake_case = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : List[str] ,_lowerCAmelCase : Any ): """simple docstring""" __snake_case = "UNwant\u00E9d,running" __snake_case = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.tokenizer_class(self.vocab_file ) __snake_case = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_lowerCAmelCase ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,[9, 6, 7, 12, 10, 11] ) def UpperCamelCase_ ( self : Any ): """simple docstring""" __snake_case = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) ,["ah", "\u535A", "\u63A8", "zz"] ) def UpperCamelCase_ ( self : Tuple ): """simple docstring""" __snake_case = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) ,["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["hello"] ) def UpperCamelCase_ ( self : Dict ): """simple docstring""" __snake_case = BasicTokenizer(do_lower_case=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["h\u00E9llo"] ) def UpperCamelCase_ ( self : Optional[int] ): """simple docstring""" __snake_case = BasicTokenizer(do_lower_case=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["hello"] ) def UpperCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __snake_case = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["hello"] ) def UpperCamelCase_ ( self : str ): """simple docstring""" __snake_case = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) ,["HeLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase_ ( self : Optional[int] ): """simple docstring""" __snake_case = BasicTokenizer(do_lower_case=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["HäLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase_ ( self : Optional[Any] ): """simple docstring""" __snake_case = BasicTokenizer(do_lower_case=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["HaLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase_ ( self : int ): """simple docstring""" __snake_case = BasicTokenizer(do_lower_case=_lowerCAmelCase ,never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) ,["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def UpperCamelCase_ ( self : Tuple ): """simple docstring""" __snake_case = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] __snake_case = {} for i, token in enumerate(_lowerCAmelCase ): __snake_case = i __snake_case = WordpieceTokenizer(vocab=_lowerCAmelCase ,unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) ,[] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) ,["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) ,["[UNK]", "runn", "##ing"] ) @require_torch def UpperCamelCase_ ( self : List[Any] ): """simple docstring""" __snake_case = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) __snake_case = ["A long paragraph for summarization.", "Another paragraph for summarization."] __snake_case = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102] __snake_case = tokenizer(_lowerCAmelCase ,padding=_lowerCAmelCase ,return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) __snake_case = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) def UpperCamelCase_ ( self : Tuple ): """simple docstring""" self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def UpperCamelCase_ ( self : Union[str, Any] ): """simple docstring""" self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def UpperCamelCase_ ( self : Any ): """simple docstring""" self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): """simple docstring""" __snake_case = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) __snake_case = tokenizer.encode("sequence builders" ,add_special_tokens=_lowerCAmelCase ) __snake_case = tokenizer.encode("multi-sequence build" ,add_special_tokens=_lowerCAmelCase ) __snake_case = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) __snake_case = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ,_lowerCAmelCase ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
524
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
524
1
"""simple docstring""" # Function to print upper half of diamond (pyramid) def UpperCamelCase_ ( lowerCamelCase : int ) -> List[Any]: """simple docstring""" for i in range(0 , lowerCamelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def UpperCamelCase_ ( lowerCamelCase : List[str] ) -> str: """simple docstring""" for i in range(lowerCamelCase , 0 , -1 ): for _ in range(lowerCamelCase , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def UpperCamelCase_ ( lowerCamelCase : int ) -> Tuple: """simple docstring""" if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(lowerCamelCase ) # upper half reverse_floyd(lowerCamelCase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") A = 1 while K: A = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) A = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
147
"""simple docstring""" from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer A = logging.get_logger(__name__) A = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } A = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } A = { """facebook/blenderbot_small-90M""": 512, } class _UpperCamelCase ( lowerCamelCase__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = BlenderbotSmallTokenizer def __init__( self : Optional[Any] , snake_case : Any=None , snake_case : List[str]=None , snake_case : Optional[int]="<|endoftext|>" , snake_case : str="<|endoftext|>" , snake_case : Optional[Any]="<|endoftext|>" , snake_case : Union[str, Any]=False , snake_case : Union[str, Any]=True , **snake_case : Union[str, Any] , ) -> List[str]: '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=snake_case , merges=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , ) , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , **snake_case , ) __magic_name__ : str = add_prefix_space def _UpperCAmelCase ( self : Optional[Any] , snake_case : Optional[int] , snake_case : Optional[int]=None ) -> int: '''simple docstring''' __magic_name__ : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self : Optional[int] , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __magic_name__ : Tuple = [self.sep_token_id] __magic_name__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
147
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_lowercase ) class a__ ( _lowercase ): __magic_name__ : str = field(default="question-answering-extractive", metadata={"include_in_asdict_even_if_is_default": True} ) __magic_name__ : ClassVar[Features] = Features({"question": Value("string" ), "context": Value("string" )} ) __magic_name__ : ClassVar[Features] = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) __magic_name__ : str = "question" __magic_name__ : str = "context" __magic_name__ : str = "answers" @property def lowercase__ (self : Tuple ) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
507
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __lowerCAmelCase ( A_ : Features ) -> Optional[int]: __UpperCAmelCase = np.inf def set_batch_size(A_ : FeatureType ) -> None: nonlocal batch_size if isinstance(A_ , A_ ): __UpperCAmelCase = min(A_ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(A_ , A_ ): __UpperCAmelCase = min(A_ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(A_ , A_ ) and feature.dtype == "binary": __UpperCAmelCase = min(A_ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(A_ , A_ ) return None if batch_size is np.inf else batch_size class UpperCAmelCase__ ( snake_case ): """simple docstring""" def __init__( self: Optional[Any] , __lowerCAmelCase: NestedDataStructureLike[PathLike] , __lowerCAmelCase: Optional[NamedSplit] = None , __lowerCAmelCase: Optional[Features] = None , __lowerCAmelCase: str = None , __lowerCAmelCase: bool = False , __lowerCAmelCase: bool = False , __lowerCAmelCase: Optional[int] = None , **__lowerCAmelCase: List[Any] , ) -> Any: '''simple docstring''' super().__init__( __lowerCAmelCase , split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , num_proc=__lowerCAmelCase , **__lowerCAmelCase , ) __UpperCAmelCase = path_or_paths if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else {self.split: path_or_paths} __UpperCAmelCase = _PACKAGED_DATASETS_MODULES["parquet"][1] __UpperCAmelCase = Parquet( cache_dir=__lowerCAmelCase , data_files=__lowerCAmelCase , features=__lowerCAmelCase , hash=__lowerCAmelCase , **__lowerCAmelCase , ) def _UpperCAmelCase ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' if self.streaming: __UpperCAmelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None self.builder.download_and_prepare( download_config=__lowerCAmelCase , download_mode=__lowerCAmelCase , verification_mode=__lowerCAmelCase , base_path=__lowerCAmelCase , num_proc=self.num_proc , ) __UpperCAmelCase = self.builder.as_dataset( split=self.split , verification_mode=__lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset class UpperCAmelCase__ : """simple docstring""" def __init__( self: Optional[int] , __lowerCAmelCase: Dataset , __lowerCAmelCase: Union[PathLike, BinaryIO] , __lowerCAmelCase: Optional[int] = None , **__lowerCAmelCase: Optional[int] , ) -> Dict: '''simple docstring''' __UpperCAmelCase = dataset __UpperCAmelCase = path_or_buf __UpperCAmelCase = batch_size or get_writer_batch_size(dataset.features ) __UpperCAmelCase = parquet_writer_kwargs def _UpperCAmelCase ( self: Optional[Any] ) -> int: '''simple docstring''' __UpperCAmelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: __UpperCAmelCase = self._write(file_obj=__lowerCAmelCase , batch_size=__lowerCAmelCase , **self.parquet_writer_kwargs ) else: __UpperCAmelCase = self._write(file_obj=self.path_or_buf , batch_size=__lowerCAmelCase , **self.parquet_writer_kwargs ) return written def _UpperCAmelCase ( self: Tuple , __lowerCAmelCase: BinaryIO , __lowerCAmelCase: int , **__lowerCAmelCase: List[Any] ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = parquet_writer_kwargs.pop("path_or_buf" , __lowerCAmelCase ) __UpperCAmelCase = self.dataset.features.arrow_schema __UpperCAmelCase = pq.ParquetWriter(__lowerCAmelCase , schema=__lowerCAmelCase , **__lowerCAmelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , __lowerCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): __UpperCAmelCase = query_table( table=self.dataset._data , key=slice(__lowerCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(__lowerCAmelCase ) written += batch.nbytes writer.close() return written
221
0
"""simple docstring""" import os import sys import unittest _UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _UpperCamelCase = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") _UpperCamelCase = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class lowerCamelCase__ ( unittest.TestCase ): def _UpperCamelCase ( self ): UpperCAmelCase = get_test_to_tester_mapping(A ) UpperCAmelCase = get_test_to_tester_mapping(A ) UpperCAmelCase = {"""BertModelTest""": """BertModelTester"""} UpperCAmelCase = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(A ) ,A ) self.assertEqual(get_test_info.to_json(A ) ,A ) def _UpperCamelCase ( self ): UpperCAmelCase = get_model_to_test_mapping(A ) UpperCAmelCase = get_model_to_test_mapping(A ) UpperCAmelCase = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } UpperCAmelCase = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(A ) ,A ) self.assertEqual(get_test_info.to_json(A ) ,A ) def _UpperCamelCase ( self ): UpperCAmelCase = get_model_to_tester_mapping(A ) UpperCAmelCase = get_model_to_tester_mapping(A ) UpperCAmelCase = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } UpperCAmelCase = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(A ) ,A ) self.assertEqual(get_test_info.to_json(A ) ,A )
74
"""simple docstring""" from __future__ import annotations def _a ( _snake_case ): """simple docstring""" return len(set(_snake_case ) ) == len(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
74
1
'''simple docstring''' lowerCAmelCase_ : Optional[Any] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def __A ( ): _UpperCAmelCase : Dict = input("""Enter message: """ ) _UpperCAmelCase : Optional[int] = input("""Enter key [alphanumeric]: """ ) _UpperCAmelCase : int = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): _UpperCAmelCase : List[Any] = """encrypt""" _UpperCAmelCase : str = encrypt_message(lowerCAmelCase_ , lowerCAmelCase_ ) elif mode.lower().startswith("""d""" ): _UpperCAmelCase : Union[str, Any] = """decrypt""" _UpperCAmelCase : Optional[Any] = decrypt_message(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"\n{mode.title()}ed message:" ) print(lowerCAmelCase_ ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): return translate_message(lowerCAmelCase_ , lowerCAmelCase_ , """encrypt""" ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): return translate_message(lowerCAmelCase_ , lowerCAmelCase_ , """decrypt""" ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Any = 0 _UpperCAmelCase : Optional[Any] = key.upper() for symbol in message: _UpperCAmelCase : Optional[int] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(lowerCAmelCase_ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(lowerCAmelCase_ ): _UpperCAmelCase : Tuple = 0 else: translated.append(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) if __name__ == "__main__": main()
414
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def __A ( lowerCAmelCase_ ): _UpperCAmelCase : str = {} _UpperCAmelCase : Optional[Any] = job["""started_at"""] _UpperCAmelCase : List[Any] = job["""completed_at"""] _UpperCAmelCase : Optional[int] = date_parser.parse(lowerCAmelCase_ ) _UpperCAmelCase : str = date_parser.parse(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _UpperCAmelCase : Tuple = start _UpperCAmelCase : str = end _UpperCAmelCase : List[Any] = duration_in_min return job_info def __A ( lowerCAmelCase_ , lowerCAmelCase_=None ): _UpperCAmelCase : str = None if token is not None: _UpperCAmelCase : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} _UpperCAmelCase : Any = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" _UpperCAmelCase : Union[str, Any] = requests.get(lowerCAmelCase_ , headers=lowerCAmelCase_ ).json() _UpperCAmelCase : int = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(lowerCAmelCase_ ) for job in result["""jobs"""]} ) _UpperCAmelCase : str = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(lowerCAmelCase_ ): _UpperCAmelCase : Dict = requests.get(url + f"&page={i + 2}" , headers=lowerCAmelCase_ ).json() job_time.update({job["""name"""]: extract_time_from_single_job(lowerCAmelCase_ ) for job in result["""jobs"""]} ) return job_time except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} if __name__ == "__main__": lowerCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') lowerCAmelCase_ : Optional[int] = parser.parse_args() lowerCAmelCase_ : int = get_job_time(args.workflow_run_id) lowerCAmelCase_ : Optional[Any] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F"{k}: {v['duration']}")
414
1
import argparse import json import subprocess def __SCREAMING_SNAKE_CASE ( UpperCamelCase : List[str] , UpperCamelCase : Tuple ) -> Dict: """simple docstring""" a_ = [] a_ = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) a_ = subprocess.run(UpperCamelCase , shell=UpperCamelCase , stdout=subprocess.PIPE ) a_ = output.stdout.decode("""utf-8""" ) a_ = json.loads(UpperCamelCase ) a_ = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(UpperCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" , """w""" ) as fp: fp.write(json.dumps(UpperCamelCase ) ) if len(UpperCamelCase ) > 0: a_ = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def __SCREAMING_SNAKE_CASE ( UpperCamelCase : List[str] ) -> str: """simple docstring""" return values.split(""",""" ) _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _A = parser.parse_args() get_runner_status(args.target_runners, args.token)
712
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging _A = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" a_ = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. a_ = json.loads(UpperCamelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. a_ = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". a_ = json.loads(UpperCamelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , UpperCamelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): _lowerCamelCase : str = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def __magic_name__ ( self ): super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , _SCREAMING_SNAKE_CASE , ) @cached_property def __magic_name__ ( self ): logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: a_ = torch.device("""cpu""" ) a_ = 0 elif is_sagemaker_model_parallel_available(): a_ = smp.local_rank() a_ = torch.device("""cuda""" , _SCREAMING_SNAKE_CASE ) a_ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) a_ = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) a_ = torch.device("""cuda""" , self.local_rank ) a_ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 a_ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. a_ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) a_ = torch.device("""cuda""" , self.local_rank ) a_ = 1 if device.type == "cuda": torch.cuda.set_device(_SCREAMING_SNAKE_CASE ) return device @property def __magic_name__ ( self ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __magic_name__ ( self ): return not is_sagemaker_model_parallel_available() @property def __magic_name__ ( self ): return False
403
0
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowerCamelCase__ ( a : Optional[Any] ) -> Any: """simple docstring""" return EnvironmentCommand() def lowerCamelCase__ ( a : Optional[Any] ) -> Optional[int]: """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class lowerCAmelCase_ ( lowerCamelCase__): @staticmethod def _snake_case ( __A : ArgumentParser ) ->Union[str, Any]: """simple docstring""" a__ :Optional[int] = parser.add_parser("env" ) download_parser.set_defaults(func=__A ) download_parser.add_argument( "--accelerate-config_file" , default=__A , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=__A ) def __init__( self : Dict , __A : Tuple , *__A : Optional[int] ) ->str: """simple docstring""" a__ :List[Any] = accelerate_config_file def _snake_case ( self : str ) ->Union[str, Any]: """simple docstring""" a__ :List[str] = "not installed" if is_safetensors_available(): import safetensors a__ :Union[str, Any] = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors a__ :Union[str, Any] = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' a__ :Union[str, Any] = "not installed" a__ :Optional[Any] = "not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file a__ :str = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(__A ): a__ :List[Any] = load_config_from_file(self._accelerate_config_file ).to_dict() a__ :Optional[Any] = ( "\n".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(__A , __A ) else F'''\t{accelerate_config}''' ) a__ :int = "not installed" a__ :Union[str, Any] = "NA" if is_torch_available(): import torch a__ :List[str] = torch.__version__ a__ :Tuple = torch.cuda.is_available() a__ :List[str] = "not installed" a__ :Any = "NA" if is_tf_available(): import tensorflow as tf a__ :Optional[Any] = tf.__version__ try: # deprecated in v2.1 a__ :Optional[int] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool a__ :Union[str, Any] = bool(tf.config.list_physical_devices("GPU" ) ) a__ :Union[str, Any] = "not installed" a__ :Any = "not installed" a__ :Union[str, Any] = "not installed" a__ :Tuple = "NA" if is_flax_available(): import flax import jax import jaxlib a__ :Any = flax.__version__ a__ :Union[str, Any] = jax.__version__ a__ :int = jaxlib.__version__ a__ :Optional[int] = jax.lib.xla_bridge.get_backend().platform a__ :Tuple = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": F'''{safetensors_version}''', "Accelerate version": F'''{accelerate_version}''', "Accelerate config": F'''{accelerate_config_str}''', "PyTorch version (GPU?)": F'''{pt_version} ({pt_cuda_available})''', "Tensorflow version (GPU?)": F'''{tf_version} ({tf_cuda_available})''', "Flax version (CPU?/GPU?/TPU?)": F'''{flax_version} ({jax_backend})''', "Jax version": F'''{jax_version}''', "JaxLib version": F'''{jaxlib_version}''', "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(__A ) ) return info @staticmethod def _snake_case ( __A : Union[str, Any] ) ->Any: """simple docstring""" return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
395
'''simple docstring''' from __future__ import annotations from collections.abc import Callable __magic_name__ : Dict = list[list[float | int]] def A__ ( A_ , A_ ) -> Matrix: _lowercase = len(A_ ) _lowercase = [[0 for _ in range(size + 1 )] for _ in range(A_ )] _lowercase = 42 _lowercase = 42 _lowercase = 42 _lowercase = 42 _lowercase = 42 _lowercase = 42 for row in range(A_ ): for col in range(A_ ): _lowercase = matrix[row][col] _lowercase = vector[row][0] _lowercase = 0 _lowercase = 0 while row < size and col < size: # pivoting _lowercase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(A_ , A_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , A_ ): _lowercase = augmented[rowa][col] / augmented[row][col] _lowercase = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , A_ ): for row in range(A_ ): _lowercase = augmented[row][col] / augmented[col][col] for cola in range(A_ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(A_ ) ] def A__ ( A_ ) -> Callable[[int], int]: _lowercase = len(A_ ) _lowercase = [[0 for _ in range(A_ )] for _ in range(A_ )] _lowercase = [[0] for _ in range(A_ )] _lowercase = 42 _lowercase = 42 _lowercase = 42 _lowercase = 42 for x_val, y_val in enumerate(A_ ): for col in range(A_ ): _lowercase = (x_val + 1) ** (size - col - 1) _lowercase = y_val _lowercase = solve(A_ , A_ ) def interpolated_func(A_ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(A_ ) ) return interpolated_func def A__ ( A_ ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A__ ( A_ = question_function , A_ = 10 ) -> int: _lowercase = [func(A_ ) for x_val in range(1 , order + 1 )] _lowercase = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase = 0 _lowercase = 42 _lowercase = 42 for poly in polynomials: _lowercase = 1 while func(A_ ) == poly(A_ ): x_val += 1 ret += poly(A_ ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
497
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _A : Dict = logging.get_logger(__name__) def UpperCamelCase_ ( snake_case_ : Optional[int] ) -> Any: '''simple docstring''' if "resnet-50" in model_name: __lowerCAmelCase = ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: __lowerCAmelCase = ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) __lowerCAmelCase = DetrConfig(use_timm_backbone=snake_case_ , backbone_config=snake_case_ ) # set label attributes __lowerCAmelCase = """panoptic""" in model_name if is_panoptic: __lowerCAmelCase = 2_50 else: __lowerCAmelCase = 91 __lowerCAmelCase = """huggingface/label-files""" __lowerCAmelCase = """coco-detection-id2label.json""" __lowerCAmelCase = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(snake_case_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCamelCase_ ( snake_case_ : Optional[Any] ) -> Any: '''simple docstring''' __lowerCAmelCase = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def UpperCamelCase_ ( snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : str ) -> str: '''simple docstring''' __lowerCAmelCase = state_dict.pop(snake_case_ ) __lowerCAmelCase = val def UpperCamelCase_ ( snake_case_ : Optional[int] , snake_case_ : Optional[Any]=False ) -> Dict: '''simple docstring''' __lowerCAmelCase = """""" if is_panoptic: __lowerCAmelCase = """detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:2_56, :] __lowerCAmelCase = in_proj_bias[:2_56] __lowerCAmelCase = in_proj_weight[2_56:5_12, :] __lowerCAmelCase = in_proj_bias[2_56:5_12] __lowerCAmelCase = in_proj_weight[-2_56:, :] __lowerCAmelCase = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __lowerCAmelCase = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:2_56, :] __lowerCAmelCase = in_proj_bias[:2_56] __lowerCAmelCase = in_proj_weight[2_56:5_12, :] __lowerCAmelCase = in_proj_bias[2_56:5_12] __lowerCAmelCase = in_proj_weight[-2_56:, :] __lowerCAmelCase = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention __lowerCAmelCase = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __lowerCAmelCase = in_proj_weight_cross_attn[:2_56, :] __lowerCAmelCase = in_proj_bias_cross_attn[:2_56] __lowerCAmelCase = in_proj_weight_cross_attn[2_56:5_12, :] __lowerCAmelCase = in_proj_bias_cross_attn[2_56:5_12] __lowerCAmelCase = in_proj_weight_cross_attn[-2_56:, :] __lowerCAmelCase = in_proj_bias_cross_attn[-2_56:] def UpperCamelCase_ ( ) -> str: '''simple docstring''' __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def UpperCamelCase_ ( snake_case_ : List[str] , snake_case_ : str=None , snake_case_ : str=False ) -> Dict: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = get_detr_config(snake_case_ ) # load original model from torch hub __lowerCAmelCase = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(f"""Converting model {model_name}...""" ) __lowerCAmelCase = torch.hub.load("""facebookresearch/detr""" , model_name_to_original_name[model_name] , pretrained=snake_case_ ).eval() __lowerCAmelCase = detr.state_dict() # rename keys for src, dest in create_rename_keys(snake_case_ ): if is_panoptic: __lowerCAmelCase = """detr.""" + src rename_key(snake_case_ , snake_case_ , snake_case_ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case_ , is_panoptic=snake_case_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowerCAmelCase = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): __lowerCAmelCase = state_dict.pop(snake_case_ ) __lowerCAmelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __lowerCAmelCase = state_dict.pop(snake_case_ ) __lowerCAmelCase = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: __lowerCAmelCase = state_dict.pop(snake_case_ ) __lowerCAmelCase = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): __lowerCAmelCase = state_dict.pop(snake_case_ ) __lowerCAmelCase = val # finally, create HuggingFace model and load state dict __lowerCAmelCase = DetrForSegmentation(snake_case_ ) if is_panoptic else DetrForObjectDetection(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() # verify our conversion on an image __lowerCAmelCase = """coco_panoptic""" if is_panoptic else """coco_detection""" __lowerCAmelCase = DetrImageProcessor(format=snake_case_ ) __lowerCAmelCase = processor(images=prepare_img() , return_tensors="""pt""" ) __lowerCAmelCase = encoding["""pixel_values"""] __lowerCAmelCase = detr(snake_case_ ) __lowerCAmelCase = model(snake_case_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) processor.save_pretrained(snake_case_ ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(f"""nielsr/{model_name}""" ) processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": _A : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') _A : List[Any] = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
330
'''simple docstring''' import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A : str = logging.get_logger(__name__) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<pad>" , SCREAMING_SNAKE_CASE__ : Tuple=1_25 , SCREAMING_SNAKE_CASE__ : Dict=None , **SCREAMING_SNAKE_CASE__ : Dict , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __lowerCAmelCase = [f"""<extra_id_{i}>""" for i in range(SCREAMING_SNAKE_CASE__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __lowerCAmelCase = len(set(filter(lambda SCREAMING_SNAKE_CASE__ : bool("""extra_id""" in str(SCREAMING_SNAKE_CASE__ ) ) , SCREAMING_SNAKE_CASE__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" """ provided to ByT5Tokenizer. In this case the additional_special_tokens must include the""" """ extra_ids tokens""" ) __lowerCAmelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else pad_token __lowerCAmelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else eos_token __lowerCAmelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else unk_token super().__init__( eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , extra_ids=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCAmelCase = extra_ids __lowerCAmelCase = 2**8 # utf is 8 bits # define special tokens dict __lowerCAmelCase = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __lowerCAmelCase = len(self.special_tokens_encoder ) __lowerCAmelCase = len(SCREAMING_SNAKE_CASE__ ) for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = self.vocab_size + i - n __lowerCAmelCase = {v: k for k, v in self.special_tokens_encoder.items()} @property def a ( self : str ) -> Tuple: return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def a ( self : Any , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def a ( self : str , SCREAMING_SNAKE_CASE__ : List[int] ) -> List[int]: if len(SCREAMING_SNAKE_CASE__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = self._add_eos_if_not_present(SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return token_ids_a else: __lowerCAmelCase = self._add_eos_if_not_present(SCREAMING_SNAKE_CASE__ ) return token_ids_a + token_ids_a def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: __lowerCAmelCase = [chr(SCREAMING_SNAKE_CASE__ ) for i in text.encode("""utf-8""" )] return tokens def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Any ) -> Tuple: if token in self.special_tokens_encoder: __lowerCAmelCase = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __lowerCAmelCase = self.added_tokens_encoder[token] elif len(SCREAMING_SNAKE_CASE__ ) != 1: __lowerCAmelCase = self.unk_token_id else: __lowerCAmelCase = ord(SCREAMING_SNAKE_CASE__ ) + self._num_special_tokens return token_id def a ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: if index in self.special_tokens_decoder: __lowerCAmelCase = self.special_tokens_decoder[index] else: __lowerCAmelCase = chr(index - self._num_special_tokens ) return token def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: __lowerCAmelCase = B"""""" for token in tokens: if token in self.special_tokens_decoder: __lowerCAmelCase = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.added_tokens_decoder: __lowerCAmelCase = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.special_tokens_encoder: __lowerCAmelCase = token.encode("""utf-8""" ) elif token in self.added_tokens_encoder: __lowerCAmelCase = token.encode("""utf-8""" ) else: __lowerCAmelCase = bytes([ord(SCREAMING_SNAKE_CASE__ )] ) bstring += tok_string __lowerCAmelCase = bstring.decode("""utf-8""" , errors="""ignore""" ) return string def a ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: return ()
330
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) class lowercase__( UpperCAmelCase ): """simple docstring""" a :List[str] = 'encoder-decoder' a :Any = True def __init__( self : List[Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]: super().__init__(**SCREAMING_SNAKE_CASE_ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowercase_ = kwargs.pop('''encoder''' ) lowercase_ = encoder_config.pop('''model_type''' ) lowercase_ = kwargs.pop('''decoder''' ) lowercase_ = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase_ = AutoConfig.for_model(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = AutoConfig.for_model(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = True @classmethod def _lowercase ( cls : Optional[int] , SCREAMING_SNAKE_CASE_ : PretrainedConfig , SCREAMING_SNAKE_CASE_ : PretrainedConfig , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> PretrainedConfig: logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) lowercase_ = True lowercase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple ) -> List[Any]: lowercase_ = copy.deepcopy(self.__dict__ ) lowercase_ = self.encoder.to_dict() lowercase_ = self.decoder.to_dict() lowercase_ = self.__class__.model_type return output
97
from __future__ import annotations from math import pow, sqrt def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(UpperCamelCase_ ,2 ) - pow(UpperCamelCase_ ,2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(UpperCamelCase_ ,2 ) - pow(UpperCamelCase_ ,2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(UpperCamelCase_ ,2 ) + pow(UpperCamelCase_ ,2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
550
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging a : str = logging.get_logger(__name__) a : List[str] = {"vocab_file": "spiece.model"} a : Tuple = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class a ( _UpperCAmelCase ): def __init__( self : Optional[int] , lowercase_ : str , lowercase_ : Union[str, Any]=False , lowercase_ : Optional[int]=True , lowercase_ : Any=False , lowercase_ : Optional[int]="<s>" , lowercase_ : int="</s>" , lowercase_ : Dict="<unk>" , lowercase_ : Tuple="<sep>" , lowercase_ : Union[str, Any]="<pad>" , lowercase_ : str="<cls>" , lowercase_ : Union[str, Any]="<mask>" , lowercase_ : List[Any]=["<eop>", "<eod>"] , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : int , ): snake_case_ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) snake_case_ = 3 snake_case_ = do_lower_case snake_case_ = remove_space snake_case_ = keep_accents snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase_ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) snake_case_ = jieba snake_case_ = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def A_ ( self : Dict ): return len(self.sp_model ) def A_ ( self : str ): snake_case_ = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : Any , lowercase_ : Dict ): snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A_ ( self : Dict , lowercase_ : Dict ): if self.remove_space: snake_case_ = ''' '''.join(inputs.strip().split() ) else: snake_case_ = inputs snake_case_ = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: snake_case_ = unicodedata.normalize('''NFKD''' , lowerCamelCase_ ) snake_case_ = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_ )] ) if self.do_lower_case: snake_case_ = outputs.lower() return outputs def A_ ( self : Tuple , lowercase_ : str ): snake_case_ = self.preprocess_text(lowerCamelCase_ ) snake_case_ = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) snake_case_ = [] for piece in pieces: if len(lowerCamelCase_ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case_ = cur_pieces[1:] else: snake_case_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase_ ) else: new_pieces.append(lowerCamelCase_ ) return new_pieces def A_ ( self : Optional[int] , lowercase_ : Optional[Any] ): return self.sp_model.PieceToId(lowerCamelCase_ ) def A_ ( self : Tuple , lowercase_ : str ): return self.sp_model.IdToPiece(lowerCamelCase_ ) def A_ ( self : Any , lowercase_ : Union[str, Any] ): snake_case_ = ''''''.join(lowerCamelCase_ ).replace(lowerCamelCase_ , ''' ''' ).strip() return out_string def A_ ( self : List[str] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A_ ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is not None: return ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] return ([0] * len(lowerCamelCase_ )) + [1, 1] def A_ ( self : Union[str, Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): snake_case_ = [self.sep_token_id] snake_case_ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def A_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[str] = None ): if not os.path.isdir(lowerCamelCase_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return snake_case_ = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,) def A_ ( self : Optional[int] , *lowercase_ : str , **lowercase_ : Dict ): snake_case_ = super()._decode(*lowerCamelCase_ , **lowerCamelCase_ ) snake_case_ = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
718
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated a : int = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ a : str = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' snake_case_ = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ), dtype=__UpperCAmelCase )[0] @deprecated(__UpperCAmelCase, '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' print('''Extracting''', f.name ) with gzip.GzipFile(fileobj=__UpperCAmelCase ) as bytestream: snake_case_ = _readaa(__UpperCAmelCase ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) snake_case_ = _readaa(__UpperCAmelCase ) snake_case_ = _readaa(__UpperCAmelCase ) snake_case_ = _readaa(__UpperCAmelCase ) snake_case_ = bytestream.read(rows * cols * num_images ) snake_case_ = numpy.frombuffer(__UpperCAmelCase, dtype=numpy.uinta ) snake_case_ = data.reshape(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, 1 ) return data @deprecated(__UpperCAmelCase, '''Please use tf.one_hot on tensors.''' ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> List[str]: '''simple docstring''' snake_case_ = labels_dense.shape[0] snake_case_ = numpy.arange(__UpperCAmelCase ) * num_classes snake_case_ = numpy.zeros((num_labels, num_classes) ) snake_case_ = 1 return labels_one_hot @deprecated(__UpperCAmelCase, '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase=False, __UpperCAmelCase=10 ) -> Dict: '''simple docstring''' print('''Extracting''', f.name ) with gzip.GzipFile(fileobj=__UpperCAmelCase ) as bytestream: snake_case_ = _readaa(__UpperCAmelCase ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) snake_case_ = _readaa(__UpperCAmelCase ) snake_case_ = bytestream.read(__UpperCAmelCase ) snake_case_ = numpy.frombuffer(__UpperCAmelCase, dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__UpperCAmelCase, __UpperCAmelCase ) return labels class a : @deprecated( lowercase_ , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : Tuple=False , lowercase_ : Tuple=False , lowercase_ : Optional[Any]=dtypes.floataa , lowercase_ : Any=True , lowercase_ : Optional[int]=None , ): snake_case_ ,snake_case_ = random_seed.get_seed(lowercase_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) snake_case_ = dtypes.as_dtype(lowercase_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: snake_case_ = 1_0000 snake_case_ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F"images.shape: {images.shape} labels.shape: {labels.shape}" snake_case_ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 snake_case_ = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. snake_case_ = images.astype(numpy.floataa ) snake_case_ = numpy.multiply(lowercase_ , 1.0 / 255.0 ) snake_case_ = images snake_case_ = labels snake_case_ = 0 snake_case_ = 0 @property def A_ ( self : int ): return self._images @property def A_ ( self : Tuple ): return self._labels @property def A_ ( self : str ): return self._num_examples @property def A_ ( self : List[str] ): return self._epochs_completed def A_ ( self : str , lowercase_ : List[str] , lowercase_ : Optional[int]=False , lowercase_ : Dict=True ): if fake_data: snake_case_ = [1] * 784 snake_case_ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(lowercase_ )], [fake_label for _ in range(lowercase_ )], ) snake_case_ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: snake_case_ = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase_ ) snake_case_ = self.images[perma] snake_case_ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch snake_case_ = self._num_examples - start snake_case_ = self._images[start : self._num_examples] snake_case_ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: snake_case_ = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase_ ) snake_case_ = self.images[perm] snake_case_ = self.labels[perm] # Start next epoch snake_case_ = 0 snake_case_ = batch_size - rest_num_examples snake_case_ = self._index_in_epoch snake_case_ = self._images[start:end] snake_case_ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size snake_case_ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__UpperCAmelCase, '''Please write your own downloading logic.''' ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Any: '''simple docstring''' if not gfile.Exists(__UpperCAmelCase ): gfile.MakeDirs(__UpperCAmelCase ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) if not gfile.Exists(__UpperCAmelCase ): urllib.request.urlretrieve(__UpperCAmelCase, __UpperCAmelCase ) # noqa: S310 with gfile.GFile(__UpperCAmelCase ) as f: snake_case_ = f.size() print('''Successfully downloaded''', __UpperCAmelCase, __UpperCAmelCase, '''bytes.''' ) return filepath @deprecated( __UpperCAmelCase, '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase=False, __UpperCAmelCase=False, __UpperCAmelCase=dtypes.floataa, __UpperCAmelCase=True, __UpperCAmelCase=5000, __UpperCAmelCase=None, __UpperCAmelCase=DEFAULT_SOURCE_URL, ) -> Tuple: '''simple docstring''' if fake_data: def fake(): return _DataSet( [], [], fake_data=__UpperCAmelCase, one_hot=__UpperCAmelCase, dtype=__UpperCAmelCase, seed=__UpperCAmelCase ) snake_case_ = fake() snake_case_ = fake() snake_case_ = fake() return _Datasets(train=__UpperCAmelCase, validation=__UpperCAmelCase, test=__UpperCAmelCase ) if not source_url: # empty string check snake_case_ = DEFAULT_SOURCE_URL snake_case_ = '''train-images-idx3-ubyte.gz''' snake_case_ = '''train-labels-idx1-ubyte.gz''' snake_case_ = '''t10k-images-idx3-ubyte.gz''' snake_case_ = '''t10k-labels-idx1-ubyte.gz''' snake_case_ = _maybe_download( __UpperCAmelCase, __UpperCAmelCase, source_url + train_images_file ) with gfile.Open(__UpperCAmelCase, '''rb''' ) as f: snake_case_ = _extract_images(__UpperCAmelCase ) snake_case_ = _maybe_download( __UpperCAmelCase, __UpperCAmelCase, source_url + train_labels_file ) with gfile.Open(__UpperCAmelCase, '''rb''' ) as f: snake_case_ = _extract_labels(__UpperCAmelCase, one_hot=__UpperCAmelCase ) snake_case_ = _maybe_download( __UpperCAmelCase, __UpperCAmelCase, source_url + test_images_file ) with gfile.Open(__UpperCAmelCase, '''rb''' ) as f: snake_case_ = _extract_images(__UpperCAmelCase ) snake_case_ = _maybe_download( __UpperCAmelCase, __UpperCAmelCase, source_url + test_labels_file ) with gfile.Open(__UpperCAmelCase, '''rb''' ) as f: snake_case_ = _extract_labels(__UpperCAmelCase, one_hot=__UpperCAmelCase ) if not 0 <= validation_size <= len(__UpperCAmelCase ): snake_case_ = ( '''Validation size should be between 0 and ''' F"{len(__UpperCAmelCase )}. Received: {validation_size}." ) raise ValueError(__UpperCAmelCase ) snake_case_ = train_images[:validation_size] snake_case_ = train_labels[:validation_size] snake_case_ = train_images[validation_size:] snake_case_ = train_labels[validation_size:] snake_case_ = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} snake_case_ = _DataSet(__UpperCAmelCase, __UpperCAmelCase, **__UpperCAmelCase ) snake_case_ = _DataSet(__UpperCAmelCase, __UpperCAmelCase, **__UpperCAmelCase ) snake_case_ = _DataSet(__UpperCAmelCase, __UpperCAmelCase, **__UpperCAmelCase ) return _Datasets(train=__UpperCAmelCase, validation=__UpperCAmelCase, test=__UpperCAmelCase )
593
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case : Union[str, Any] = 16 _snake_case : Optional[Any] = 32 def a_ ( lowerCAmelCase_ : Accelerator, lowerCAmelCase_ : int = 16 ): __lowerCAmelCase = AutoTokenizer.from_pretrained('bert-base-cased' ) __lowerCAmelCase = load_dataset('glue', 'mrpc' ) def tokenize_function(lowerCAmelCase_ : Any ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowerCAmelCase_ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCAmelCase = 16 elif accelerator.mixed_precision != "no": __lowerCAmelCase = 8 else: __lowerCAmelCase = None return tokenizer.pad( lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) __lowerCAmelCase = DataLoader( tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case : Union[str, Any] = mocked_dataloaders # noqa: F811 def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Dict ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1": __lowerCAmelCase = 2 # Initialize accelerator __lowerCAmelCase = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config['lr'] __lowerCAmelCase = int(config['num_epochs'] ) __lowerCAmelCase = int(config['seed'] ) __lowerCAmelCase = int(config['batch_size'] ) __lowerCAmelCase = evaluate.load('glue', 'mrpc' ) # If the batch size is too big we use gradient accumulation __lowerCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowerCAmelCase = batch_size // MAX_GPU_BATCH_SIZE __lowerCAmelCase = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase = get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase = AdamW(params=model.parameters(), lr=lowerCAmelCase_ ) # Instantiate scheduler __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs.loss __lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __lowerCAmelCase = 0 for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs.logits.argmax(dim=-1 ) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowerCAmelCase_ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __lowerCAmelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCAmelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowerCAmelCase_, references=lowerCAmelCase_, ) __lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""", lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase_, lowerCAmelCase_ ) if __name__ == "__main__": main()
53
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __magic_name__ : def __init__( self , __magic_name__ , __magic_name__=1_3 , __magic_name__=1_0 , __magic_name__=3 , __magic_name__=2 , __magic_name__=2 , __magic_name__=2 , __magic_name__=True , __magic_name__=True , __magic_name__=3_2 , __magic_name__=5 , __magic_name__=4 , __magic_name__=3_7 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=1_0 , __magic_name__=0.02 , __magic_name__=0.9 , __magic_name__=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = patch_size _lowerCAmelCase = tubelet_size _lowerCAmelCase = num_frames _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = mask_ratio _lowerCAmelCase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _lowerCAmelCase = (image_size // patch_size) ** 2 _lowerCAmelCase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _lowerCAmelCase = int(mask_ratio * self.seq_length ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = VideoMAEModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = VideoMAEForPreTraining(__magic_name__ ) model.to(__magic_name__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _lowerCAmelCase = torch.ones((self.num_masks,) ) _lowerCAmelCase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _lowerCAmelCase = mask.expand(self.batch_size , -1 ).bool() _lowerCAmelCase = model(__magic_name__ , __magic_name__ ) # model only returns predictions for masked patches _lowerCAmelCase = mask.sum().item() _lowerCAmelCase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): UpperCamelCase : List[str] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) UpperCamelCase : Optional[int] = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) UpperCamelCase : Dict = False UpperCamelCase : int = False UpperCamelCase : Union[str, Any] = False UpperCamelCase : List[str] = False def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = VideoMAEModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=3_7 ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__=False ): """simple docstring""" _lowerCAmelCase = copy.deepcopy(__magic_name__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _lowerCAmelCase = torch.ones((self.model_tester.num_masks,) ) _lowerCAmelCase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _lowerCAmelCase = mask.expand(self.model_tester.batch_size , -1 ).bool() _lowerCAmelCase = bool_masked_pos.to(__magic_name__ ) if return_labels: if model_class in [ *get_values(__magic_name__ ), ]: _lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def _lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__magic_name__ ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__magic_name__ ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = VideoMAEModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" if not self.has_attentions: pass else: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True for model_class in self.all_model_classes: _lowerCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks _lowerCAmelCase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase = True _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _lowerCAmelCase = len(__magic_name__ ) # Check attention is always last and order is fine _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _lowerCamelCase ( self ): """simple docstring""" def check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ): _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) _lowerCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks _lowerCAmelCase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _lowerCamelCase ( self ): """simple docstring""" pass def A__ ( ): """simple docstring""" _lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video', filename='eating_spaghetti.npy', repo_type='dataset' ) _lowerCAmelCase = np.load(__lowerCamelCase ) return list(__lowerCamelCase ) @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( __magic_name__ ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_video() _lowerCAmelCase = image_processor(__magic_name__ , return_tensors='pt' ).to(__magic_name__ ) # forward pass with torch.no_grad(): _lowerCAmelCase = model(**__magic_name__ ) # verify the logits _lowerCAmelCase = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) _lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(__magic_name__ ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_video() _lowerCAmelCase = image_processor(__magic_name__ , return_tensors='pt' ).to(__magic_name__ ) # add boolean mask, indicating which patches to mask _lowerCAmelCase = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) _lowerCAmelCase = torch.load(__magic_name__ ) # forward pass with torch.no_grad(): _lowerCAmelCase = model(**__magic_name__ ) # verify the logits _lowerCAmelCase = torch.Size([1, 1_4_0_8, 1_5_3_6] ) _lowerCAmelCase = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=__magic_name__ ) self.assertEqual(outputs.logits.shape , __magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __magic_name__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _lowerCAmelCase = torch.tensor([0.51_42] , device=__magic_name__ ) self.assertTrue(torch.allclose(outputs.loss , __magic_name__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _lowerCAmelCase = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=__magic_name__ ).to( __magic_name__ ) with torch.no_grad(): _lowerCAmelCase = model(**__magic_name__ ) _lowerCAmelCase = torch.tensor(torch.tensor([0.64_69] ) , device=__magic_name__ ) self.assertTrue(torch.allclose(outputs.loss , __magic_name__ , atol=1e-4 ) )
589
0
'''simple docstring''' def UpperCAmelCase_ ( lowercase__ ): '''simple docstring''' a_ =0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def UpperCAmelCase_ ( lowercase__ = 1_0_0 ): '''simple docstring''' a_ =1 a_ =2 for i in range(2 , max_n + 1 ): a_ =pre_numerator a_ =2 * i // 3 if i % 3 == 0 else 1 a_ =cur_numerator a_ =e_cont * pre_numerator + temp return sum_digits(__UpperCAmelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
713
'''simple docstring''' import os from math import logaa def UpperCAmelCase_ ( lowercase__ = "base_exp.txt" ): '''simple docstring''' a_ =0 a_ =0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowercase__ ) , lowercase__ ) ) ): a_ , a_ =list(map(lowercase__ , line.split("," ) ) ) if x * logaa(lowercase__ ) > largest: a_ =x * logaa(lowercase__ ) a_ =i + 1 return result if __name__ == "__main__": print(solution())
41
0
from __future__ import annotations import math a__ : Tuple = '2020.9.26' a__ : Optional[int] = 'xcodz-dot, cclaus, dhruvmanila' def UpperCAmelCase_ ( _UpperCAmelCase :float , _UpperCAmelCase :float , _UpperCAmelCase :float , _UpperCAmelCase :float , _UpperCAmelCase :float ) -> tuple[float, float]: '''simple docstring''' if not all(isinstance(_UpperCAmelCase , (float, int) ) for val in locals().values() ): A_ = f'Input values must either be float or int: {list(locals().values() )}' raise TypeError(_UpperCAmelCase ) A_ = ((x * distance) / (z + distance)) * scale A_ = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def UpperCAmelCase_ ( _UpperCAmelCase :float , _UpperCAmelCase :float , _UpperCAmelCase :float , _UpperCAmelCase :str , _UpperCAmelCase :float ) -> tuple[float, float, float]: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('''Axis must be a str''' ) A_ = locals() del input_variables["axis"] if not all(isinstance(_UpperCAmelCase , (float, int) ) for val in input_variables.values() ): A_ = ( '''Input values except axis must either be float or int: ''' f'{list(input_variables.values() )}' ) raise TypeError(_UpperCAmelCase ) A_ = (angle % 360) / 450 * 180 / math.pi if axis == "z": A_ = x * math.cos(_UpperCAmelCase ) - y * math.sin(_UpperCAmelCase ) A_ = y * math.cos(_UpperCAmelCase ) + x * math.sin(_UpperCAmelCase ) A_ = z elif axis == "x": A_ = y * math.cos(_UpperCAmelCase ) - z * math.sin(_UpperCAmelCase ) A_ = z * math.cos(_UpperCAmelCase ) + y * math.sin(_UpperCAmelCase ) A_ = x elif axis == "y": A_ = x * math.cos(_UpperCAmelCase ) - z * math.sin(_UpperCAmelCase ) A_ = z * math.cos(_UpperCAmelCase ) + x * math.sin(_UpperCAmelCase ) A_ = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f'''{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }''') print(f'''{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }''')
188
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : str = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
188
1
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def A_ ( snake_case , snake_case , snake_case , snake_case ): if isinstance(snake_case , snake_case ): SCREAMING_SNAKE_CASE:List[Any] = np.full((len(snake_case ), sequence_length, 2) , snake_case ) else: SCREAMING_SNAKE_CASE:str = np.full((len(snake_case ), sequence_length) , snake_case ) for i, tensor in enumerate(snake_case ): if padding_side == "right": if isinstance(snake_case , snake_case ): SCREAMING_SNAKE_CASE:Any = tensor[:sequence_length] else: SCREAMING_SNAKE_CASE:str = tensor[:sequence_length] else: if isinstance(snake_case , snake_case ): SCREAMING_SNAKE_CASE:Any = tensor[:sequence_length] else: SCREAMING_SNAKE_CASE:str = tensor[:sequence_length] return out_tensor.tolist() def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Union[str, Any] = ord(snake_case ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True SCREAMING_SNAKE_CASE:Tuple = unicodedata.category(snake_case ) if cat.startswith("P" ): return True return False @dataclass class _snake_case ( _a ): _A : PreTrainedTokenizerBase _A : Union[bool, str, PaddingStrategy] = True _A : Optional[int] = None _A : Optional[int] = None _A : int = -1_0_0 _A : str = "pt" def __UpperCamelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[int] ): import torch SCREAMING_SNAKE_CASE:List[str] = "label" if "label" in features[0].keys() else "labels" SCREAMING_SNAKE_CASE:List[str] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None SCREAMING_SNAKE_CASE:Tuple = self.tokenizer.pad( SCREAMING_SNAKE_CASE__ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="pt" if labels is None else None ,) if labels is None: return batch SCREAMING_SNAKE_CASE:str = torch.tensor(batch["entity_ids"] ).shape[1] SCREAMING_SNAKE_CASE:Optional[Any] = self.tokenizer.padding_side if padding_side == "right": SCREAMING_SNAKE_CASE:Union[str, Any] = [ list(SCREAMING_SNAKE_CASE__ ) + [self.label_pad_token_id] * (sequence_length - len(SCREAMING_SNAKE_CASE__ )) for label in labels ] else: SCREAMING_SNAKE_CASE:Dict = [ [self.label_pad_token_id] * (sequence_length - len(SCREAMING_SNAKE_CASE__ )) + list(SCREAMING_SNAKE_CASE__ ) for label in labels ] SCREAMING_SNAKE_CASE:str = [feature["ner_tags"] for feature in features] SCREAMING_SNAKE_CASE:Tuple = padding_tensor(SCREAMING_SNAKE_CASE__ ,-1 ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:str = [feature["original_entity_spans"] for feature in features] SCREAMING_SNAKE_CASE:Union[str, Any] = padding_tensor(SCREAMING_SNAKE_CASE__ ,(-1, -1) ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[Any] = {k: torch.tensor(SCREAMING_SNAKE_CASE__ ,dtype=torch.intaa ) for k, v in batch.items()} return batch
717
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed A_ = "true" def A_ ( snake_case , snake_case=82 , snake_case=16 ): set_seed(42 ) SCREAMING_SNAKE_CASE:Optional[int] = RegressionModel() SCREAMING_SNAKE_CASE:int = deepcopy(snake_case ) SCREAMING_SNAKE_CASE:List[str] = RegressionDataset(length=snake_case ) SCREAMING_SNAKE_CASE:int = DataLoader(snake_case , batch_size=snake_case ) model.to(accelerator.device ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Dict = accelerator.prepare(snake_case , snake_case ) return model, ddp_model, dataloader def A_ ( snake_case , snake_case=False ): SCREAMING_SNAKE_CASE:List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) SCREAMING_SNAKE_CASE:Dict = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(snake_case ): SCREAMING_SNAKE_CASE:Optional[int] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=snake_case , max_length=snake_case ) return outputs with accelerator.main_process_first(): SCREAMING_SNAKE_CASE:int = dataset.map( snake_case , batched=snake_case , remove_columns=["idx", "sentence1", "sentence2"] , ) SCREAMING_SNAKE_CASE:Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(snake_case ): if use_longest: return tokenizer.pad(snake_case , padding="longest" , return_tensors="pt" ) return tokenizer.pad(snake_case , padding="max_length" , max_length=128 , return_tensors="pt" ) return DataLoader(snake_case , shuffle=snake_case , collate_fn=snake_case , batch_size=16 ) def A_ ( snake_case , snake_case ): SCREAMING_SNAKE_CASE:Optional[int] = Accelerator(dispatch_batches=snake_case , split_batches=snake_case ) SCREAMING_SNAKE_CASE:List[Any] = get_dataloader(snake_case , not dispatch_batches ) SCREAMING_SNAKE_CASE:Tuple = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[str] = accelerator.prepare(snake_case , snake_case ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def A_ ( snake_case , snake_case , snake_case ): SCREAMING_SNAKE_CASE:str = [] for batch in dataloader: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Tuple = batch.values() with torch.no_grad(): SCREAMING_SNAKE_CASE:int = model(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[str] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Union[str, Any] = [], [] for logit, targ in logits_and_targets: logits.append(snake_case ) targs.append(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Optional[Any] = torch.cat(snake_case ), torch.cat(snake_case ) return logits, targs def A_ ( snake_case , snake_case=82 , snake_case=False , snake_case=False , snake_case=16 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:int = get_basic_setup(snake_case , snake_case , snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Optional[Any] = generate_predictions(snake_case , snake_case , snake_case ) assert ( len(snake_case ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(snake_case )}''' def A_ ( snake_case = False , snake_case = False ): SCREAMING_SNAKE_CASE:List[Any] = evaluate.load("glue" , "mrpc" ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Dict = get_mrpc_setup(snake_case , snake_case ) # First do baseline SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Tuple = setup["no"] model.to(snake_case ) model.eval() for batch in dataloader: batch.to(snake_case ) with torch.inference_mode(): SCREAMING_SNAKE_CASE:Dict = model(**snake_case ) SCREAMING_SNAKE_CASE:Any = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=snake_case , references=batch["labels"] ) SCREAMING_SNAKE_CASE:Union[str, Any] = metric.compute() # Then do distributed SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Tuple = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): SCREAMING_SNAKE_CASE:Any = model(**snake_case ) SCREAMING_SNAKE_CASE:Optional[Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE:List[str] = batch["labels"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:int = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=snake_case , references=snake_case ) SCREAMING_SNAKE_CASE:Any = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def A_ ( ): SCREAMING_SNAKE_CASE:Optional[int] = Accelerator(split_batches=snake_case , dispatch_batches=snake_case ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(snake_case , snake_case ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: SCREAMING_SNAKE_CASE:Optional[Any] = Accelerator(split_batches=snake_case , dispatch_batches=snake_case ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(snake_case , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) SCREAMING_SNAKE_CASE:List[str] = Accelerator() test_torch_metrics(snake_case , 512 ) accelerator.state._reset_state() def A_ ( snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
465
0
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str=2 , _UpperCamelCase : Dict=8 , _UpperCamelCase : str=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Any=True , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : Any=1_6 , _UpperCamelCase : List[str]=5 , _UpperCamelCase : Optional[Any]=2 , _UpperCamelCase : str=3_6 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : str=0.0 , _UpperCamelCase : Any=5_1_2 , _UpperCamelCase : int=1_6 , _UpperCamelCase : List[Any]=2 , _UpperCamelCase : Tuple=0.02 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=4 , _UpperCamelCase : Dict=None , ) ->Optional[Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def snake_case__( self : List[Any] ) ->List[Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : Optional[int] ) ->Optional[Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def snake_case__( self : List[Any] ) ->str: snake_case_ = self.get_config() snake_case_ = 3_0_0 return config def snake_case__( self : List[str] ) ->Optional[Any]: ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = self.prepare_config_and_inputs() snake_case_ = True snake_case_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case__( self : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : int , _UpperCamelCase : Dict ) ->Dict: snake_case_ = MraModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase , token_type_ids=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Any , ) ->Optional[Any]: snake_case_ = True snake_case_ = MraModel(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , ) snake_case_ = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , ) snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] ) ->str: snake_case_ = MraForMaskedLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] ) ->Any: snake_case_ = MraForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : List[str] ) ->Optional[Any]: snake_case_ = self.num_labels snake_case_ = MraForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) ->int: snake_case_ = self.num_labels snake_case_ = MraForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any ) ->Any: snake_case_ = self.num_choices snake_case_ = MraForMultipleChoice(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__( self : str ) ->List[str]: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : List[str] = () def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = MraModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : Dict ) ->Optional[int]: self.config_tester.run_common_tests() def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : int ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase ) def snake_case__( self : List[str] ) ->Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCamelCase ) def snake_case__( self : Any ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) def snake_case__( self : str ) ->List[str]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase ) def snake_case__( self : int ) ->Any: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : int ) ->str: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = MraModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def snake_case__( self : Union[str, Any] ) ->Tuple: return @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : List[Any] ) ->Optional[Any]: snake_case_ = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) snake_case_ = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(_UpperCamelCase )[0] snake_case_ = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : List[str] ) ->int: snake_case_ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) snake_case_ = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 5_0_2_6_5 snake_case_ = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) snake_case_ = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 5_0_2_6_5 snake_case_ = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) )
39
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __A : List[Any] = {'UserAgent': UserAgent().random} def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = script.contents[0] SCREAMING_SNAKE_CASE = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = f"https://www.instagram.com/{username}/" SCREAMING_SNAKE_CASE = self.get_json() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = requests.get(self.url , headers=__lowerCamelCase ).text SCREAMING_SNAKE_CASE = BeautifulSoup(__lowerCamelCase , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Union[str, Any] ): return f"{self.__class__.__name__}('{self.username}')" def __str__( self : str ): return f"{self.fullname} ({self.username}) is {self.biography}" @property def _snake_case ( self : Optional[int] ): return self.user_data["username"] @property def _snake_case ( self : List[Any] ): return self.user_data["full_name"] @property def _snake_case ( self : List[str] ): return self.user_data["biography"] @property def _snake_case ( self : Tuple ): return self.user_data["business_email"] @property def _snake_case ( self : Optional[Any] ): return self.user_data["external_url"] @property def _snake_case ( self : int ): return self.user_data["edge_followed_by"]["count"] @property def _snake_case ( self : List[str] ): return self.user_data["edge_follow"]["count"] @property def _snake_case ( self : List[Any] ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _snake_case ( self : Any ): return self.user_data["profile_pic_url_hd"] @property def _snake_case ( self : Optional[int] ): return self.user_data["is_verified"] @property def _snake_case ( self : Dict ): return self.user_data["is_private"] def __a ( A__ : str = "github" ): import os if os.environ.get("CI" ): return # test failing on GitHub Actions SCREAMING_SNAKE_CASE = InstagramUser(A__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , A__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __A : Dict = InstagramUser('github') print(instagram_user) print(f'{instagram_user.number_of_posts = }') print(f'{instagram_user.number_of_followers = }') print(f'{instagram_user.number_of_followings = }') print(f'{instagram_user.email = }') print(f'{instagram_user.website = }') print(f'{instagram_user.profile_picture_url = }') print(f'{instagram_user.is_verified = }') print(f'{instagram_user.is_private = }')
16
0
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def _UpperCamelCase ( UpperCamelCase__ ): return input_array.reshape((input_array.size, 1) ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : int = np.nan for i in range(UpperCamelCase__ ): UpperCAmelCase__ : Optional[Any] = features[:, labels == i] UpperCAmelCase__ : int = data.mean(1 ) # Centralize the data of class i UpperCAmelCase__ : List[str] = data - column_reshape(UpperCamelCase__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCamelCase__ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCAmelCase__ : Tuple = np.dot(UpperCamelCase__ , centered_data.T ) return covariance_sum / features.shape[1] def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : int = features.mean(1 ) UpperCAmelCase__ : Optional[int] = np.nan for i in range(UpperCamelCase__ ): UpperCAmelCase__ : Optional[int] = features[:, labels == i] UpperCAmelCase__ : Any = data.shape[1] UpperCAmelCase__ : List[str] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCamelCase__ ) - column_reshape(UpperCamelCase__ ) , (column_reshape(UpperCamelCase__ ) - column_reshape(UpperCamelCase__ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCAmelCase__ : int = device_data * np.dot( column_reshape(UpperCamelCase__ ) - column_reshape(UpperCamelCase__ ) , (column_reshape(UpperCamelCase__ ) - column_reshape(UpperCamelCase__ )).T , ) return covariance_sum / features.shape[1] def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): # Check if the features have been loaded if features.any(): UpperCAmelCase__ : Optional[Any] = features.mean(1 ) # Center the dataset UpperCAmelCase__ : Dict = features - np.reshape(UpperCamelCase__ , (data_mean.size, 1) ) UpperCAmelCase__ : Tuple = np.dot(UpperCamelCase__ , centered_data.T ) / features.shape[1] UpperCAmelCase__ , UpperCAmelCase__ : List[str] = np.linalg.eigh(UpperCamelCase__ ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCAmelCase__ : Optional[int] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCAmelCase__ : Union[str, Any] = np.dot(filtered_eigenvectors.T , UpperCamelCase__ ) logging.info("""Principal Component Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=UpperCamelCase__ ) logging.error("""Dataset empty""" ) raise AssertionError def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): assert classes > dimensions # Check if features have been already loaded if features.any: UpperCAmelCase__ , UpperCAmelCase__ : Any = eigh( covariance_between_classes(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , covariance_within_classes(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , ) UpperCAmelCase__ : Optional[Any] = eigenvectors[:, ::-1][:, :dimensions] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = np.linalg.svd(UpperCamelCase__ ) UpperCAmelCase__ : str = svd_matrix[:, 0:dimensions] UpperCAmelCase__ : List[str] = np.dot(filtered_svd_matrix.T , UpperCamelCase__ ) logging.info("""Linear Discriminant Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=UpperCamelCase__ ) logging.error("""Dataset empty""" ) raise AssertionError def _UpperCamelCase ( ): # Create dummy dataset with 2 classes and 3 features UpperCAmelCase__ : Union[str, Any] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCAmelCase__ : str = np.array([0, 0, 0, 1, 1] ) UpperCAmelCase__ : int = 2 UpperCAmelCase__ : Optional[int] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCamelCase__ ) as error_info: UpperCAmelCase__ : Optional[Any] = linear_discriminant_analysis( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if isinstance(UpperCamelCase__ , np.ndarray ): raise AssertionError( """Did not raise AssertionError for dimensions > classes""" ) assert error_info.type is AssertionError def _UpperCamelCase ( ): UpperCAmelCase__ : List[str] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCAmelCase__ : Optional[Any] = 2 UpperCAmelCase__ : Optional[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCamelCase__ ) as error_info: UpperCAmelCase__ : Union[str, Any] = principal_component_analysis(UpperCamelCase__ , UpperCamelCase__ ) if not np.allclose(UpperCamelCase__ , UpperCamelCase__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
113
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if height >= 1: move_tower(height - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) move_disk(UpperCamelCase__ , UpperCamelCase__ ) move_tower(height - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): print("""moving disk from""" , UpperCamelCase__ , """to""" , UpperCamelCase__ ) def _UpperCamelCase ( ): UpperCAmelCase__ : List[str] = int(input("""Height of hanoi: """ ).strip() ) move_tower(UpperCamelCase__ , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
113
1
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration __A = """facebook/wmt19-en-de""" __A = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model __A = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) __A = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test __A = tokenizer(["""Making tiny model"""], return_tensors="""pt""") __A = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save __A = """tiny-wmt19-en-de""" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
93
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __A = logging.getLogger(__name__) __A = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __A = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :Optional[str] = field( default=a , metadata={ """help""": ( """The model checkpoint for weights initialization. Leave None if you want to train a model from""" """ scratch.""" ) } , ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(a )} , ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """The input training data file (a text file)."""} ) __magic_name__ :Optional[str] = field( default=a , metadata={ """help""": ( """The input training data files (multiple files in glob format). """ """Very often splitting large files to smaller files can prevent tokenizer going out of memory""" ) } , ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} , ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} , ) __magic_name__ :bool = field( default=a , metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} , ) __magic_name__ :bool = field( default=a , metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} ) __magic_name__ :bool = field(default=a , metadata={"""help""": """Whether ot not to use whole word mask."""} ) __magic_name__ :float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) __magic_name__ :float = field( default=1 / 6 , metadata={ """help""": ( """Ratio of length of a span of masked tokens to surrounding context length for permutation language""" """ modeling.""" ) } , ) __magic_name__ :int = field( default=5 , metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} ) __magic_name__ :int = field( default=-1 , metadata={ """help""": ( """Optional input sequence length after tokenization.""" """The training dataset will be truncated in block of this size for training.""" """Default to the model max input length for single sentence inputs (take into account special tokens).""" ) } , ) __magic_name__ :bool = field( default=a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ) ->Optional[int]: """simple docstring""" def _dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask' ) return LineByLineWithRefDataset( tokenizer=_SCREAMING_SNAKE_CASE , file_path=_SCREAMING_SNAKE_CASE , block_size=args.block_size , ref_path=_SCREAMING_SNAKE_CASE , ) return LineByLineTextDataset(tokenizer=_SCREAMING_SNAKE_CASE , file_path=_SCREAMING_SNAKE_CASE , block_size=args.block_size ) else: return TextDataset( tokenizer=_SCREAMING_SNAKE_CASE , file_path=_SCREAMING_SNAKE_CASE , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_SCREAMING_SNAKE_CASE , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_SCREAMING_SNAKE_CASE ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __A () ->List[Any]: """simple docstring""" lowerCAmelCase__ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :int = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowerCAmelCase__ :Optional[Any] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCAmelCase__ :List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: lowerCAmelCase__ :List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.tokenizer_name: lowerCAmelCase__ :Union[str, Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCAmelCase__ :str = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name' ) if model_args.model_name_or_path: lowerCAmelCase__ :Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch' ) lowerCAmelCase__ :int = AutoModelWithLMHead.from_config(_SCREAMING_SNAKE_CASE ) model.resize_token_embeddings(len(_SCREAMING_SNAKE_CASE ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).' ) if data_args.block_size <= 0: lowerCAmelCase__ :Dict = tokenizer.max_len # Our input block size will be the max possible for the model else: lowerCAmelCase__ :Any = min(data_args.block_size , tokenizer.max_len ) # Get datasets lowerCAmelCase__ :List[str] = ( get_dataset(_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowerCAmelCase__ :Optional[int] = ( get_dataset(_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , evaluate=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowerCAmelCase__ :str = DataCollatorForPermutationLanguageModeling( tokenizer=_SCREAMING_SNAKE_CASE , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: lowerCAmelCase__ :Optional[Any] = DataCollatorForWholeWordMask( tokenizer=_SCREAMING_SNAKE_CASE , mlm_probability=data_args.mlm_probability ) else: lowerCAmelCase__ :str = DataCollatorForLanguageModeling( tokenizer=_SCREAMING_SNAKE_CASE , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCAmelCase__ :Tuple = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , prediction_loss_only=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: lowerCAmelCase__ :Tuple = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_SCREAMING_SNAKE_CASE ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase__ :Optional[Any] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCAmelCase__ :Any = trainer.evaluate() lowerCAmelCase__ :Optional[Any] = math.exp(eval_output['eval_loss'] ) lowerCAmelCase__ :Dict = {'perplexity': perplexity} lowerCAmelCase__ :List[Any] = os.path.join(training_args.output_dir , 'eval_results_lm.txt' ) if trainer.is_world_master(): with open(_SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , _SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) results.update(_SCREAMING_SNAKE_CASE ) return results def __A (_SCREAMING_SNAKE_CASE ) ->Optional[int]: """simple docstring""" main() if __name__ == "__main__": main()
93
1
from __future__ import annotations from cmath import sqrt def lowercase ( _a ,_a ,_a ) -> tuple[complex, complex]: if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) UpperCAmelCase_: Optional[Any] = b * b - 4 * a * c UpperCAmelCase_: str = (-b + sqrt(_a )) / (2 * a) UpperCAmelCase_: List[Any] = (-b - sqrt(_a )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def lowercase ( ) -> Tuple: UpperCAmelCase_: Union[str, Any] = quadratic_roots(a=5 ,b=6 ,c=1 ) print(f"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
704
from __future__ import annotations _lowerCAmelCase = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _lowerCAmelCase = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowercase ( _a ) -> list[float]: UpperCAmelCase_: Dict = [] UpperCAmelCase_: List[Any] = len(_a ) for i in range(_a ): UpperCAmelCase_: float = -1 for j in range(i + 1 ,_a ): if arr[i] < arr[j]: UpperCAmelCase_: List[str] = arr[j] break result.append(_a ) return result def lowercase ( _a ) -> list[float]: UpperCAmelCase_: List[Any] = [] for i, outer in enumerate(_a ): UpperCAmelCase_: float = -1 for inner in arr[i + 1 :]: if outer < inner: UpperCAmelCase_: Union[str, Any] = inner break result.append(_a ) return result def lowercase ( _a ) -> list[float]: UpperCAmelCase_: Union[str, Any] = len(_a ) UpperCAmelCase_: list[float] = [] UpperCAmelCase_: list[float] = [-1] * arr_size for index in reversed(range(_a ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: UpperCAmelCase_: Union[str, Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _lowerCAmelCase = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
306
0
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[int] = ['''pixel_values'''] def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : Tuple=PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ): '''simple docstring''' __a : Union[str, Any] = do_resize __a : Optional[Any] = do_rescale __a : Union[str, Any] = size_divisor __a : str = resample super().__init__(**SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[ChannelDimension] = None , **SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' __a , __a : List[str] = get_image_size(SCREAMING_SNAKE_CASE__ ) # Rounds the height and width down to the closest multiple of size_divisor __a : List[str] = height // size_divisor * size_divisor __a : List[Any] = width // size_divisor * size_divisor __a : Optional[Any] = resize(SCREAMING_SNAKE_CASE__ , (new_h, new_w) , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return image def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Optional[ChannelDimension] = None , **SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[TensorType, str]] = None , SCREAMING_SNAKE_CASE__ : ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ : str , ): '''simple docstring''' __a : Optional[int] = do_resize if do_resize is not None else self.do_resize __a : str = do_rescale if do_rescale is not None else self.do_rescale __a : Optional[Any] = size_divisor if size_divisor is not None else self.size_divisor __a : Optional[Any] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) __a : Union[str, Any] = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. __a : Optional[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for img in images] if do_resize: __a : Union[str, Any] = [self.resize(SCREAMING_SNAKE_CASE__ , size_divisor=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: __a : Tuple = [self.rescale(SCREAMING_SNAKE_CASE__ , scale=1 / 2_5_5 ) for image in images] __a : Tuple = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] __a : Dict = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
47
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = '''sew-d''' def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Dict=3_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : str=3_0_7_2 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE__ : List[str]=2_5_6 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : List[str]=("p2c", "c2p") , SCREAMING_SNAKE_CASE__ : str="layer_norm" , SCREAMING_SNAKE_CASE__ : Tuple="gelu_python" , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE__ : int=1e-7 , SCREAMING_SNAKE_CASE__ : Any=1e-5 , SCREAMING_SNAKE_CASE__ : Optional[int]="group" , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Optional[int]=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , SCREAMING_SNAKE_CASE__ : List[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__ : str=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=1_2_8 , SCREAMING_SNAKE_CASE__ : Tuple=1_6 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[Any]=0.05 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Optional[int]="mean" , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=2_5_6 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , **SCREAMING_SNAKE_CASE__ : Any , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) __a : Optional[int] = hidden_size __a : Optional[Any] = feat_extract_norm __a : List[str] = feat_extract_activation __a : Dict = list(SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = list(SCREAMING_SNAKE_CASE__ ) __a : List[str] = list(SCREAMING_SNAKE_CASE__ ) __a : int = conv_bias __a : Tuple = num_conv_pos_embeddings __a : List[str] = num_conv_pos_embedding_groups __a : Optional[Any] = len(self.conv_dim ) __a : Union[str, Any] = num_hidden_layers __a : Optional[Any] = intermediate_size __a : Union[str, Any] = squeeze_factor __a : List[Any] = max_position_embeddings __a : Tuple = position_buckets __a : Optional[int] = share_att_key __a : List[str] = relative_attention __a : Any = norm_rel_ebd __a : Any = list(SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = hidden_act __a : str = num_attention_heads __a : Union[str, Any] = hidden_dropout __a : Optional[int] = attention_dropout __a : List[str] = activation_dropout __a : int = feat_proj_dropout __a : int = final_dropout __a : Dict = layer_norm_eps __a : Tuple = feature_layer_norm_eps __a : str = initializer_range __a : Tuple = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __a : Tuple = apply_spec_augment __a : Optional[Any] = mask_time_prob __a : Any = mask_time_length __a : List[str] = mask_time_min_masks __a : List[str] = mask_feature_prob __a : Tuple = mask_feature_length __a : Any = mask_feature_min_masks # ctc loss __a : Optional[int] = ctc_loss_reduction __a : List[Any] = ctc_zero_infinity # sequence classification __a : Dict = use_weighted_layer_sum __a : Optional[Any] = classifier_proj_size @property def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
47
1
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class _a ( unittest.TestCase): """simple docstring""" def __init__( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict=7 , __lowerCamelCase: int=3 , __lowerCamelCase: Optional[int]=18 , __lowerCamelCase: str=30 , __lowerCamelCase: Tuple=400 , __lowerCamelCase: Any=True , __lowerCamelCase: List[str]=None , __lowerCamelCase: List[Any]=True , __lowerCamelCase: List[Any]=False , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=True , __lowerCamelCase: Dict=[0.5, 0.5, 0.5] , __lowerCamelCase: List[str]=[0.5, 0.5, 0.5] , ): '''simple docstring''' UpperCamelCase__: Tuple = parent UpperCamelCase__: Optional[Any] = batch_size UpperCamelCase__: Optional[int] = num_channels UpperCamelCase__: Optional[Any] = image_size UpperCamelCase__: str = min_resolution UpperCamelCase__: List[Any] = max_resolution UpperCamelCase__: List[str] = do_resize UpperCamelCase__: Dict = size if size is not None else {"height": 18, "width": 20} UpperCamelCase__: Union[str, Any] = do_thumbnail UpperCamelCase__: Optional[int] = do_align_axis UpperCamelCase__: Any = do_pad UpperCamelCase__: Optional[int] = do_normalize UpperCamelCase__: Optional[int] = image_mean UpperCamelCase__: Any = image_std def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _a ( UpperCamelCase__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self: int ): '''simple docstring''' UpperCamelCase__: Dict = DonutImageProcessingTester(self ) @property def UpperCAmelCase_ ( self: int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_thumbnail" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_align_long_axis" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_pad" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) ) def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 20} ) UpperCamelCase__: Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase__: int = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"height": 84, "width": 42} ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' pass @is_flaky() def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__: List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input UpperCamelCase__: Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCamelCase__: Dict = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__: Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input UpperCamelCase__: List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCamelCase__: Optional[Any] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__: Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase__: Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCamelCase__: Any = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
221
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig A__: Union[str, Any] = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """albert""" def __init__( self: Dict , __lowerCamelCase: int=3_0000 , __lowerCamelCase: Dict=128 , __lowerCamelCase: Optional[int]=4096 , __lowerCamelCase: Optional[int]=12 , __lowerCamelCase: List[Any]=1 , __lowerCamelCase: List[Any]=64 , __lowerCamelCase: Optional[Any]=1_6384 , __lowerCamelCase: int=1 , __lowerCamelCase: List[str]="gelu_new" , __lowerCamelCase: Optional[int]=0 , __lowerCamelCase: Optional[Any]=0 , __lowerCamelCase: Union[str, Any]=512 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: Any=1e-12 , __lowerCamelCase: int=0.1 , __lowerCamelCase: Dict="absolute" , __lowerCamelCase: List[str]=0 , __lowerCamelCase: Optional[Any]=2 , __lowerCamelCase: Dict=3 , **__lowerCamelCase: int , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase__: Any = vocab_size UpperCamelCase__: str = embedding_size UpperCamelCase__: Optional[Any] = hidden_size UpperCamelCase__: Any = num_hidden_layers UpperCamelCase__: str = num_hidden_groups UpperCamelCase__: int = num_attention_heads UpperCamelCase__: Union[str, Any] = inner_group_num UpperCamelCase__: str = hidden_act UpperCamelCase__: Tuple = intermediate_size UpperCamelCase__: Dict = hidden_dropout_prob UpperCamelCase__: List[Any] = attention_probs_dropout_prob UpperCamelCase__: List[str] = max_position_embeddings UpperCamelCase__: Optional[Any] = type_vocab_size UpperCamelCase__: Any = initializer_range UpperCamelCase__: int = layer_norm_eps UpperCamelCase__: List[str] = classifier_dropout_prob UpperCamelCase__: str = position_embedding_type class _a ( UpperCamelCase__): """simple docstring""" @property def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase__: Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase__: Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
221
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a : Tuple = { """configuration_mask2former""": [ """MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Mask2FormerConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : str = ["""Mask2FormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Dict = [ """MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """Mask2FormerForUniversalSegmentation""", """Mask2FormerModel""", """Mask2FormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
606
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def _UpperCAmelCase ( A , A=7 ): '''simple docstring''' UpperCAmelCase__ =None if token is not None: UpperCAmelCase__ ={"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""} # The id of a workflow (not of a workflow run) UpperCAmelCase__ ="636036" UpperCAmelCase__ =F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" UpperCAmelCase__ =requests.get(A , headers=A ).json() return result["workflow_runs"] def _UpperCAmelCase ( A ): '''simple docstring''' UpperCAmelCase__ =get_daily_ci_runs(A ) UpperCAmelCase__ =None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": UpperCAmelCase__ =workflow_run["id"] break return workflow_run_id def _UpperCAmelCase ( A , A , A ): '''simple docstring''' UpperCAmelCase__ =get_last_daily_ci_runs(A ) if workflow_run_id is not None: UpperCAmelCase__ =get_artifacts_links(worflow_run_id=A , token=A ) for artifact_name in artifact_names: if artifact_name in artifacts_links: UpperCAmelCase__ =artifacts_links[artifact_name] download_artifact( artifact_name=A , artifact_url=A , output_dir=A , token=A ) def _UpperCAmelCase ( A , A , A ): '''simple docstring''' get_last_daily_ci_artifacts(A , A , A ) UpperCAmelCase__ ={} for artifact_name in artifact_names: UpperCAmelCase__ =os.path.join(A , F"""{artifact_name}.zip""" ) if os.path.isfile(A ): UpperCAmelCase__ ={} with zipfile.ZipFile(A ) as z: for filename in z.namelist(): if not os.path.isdir(A ): # read the file with z.open(A ) as f: UpperCAmelCase__ =f.read().decode("UTF-8" ) return results
625
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A_ ( __a : str , __a : complex , __a : str = "x" , __a : float = 10**-10 , __a : int = 1 , ): """simple docstring""" a__ = symbols(__a ) a__ = lambdify(__a , __a ) a__ = lambdify(__a , diff(__a , __a ) ) a__ = starting_point while True: if diff_function(__a ) != 0: a__ = prev_guess - multiplicity * func(__a ) / diff_function( __a ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess a__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", f"""{newton_raphson("exp(x) - 1", 10, precision=0.0_05)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
351
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("""At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training""") # TF training parameters UpperCAmelCase = False UpperCAmelCase = False def A_ ( __a : Namespace ): """simple docstring""" return TrainCommand(__a ) class __snake_case ( SCREAMING_SNAKE_CASE): '''simple docstring''' @staticmethod def _a ( a_ ): a__ = parser.add_parser("""train""" , help="""CLI tool to train a model on a task.""" ) train_parser.add_argument( """--train_data""" , type=a_ , required=a_ , help="""path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.""" , ) train_parser.add_argument( """--column_label""" , type=a_ , default=0 , help="""Column of the dataset csv file with example labels.""" ) train_parser.add_argument( """--column_text""" , type=a_ , default=1 , help="""Column of the dataset csv file with example texts.""" ) train_parser.add_argument( """--column_id""" , type=a_ , default=2 , help="""Column of the dataset csv file with example ids.""" ) train_parser.add_argument( """--skip_first_row""" , action="""store_true""" , help="""Skip the first row of the csv file (headers).""" ) train_parser.add_argument("""--validation_data""" , type=a_ , default="""""" , help="""path to validation dataset.""" ) train_parser.add_argument( """--validation_split""" , type=a_ , default=0.1 , help="""if validation dataset is not provided, fraction of train dataset to use as validation dataset.""" , ) train_parser.add_argument("""--output""" , type=a_ , default="""./""" , help="""path to saved the trained model.""" ) train_parser.add_argument( """--task""" , type=a_ , default="""text_classification""" , help="""Task to train the model on.""" ) train_parser.add_argument( """--model""" , type=a_ , default="""bert-base-uncased""" , help="""Model's name or path to stored model.""" ) train_parser.add_argument("""--train_batch_size""" , type=a_ , default=32 , help="""Batch size for training.""" ) train_parser.add_argument("""--valid_batch_size""" , type=a_ , default=64 , help="""Batch size for validation.""" ) train_parser.add_argument("""--learning_rate""" , type=a_ , default=3E-5 , help="""Learning rate.""" ) train_parser.add_argument("""--adam_epsilon""" , type=a_ , default=1E-0_8 , help="""Epsilon for Adam optimizer.""" ) train_parser.set_defaults(func=a_ ) def __init__( self , a_ ): a__ = logging.get_logger("""transformers-cli/training""" ) a__ = """tf""" if is_tf_available() else """torch""" os.makedirs(args.output , exist_ok=a_ ) a__ = args.output a__ = args.column_label a__ = args.column_text a__ = args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": a__ = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) a__ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) a__ = None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) a__ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) a__ = args.validation_split a__ = args.train_batch_size a__ = args.valid_batch_size a__ = args.learning_rate a__ = args.adam_epsilon def _a ( self ): if self.framework == "tf": return self.run_tf() return self.run_torch() def _a ( self ): raise NotImplementedError def _a ( self ): self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
351
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : Optional[Any] = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ='vit_mae' def __init__( self : str , a__ : List[Any]=768 , a__ : Dict=12 , a__ : Union[str, Any]=12 , a__ : int=3072 , a__ : List[str]="gelu" , a__ : Union[str, Any]=0.0 , a__ : Dict=0.0 , a__ : Union[str, Any]=0.02 , a__ : List[str]=1e-1_2 , a__ : Any=224 , a__ : str=16 , a__ : Tuple=3 , a__ : str=True , a__ : List[str]=16 , a__ : Union[str, Any]=512 , a__ : Dict=8 , a__ : Dict=2048 , a__ : Optional[Any]=0.75 , a__ : Any=False , **a__ : Optional[Any] , ): super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = qkv_bias UpperCAmelCase = decoder_num_attention_heads UpperCAmelCase = decoder_hidden_size UpperCAmelCase = decoder_num_hidden_layers UpperCAmelCase = decoder_intermediate_size UpperCAmelCase = mask_ratio UpperCAmelCase = norm_pix_loss
51
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def lowercase__ ( A_: Union[str, Any] ) -> List[Any]: """simple docstring""" __UpperCAmelCase =botoa.client("""iam""" ) __UpperCAmelCase ={ """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=A_ , AssumeRolePolicyDocument=json.dumps(A_ , indent=2 ) ) __UpperCAmelCase ={ """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=A_ , PolicyName=F'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(A_ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''' ) def lowercase__ ( A_: Dict ) -> Any: """simple docstring""" __UpperCAmelCase =botoa.client("""iam""" ) return iam_client.get_role(RoleName=A_ )["Role"]["Arn"] def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase =_ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , A_ , ) __UpperCAmelCase =None if credentials_configuration == 0: __UpperCAmelCase =_ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) __UpperCAmelCase =aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) __UpperCAmelCase =_ask_field("""AWS Access Key ID: """ ) __UpperCAmelCase =aws_access_key_id __UpperCAmelCase =_ask_field("""AWS Secret Access Key: """ ) __UpperCAmelCase =aws_secret_access_key __UpperCAmelCase =_ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) __UpperCAmelCase =aws_region __UpperCAmelCase =_ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , A_ , ) if role_management == 0: __UpperCAmelCase =_ask_field("""Enter your IAM role name: """ ) else: __UpperCAmelCase ="""accelerate_sagemaker_execution_role""" print(F'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(A_ ) __UpperCAmelCase =_ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) __UpperCAmelCase =None if is_custom_docker_image: __UpperCAmelCase =_ask_field("""Enter your Docker image: """ , lambda A_ : str(A_ ).lower() ) __UpperCAmelCase =_ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) __UpperCAmelCase =None if is_sagemaker_inputs_enabled: __UpperCAmelCase =_ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda A_ : str(A_ ).lower() , ) __UpperCAmelCase =_ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) __UpperCAmelCase =None if is_sagemaker_metrics_enabled: __UpperCAmelCase =_ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda A_ : str(A_ ).lower() , ) __UpperCAmelCase =_ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) __UpperCAmelCase ={} __UpperCAmelCase =_ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) if use_dynamo: __UpperCAmelCase ="""dynamo_""" __UpperCAmelCase =_ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) __UpperCAmelCase =_ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) if use_custom_options: __UpperCAmelCase =_ask_options( """Which mode do you want to use?""" , A_ , lambda A_ : TORCH_DYNAMO_MODES[int(A_ )] , default="""default""" , ) __UpperCAmelCase =_ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) __UpperCAmelCase =_ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) __UpperCAmelCase ="""Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: __UpperCAmelCase =_ask_options( A_ , A_ , lambda A_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(A_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __UpperCAmelCase =_ask_field(A_ , lambda A_ : str(A_ ).lower() , default="""ml.p3.2xlarge""" ) __UpperCAmelCase =1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __UpperCAmelCase =_ask_field( """How many machines do you want use? [1]: """ , A_ , default=1 , ) __UpperCAmelCase =_ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=A_ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=A_ , use_cpu=A_ , dynamo_config=A_ , eca_instance_type=A_ , profile=A_ , region=A_ , iam_role_name=A_ , mixed_precision=A_ , num_machines=A_ , sagemaker_inputs_file=A_ , sagemaker_metrics_file=A_ , )
68
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer A : List[Any] = logging.get_logger(__name__) A : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A : Tuple = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } A : Union[str, Any] = { """yjernite/retribert-base-uncased""": 512, } A : Tuple = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE( __A ): snake_case_ : str = VOCAB_FILES_NAMES snake_case_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION snake_case_ : Dict = RetriBertTokenizer snake_case_ : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__="[UNK]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="[PAD]" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ) -> Dict: """simple docstring""" super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase__ ) != tokenize_chinese_chars ): __lowercase = getattr(lowerCamelCase__ , normalizer_state.pop("""type""" ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**lowerCamelCase__ ) __lowercase = do_lower_case def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> Tuple: """simple docstring""" __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: """simple docstring""" __lowercase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
163
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class SCREAMING_SNAKE_CASE( unittest.TestCase ): def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=30 , lowerCamelCase__=2 , lowerCamelCase__=3 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=10 , lowerCamelCase__=0.02 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def snake_case__ ( self ) -> Tuple: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, pixel_values def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" __lowercase = FlaxViTModel(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __lowercase = (self.image_size, self.image_size) __lowercase = (self.patch_size, self.patch_size) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = FlaxViTForImageClassification(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = FlaxViTForImageClassification(lowerCamelCase__ ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(lowerCamelCase__ ) def snake_case__ ( self ) -> Tuple: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE( __A , unittest.TestCase ): snake_case_ : Optional[Any] = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def snake_case__ ( self ) -> None: """simple docstring""" __lowercase = FlaxViTModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def snake_case__ ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def snake_case__ ( self ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def snake_case__ ( self ) -> Dict: """simple docstring""" __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase__ ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = model_class(lowerCamelCase__ ) @jax.jit def model_jitted(lowerCamelCase__ , **lowerCamelCase__ ): return model(pixel_values=lowerCamelCase__ , **lowerCamelCase__ ) with self.subTest("""JIT Enabled""" ): __lowercase = model_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowercase = model_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def snake_case__ ( self ) -> Any: """simple docstring""" for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) __lowercase = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase__ )
163
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Union[str, Any] = 'convbert' def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase__ : Dict = vocab_size lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : Tuple = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : Dict = type_vocab_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Dict = layer_norm_eps lowercase__ : Tuple = embedding_size lowercase__ : List[str] = head_ratio lowercase__ : Dict = conv_kernel_size lowercase__ : Dict = num_groups lowercase__ : int = classifier_dropout class _snake_case ( UpperCAmelCase_ ): @property def lowercase__ ( self): '''simple docstring''' if self.task == "multiple-choice": lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ])
12
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __lowercase ( ) ->List[Any]: """simple docstring""" lowercase : Any = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''', type=_UpperCamelCase, default=1, help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''', type=_UpperCamelCase, help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ), ) # rest from the training program parser.add_argument('''training_script_args''', nargs=_UpperCamelCase ) return parser.parse_args() def __lowercase ( ) ->str: """simple docstring""" lowercase : Tuple = parse_args() # Import training_script as a module. lowercase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : Optional[Any] = script_fpath.stem lowercase : str = importlib.import_module(_UpperCamelCase ) # Patch sys.argv lowercase : Optional[int] = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
319
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __lowerCamelCase ( unittest.TestCase ): def A__ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase: Optional[int] = 'ZinengTang/tvlt-base' UpperCAmelCase: Optional[int] = tempfile.mkdtemp() def A__ ( self , **__snake_case ) -> List[str]: """simple docstring""" return TvltImageProcessor.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def A__ ( self , **__snake_case ) -> Optional[Any]: """simple docstring""" return TvltFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def A__ ( self ) -> List[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def A__ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase: Dict = self.get_image_processor() UpperCAmelCase: Union[str, Any] = self.get_feature_extractor() UpperCAmelCase: Any = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase: Union[str, Any] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase_ ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase: Optional[int] = self.get_image_processor() UpperCAmelCase: Tuple = self.get_feature_extractor() UpperCAmelCase: Union[str, Any] = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) UpperCAmelCase: List[str] = np.ones([1_2_0_0_0] ) UpperCAmelCase: Optional[Any] = feature_extractor(UpperCAmelCase_ , return_tensors="np" ) UpperCAmelCase: Optional[Any] = processor(audio=UpperCAmelCase_ , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase: int = self.get_image_processor() UpperCAmelCase: Optional[int] = self.get_feature_extractor() UpperCAmelCase: Union[str, Any] = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) UpperCAmelCase: Dict = np.ones([3, 2_2_4, 2_2_4] ) UpperCAmelCase: str = image_processor(UpperCAmelCase_ , return_tensors="np" ) UpperCAmelCase: Any = processor(images=UpperCAmelCase_ , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A__ ( self ) -> str: """simple docstring""" UpperCAmelCase: List[Any] = self.get_image_processor() UpperCAmelCase: List[Any] = self.get_feature_extractor() UpperCAmelCase: Tuple = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) UpperCAmelCase: int = np.ones([1_2_0_0_0] ) UpperCAmelCase: Optional[Any] = np.ones([3, 2_2_4, 2_2_4] ) UpperCAmelCase: str = processor(audio=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def A__ ( self ) -> int: """simple docstring""" UpperCAmelCase: Tuple = self.get_image_processor() UpperCAmelCase: Dict = self.get_feature_extractor() UpperCAmelCase: Dict = TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
706
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case_ : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
166
0
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Union[str, Any]=1 ) -> Any: if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : int=0 ) -> Tuple: _a : Any =[] for old_item in old_list: _a : List[Any] =old_item.replace("""in_layers.0""" ,"""norm1""" ) _a : int =new_item.replace("""in_layers.2""" ,"""conv1""" ) _a : Dict =new_item.replace("""out_layers.0""" ,"""norm2""" ) _a : Dict =new_item.replace("""out_layers.3""" ,"""conv2""" ) _a : Any =new_item.replace("""emb_layers.1""" ,"""time_emb_proj""" ) _a : Tuple =new_item.replace("""skip_connection""" ,"""conv_shortcut""" ) _a : Optional[Any] =shave_segments(_UpperCAmelCase ,n_shave_prefix_segments=_UpperCAmelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : str=0 ) -> Optional[Any]: _a : str =[] for old_item in old_list: _a : Union[str, Any] =old_item _a : Union[str, Any] =new_item.replace("""norm.weight""" ,"""group_norm.weight""" ) _a : str =new_item.replace("""norm.bias""" ,"""group_norm.bias""" ) _a : List[Any] =new_item.replace("""proj_out.weight""" ,"""proj_attn.weight""" ) _a : Optional[Any] =new_item.replace("""proj_out.bias""" ,"""proj_attn.bias""" ) _a : Tuple =shave_segments(_UpperCAmelCase ,n_shave_prefix_segments=_UpperCAmelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Any=None ,_UpperCAmelCase : Union[str, Any]=None ,_UpperCAmelCase : Any=None ) -> List[Any]: assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _a : Dict =old_checkpoint[path] _a : int =old_tensor.shape[0] // 3 _a : Any =(-1, channels) if len(old_tensor.shape ) == 3 else (-1) _a : Union[str, Any] =old_tensor.shape[0] // config["""num_head_channels"""] // 3 _a : Dict =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _a , _a , _a : Union[str, Any] =old_tensor.split(channels // num_heads ,dim=1 ) _a : Optional[int] =query.reshape(_UpperCAmelCase ) _a : Union[str, Any] =key.reshape(_UpperCAmelCase ) _a : Any =value.reshape(_UpperCAmelCase ) for path in paths: _a : List[str] =path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _a : List[Any] =new_path.replace("""middle_block.0""" ,"""mid_block.resnets.0""" ) _a : str =new_path.replace("""middle_block.1""" ,"""mid_block.attentions.0""" ) _a : List[str] =new_path.replace("""middle_block.2""" ,"""mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: _a : Optional[Any] =new_path.replace(replacement["""old"""] ,replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _a : Optional[int] =old_checkpoint[path["""old"""]][:, :, 0] else: _a : List[Any] =old_checkpoint[path["""old"""]] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : str ) -> Dict: _a : Dict ={} _a : Optional[Any] =checkpoint["""time_embed.0.weight"""] _a : Tuple =checkpoint["""time_embed.0.bias"""] _a : List[str] =checkpoint["""time_embed.2.weight"""] _a : int =checkpoint["""time_embed.2.bias"""] _a : int =checkpoint["""input_blocks.0.0.weight"""] _a : Union[str, Any] =checkpoint["""input_blocks.0.0.bias"""] _a : Tuple =checkpoint["""out.0.weight"""] _a : Dict =checkpoint["""out.0.bias"""] _a : Union[str, Any] =checkpoint["""out.2.weight"""] _a : Dict =checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only _a : str =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) _a : str ={ layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(_UpperCAmelCase ) } # Retrieves the keys for the middle blocks only _a : Optional[Any] =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) _a : Tuple ={ layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(_UpperCAmelCase ) } # Retrieves the keys for the output blocks only _a : List[str] =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) _a : str ={ layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(_UpperCAmelCase ) } for i in range(1 ,_UpperCAmelCase ): _a : Union[str, Any] =(i - 1) // (config["""num_res_blocks"""] + 1) _a : List[str] =(i - 1) % (config["""num_res_blocks"""] + 1) _a : List[Any] =[key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] _a : Tuple =[key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: _a : str =checkpoint[ F"input_blocks.{i}.0.op.weight" ] _a : Optional[int] =checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue _a : int =renew_resnet_paths(_UpperCAmelCase ) _a : Union[str, Any] ={"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} _a : str ={"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,additional_replacements=[meta_path, resnet_op] ,config=_UpperCAmelCase ) if len(_UpperCAmelCase ): _a : Any =renew_attention_paths(_UpperCAmelCase ) _a : List[str] ={ """old""": F"input_blocks.{i}.1", """new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } _a : str ={ F"input_blocks.{i}.1.qkv.bias": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,additional_replacements=[meta_path] ,attention_paths_to_split=_UpperCAmelCase ,config=_UpperCAmelCase ,) _a : str =middle_blocks[0] _a : Optional[Any] =middle_blocks[1] _a : Tuple =middle_blocks[2] _a : Union[str, Any] =renew_resnet_paths(_UpperCAmelCase ) assign_to_checkpoint(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,config=_UpperCAmelCase ) _a : List[str] =renew_resnet_paths(_UpperCAmelCase ) assign_to_checkpoint(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,config=_UpperCAmelCase ) _a : List[Any] =renew_attention_paths(_UpperCAmelCase ) _a : Optional[Any] ={ """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,attention_paths_to_split=_UpperCAmelCase ,config=_UpperCAmelCase ) for i in range(_UpperCAmelCase ): _a : int =i // (config["""num_res_blocks"""] + 1) _a : str =i % (config["""num_res_blocks"""] + 1) _a : List[Any] =[shave_segments(_UpperCAmelCase ,2 ) for name in output_blocks[i]] _a : Optional[Any] ={} for layer in output_block_layers: _a , _a : Optional[Any] =layer.split(""".""" )[0], shave_segments(_UpperCAmelCase ,1 ) if layer_id in output_block_list: output_block_list[layer_id].append(_UpperCAmelCase ) else: _a : int =[layer_name] if len(_UpperCAmelCase ) > 1: _a : Tuple =[key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] _a : List[Any] =[key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] _a : Optional[Any] =renew_resnet_paths(_UpperCAmelCase ) _a : str =renew_resnet_paths(_UpperCAmelCase ) _a : Any ={"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,additional_replacements=[meta_path] ,config=_UpperCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _a : Any =list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) _a : Any =checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] _a : Any =checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(_UpperCAmelCase ) == 2: _a : str =[] if len(_UpperCAmelCase ): _a : List[str] =renew_attention_paths(_UpperCAmelCase ) _a : Union[str, Any] ={ """old""": F"output_blocks.{i}.1", """new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } _a : Dict ={ F"output_blocks.{i}.1.qkv.bias": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,additional_replacements=[meta_path] ,attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None ,config=_UpperCAmelCase ,) else: _a : Optional[Any] =renew_resnet_paths(_UpperCAmelCase ,n_shave_prefix_segments=1 ) for path in resnet_0_paths: _a : str =""".""".join(["""output_blocks""", str(_UpperCAmelCase ), path["""old"""]] ) _a : str =""".""".join(["""up_blocks""", str(_UpperCAmelCase ), """resnets""", str(_UpperCAmelCase ), path["""new"""]] ) _a : Optional[Any] =checkpoint[old_path] return new_checkpoint if __name__ == "__main__": A__: int = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') A__: str = parser.parse_args() A__: Optional[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: A__: Any = json.loads(f.read()) A__: Tuple = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] A__: int = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: A__: Any = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A__: str = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A__: Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
694
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return number | (1 << position) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return number & ~(1 << position) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return number ^ (1 << position) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> bool: return ((number >> position) & 1) == 1 def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
694
1
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __UpperCamelCase ( a : np.ndarray , a : np.ndarray ) ->float: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(a , a ) ) ) def __UpperCamelCase ( a : np.ndarray , a : np.ndarray ) ->list[list[list[float] | float]]: if dataset.ndim != value_array.ndim: snake_case = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(a ) try: if dataset.shape[1] != value_array.shape[1]: snake_case = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(a ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: snake_case = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(a ) snake_case = [] for value in value_array: snake_case = euclidean(a , dataset[0] ) snake_case = dataset[0].tolist() for dataset_value in dataset[1:]: snake_case = euclidean(a , a ) if dist > temp_dist: snake_case = temp_dist snake_case = dataset_value.tolist() answer.append([vector, dist] ) return answer def __UpperCamelCase ( a : np.ndarray , a : np.ndarray ) ->float: return np.dot(a , a ) / (norm(a ) * norm(a )) if __name__ == "__main__": import doctest doctest.testmod()
44
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=__a ): _UpperCAmelCase = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self , *A__ , **A__ ) -> Union[str, Any]: requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def UpperCamelCase ( cls , *A__ , **A__ ) -> Optional[Any]: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def UpperCamelCase ( cls , *A__ , **A__ ) -> Any: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
44
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" @slow @require_torch def lowercase ( self : Tuple ) -> Any: __lowerCAmelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) __lowerCAmelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) __lowerCAmelCase = bertabert.config.encoder.vocab_size __lowerCAmelCase = tokenizer.sep_token_id __lowerCAmelCase = tokenizer.cls_token_id __lowerCAmelCase = 1_2_8 __lowerCAmelCase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) __lowerCAmelCase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) __lowerCAmelCase = train_dataset.select(range(3_2 ) ) __lowerCAmelCase = val_dataset.select(range(1_6 ) ) __lowerCAmelCase = 4 def _map_to_encoder_decoder_inputs(lowerCAmelCase_ : Optional[int] ): # Tokenizer will automatically set [BOS] <text> [EOS] __lowerCAmelCase = tokenizer(batch['article'] , padding='max_length' , truncation=lowerCAmelCase_ , max_length=5_1_2 ) __lowerCAmelCase = tokenizer(batch['highlights'] , padding='max_length' , truncation=lowerCAmelCase_ , max_length=1_2_8 ) __lowerCAmelCase = inputs.input_ids __lowerCAmelCase = inputs.attention_mask __lowerCAmelCase = outputs.input_ids __lowerCAmelCase = outputs.input_ids.copy() __lowerCAmelCase = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] __lowerCAmelCase = outputs.attention_mask assert all(len(lowerCAmelCase_ ) == 5_1_2 for x in inputs.input_ids ) assert all(len(lowerCAmelCase_ ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(lowerCAmelCase_ : List[str] ): __lowerCAmelCase = pred.label_ids __lowerCAmelCase = pred.predictions # all unnecessary tokens are removed __lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowerCAmelCase_ ) )] ) / len(lowerCAmelCase_ ) return {"accuracy": accuracy} # map train dataset __lowerCAmelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset __lowerCAmelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = SeqaSeqTrainingArguments( output_dir=lowerCAmelCase_ , per_device_train_batch_size=lowerCAmelCase_ , per_device_eval_batch_size=lowerCAmelCase_ , predict_with_generate=lowerCAmelCase_ , evaluation_strategy='steps' , do_train=lowerCAmelCase_ , do_eval=lowerCAmelCase_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __lowerCAmelCase = SeqaSeqTrainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , compute_metrics=_compute_metrics , train_dataset=lowerCAmelCase_ , eval_dataset=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , ) # start training trainer.train()
53
"""simple docstring""" class __A : '''simple docstring''' def __init__( self : List[str] ,_snake_case : int ,_snake_case : str ,_snake_case : Optional[Any] ) -> int: """simple docstring""" lowercase__ : Tuple = None lowercase__ : str = None lowercase__ : Dict = graph self._normalize_graph(_snake_case ,_snake_case ) lowercase__ : Any = len(_snake_case ) lowercase__ : Any = None def UpperCAmelCase ( self : List[Any] ,_snake_case : List[str] ,_snake_case : List[str] ) -> List[str]: """simple docstring""" if sources is int: lowercase__ : Optional[int] = [sources] if sinks is int: lowercase__ : str = [sinks] if len(_snake_case ) == 0 or len(_snake_case ) == 0: return lowercase__ : str = sources[0] lowercase__ : Optional[int] = sinks[0] # make fake vertex if there are more # than one source or sink if len(_snake_case ) > 1 or len(_snake_case ) > 1: lowercase__ : Tuple = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase__ : Dict = len(self.graph ) + 1 for room in self.graph: room.insert(0 ,0 ) self.graph.insert(0 ,[0] * size ) for i in sources: lowercase__ : Optional[Any] = max_input_flow lowercase__ : Dict = 0 lowercase__ : List[Any] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase__ : List[str] = max_input_flow lowercase__ : int = size - 1 def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def UpperCAmelCase ( self : str ,_snake_case : List[Any] ) -> int: """simple docstring""" lowercase__ : Tuple = algorithm(self ) class __A : '''simple docstring''' def __init__( self : int ,_snake_case : Tuple ) -> int: """simple docstring""" lowercase__ : int = flow_network lowercase__ : int = flow_network.verticesCount lowercase__ : Tuple = flow_network.sourceIndex lowercase__ : str = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase__ : Optional[Any] = flow_network.graph lowercase__ : Optional[int] = False def UpperCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" if not self.executed: self._algorithm() lowercase__ : Tuple = True def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" pass class __A ( A_ ): '''simple docstring''' def __init__( self : int ,_snake_case : Union[str, Any] ) -> Optional[Any]: """simple docstring""" super().__init__(_snake_case ) # use this to save your result lowercase__ : Union[str, Any] = -1 def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class __A ( A_ ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" super().__init__(_snake_case ) lowercase__ : int = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase__ : List[str] = [0] * self.verticies_count lowercase__ : Tuple = [0] * self.verticies_count def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" lowercase__ : str = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase__ : Union[str, Any] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase__ : Tuple = 0 while i < len(_snake_case ): lowercase__ : Dict = vertices_list[i] lowercase__ : Optional[Any] = self.heights[vertex_index] self.process_vertex(_snake_case ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 ,vertices_list.pop(_snake_case ) ) lowercase__ : Optional[int] = 0 else: i += 1 lowercase__ : Dict = sum(self.preflow[self.source_index] ) def UpperCAmelCase ( self : Any ,_snake_case : int ) -> List[Any]: """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_snake_case ,_snake_case ) self.relabel(_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : int ,_snake_case : List[str] ) -> Tuple: """simple docstring""" lowercase__ : Tuple = min( self.excesses[from_index] ,self.graph[from_index][to_index] - self.preflow[from_index][to_index] ,) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ : int = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase__ : Optional[int] = self.heights[to_index] if min_height is not None: lowercase__ : Optional[int] = min_height + 1 if __name__ == "__main__": lowerCAmelCase_ = [0] lowerCAmelCase_ = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] lowerCAmelCase_ = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network lowerCAmelCase_ = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate lowerCAmelCase_ = flow_network.find_maximum_flow() print(F'''maximum flow is {maximum_flow}''')
560
0
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Optional[int] , _A : int , _A : Any=2 , _A : str=56 , _A : Any=True , _A : Dict=True , _A : Optional[Any]=True , _A : Any=True , _A : Tuple=99 , _A : Optional[int]=32 , _A : Tuple=2 , _A : List[str]=2 , _A : Any=7 , _A : int="gelu_new" , _A : Any=0.1 , _A : Any=0.1 , _A : Optional[Any]=512 , _A : str=16 , _A : Any=2 , _A : Optional[int]=0.0_2 , _A : Optional[Any]=4 , _A : Any="block_sparse" , _A : List[Any]=True , _A : Tuple=False , _A : str=2 , _A : List[str]=3 , ): '''simple docstring''' UpperCAmelCase__ : Any = parent UpperCAmelCase__ : List[Any] = batch_size UpperCAmelCase__ : Any = seq_length UpperCAmelCase__ : Union[str, Any] = is_training UpperCAmelCase__ : Dict = use_attention_mask UpperCAmelCase__ : Optional[Any] = use_token_type_ids UpperCAmelCase__ : Dict = use_labels UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Optional[Any] = num_attention_heads UpperCAmelCase__ : Optional[int] = intermediate_size UpperCAmelCase__ : Union[str, Any] = hidden_act UpperCAmelCase__ : Dict = hidden_dropout_prob UpperCAmelCase__ : Dict = attention_probs_dropout_prob UpperCAmelCase__ : Optional[Any] = max_position_embeddings UpperCAmelCase__ : int = type_vocab_size UpperCAmelCase__ : int = type_sequence_label_size UpperCAmelCase__ : Optional[Any] = initializer_range UpperCAmelCase__ : Optional[int] = num_choices UpperCAmelCase__ : str = rescale_embeddings UpperCAmelCase__ : Optional[int] = attention_type UpperCAmelCase__ : Union[str, Any] = use_bias UpperCAmelCase__ : Dict = block_size UpperCAmelCase__ : int = num_random_blocks def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Union[str, Any] = None if self.use_attention_mask: UpperCAmelCase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : List[str] = None if self.use_token_type_ids: UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : int = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = config_and_inputs UpperCAmelCase__ : List[Any] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class lowerCamelCase_ ( __UpperCAmelCase , unittest.TestCase ): lowerCAmelCase__ = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase_ ( self : Any ): '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase_ ( self : Dict ): '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase_ ( self : int ): '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' super().test_hidden_states_output() @slow def lowercase_ ( self : Tuple ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class_name.from_pretrained('''google/bigbird-roberta-base''' ) self.assertIsNotNone(_A ) def lowercase_ ( self : Tuple ): '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : Dict = self._prepare_for_class(_A , _A ) UpperCAmelCase__ : str = model_class(_A ) @jax.jit def model_jitted(_A : int , _A : str=None , **_A : Tuple ): return model(input_ids=_A , attention_mask=_A , **_A ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase__ : Dict = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase__ : Tuple = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase_ ( self : List[Any] , _A : Union[str, Any] , _A : Dict , _A : Optional[Any] , _A : Any=1e-5 , _A : Optional[int]="outputs" , _A : Tuple=None ): '''simple docstring''' if name.startswith('''outputs.attentions''' ): return else: super().check_pt_flax_outputs(_A , _A , _A , _A , _A , _A )
717
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = MgpstrTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {} lowerCAmelCase__ = False def lowercase_ ( self : List[str] ): '''simple docstring''' super().setUp() # fmt: off UpperCAmelCase__ : str = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on UpperCAmelCase__ : Dict = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) def lowercase_ ( self : List[str] , **_A : Dict ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = '''tester''' UpperCAmelCase__ : Tuple = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase__ : str = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) UpperCAmelCase__ : int = tokenizer.encode([special_token] , add_special_tokens=_A ) self.assertEqual(len(_A ) , 1 ) UpperCAmelCase__ : Any = tokenizer.decode(_A , skip_special_tokens=_A ) self.assertTrue(special_token not in decoded ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.get_input_output_texts(_A ) UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) UpperCAmelCase__ : str = tokenizer.convert_tokens_to_ids(_A ) UpperCAmelCase__ : Tuple = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : int = tokenizer.convert_ids_to_tokens(_A ) self.assertNotEqual(len(_A ) , 0 ) UpperCAmelCase__ : List[Any] = tokenizer.decode(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _A ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def lowercase_ ( self : List[str] ): '''simple docstring''' pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' pass
312
0
"""simple docstring""" __lowerCamelCase = 0 # The first color of the flag. __lowerCamelCase = 1 # The second color of the flag. __lowerCamelCase = 2 # The third color of the flag. __lowerCamelCase = (red, white, blue) def a ( __snake_case : list ): '''simple docstring''' if not sequence: return [] if len(__snake_case ) == 1: return list(__snake_case ) UpperCAmelCase_ :Optional[int] = 0 UpperCAmelCase_ :List[str] = len(__snake_case ) - 1 UpperCAmelCase_ :Optional[Any] = 0 while mid <= high: if sequence[mid] == colors[0]: UpperCAmelCase_ ,UpperCAmelCase_ :Optional[int] = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: UpperCAmelCase_ ,UpperCAmelCase_ :List[Any] = sequence[high], sequence[mid] high -= 1 else: UpperCAmelCase_ :Optional[int] = f'The elements inside the sequence must contains only {colors} values' raise ValueError(__snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase = input("Enter numbers separated by commas:\n").strip() __lowerCamelCase = [int(item.strip()) for item in user_input.split(",")] print(f'''{dutch_national_flag_sort(unsorted)}''')
608
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["GLPNFeatureExtractor"] __lowerCamelCase = ["GLPNImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
608
1
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. UpperCAmelCase__ = 1_0 def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" for i in range(lowercase ,lowercase ): if array[i] == target: return i return -1 def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = len(lowercase ) while left <= right: if right - left < precision: return lin_search(lowercase ,lowercase ,lowercase ,lowercase ) _UpperCAmelCase = (left + right) // 3 + 1 _UpperCAmelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _UpperCAmelCase = one_third - 1 elif array[two_third] < target: _UpperCAmelCase = two_third + 1 else: _UpperCAmelCase = one_third + 1 _UpperCAmelCase = two_third - 1 else: return -1 def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" if left < right: if right - left < precision: return lin_search(lowercase ,lowercase ,lowercase ,lowercase ) _UpperCAmelCase = (left + right) // 3 + 1 _UpperCAmelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(lowercase ,one_third - 1 ,lowercase ,lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 ,lowercase ,lowercase ,lowercase ) else: return rec_ternary_search(one_third + 1 ,two_third - 1 ,lowercase ,lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = input("""Enter numbers separated by comma:\n""").strip() UpperCAmelCase__ = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." UpperCAmelCase__ = int(input("""Enter the number to be found in the list:\n""").strip()) UpperCAmelCase__ = ite_ternary_search(collection, target) UpperCAmelCase__ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
719
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class a : def __init__( self : Tuple , __lowerCAmelCase : str = None , __lowerCAmelCase : uuid.UUID = None , __lowerCAmelCase : Any=None , __lowerCAmelCase : Tuple=None ): if not conversation_id: _UpperCAmelCase = uuid.uuida() if past_user_inputs is None: _UpperCAmelCase = [] if generated_responses is None: _UpperCAmelCase = [] _UpperCAmelCase = conversation_id _UpperCAmelCase = past_user_inputs _UpperCAmelCase = generated_responses _UpperCAmelCase = text def __eq__( self : Optional[Any] , __lowerCAmelCase : Union[str, Any] ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : bool = False ): if self.new_user_input: if overwrite: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' f'''with: "{text}".''' ) _UpperCAmelCase = text else: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' f'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: _UpperCAmelCase = text def lowerCAmelCase_ ( self : int ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _UpperCAmelCase = None def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : str ): self.generated_responses.append(__lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Optional[int] ): _UpperCAmelCase = f'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): _UpperCAmelCase = """user""" if is_user else """bot""" output += f'''{name} >> {text} \n''' return output @add_end_docstrings( lowerCAmelCase_ , R'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class a ( lowerCAmelCase_ ): def __init__( self : List[Any] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : Tuple ): super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) if self.tokenizer.pad_token_id is None: _UpperCAmelCase = self.tokenizer.eos_token def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , **__lowerCAmelCase : str ): _UpperCAmelCase = {} _UpperCAmelCase = {} _UpperCAmelCase = {} if min_length_for_response is not None: _UpperCAmelCase = min_length_for_response if minimum_tokens is not None: _UpperCAmelCase = minimum_tokens if "max_length" in generate_kwargs: _UpperCAmelCase = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _UpperCAmelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__lowerCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self : Tuple , __lowerCAmelCase : Union[Conversation, List[Conversation]] , __lowerCAmelCase : int=0 , **__lowerCAmelCase : List[str] ): _UpperCAmelCase = super().__call__(__lowerCAmelCase , num_workers=__lowerCAmelCase , **__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(__lowerCAmelCase ) == 1: return outputs[0] return outputs def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Conversation , __lowerCAmelCase : Optional[int]=32 ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( f'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): _UpperCAmelCase = self.tokenizer._build_conversation_input_ids(__lowerCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version _UpperCAmelCase = self._legacy_parse_and_tokenize(__lowerCAmelCase ) if self.framework == "pt": _UpperCAmelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": _UpperCAmelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str]=10 , **__lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length ) _UpperCAmelCase = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(f'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) _UpperCAmelCase = max_length - minimum_tokens _UpperCAmelCase = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: _UpperCAmelCase = model_inputs["""attention_mask"""][:, -trim:] _UpperCAmelCase = model_inputs.pop("""conversation""" ) _UpperCAmelCase = max_length _UpperCAmelCase = self.model.generate(**__lowerCAmelCase , **__lowerCAmelCase ) if self.model.config.is_encoder_decoder: _UpperCAmelCase = 1 else: _UpperCAmelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase_ ( self : str , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any]=True ): _UpperCAmelCase = model_outputs["""output_ids"""] _UpperCAmelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , ) _UpperCAmelCase = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__lowerCAmelCase ) return conversation def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Conversation ): _UpperCAmelCase = self.tokenizer.eos_token_id _UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) ) if len(__lowerCAmelCase ) > self.tokenizer.model_max_length: _UpperCAmelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
275
0
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = ["image_processor", "tokenizer"] UpperCAmelCase__ = "Pix2StructImageProcessor" UpperCAmelCase__ = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : Optional[Any] , __snake_case : Any , __snake_case : Any ) -> str: __magic_name__: Dict = False super().__init__(__snake_case , __snake_case ) def __call__( self : int , __snake_case : List[str]=None , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : Optional[int] = 2_0_4_8 , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Dict , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None and not self.image_processor.is_vqa: __magic_name__: Optional[int] = self.tokenizer __magic_name__: Optional[int] = self.tokenizer( text=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_token_type_ids=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values __magic_name__: Optional[int] = self.image_processor( __snake_case , return_tensors=__snake_case , max_patches=__snake_case , **__snake_case ) else: # add pixel_values and bbox __magic_name__: Optional[int] = self.image_processor( __snake_case , return_tensors=__snake_case , max_patches=__snake_case , header_text=__snake_case , **__snake_case ) if text is not None and not self.image_processor.is_vqa: __magic_name__: Optional[int] = self.tokenizer( text=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_token_type_ids=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) if "attention_mask" in text_encoding: __magic_name__: Optional[Any] = text_encoding.pop("""attention_mask""" ) if "input_ids" in text_encoding: __magic_name__: Tuple = text_encoding.pop("""input_ids""" ) else: __magic_name__: int = None if text_encoding is not None: encoding_image_processor.update(__snake_case ) return encoding_image_processor def lowerCamelCase__ ( self : List[Any] , *__snake_case : Optional[Any] , **__snake_case : Tuple ) -> Optional[int]: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCamelCase__ ( self : Optional[Any] , *__snake_case : Tuple , **__snake_case : Any ) -> List[str]: return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def lowerCamelCase__ ( self : List[Any] ) -> Union[str, Any]: __magic_name__: Dict = self.tokenizer.model_input_names __magic_name__: List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
96
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCamelCase : Union[str, Any] = ''' Human: <<task>> Assistant: ''' _lowerCamelCase : Optional[Any] = '''huggingface-tools/default-prompts''' _lowerCamelCase : int = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple="run" ): if prompt_or_repo_id is None: SCREAMING_SNAKE_CASE = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , UpperCAmelCase__ ) is not None: return prompt_or_repo_id SCREAMING_SNAKE_CASE = cached_file( UpperCAmelCase__ , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(UpperCAmelCase__ , "r" , encoding="utf-8" ) as f: return f.read()
403
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _lowercase = logging.get_logger(__name__) _lowercase = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) _lowercase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowerCAmelCase__ ( UpperCamelCase_ : str )-> Tuple: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: A__ = model_type_to_module_name(UpperCamelCase_ ) A__ = importlib.import_module(f".{module_name}" , '''transformers.models''' ) try: return getattr(UpperCamelCase_ , UpperCamelCase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(UpperCamelCase_ , '''__name__''' , UpperCamelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. A__ = importlib.import_module('''transformers''' ) if hasattr(UpperCamelCase_ , UpperCamelCase_ ): return getattr(UpperCamelCase_ , UpperCamelCase_ ) return None def lowerCAmelCase__ ( UpperCamelCase_ : Union[str, os.PathLike] , UpperCamelCase_ : Optional[Union[str, os.PathLike]] = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[Dict[str, str]] = None , UpperCamelCase_ : Optional[Union[bool, str]] = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : bool = False , **UpperCamelCase_ : Optional[Any] , )-> List[Any]: A__ = get_file_from_repo( UpperCamelCase_ , UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , resume_download=UpperCamelCase_ , proxies=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , local_files_only=UpperCamelCase_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(UpperCamelCase_ , encoding='''utf-8''' ) as reader: return json.load(UpperCamelCase_ ) class _UpperCAmelCase : def __init__( self): raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''') @classmethod @replace_list_option_in_docstrings(a__) def snake_case_ ( cls , a__ , **a__): A__ = kwargs.pop('''config''' , a__) A__ = kwargs.pop('''trust_remote_code''' , a__) A__ = True A__ , A__ = ImageProcessingMixin.get_image_processor_dict(a__ , **a__) A__ = config_dict.get('''image_processor_type''' , a__) A__ = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {}): A__ = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: A__ = config_dict.pop('''feature_extractor_type''' , a__) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''') A__ = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''') if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {}): A__ = config_dict['''auto_map''']['''AutoFeatureExtractor'''] A__ = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''') logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''') # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(a__ , a__): A__ = AutoConfig.from_pretrained(a__ , **a__) # It could be in `config.image_processor_type`` A__ = getattr(a__ , '''image_processor_type''' , a__) if hasattr(a__ , '''auto_map''') and "AutoImageProcessor" in config.auto_map: A__ = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: A__ = image_processor_class_from_name(a__) A__ = image_processor_auto_map is not None A__ = image_processor_class is not None or type(a__) in IMAGE_PROCESSOR_MAPPING A__ = resolve_trust_remote_code( a__ , a__ , a__ , a__) if has_remote_code and trust_remote_code: A__ = get_class_from_dynamic_module( a__ , a__ , **a__) A__ = kwargs.pop('''code_revision''' , a__) if os.path.isdir(a__): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(a__ , **a__) elif image_processor_class is not None: return image_processor_class.from_dict(a__ , **a__) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(a__) in IMAGE_PROCESSOR_MAPPING: A__ = IMAGE_PROCESSOR_MAPPING[type(a__)] return image_processor_class.from_dict(a__ , **a__) raise ValueError( F"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " F"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys())}") @staticmethod def snake_case_ ( a__ , a__): IMAGE_PROCESSOR_MAPPING.register(a__ , a__)
526
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase = 16 _lowercase = 32 def lowerCAmelCase__ ( UpperCamelCase_ : Accelerator , UpperCamelCase_ : int = 1_6 )-> List[str]: A__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(UpperCamelCase_ : Any ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( UpperCamelCase_ , batched=UpperCamelCase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(UpperCamelCase_ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 1_6 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( UpperCamelCase_ , padding='''longest''' , max_length=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets['''train'''] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) A__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple )-> Union[str, Any]: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , UpperCamelCase_ ) == "1": A__ = 2 # Initialize accelerator A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config['''lr'''] A__ = int(config['''num_epochs'''] ) A__ = int(config['''seed'''] ) A__ = int(config['''batch_size'''] ) A__ = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=UpperCamelCase_ ) def inner_training_loop(UpperCamelCase_ : Optional[int] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(UpperCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=UpperCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=UpperCamelCase_ ) A__ , A__ = get_dataloaders(UpperCamelCase_ , UpperCamelCase_ ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=UpperCamelCase_ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Now we train the model for epoch in range(UpperCamelCase_ ): model.train() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**UpperCamelCase_ ) A__ = outputs.loss accelerator.backward(UpperCamelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**UpperCamelCase_ ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=UpperCamelCase_ , references=UpperCamelCase_ , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , UpperCamelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def lowerCAmelCase__ ( )-> Optional[Any]: A__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=UpperCamelCase_ , default=UpperCamelCase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ = parser.parse_args() A__ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
526
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase): """simple docstring""" @slow def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: Optional[Any] = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) UpperCamelCase__: List[Any] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" UpperCamelCase__: List[str] = model(__lowerCamelCase )["last_hidden_state"] UpperCamelCase__: Optional[Any] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) # compare the actual values for a slice. UpperCamelCase__: List[Any] = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
380
import logging from transformers import PretrainedConfig A__: Dict = logging.getLogger(__name__) A__: List[Any] = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """bertabs""" def __init__( self: Any , __lowerCamelCase: Optional[int]=3_0522 , __lowerCamelCase: List[Any]=512 , __lowerCamelCase: Optional[Any]=6 , __lowerCamelCase: Optional[Any]=512 , __lowerCamelCase: List[str]=8 , __lowerCamelCase: List[Any]=512 , __lowerCamelCase: Optional[int]=0.2 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: Optional[Any]=768 , __lowerCamelCase: int=8 , __lowerCamelCase: Union[str, Any]=2048 , __lowerCamelCase: Dict=0.2 , **__lowerCamelCase: Dict , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) UpperCamelCase__: str = vocab_size UpperCamelCase__: Tuple = max_pos UpperCamelCase__: Union[str, Any] = enc_layers UpperCamelCase__: Optional[Any] = enc_hidden_size UpperCamelCase__: Optional[Any] = enc_heads UpperCamelCase__: Dict = enc_ff_size UpperCamelCase__: Tuple = enc_dropout UpperCamelCase__: Tuple = dec_layers UpperCamelCase__: int = dec_hidden_size UpperCamelCase__: int = dec_heads UpperCamelCase__: str = dec_ff_size UpperCamelCase__: Union[str, Any] = dec_dropout
380
1
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset SCREAMING_SNAKE_CASE_ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class a ( nn.Module ): def __init__( self , A_ ): '''simple docstring''' super().__init__() _UpperCAmelCase : List[str] = torchvision.models.resnetaaa(pretrained=A__ ) _UpperCAmelCase : Optional[Any] = list(model.children() )[:-2] _UpperCAmelCase : Any = nn.Sequential(*A__ ) _UpperCAmelCase : Dict = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Optional[int] = self.pool(self.model(A__ ) ) _UpperCAmelCase : Any = torch.flatten(A__ , start_dim=2 ) _UpperCAmelCase : Tuple = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class a ( __a ): def __init__( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = [json.loads(A__ ) for l in open(A__ )] _UpperCAmelCase : Tuple = os.path.dirname(A__ ) _UpperCAmelCase : Optional[Any] = tokenizer _UpperCAmelCase : Optional[int] = labels _UpperCAmelCase : Union[str, Any] = len(A__ ) _UpperCAmelCase : Union[str, Any] = max_seq_length _UpperCAmelCase : Optional[int] = transforms def __len__( self ): '''simple docstring''' return len(self.data ) def __getitem__( self , A_ ): '''simple docstring''' _UpperCAmelCase : Dict = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=A__ ) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = sentence[0], sentence[1:-1], sentence[-1] _UpperCAmelCase : Optional[int] = sentence[: self.max_seq_length] _UpperCAmelCase : int = torch.zeros(self.n_classes ) _UpperCAmelCase : int = 1 _UpperCAmelCase : Optional[int] = Image.open(os.path.join(self.data_dir , self.data[index]["img"] ) ).convert("RGB" ) _UpperCAmelCase : int = self.transforms(A__ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] ) -> str: _UpperCAmelCase : Any = [len(row["sentence"] ) for row in batch] _UpperCAmelCase , _UpperCAmelCase : Any = len(lowerCAmelCase ), max(lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = torch.zeros(lowerCAmelCase , lowerCAmelCase , dtype=torch.long ) _UpperCAmelCase : str = torch.zeros(lowerCAmelCase , lowerCAmelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(lowerCAmelCase , lowerCAmelCase ) ): _UpperCAmelCase : Tuple = input_row["sentence"] _UpperCAmelCase : Dict = 1 _UpperCAmelCase : Any = torch.stack([row["image"] for row in batch] ) _UpperCAmelCase : List[Any] = torch.stack([row["label"] for row in batch] ) _UpperCAmelCase : Optional[int] = torch.stack([row["image_start_token"] for row in batch] ) _UpperCAmelCase : List[Any] = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def __SCREAMING_SNAKE_CASE ( ) -> str: return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def __SCREAMING_SNAKE_CASE ( ) -> Any: return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
700
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() SCREAMING_SNAKE_CASE_ = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model SCREAMING_SNAKE_CASE_ = { # fairseq: 'wmt19-ru-en': {'length_penalty': 1.1}, 'wmt19-en-ru': {'length_penalty': 1.15}, 'wmt19-en-de': {'length_penalty': 1.0}, 'wmt19-de-en': {'length_penalty': 1.1}, # allenai: 'wmt16-en-de-dist-12-1': {'length_penalty': 0.6}, 'wmt16-en-de-dist-6-1': {'length_penalty': 0.6}, 'wmt16-en-de-12-1': {'length_penalty': 0.8}, 'wmt19-de-en-6-6-base': {'length_penalty': 0.6}, 'wmt19-de-en-6-6-big': {'length_penalty': 0.6}, } # this remaps the different models to their organization names SCREAMING_SNAKE_CASE_ = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: SCREAMING_SNAKE_CASE_ = 'facebook' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: SCREAMING_SNAKE_CASE_ = 'allenai' def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> List[Any]: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} _UpperCAmelCase : Optional[int] = dict((re.sub(R"@@$" , "" , lowerCAmelCase ), v) if k.endswith("@@" ) else (re.sub(R"$" , "</w>" , lowerCAmelCase ), v) for k, v in d.items() ) _UpperCAmelCase : Optional[int] = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] _UpperCAmelCase : Any = d[k] # restore return da def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] ) -> int: # prep assert os.path.exists(lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models _UpperCAmelCase : Optional[Any] = basename(lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = dirname(lowerCAmelCase ) _UpperCAmelCase : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel _UpperCAmelCase : Optional[int] = cls.hub_models() _UpperCAmelCase : Dict = {"bpe": "fastbpe", "tokenizer": "moses"} _UpperCAmelCase : Tuple = "." # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'using checkpoint {checkpoint_file}' ) _UpperCAmelCase : int = hub_utils.from_pretrained( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , archive_map=lowerCAmelCase , **lowerCAmelCase ) _UpperCAmelCase : Any = vars(chkpt["args"]["model"] ) _UpperCAmelCase : Optional[int] = args["source_lang"] _UpperCAmelCase : Dict = args["target_lang"] _UpperCAmelCase : int = dirname(lowerCAmelCase ) _UpperCAmelCase : str = basename(lowerCAmelCase ) # dicts _UpperCAmelCase : List[str] = os.path.join(lowerCAmelCase , F'dict.{src_lang}.txt' ) _UpperCAmelCase : Dict = os.path.join(lowerCAmelCase , F'dict.{tgt_lang}.txt' ) _UpperCAmelCase : Union[str, Any] = Dictionary.load(lowerCAmelCase ) _UpperCAmelCase : Any = rewrite_dict_keys(src_dict.indices ) _UpperCAmelCase : int = len(lowerCAmelCase ) _UpperCAmelCase : List[Any] = os.path.join(lowerCAmelCase , "vocab-src.json" ) print(F'Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records' ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(lowerCAmelCase , ensure_ascii=lowerCAmelCase , indent=lowerCAmelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab _UpperCAmelCase : Union[str, Any] = True for k in src_vocab.keys(): if not k.islower(): _UpperCAmelCase : Optional[int] = False break _UpperCAmelCase : Dict = Dictionary.load(lowerCAmelCase ) _UpperCAmelCase : List[str] = rewrite_dict_keys(tgt_dict.indices ) _UpperCAmelCase : Union[str, Any] = len(lowerCAmelCase ) _UpperCAmelCase : Dict = os.path.join(lowerCAmelCase , "vocab-tgt.json" ) print(F'Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records' ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(lowerCAmelCase , ensure_ascii=lowerCAmelCase , indent=lowerCAmelCase ) ) # merges_file (bpecodes) _UpperCAmelCase : int = os.path.join(lowerCAmelCase , VOCAB_FILES_NAMES["merges_file"] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" _UpperCAmelCase : Tuple = os.path.join(lowerCAmelCase , lowerCAmelCase ) if os.path.exists(lowerCAmelCase ): break with open(lowerCAmelCase , encoding="utf-8" ) as fin: _UpperCAmelCase : List[str] = fin.read() _UpperCAmelCase : str = re.sub(R" \d+$" , "" , lowerCAmelCase , 0 , re.M ) # remove frequency number print(F'Generating {merges_file}' ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as fout: fout.write(lowerCAmelCase ) # model config _UpperCAmelCase : int = os.path.join(lowerCAmelCase , "config.json" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'need to extend tokenizer to support bpe={args["bpe"]}' assert args["tokenizer"] == "moses", F'need to extend tokenizer to support bpe={args["tokenizer"]}' _UpperCAmelCase : Union[str, Any] = { "architectures": ["FSMTForConditionalGeneration"], "model_type": "fsmt", "activation_dropout": args["activation_dropout"], "activation_function": "relu", "attention_dropout": args["attention_dropout"], "d_model": args["decoder_embed_dim"], "dropout": args["dropout"], "init_std": 0.02, "max_position_embeddings": args["max_source_positions"], "num_hidden_layers": args["encoder_layers"], "src_vocab_size": src_vocab_size, "tgt_vocab_size": tgt_vocab_size, "langs": [src_lang, tgt_lang], "encoder_attention_heads": args["encoder_attention_heads"], "encoder_ffn_dim": args["encoder_ffn_embed_dim"], "encoder_layerdrop": args["encoder_layerdrop"], "encoder_layers": args["encoder_layers"], "decoder_attention_heads": args["decoder_attention_heads"], "decoder_ffn_dim": args["decoder_ffn_embed_dim"], "decoder_layerdrop": args["decoder_layerdrop"], "decoder_layers": args["decoder_layers"], "bos_token_id": 0, "pad_token_id": 1, "eos_token_id": 2, "is_encoder_decoder": True, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_all_embeddings"], } # good hparam defaults to start with _UpperCAmelCase : Union[str, Any] = 5 _UpperCAmelCase : str = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: _UpperCAmelCase : str = best_score_hparams[model_dir]["length_penalty"] else: _UpperCAmelCase : str = 1.0 print(F'Generating {fsmt_model_config_file}' ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(lowerCAmelCase , ensure_ascii=lowerCAmelCase , indent=lowerCAmelCase ) ) # tokenizer config _UpperCAmelCase : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) _UpperCAmelCase : str = { "langs": [src_lang, tgt_lang], "model_max_length": 1024, "do_lower_case": do_lower_case, } print(F'Generating {fsmt_tokenizer_config_file}' ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(lowerCAmelCase , ensure_ascii=lowerCAmelCase , indent=lowerCAmelCase ) ) # model _UpperCAmelCase : Optional[int] = chkpt["models"][0] _UpperCAmelCase : int = model.state_dict() # rename keys to start with 'model.' _UpperCAmelCase : Union[str, Any] = OrderedDict(("model." + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys _UpperCAmelCase : Any = [ "model.model", "model.encoder.version", "model.decoder.version", "model.encoder_embed_tokens.weight", "model.decoder_embed_tokens.weight", "model.encoder.embed_positions._float_tensor", "model.decoder.embed_positions._float_tensor", ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase , lowerCAmelCase ) _UpperCAmelCase : List[Any] = FSMTConfig.from_pretrained(lowerCAmelCase ) _UpperCAmelCase : List[Any] = FSMTForConditionalGeneration(lowerCAmelCase ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) # save _UpperCAmelCase : List[str] = os.path.join(lowerCAmelCase , lowerCAmelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCAmelCase , lowerCAmelCase ) print("Conversion is done!" ) print("\nLast step is to upload the files to s3" ) print(F'cd {data_root}' ) print(F'transformers-cli upload {model_dir}' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fsmt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
467
0
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCAmelCase : List[str] = logging.get_logger(__name__) class UpperCamelCase__ ( _a ): """simple docstring""" __magic_name__ = ["pixel_values"] def __init__( self , snake_case__ = True , snake_case__ = 1 / 255 , snake_case__ = True , snake_case__ = 8 , **snake_case__ , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = do_rescale _lowerCAmelCase : List[Any] = rescale_factor _lowerCAmelCase : Optional[Any] = do_pad _lowerCAmelCase : str = pad_size def a ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ ): '''simple docstring''' return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def a ( self , snake_case__ , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Any = get_image_size(__lowerCamelCase ) _lowerCAmelCase : str = (old_height // size + 1) * size - old_height _lowerCAmelCase : Tuple = (old_width // size + 1) * size - old_width return pad(__lowerCamelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__lowerCamelCase ) def a ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : Tuple = do_pad if do_pad is not None else self.do_pad _lowerCAmelCase : Optional[int] = pad_size if pad_size is not None else self.pad_size _lowerCAmelCase : Tuple = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCAmelCase : Dict = [to_numpy_array(__lowerCamelCase ) for image in images] if do_rescale: _lowerCAmelCase : str = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_pad: _lowerCAmelCase : Dict = [self.pad(__lowerCamelCase , size=__lowerCamelCase ) for image in images] _lowerCAmelCase : List[Any] = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] _lowerCAmelCase : int = {'pixel_values': images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
444
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ : Optional[Any] = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : int = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __magic_name__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
615
0
from __future__ import annotations from collections.abc import Generator def SCREAMING_SNAKE_CASE__ ( ) -> Generator[int, None, None]: _lowercase = {} _lowercase = 2 while True: _lowercase = factor_map.pop(snake_case__ , snake_case__ ) if factor: _lowercase = factor + prime while x in factor_map: x += factor _lowercase = factor else: _lowercase = prime yield prime prime += 1 def SCREAMING_SNAKE_CASE__ ( snake_case__ :float = 1E10 ) -> int: _lowercase = sieve() _lowercase = 1 while True: _lowercase = next(snake_case__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(snake_case__ ) n += 2 if __name__ == "__main__": print(solution())
703
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
535
0
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a__ : Dict = HfApi() a__ : List[str] = {} # fmt: off a__ : Dict = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) a__ : Dict = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) a__ : str = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) a__ : Dict = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) a__ : Any = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) a__ : Optional[int] = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) a__ : Optional[int] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) a__ : str = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) a__ : Union[str, Any] = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) a__ : int = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) a__ : List[str] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) a__ : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) a__ : Any = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) a__ : List[Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) a__ : List[Any] = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on a__ : Optional[Any] = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a__ : Tuple = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1] print(F"""Started running {mod.modelId}!!!""") if mod.modelId.startswith('CompVis'): a__ : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: a__ : List[Any] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a__ : Tuple = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a__ : int = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a__ : int = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1e-3 ) print(F"""{mod.modelId} has passed successfully!!!""")
51
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=5 ): # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''' ) == 1 A_ = torch.tensor(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ).unsqueeze(0 ) # Batch size 1 A_ = model(__UpperCamelCase )[0] # The last hidden-state is the first element of the output tuple A_ = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() A_ = logits[0, masked_index, :] A_ = logits.softmax(dim=0 ) A_ , A_ = prob.topk(k=__UpperCamelCase , dim=0 ) A_ = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__UpperCamelCase ) )] ) A_ = tokenizer.mask_token A_ = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): A_ = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(__UpperCamelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(__UpperCamelCase ) , __UpperCamelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__UpperCamelCase , __UpperCamelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs SCREAMING_SNAKE_CASE : Optional[int] = CamembertTokenizer.from_pretrained("camembert-base") SCREAMING_SNAKE_CASE : Optional[int] = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() SCREAMING_SNAKE_CASE : List[Any] = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
141
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Tuple = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
1
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __lowercase ): def __init__( self : Any , **_A : Optional[int] ): requires_backends(self , ['''bs4'''] ) super().__init__(**_A ) def UpperCamelCase_ ( self : Dict , _A : List[str] ): _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _UpperCamelCase = parent.find_all(child.name , recursive=_A ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_A ) else next(i for i, s in enumerate(_A , 1 ) if s is child ) ) _UpperCamelCase = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def UpperCamelCase_ ( self : List[Any] , _A : int ): _UpperCamelCase = BeautifulSoup(_A , '''html.parser''' ) _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = [] for element in html_code.descendants: if type(_A ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue _UpperCamelCase = html.unescape(_A ).strip() if not text_in_this_tag: continue all_doc_strings.append(_A ) _UpperCamelCase , _UpperCamelCase = self.xpath_soup(_A ) stringaxtag_seq.append(_A ) stringaxsubs_seq.append(_A ) if len(_A ) != len(_A ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_A ) != len(_A ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def UpperCamelCase_ ( self : int , _A : int , _A : int ): _UpperCamelCase = '''''' for tagname, subs in zip(_A , _A ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self : str , _A : Optional[Any] ): _UpperCamelCase = False # Check that strings has a valid type if isinstance(_A , _A ): _UpperCamelCase = True elif isinstance(_A , (list, tuple) ): if len(_A ) == 0 or isinstance(html_strings[0] , _A ): _UpperCamelCase = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F"""but is of type {type(_A )}.""" ) _UpperCamelCase = bool(isinstance(_A , (list, tuple) ) and (isinstance(html_strings[0] , _A )) ) if not is_batched: _UpperCamelCase = [html_strings] # Get nodes + xpaths _UpperCamelCase = [] _UpperCamelCase = [] for html_string in html_strings: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.get_three_from_single(_A ) nodes.append(_A ) _UpperCamelCase = [] for node, tag_list, sub_list in zip(_A , _A , _A ): _UpperCamelCase = self.construct_xpath(_A , _A ) xpath_strings.append(_A ) xpaths.append(_A ) # return as Dict _UpperCamelCase = {'''nodes''': nodes, '''xpaths''': xpaths} _UpperCamelCase = BatchFeature(data=_A , tensor_type=_A ) return encoded_inputs
10
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[str]: """simple docstring""" # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __UpperCAmelCase : Optional[Any] = TapasConfig.from_json_file(UpperCamelCase ) # set absolute/relative position embeddings parameter __UpperCAmelCase : Optional[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __UpperCAmelCase : List[str] = TapasForQuestionAnswering(config=UpperCamelCase ) elif task == "WTQ": # run_task_main.py hparams __UpperCAmelCase : Tuple = 4 __UpperCAmelCase : Any = True # hparam_utils.py hparams __UpperCAmelCase : Union[str, Any] = 0.664694 __UpperCAmelCase : Union[str, Any] = 0.207951 __UpperCAmelCase : int = 0.121194 __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : List[str] = True __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : List[str] = 0.0352513 __UpperCAmelCase : Optional[int] = TapasForQuestionAnswering(config=UpperCamelCase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __UpperCAmelCase : int = 4 __UpperCAmelCase : Optional[int] = False # hparam_utils.py hparams __UpperCAmelCase : int = 36.4519 __UpperCAmelCase : str = 0.903421 __UpperCAmelCase : Dict = 222.088 __UpperCAmelCase : Dict = True __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = 0.763141 __UpperCAmelCase : Optional[Any] = TapasForQuestionAnswering(config=UpperCamelCase ) elif task == "TABFACT": __UpperCAmelCase : Union[str, Any] = TapasForSequenceClassification(config=UpperCamelCase ) elif task == "MLM": __UpperCAmelCase : Tuple = TapasForMaskedLM(config=UpperCamelCase ) elif task == "INTERMEDIATE_PRETRAINING": __UpperCAmelCase : List[str] = TapasModel(config=UpperCamelCase ) else: raise ValueError(f"Task {task} not supported." ) print(f"Building PyTorch model from configuration: {config}" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Save pytorch-model (weights and configuration) print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(UpperCamelCase ) # Save tokenizer files print(f"Save tokenizer files to {pytorch_dump_path}" ) __UpperCAmelCase : str = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 ) tokenizer.save_pretrained(UpperCamelCase ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
77
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowerCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class UpperCAmelCase__ : '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[str] = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The column name of the images in the files."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1_5 , metadata={"help": "Percent to split off of train for validation."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self ): a ={} if self.train_dir is not None: a =self.train_dir if self.validation_dir is not None: a =self.validation_dir a =data_files if data_files else None @dataclass class UpperCAmelCase__ : '''simple docstring''' _SCREAMING_SNAKE_CASE : str = field( default=UpperCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=UpperCAmelCase__ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) _SCREAMING_SNAKE_CASE : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) _SCREAMING_SNAKE_CASE : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) _SCREAMING_SNAKE_CASE : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) _SCREAMING_SNAKE_CASE : float = field( default=0.7_5 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} ) _SCREAMING_SNAKE_CASE : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether or not to train with normalized pixel values as target."} ) @dataclass class UpperCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : float = field( default=1E-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} ) def lowerCamelCase ( UpperCAmelCase_ : Any )-> List[Any]: """simple docstring""" a =torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def lowerCamelCase ( )-> Any: """simple docstring""" a =HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a , a , a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a , a , a =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , UpperCAmelCase_ , UpperCAmelCase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a =training_args.get_process_log_level() logger.setLevel(UpperCAmelCase_ ) transformers.utils.logging.set_verbosity(UpperCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. a =None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase_ ) and data_args.train_val_split > 0.0: a =ds["""train"""].train_test_split(data_args.train_val_split ) a =split["""train"""] a =split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a ={ """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: a =ViTMAEConfig.from_pretrained(model_args.config_name , **UpperCAmelCase_ ) elif model_args.model_name_or_path: a =ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase_ ) else: a =ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: a =ViTImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCAmelCase_ ) elif model_args.model_name_or_path: a =ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase_ ) else: a =ViTImageProcessor() # create model if model_args.model_name_or_path: a =ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) a =ViTMAEForPreTraining(UpperCAmelCase_ ) if training_args.do_train: a =ds["""train"""].column_names else: a =ds["""validation"""].column_names if data_args.image_column_name is not None: a =data_args.image_column_name elif "image" in column_names: a ="""image""" elif "img" in column_names: a ="""img""" else: a =column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: a =image_processor.size["""shortest_edge"""] else: a =(image_processor.size["""height"""], image_processor.size["""width"""]) a =Compose( [ Lambda(lambda UpperCAmelCase_ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(UpperCAmelCase_ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(UpperCAmelCase_ : Union[str, Any] ): a =[transforms(UpperCAmelCase_ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: a =ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCAmelCase_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: a =( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCAmelCase_ ) # Compute absolute learning rate a =( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: a =training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer a =Trainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=UpperCAmelCase_ , data_collator=UpperCAmelCase_ , ) # Training if training_args.do_train: a =None if training_args.resume_from_checkpoint is not None: a =training_args.resume_from_checkpoint elif last_checkpoint is not None: a =last_checkpoint a =trainer.train(resume_from_checkpoint=UpperCAmelCase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: a =trainer.evaluate() trainer.log_metrics("""eval""" , UpperCAmelCase_ ) trainer.save_metrics("""eval""" , UpperCAmelCase_ ) # Write model card and (optionally) push to hub a ={ """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase_ ) else: trainer.create_model_card(**UpperCAmelCase_ ) def lowerCamelCase ( UpperCAmelCase_ : List[str] )-> int: """simple docstring""" main() if __name__ == "__main__": main()
321
import argparse import copy def lowerCamelCase ( UpperCAmelCase_ : str )-> str: """simple docstring""" a ={} with open(UpperCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: a =[] _list.append([line.split()[1], line.split()[2]] ) a =_list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: a =[] _list.append([line.split()[0], line.split()[2]] ) a =_list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] )-> Optional[int]: """simple docstring""" with open(UpperCAmelCase_ ) as f: a =f.read(1 ) a =start_node a =[] a =start_node a =0 while visiting not in first_solution: a =1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(UpperCAmelCase_ ) and k[0] not in first_solution: a =k[1] a =k[0] first_solution.append(UpperCAmelCase_ ) a =distance_of_first_solution + int(UpperCAmelCase_ ) a =best_node first_solution.append(UpperCAmelCase_ ) a =0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 a =( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any )-> Any: """simple docstring""" a =[] for n in solution[1:-1]: a =solution.index(UpperCAmelCase_ ) for kn in solution[1:-1]: a =solution.index(UpperCAmelCase_ ) if n == kn: continue a =copy.deepcopy(UpperCAmelCase_ ) a =kn a =n a =0 for k in _tmp[:-1]: a =_tmp[_tmp.index(UpperCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: a =distance + int(i[1] ) _tmp.append(UpperCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) a =len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda UpperCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowerCamelCase ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str )-> int: """simple docstring""" a =1 a =first_solution a =[] a =distance_of_first_solution a =solution while count <= iters: a =find_neighborhood(UpperCAmelCase_ , UpperCAmelCase_ ) a =0 a =neighborhood[index_of_best_solution] a =len(UpperCAmelCase_ ) - 1 a =False while not found: a =0 while i < len(UpperCAmelCase_ ): if best_solution[i] != solution[i]: a =best_solution[i] a =solution[i] break a =i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) a =True a =best_solution[:-1] a =neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: a =cost a =solution else: a =index_of_best_solution + 1 a =neighborhood[index_of_best_solution] if len(UpperCAmelCase_ ) >= size: tabu_list.pop(0 ) a =count + 1 return best_solution_ever, best_cost def lowerCamelCase ( UpperCAmelCase_ : Optional[Any]=None )-> List[str]: """simple docstring""" a =generate_neighbours(args.File ) a , a =generate_first_solution( args.File , UpperCAmelCase_ ) a , a =tabu_search( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
321
1
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def a_ ( lowerCamelCase : Sequence[float] , lowerCamelCase : int , lowerCamelCase : int ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] lowerCAmelCase = (low + high) // 2 lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = max_subarray(a__ , a__ , a__ ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = max_subarray(a__ , mid + 1 , a__ ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = max_cross_sum(a__ , a__ , a__ , a__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def a_ ( lowerCamelCase : Sequence[float] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): lowerCAmelCase , lowerCAmelCase = float('-inf' ), -1 lowerCAmelCase , lowerCAmelCase = float('-inf' ), -1 lowerCAmelCase = 0 for i in range(a__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: lowerCAmelCase = summ lowerCAmelCase = i lowerCAmelCase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: lowerCAmelCase = summ lowerCAmelCase = i return max_left, max_right, (left_sum + right_sum) def a_ ( lowerCamelCase : int ): lowerCAmelCase = [randint(1 , a__ ) for _ in range(a__ )] lowerCAmelCase = time.time() max_subarray(a__ , 0 , input_size - 1 ) lowerCAmelCase = time.time() return end - start def a_ ( ): lowerCAmelCase = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000] lowerCAmelCase = [time_max_subarray(a__ ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(a__ , a__ ): print(a__ , '\t\t' , a__ ) plt.plot(a__ , a__ ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
133
"""simple docstring""" from __future__ import annotations def lowercase ( a__ : list[float] , a__ : list[float] ) -> float: _UpperCamelCase = sorted(numsa + numsa ) _UpperCamelCase , _UpperCamelCase = divmod(len(a__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase = [float(x) for x in input("""Enter the elements of first array: """).split()] UpperCAmelCase = [float(x) for x in input("""Enter the elements of second array: """).split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
420
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase = 1_00 ,): """simple docstring""" _UpperCAmelCase = x_start _UpperCAmelCase = fnc(lowerCamelCase__ ) _UpperCAmelCase = 0.0 for _ in range(lowerCamelCase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase = (x_end - x_start) / steps + xa _UpperCAmelCase = fnc(lowerCamelCase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase = xa _UpperCAmelCase = fxa return area if __name__ == "__main__": def __UpperCAmelCase ( lowercase ): """simple docstring""" return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") UpperCAmelCase__ = 1_0 while i <= 1_0_0_0_0_0: print(F'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 1_0
710
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = abs(lowercase ) _UpperCAmelCase = 0 while n > 0: res += n % 10 n //= 10 return res def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = abs(lowercase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __UpperCAmelCase ( lowercase ): """simple docstring""" return sum(int(lowercase ) for c in str(abs(lowercase ) ) ) def __UpperCAmelCase ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase ,lowercase ) -> None: _UpperCAmelCase = f'''{func.__name__}({value})''' _UpperCAmelCase = timeit(f'''__main__.{call}''' ,setup="""import __main__""" ) print(f'''{call:56} = {func(lowercase )} -- {timing:.4f} seconds''' ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(lowercase ,lowercase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
275
0
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class UpperCamelCase (unittest.TestCase ): def __snake_case ( self :Tuple ) ->Tuple: lowercase : str = """hf-internal-testing/tiny-random-t5""" lowercase : List[Any] = AutoTokenizer.from_pretrained(__magic_name__ ) lowercase : List[str] = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ ) lowercase : int = tokenizer("""This is me""" , return_tensors="""pt""" ) lowercase : Optional[int] = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowercase : Any = model.generate(**__magic_name__ ) lowercase : Optional[int] = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__magic_name__ ) lowercase : Dict = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowercase : List[Any] = model_reloaded.generate(**__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ ) ) def __snake_case ( self :int ) ->Optional[Any]: lowercase : List[str] = """hf-internal-testing/tiny-random-t5""" lowercase : str = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ ) lowercase : Union[str, Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__magic_name__ ): model.save_pretrained(__magic_name__ ) lowercase : List[str] = model.reverse_bettertransformer() model.save_pretrained(__magic_name__ )
264
from __future__ import annotations from typing import Any def A__ ( _a : list[Any] ): '''simple docstring''' create_state_space_tree(_a , [] , 0 ) def A__ ( _a : list[Any] , _a : list[Any] , _a : int ): '''simple docstring''' if index == len(_a ): print(_a ) return create_state_space_tree(_a , _a , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_a , _a , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __lowerCamelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
385
0
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __A =logging.get_logger(__name__) def _UpperCamelCase ( ): # Get the sagemaker specific mp parameters from smp_options variable. UpperCAmelCase__ : Any = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. UpperCAmelCase__ : Tuple = json.loads(UpperCamelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. UpperCAmelCase__ : Optional[int] = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". UpperCAmelCase__ : List[str] = json.loads(UpperCamelCase__ ) if not mpi_options.get("""sagemaker_mpi_enabled""" , UpperCamelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _snake_case ( a__ ): lowerCAmelCase :str = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def snake_case__ ( self): super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , _lowerCamelCase , ) @cached_property def snake_case__ ( self): logger.info("""PyTorch: setting up devices""") if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""") if self.no_cuda: UpperCAmelCase__ : List[Any] = torch.device("""cpu""") UpperCAmelCase__ : Optional[int] = 0 elif is_sagemaker_model_parallel_available(): UpperCAmelCase__ : str = smp.local_rank() UpperCAmelCase__ : Any = torch.device("""cuda""" , _lowerCamelCase) UpperCAmelCase__ : Dict = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta) UpperCAmelCase__ : Union[str, Any] = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""")) UpperCAmelCase__ : int = torch.device("""cuda""" , self.local_rank) UpperCAmelCase__ : Dict = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 UpperCAmelCase__ : int = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""") # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. UpperCAmelCase__ : int = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta) UpperCAmelCase__ : Dict = torch.device("""cuda""" , self.local_rank) UpperCAmelCase__ : Tuple = 1 if device.type == "cuda": torch.cuda.set_device(_lowerCamelCase) return device @property def snake_case__ ( self): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def snake_case__ ( self): return not is_sagemaker_model_parallel_available() @property def snake_case__ ( self): return False
113
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A =logging.get_logger(__name__) __A ={ 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class _snake_case ( a__ ): lowerCAmelCase :Any = '''xlm''' lowerCAmelCase :Any = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self , _lowerCamelCase=3_0145 , _lowerCamelCase=2048 , _lowerCamelCase=12 , _lowerCamelCase=16 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=True , _lowerCamelCase=512 , _lowerCamelCase=2048**-0.5 , _lowerCamelCase=1e-1_2 , _lowerCamelCase=0.02 , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=5 , _lowerCamelCase=True , _lowerCamelCase="first" , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=0.1 , _lowerCamelCase=5 , _lowerCamelCase=5 , _lowerCamelCase=0 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=0 , **_lowerCamelCase , ): UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : Tuple = emb_dim UpperCAmelCase__ : Optional[Any] = n_layers UpperCAmelCase__ : List[str] = n_heads UpperCAmelCase__ : List[str] = dropout UpperCAmelCase__ : Optional[int] = attention_dropout UpperCAmelCase__ : Tuple = gelu_activation UpperCAmelCase__ : Optional[Any] = sinusoidal_embeddings UpperCAmelCase__ : int = causal UpperCAmelCase__ : Union[str, Any] = asm UpperCAmelCase__ : Optional[Any] = n_langs UpperCAmelCase__ : List[Any] = use_lang_emb UpperCAmelCase__ : Union[str, Any] = layer_norm_eps UpperCAmelCase__ : List[str] = bos_index UpperCAmelCase__ : List[Any] = eos_index UpperCAmelCase__ : int = pad_index UpperCAmelCase__ : str = unk_index UpperCAmelCase__ : Dict = mask_index UpperCAmelCase__ : str = is_encoder UpperCAmelCase__ : Dict = max_position_embeddings UpperCAmelCase__ : Any = embed_init_std UpperCAmelCase__ : List[Any] = init_std UpperCAmelCase__ : List[str] = summary_type UpperCAmelCase__ : Union[str, Any] = summary_use_proj UpperCAmelCase__ : Any = summary_activation UpperCAmelCase__ : List[str] = summary_proj_to_labels UpperCAmelCase__ : Union[str, Any] = summary_first_dropout UpperCAmelCase__ : str = start_n_top UpperCAmelCase__ : str = end_n_top UpperCAmelCase__ : Tuple = mask_token_id UpperCAmelCase__ : Union[str, Any] = lang_id if "n_words" in kwargs: UpperCAmelCase__ : List[str] = kwargs["""n_words"""] super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , **_lowerCamelCase) class _snake_case ( a__ ): @property def snake_case__ ( self): if self.task == "multiple-choice": UpperCAmelCase__ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase__ : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ])
113
1
'''simple docstring''' class __lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] ,_a : int ): '''simple docstring''' A_ : int = size A_ : Dict = [0] * size A_ : Any = [0] * size @staticmethod def _a ( _a : int ): '''simple docstring''' return index | (index + 1) @staticmethod def _a ( _a : int ): '''simple docstring''' return (index & (index + 1)) - 1 def _a ( self : List[Any] ,_a : int ,_a : int ): '''simple docstring''' A_ : Tuple = value while index < self.size: A_ : Optional[int] = self.get_prev(_a ) + 1 if current_left_border == index: A_ : Dict = value else: A_ : Tuple = max(_a ,_a ,_a ) A_ : List[str] = self.get_next(_a ) def _a ( self : List[str] ,_a : int ,_a : int ): '''simple docstring''' right -= 1 # Because of right is exclusive A_ : List[Any] = 0 while left <= right: A_ : List[str] = self.get_prev(_a ) if left <= current_left: A_ : int = max(_a ,self.tree[right] ) A_ : int = current_left else: A_ : str = max(_a ,self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
665
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : str): A_ : Any = len(lowerCamelCase) A_ : Optional[Any] = len(lowerCamelCase) A_ : Optional[int] = [[False for _ in range(m + 1)] for _ in range(n + 1)] A_ : Union[str, Any] = True for i in range(lowerCamelCase): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: A_ : Optional[int] = True if a[i].islower(): A_ : List[Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
665
1
from __future__ import annotations def snake_case_ ( snake_case , snake_case , snake_case , ) -> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative in a semiconductor' ) elif hole_conc < 0: raise ValueError('Hole concentration cannot be negative in a semiconductor' ) elif intrinsic_conc < 0: raise ValueError( 'Intrinsic concentration cannot be negative in a semiconductor' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
706
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
0
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowerCamelCase__ ( unittest.TestCase , _a ): def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' __lowercase = load_tool("""text-classification""" ) self.tool.setup() __lowercase = load_tool("""text-classification""" , remote=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' __lowercase = self.tool("""That\'s quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(_SCREAMING_SNAKE_CASE , """positive""" ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.remote_tool("""That\'s quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(_SCREAMING_SNAKE_CASE , """positive""" ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = self.tool(text="""That\'s quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(_SCREAMING_SNAKE_CASE , """positive""" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.remote_tool(text="""That\'s quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(_SCREAMING_SNAKE_CASE , """positive""" )
616
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ :Tuple = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :List[Any] = ['''DeiTFeatureExtractor'''] lowerCAmelCase__ :Union[str, Any] = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Union[str, Any] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys lowerCAmelCase__ :List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
618
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = FileLock(str(tmpdir / "foo.lock" ) ) SCREAMING_SNAKE_CASE_ = FileLock(str(tmpdir / "foo.lock" ) ) SCREAMING_SNAKE_CASE_ = 0.01 with locka.acquire(): with pytest.raises(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = time.time() locka.acquire(__UpperCamelCase ) assert time.time() - _start > timeout def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = "a" * 1_0_0_0 + ".lock" SCREAMING_SNAKE_CASE_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(__UpperCamelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 SCREAMING_SNAKE_CASE_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__UpperCamelCase ): locka.acquire(0 )
705
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = logging.get_logger() # the current default level is logging.WARNING SCREAMING_SNAKE_CASE_ = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(__magic_name__ ) def __A ( self : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = logging.get_verbosity() SCREAMING_SNAKE_CASE_ = logging.get_logger("transformers.models.bart.tokenization_bart" ) SCREAMING_SNAKE_CASE_ = "Testing 1, 2, 3" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(__magic_name__ ) as cl: logger.warning(__magic_name__ ) self.assertEqual(cl.out , msg + "\n" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(__magic_name__ ) as cl: logger.warning(__magic_name__ ) self.assertEqual(cl.out , "" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(__magic_name__ ) as cl: logger.warning(__magic_name__ ) self.assertEqual(cl.out , msg + "\n" ) # restore to the original level logging.set_verbosity(__magic_name__ ) @mockenv(TRANSFORMERS_VERBOSITY="error" ) def __A ( self : int ) -> Optional[Any]: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var SCREAMING_SNAKE_CASE_ = logging.get_logger("transformers.models.bart.tokenization_bart" ) SCREAMING_SNAKE_CASE_ = os.getenv("TRANSFORMERS_VERBOSITY" , __magic_name__ ) SCREAMING_SNAKE_CASE_ = logging.log_levels[env_level_str] SCREAMING_SNAKE_CASE_ = logging.get_verbosity() self.assertEqual( __magic_name__ , __magic_name__ , F'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level SCREAMING_SNAKE_CASE_ = "" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="super-error" ) def __A ( self : Dict ) -> List[Any]: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE_ = logging.logging.getLogger() with CaptureLogger(__magic_name__ ) as cl: # this action activates the env var logging.get_logger("transformers.models.bart.tokenization_bart" ) self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error" , cl.out ) # no need to restore as nothing was changed def __A ( self : Dict ) -> Optional[int]: # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE_ = logging.get_logger("transformers.models.bart.tokenization_bart" ) SCREAMING_SNAKE_CASE_ = "Testing 1, 2, 3" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ): # nothing should be logged as env var disables this method with CaptureLogger(__magic_name__ ) as cl: logger.warning_advice(__magic_name__ ) self.assertEqual(cl.out , "" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(__magic_name__ ) as cl: logger.warning_advice(__magic_name__ ) self.assertEqual(cl.out , msg + "\n" ) def a__ ( ): disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
356
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : int=32 * 4 , UpperCAmelCase_ : str=32 * 6 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=32 , ): SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : Union[str, Any] = use_auxiliary_loss SCREAMING_SNAKE_CASE : Tuple = num_queries SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : Any = min_size SCREAMING_SNAKE_CASE : Union[str, Any] = max_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_labels SCREAMING_SNAKE_CASE : Tuple = mask_feature_size def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase_ ) > 0.5 ).float() SCREAMING_SNAKE_CASE : Optional[Any] = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase_ ) > 0.5).long() SCREAMING_SNAKE_CASE : List[str] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _A ( self : Any ): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def _A ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = output.encoder_hidden_states SCREAMING_SNAKE_CASE : List[Any] = output.pixel_decoder_hidden_states SCREAMING_SNAKE_CASE : str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCAmelCase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase_ ) , config.decoder_config.decoder_layers ) def _A ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str]=False ): with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = MaskFormerModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(pixel_values=UpperCAmelCase_ , pixel_mask=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : Optional[int] = MaskFormerForInstanceSegmentation(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() def comm_check_on_output(UpperCAmelCase_ : int ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(pixel_values=UpperCAmelCase_ , pixel_mask=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(UpperCAmelCase_ ) comm_check_on_output(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model( pixel_values=UpperCAmelCase_ , pixel_mask=UpperCAmelCase_ , mask_labels=UpperCAmelCase_ , class_labels=UpperCAmelCase_ ) comm_check_on_output(UpperCAmelCase_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCamelCase_ : List[str] = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCamelCase_ : int = False UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : int = False UpperCamelCase_ : Optional[Any] = False def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Any = MaskFormerModelTester(self ) SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ ) def _A ( self : List[str] ): self.config_tester.run_common_tests() def _A ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase_ , **UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase_ ) @unittest.skip(reason="MaskFormer does not use inputs_embeds" ) def _A ( self : List[str] ): pass @unittest.skip(reason="MaskFormer does not have a get_input_embeddings method" ) def _A ( self : Optional[int] ): pass @unittest.skip(reason="MaskFormer is not a generative model" ) def _A ( self : List[str] ): pass @unittest.skip(reason="MaskFormer does not use token embeddings" ) def _A ( self : Union[str, Any] ): pass @require_torch_multi_gpu @unittest.skip( reason="MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _A ( self : List[Any] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _A ( self : Tuple ): pass def _A ( self : Any ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) @slow def _A ( self : List[Any] ): for model_name in ["facebook/maskformer-swin-small-coco"]: SCREAMING_SNAKE_CASE : Any = MaskFormerModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : List[str] = (self.model_tester.min_size,) * 2 SCREAMING_SNAKE_CASE : Any = { "pixel_values": torch.randn((2, 3, *size) , device=UpperCAmelCase_ ), "mask_labels": torch.randn((2, 10, *size) , device=UpperCAmelCase_ ), "class_labels": torch.zeros(2 , 10 , device=UpperCAmelCase_ ).long(), } SCREAMING_SNAKE_CASE : Tuple = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = model(**UpperCAmelCase_ ) self.assertTrue(outputs.loss is not None ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase_ , **UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class(UpperCAmelCase_ ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = model(**UpperCAmelCase_ , output_attentions=UpperCAmelCase_ ) self.assertTrue(outputs.attentions is not None ) def _A ( self : Tuple ): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss SCREAMING_SNAKE_CASE : str = self.all_model_classes[1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Dict = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.train() SCREAMING_SNAKE_CASE : Dict = model(UpperCAmelCase_ , mask_labels=UpperCAmelCase_ , class_labels=UpperCAmelCase_ ).loss loss.backward() def _A ( self : Optional[Any] ): # only MaskFormerForInstanceSegmentation has the loss SCREAMING_SNAKE_CASE : str = self.all_model_classes[1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Optional[int] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.train() SCREAMING_SNAKE_CASE : Tuple = model(UpperCAmelCase_ , mask_labels=UpperCAmelCase_ , class_labels=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE : str = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't SCREAMING_SNAKE_CASE : List[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE : List[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCAmelCase_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) snake_case = 1e-4 def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _A ( self : Tuple ): return ( MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-small-coco" ) if is_vision_available() else None ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : List[Any] = MaskFormerModel.from_pretrained("facebook/maskformer-swin-small-coco" ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = self.default_image_processor SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase_ , (1, 3, 800, 1088) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(UpperCAmelCase_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : int = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(UpperCAmelCase_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(UpperCAmelCase_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(UpperCAmelCase_ ) .eval() ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : List[str] = prepare_img() SCREAMING_SNAKE_CASE : List[str] = image_processor(UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase_ , (1, 3, 800, 1088) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**UpperCAmelCase_ ) # masks_queries_logits SCREAMING_SNAKE_CASE : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) SCREAMING_SNAKE_CASE : Optional[int] = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(UpperCAmelCase_ ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) # class_queries_logits SCREAMING_SNAKE_CASE : int = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [ [1.6_512E00, -5.2_572E00, -3.3_519E00], [3.6_169E-02, -5.9_025E00, -2.9_313E00], [1.0_766E-04, -7.7_630E00, -5.1_263E00], ] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) def _A ( self : int ): SCREAMING_SNAKE_CASE : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-resnet101-coco-stuff" ) .to(UpperCAmelCase_ ) .eval() ) SCREAMING_SNAKE_CASE : int = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase_ , (1, 3, 800, 1088) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**UpperCAmelCase_ ) # masks_queries_logits SCREAMING_SNAKE_CASE : int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) SCREAMING_SNAKE_CASE : Dict = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(UpperCAmelCase_ ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) # class_queries_logits SCREAMING_SNAKE_CASE : str = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(UpperCAmelCase_ ) .eval() ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[Any] = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) SCREAMING_SNAKE_CASE : Dict = inputs["pixel_values"].to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [el.to(UpperCAmelCase_ ) for el in inputs["mask_labels"]] SCREAMING_SNAKE_CASE : Optional[int] = [el.to(UpperCAmelCase_ ) for el in inputs["class_labels"]] with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(**UpperCAmelCase_ ) self.assertTrue(outputs.loss is not None )
62
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
62
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = False ): if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis lowerCamelCase__ : Dict = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] lowerCamelCase__ : str = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_lowerCamelCase , 1 ): if n < _p: # then we have our last prime to check lowerCamelCase__ : Any = primes[:idx] break lowerCamelCase__ , lowerCamelCase__ : int = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCamelCase__ : Optional[Any] = False for r in range(_lowerCamelCase ): lowerCamelCase__ : Any = pow(_lowerCamelCase , d * 2**r , _lowerCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCamelCase__ : Dict = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowerCamelCase_ ( ): assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
696
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = 1_0_0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = True, ): '''simple docstring''' if audio_length_in_s is None: lowerCamelCase__ : str = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase__ : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase__ : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCamelCase__ : Dict = int(lowerCamelCase_ ) if sample_size % down_scale_factor != 0: lowerCamelCase__ : Union[str, Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ' process.' ) lowerCamelCase__ : Optional[Any] = int(lowerCamelCase_ ) lowerCamelCase__ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase__ : Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase_, lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ : Union[str, Any] = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_, device=self.device, dtype=lowerCamelCase_ ) # set step values self.scheduler.set_timesteps(lowerCamelCase_, device=audio.device ) lowerCamelCase__ : int = self.scheduler.timesteps.to(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase__ : List[Any] = self.unet(lowerCamelCase_, lowerCamelCase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase__ : List[str] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample lowerCamelCase__ : Union[str, Any] = audio.clamp(-1, 1 ).float().cpu().numpy() lowerCamelCase__ : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase_ )
696
1
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = CpmAntTokenizer lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->List[str]: '''simple docstring''' super().setUp() lowerCamelCase__: Optional[int] =[ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] lowerCamelCase__: Any =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) @tooslow def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[Any] =CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b") lowerCamelCase__: Union[str, Any] ="今天天气真好!" lowerCamelCase__: int =["今天", "天气", "真", "好", "!"] lowerCamelCase__: List[str] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Dict ="今天天气真好!" lowerCamelCase__: str =[tokenizer.bos_token] + tokens lowerCamelCase__: Union[str, Any] =[6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_) lowerCamelCase__: Tuple =tokenizer.decode(UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_)
59
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _UpperCAmelCase ( A , A , A , A=1024 ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ =[], [] UpperCAmelCase__ =list(zip(A , A ) ) UpperCAmelCase__ , UpperCAmelCase__ =sorted_examples[0] def is_too_big(A ): return tok(A , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): UpperCAmelCase__ =new_src + " " + src UpperCAmelCase__ =new_tgt + " " + tgt if is_too_big(A ) or is_too_big(A ): # cant fit, finalize example finished_src.append(A ) finished_tgt.append(A ) UpperCAmelCase__ , UpperCAmelCase__ =src, tgt else: # can fit, keep adding UpperCAmelCase__ , UpperCAmelCase__ =cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(A ) finished_tgt.append(A ) return finished_src, finished_tgt def _UpperCAmelCase ( A , A , A , A ): '''simple docstring''' UpperCAmelCase__ =Path(A ) save_path.mkdir(exist_ok=A ) for split in ["train"]: UpperCAmelCase__ , UpperCAmelCase__ =data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" UpperCAmelCase__ =[x.rstrip() for x in Path(A ).open().readlines()] UpperCAmelCase__ =[x.rstrip() for x in Path(A ).open().readlines()] UpperCAmelCase__ , UpperCAmelCase__ =pack_examples(A , A , A , A ) print(F"""packed {split} split from {len(A )} examples -> {len(A )}.""" ) Path(save_path / F"""{split}.source""" ).open("w" ).write("\n".join(A ) ) Path(save_path / F"""{split}.target""" ).open("w" ).write("\n".join(A ) ) for split in ["val", "test"]: UpperCAmelCase__ , UpperCAmelCase__ =data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(A , save_path / F"""{split}.source""" ) shutil.copyfile(A , save_path / F"""{split}.target""" ) def _UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ =argparse.ArgumentParser() parser.add_argument("--tok_name" , type=A , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=A , default=128 ) parser.add_argument("--data_dir" , type=A ) parser.add_argument("--save_path" , type=A ) UpperCAmelCase__ =parser.parse_args() UpperCAmelCase__ =AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(A , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
625
0
"""simple docstring""" def __lowerCamelCase ( lowerCAmelCase__ ): A__ = 1 for i in range(1 ,num + 1 ): fact *= i return fact def __lowerCamelCase ( lowerCAmelCase__ ): A__ = 0 while number > 0: A__ = number % 10 sum_of_digits += last_digit A__ = number // 10 # Removing the last_digit from the given number return sum_of_digits def __lowerCamelCase ( lowerCAmelCase__ = 100 ): A__ = factorial(_lowerCamelCase ) A__ = split_and_add(_lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
700
"""simple docstring""" import os import numpy import onnx def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ): A__ = a.name A__ = b.name A__ = '' A__ = '' A__ = a == b A__ = name_a A__ = name_b return res def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCAmelCase__ ,lowerCAmelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g ,lowerCAmelCase__ ,lowerCAmelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g ,lowerCAmelCase__ ,lowerCAmelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g ,lowerCAmelCase__ ,lowerCAmelCase__ ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): for n in graph_proto.node: _node_replace_input_with(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): A__ = list(model.graph.initializer ) A__ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i A__ = inits[i].name A__ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph ,lowerCAmelCase__ ,lowerCAmelCase__ ) def __lowerCamelCase ( lowerCAmelCase__ ): A__ = os.path.dirname(lowerCAmelCase__ ) A__ = os.path.basename(lowerCAmelCase__ ) A__ = onnx.load(os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) ) A__ = list(model.graph.initializer ) A__ = set() A__ = {} A__ = [] A__ = 0 for i in range(len(lowerCAmelCase__ ) ): if i in dup_set: continue for j in range(i + 1 ,len(lowerCAmelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] ,inits[j] ): dup_set.add(lowerCAmelCase__ ) dup_set.add(lowerCAmelCase__ ) A__ = inits[j].data_type A__ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' ,lowerCAmelCase__ ) total_reduced_size += mem_size A__ = inits[i].name A__ = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCAmelCase__ ) else: A__ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' ,total_reduced_size / 1024 / 1024 / 1024 ,'GB' ) A__ = sorted(lowerCAmelCase__ ) _remove_dup_initializers_from_model(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) A__ = 'optimized_' + model_file_name A__ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) onnx.save(lowerCAmelCase__ ,lowerCAmelCase__ ) return new_model
554
0
"""simple docstring""" import random from typing import Any def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list[Any]: '''simple docstring''' for _ in range(len(__lowerCAmelCase ) ): lowercase_ = random.randint(0 , len(__lowerCAmelCase ) - 1 ) lowercase_ = random.randint(0 , len(__lowerCAmelCase ) - 1 ) lowercase_ , lowercase_ = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase : List[Any] = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase : Optional[Any] = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
567
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase : List[str] = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "facebook/nllb-200-distilled-600M" lowercase__ = ( "This is a tool that translates text from a language to another. It takes three inputs: `text`, which should " "be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, " "which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in " "plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`." ) lowercase__ = "translator" lowercase__ = AutoTokenizer lowercase__ = AutoModelForSeqaSeqLM lowercase__ = LANGUAGE_CODES lowercase__ = ["text", "text", "text"] lowercase__ = ["text"] def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple): """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''') if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''') lowercase_ = self.lang_to_code[src_lang] lowercase_ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase_ , return_tensors="""pt""" , src_lang=lowerCAmelCase_ , tgt_lang=lowerCAmelCase_) def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : int): """simple docstring""" return self.model.generate(**lowerCAmelCase_) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str): """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase_)
567
1
def _lowerCamelCase( UpperCamelCase__ : int , UpperCamelCase__ : list ) -> Union[str, Any]: _enforce_args(UpperCamelCase__ , UpperCamelCase__ ) if n == 0: return 0 A : Dict = float('''-inf''' ) for i in range(1 , n + 1 ): A : int = max( UpperCamelCase__ , prices[i - 1] + naive_cut_rod_recursive(n - i , UpperCamelCase__ ) ) return max_revue def _lowerCamelCase( UpperCamelCase__ : int , UpperCamelCase__ : list ) -> Any: _enforce_args(UpperCamelCase__ , UpperCamelCase__ ) A : Union[str, Any] = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowerCamelCase( UpperCamelCase__ : int , UpperCamelCase__ : list , UpperCamelCase__ : list ) -> Any: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: A : int = float('''-inf''' ) for i in range(1 , n + 1 ): A : Tuple = max( UpperCamelCase__ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , UpperCamelCase__ , UpperCamelCase__ ) , ) A : str = max_revenue return max_rev[n] def _lowerCamelCase( UpperCamelCase__ : int , UpperCamelCase__ : list ) -> str: _enforce_args(UpperCamelCase__ , UpperCamelCase__ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. A : Dict = [float('''-inf''' ) for _ in range(n + 1 )] A : Dict = 0 for i in range(1 , n + 1 ): A : Any = max_rev[i] for j in range(1 , i + 1 ): A : int = max(UpperCamelCase__ , prices[j - 1] + max_rev[i - j] ) A : Any = max_revenue_i return max_rev[n] def _lowerCamelCase( UpperCamelCase__ : int , UpperCamelCase__ : list ) -> Union[str, Any]: if n < 0: A : str = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(UpperCamelCase__ ) if n > len(UpperCamelCase__ ): A : List[str] = ( '''Each integral piece of rod must have a corresponding price. ''' F'''Got n = {n} but length of prices = {len(UpperCamelCase__ )}''' ) raise ValueError(UpperCamelCase__ ) def _lowerCamelCase( ) -> Optional[Any]: A : int = [6, 10, 12, 15, 20, 23] A : Optional[Any] = len(UpperCamelCase__ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. A : Tuple = 36 A : Any = top_down_cut_rod(UpperCamelCase__ , UpperCamelCase__ ) A : str = bottom_up_cut_rod(UpperCamelCase__ , UpperCamelCase__ ) A : Any = naive_cut_rod_recursive(UpperCamelCase__ , UpperCamelCase__ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
705
'''simple docstring''' def _lowerCamelCase( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ) -> Optional[int]: A : Optional[int] = 0 A : str = len(UpperCamelCase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A : Any = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase__ ): return None A : Union[str, Any] = sorted_collection[point] if current_item == item: return point else: if point < left: A : Tuple = left A : Tuple = point elif point > right: A : Optional[Any] = right A : str = point else: if item < current_item: A : Tuple = point - 1 else: A : Optional[Any] = point + 1 return None def _lowerCamelCase( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] ) -> List[Any]: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A : Dict = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) elif point > right: return interpolation_search_by_recursion(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , point - 1 ) else: return interpolation_search_by_recursion( UpperCamelCase__ , UpperCamelCase__ , point + 1 , UpperCamelCase__ ) def _lowerCamelCase( UpperCamelCase__ : Optional[int] ) -> List[Any]: if collection != sorted(UpperCamelCase__ ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys snake_case_ = 0 if debug == 1: snake_case_ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("""Sequence must be ascending sorted to apply interpolation search""") snake_case_ = 67 snake_case_ = interpolation_search(collection, target) if result is not None: print(f'''{target} found at positions: {result}''') else: print("""Not found""")
537
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : str = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __A : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : str = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) lowercase : ClassVar[Features] = Features({'text': Value('string' )} ) lowercase : ClassVar[Features] = Features({'labels': ClassLabel} ) lowercase : str = "text" lowercase : str = "labels" def __lowerCamelCase ( self , __UpperCamelCase ) -> Optional[int]: '''simple docstring''' if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __UpperCamelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __UpperCamelCase : Any = copy.deepcopy(self ) __UpperCamelCase : Any = self.label_schema.copy() __UpperCamelCase : List[Any] = features[self.label_column] __UpperCamelCase : Any = label_schema return task_template @property def __lowerCamelCase ( self ) -> Dict[str, str]: '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
327
0
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _A ( A ,A ) -> List[Any]: assert isinstance(A ,A ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" ,[False, True] ) def _A ( A ,A ,A ) -> Tuple: lowercase = tmp_path / "cache" lowercase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase = ParquetDatasetReader(A ,cache_dir=A ,keep_in_memory=A ).read() _check_parquet_dataset(A ,A ) @pytest.mark.parametrize( "features" ,[ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] ,) def _A ( A ,A ,A ) -> Optional[Any]: lowercase = tmp_path / "cache" lowercase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase = features.copy() if features else default_expected_features lowercase = ( Features({feature: Value(A ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase = ParquetDatasetReader(A ,features=A ,cache_dir=A ).read() _check_parquet_dataset(A ,A ) @pytest.mark.parametrize("split" ,[None, NamedSplit("train" ), "train", "test"] ) def _A ( A ,A ,A ) -> Optional[int]: lowercase = tmp_path / "cache" lowercase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase = ParquetDatasetReader(A ,cache_dir=A ,split=A ).read() _check_parquet_dataset(A ,A ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" ,[str, list] ) def _A ( A ,A ,A ) -> Any: if issubclass(A ,A ): lowercase = parquet_path elif issubclass(A ,A ): lowercase = [parquet_path] lowercase = tmp_path / "cache" lowercase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase = ParquetDatasetReader(A ,cache_dir=A ).read() _check_parquet_dataset(A ,A ) def _A ( A ,A ,A=("train",) ) -> Any: assert isinstance(A ,A ) for split in splits: lowercase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" ,[False, True] ) def _A ( A ,A ,A ) -> Union[str, Any]: lowercase = tmp_path / "cache" lowercase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase = ParquetDatasetReader( {"train": parquet_path} ,cache_dir=A ,keep_in_memory=A ).read() _check_parquet_datasetdict(A ,A ) @pytest.mark.parametrize( "features" ,[ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] ,) def _A ( A ,A ,A ) -> Optional[int]: lowercase = tmp_path / "cache" lowercase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase = features.copy() if features else default_expected_features lowercase = ( Features({feature: Value(A ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase = ParquetDatasetReader({"train": parquet_path} ,features=A ,cache_dir=A ).read() _check_parquet_datasetdict(A ,A ) @pytest.mark.parametrize("split" ,[None, NamedSplit("train" ), "train", "test"] ) def _A ( A ,A ,A ) -> List[Any]: if split: lowercase = {split: parquet_path} else: lowercase = "train" lowercase = {"train": parquet_path, "test": parquet_path} lowercase = tmp_path / "cache" lowercase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase = ParquetDatasetReader(A ,cache_dir=A ).read() _check_parquet_datasetdict(A ,A ,splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _A ( A ,A ) -> Union[str, Any]: lowercase = ParquetDatasetWriter(A ,tmp_path / "foo.parquet" ) assert writer.write() > 0 lowercase = pq.ParquetFile(tmp_path / "foo.parquet" ) lowercase = pf.read() assert dataset.data.table == output_table def _A ( A ,A ) -> str: lowercase = str(shared_datadir / "test_image_rgb.jpg" ) lowercase = {"image": [image_path]} lowercase = Features({"image": Image()} ) lowercase = Dataset.from_dict(A ,features=A ) lowercase = ParquetDatasetWriter(A ,tmp_path / "foo.parquet" ) assert writer.write() > 0 lowercase = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowercase = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) ,streaming=A ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" ,[ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] ,) def _A ( A ,A ) -> int: assert get_writer_batch_size(A ) == expected
706
'''simple docstring''' def _A ( A ,A ,A ,A ,A ) -> int: if index == number_of_items: return 0 lowercase : Optional[int] = 0 lowercase : Union[str, Any] = 0 lowercase : Dict = knapsack(A ,A ,A ,A ,index + 1 ) if weights[index] <= max_weight: lowercase : List[str] = values[index] + knapsack( A ,A ,A ,max_weight - weights[index] ,index + 1 ) return max(A ,A ) if __name__ == "__main__": import doctest doctest.testmod()
425
0
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowercase ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> np.ndarray: _snake_case : str = cva.getAffineTransform(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return cva.warpAffine(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , (rows, cols) ) if __name__ == "__main__": # read original image a__ = cva.imread( str(Path(__file__).resolve().parent.parent / """image_data""" / """lena.jpg""") ) # turn image in gray scale value a__ = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape a__, a__ = gray_img.shape # set different points to rotate image a__ = np.array([[50, 50], [2_00, 50], [50, 2_00]], np.floataa) a__ = np.array([[10, 1_00], [2_00, 50], [1_00, 2_50]], np.floataa) a__ = np.array([[50, 50], [1_50, 50], [1_20, 2_00]], np.floataa) a__ = np.array([[10, 1_00], [80, 50], [1_80, 2_50]], np.floataa) # add all rotated images in a list a__ = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations a__ = plt.figure(1) a__ = ["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, """gray""") plt.title(titles[i]) plt.axis("""off""") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
477
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case ( enum.Enum ): '''simple docstring''' snake_case_ : Any = 0 snake_case_ : Tuple = 1 snake_case_ : int = 2 @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__( self : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" super().__init__(*lowerCAmelCase , **lowerCAmelCase) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _snake_case : int = None if self.model.config.prefix is not None: _snake_case : Any = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _snake_case : List[str] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _snake_case , _snake_case , _snake_case : Optional[int] = self._sanitize_parameters(prefix=lowerCAmelCase , **self._forward_params) _snake_case : Dict = {**self._preprocess_params, **preprocess_params} _snake_case : Optional[int] = {**self._forward_params, **forward_params} def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : int=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Tuple=None , **lowerCAmelCase : str , ) -> Union[str, Any]: """simple docstring""" _snake_case : List[Any] = {} if prefix is not None: _snake_case : Tuple = prefix if prefix: _snake_case : Optional[int] = self.tokenizer( lowerCAmelCase , padding=lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=self.framework) _snake_case : Any = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' """ [None, 'hole']""") _snake_case : Tuple = handle_long_generation preprocess_params.update(lowerCAmelCase) _snake_case : str = generate_kwargs _snake_case : Optional[int] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""") if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""") _snake_case : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""") _snake_case : Tuple = ReturnType.TENSORS if return_type is not None: _snake_case : List[Any] = return_type if clean_up_tokenization_spaces is not None: _snake_case : List[str] = clean_up_tokenization_spaces if stop_sequence is not None: _snake_case : str = self.tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) if len(lowerCAmelCase) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""") _snake_case : Optional[int] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCamelCase_ ( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True}) return super()._parse_and_tokenize(*lowerCAmelCase , **lowerCAmelCase) def __call__( self : Tuple , lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" return super().__call__(lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Dict , lowerCAmelCase : str="" , lowerCAmelCase : Any=None , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" _snake_case : Dict = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=self.framework) _snake_case : Tuple = prompt_text if handle_long_generation == "hole": _snake_case : int = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: _snake_case : Optional[int] = generate_kwargs["""max_new_tokens"""] else: _snake_case : Dict = generate_kwargs.get("""max_length""" , self.model.config.max_length) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""") if cur_len + new_tokens > self.tokenizer.model_max_length: _snake_case : Optional[Any] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""") _snake_case : List[Any] = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: _snake_case : Optional[int] = inputs["""attention_mask"""][:, -keep_length:] return inputs def UpperCamelCase_ ( self : int , lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" _snake_case : Dict = model_inputs["""input_ids"""] _snake_case : List[Any] = model_inputs.get("""attention_mask""" , lowerCAmelCase) # Allow empty prompts if input_ids.shape[1] == 0: _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Any = 1 else: _snake_case : List[Any] = input_ids.shape[0] _snake_case : Tuple = model_inputs.pop("""prompt_text""") # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _snake_case : Any = generate_kwargs.pop("""prefix_length""" , 0) if prefix_length > 0: _snake_case : Dict = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: _snake_case : Optional[int] = generate_kwargs.get("""max_length""") or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _snake_case : str = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _snake_case : Optional[int] = self.model.generate(input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase , **lowerCAmelCase) _snake_case : Tuple = generated_sequence.shape[0] if self.framework == "pt": _snake_case : List[Any] = generated_sequence.reshape(lowerCAmelCase , out_b // in_b , *generated_sequence.shape[1:]) elif self.framework == "tf": _snake_case : Dict = tf.reshape(lowerCAmelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:])) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def UpperCamelCase_ ( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]=ReturnType.FULL_TEXT , lowerCAmelCase : Union[str, Any]=True) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = model_outputs["""generated_sequence"""][0] _snake_case : List[str] = model_outputs["""input_ids"""] _snake_case : Optional[Any] = model_outputs["""prompt_text"""] _snake_case : str = generated_sequence.numpy().tolist() _snake_case : Any = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _snake_case : Union[str, Any] = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _snake_case : int = self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _snake_case : str = 0 else: _snake_case : List[Any] = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , )) if return_type == ReturnType.FULL_TEXT: _snake_case : Any = prompt_text + text[prompt_length:] else: _snake_case : Union[str, Any] = text[prompt_length:] _snake_case : List[str] = {"""generated_text""": all_text} records.append(lowerCAmelCase) return records
477
1
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Any=1 ) -> Optional[Any]: """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split("." )[n_shave_prefix_segments:] ) else: return ".".join(path.split("." )[:n_shave_prefix_segments] ) def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple=0 ) -> List[str]: """simple docstring""" lowerCAmelCase__ = [] for old_item in old_list: lowerCAmelCase__ = old_item.replace("in_layers.0" , "norm1" ) lowerCAmelCase__ = new_item.replace("in_layers.2" , "conv1" ) lowerCAmelCase__ = new_item.replace("out_layers.0" , "norm2" ) lowerCAmelCase__ = new_item.replace("out_layers.3" , "conv2" ) lowerCAmelCase__ = new_item.replace("emb_layers.1" , "time_emb_proj" ) lowerCAmelCase__ = new_item.replace("skip_connection" , "conv_shortcut" ) lowerCAmelCase__ = shave_segments(UpperCamelCase_ , n_shave_prefix_segments=UpperCamelCase_ ) mapping.append({"old": old_item, "new": new_item} ) return mapping def _a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str]=0 ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = [] for old_item in old_list: lowerCAmelCase__ = old_item lowerCAmelCase__ = new_item.replace("norm.weight" , "group_norm.weight" ) lowerCAmelCase__ = new_item.replace("norm.bias" , "group_norm.bias" ) lowerCAmelCase__ = new_item.replace("proj_out.weight" , "proj_attn.weight" ) lowerCAmelCase__ = new_item.replace("proj_out.bias" , "proj_attn.bias" ) lowerCAmelCase__ = shave_segments(UpperCamelCase_ , n_shave_prefix_segments=UpperCamelCase_ ) mapping.append({"old": old_item, "new": new_item} ) return mapping def _a ( UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : str=None , UpperCamelCase_ : str=None , UpperCamelCase_ : str=None ) -> Any: """simple docstring""" assert isinstance(UpperCamelCase_ , UpperCamelCase_ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): lowerCAmelCase__ = old_checkpoint[path] lowerCAmelCase__ = old_tensor.shape[0] // 3 lowerCAmelCase__ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) lowerCAmelCase__ = old_tensor.shape[0] // config["num_head_channels"] // 3 lowerCAmelCase__ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = old_tensor.split(channels // num_heads , dim=1 ) lowerCAmelCase__ = query.reshape(UpperCamelCase_ ) lowerCAmelCase__ = key.reshape(UpperCamelCase_ ) lowerCAmelCase__ = value.reshape(UpperCamelCase_ ) for path in paths: lowerCAmelCase__ = path["new"] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here lowerCAmelCase__ = new_path.replace("middle_block.0" , "mid_block.resnets.0" ) lowerCAmelCase__ = new_path.replace("middle_block.1" , "mid_block.attentions.0" ) lowerCAmelCase__ = new_path.replace("middle_block.2" , "mid_block.resnets.1" ) if additional_replacements is not None: for replacement in additional_replacements: lowerCAmelCase__ = new_path.replace(replacement["old"] , replacement["new"] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: lowerCAmelCase__ = old_checkpoint[path["old"]][:, :, 0] else: lowerCAmelCase__ = old_checkpoint[path["old"]] def _a ( UpperCamelCase_ : str , UpperCamelCase_ : Tuple ) -> Dict: """simple docstring""" lowerCAmelCase__ = {} lowerCAmelCase__ = checkpoint["time_embed.0.weight"] lowerCAmelCase__ = checkpoint["time_embed.0.bias"] lowerCAmelCase__ = checkpoint["time_embed.2.weight"] lowerCAmelCase__ = checkpoint["time_embed.2.bias"] lowerCAmelCase__ = checkpoint["input_blocks.0.0.weight"] lowerCAmelCase__ = checkpoint["input_blocks.0.0.bias"] lowerCAmelCase__ = checkpoint["out.0.weight"] lowerCAmelCase__ = checkpoint["out.0.bias"] lowerCAmelCase__ = checkpoint["out.2.weight"] lowerCAmelCase__ = checkpoint["out.2.bias"] # Retrieves the keys for the input blocks only lowerCAmelCase__ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "input_blocks" in layer} ) lowerCAmelCase__ = { layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(UpperCamelCase_ ) } # Retrieves the keys for the middle blocks only lowerCAmelCase__ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "middle_block" in layer} ) lowerCAmelCase__ = { layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(UpperCamelCase_ ) } # Retrieves the keys for the output blocks only lowerCAmelCase__ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "output_blocks" in layer} ) lowerCAmelCase__ = { layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(UpperCamelCase_ ) } for i in range(1 , UpperCamelCase_ ): lowerCAmelCase__ = (i - 1) // (config["num_res_blocks"] + 1) lowerCAmelCase__ = (i - 1) % (config["num_res_blocks"] + 1) lowerCAmelCase__ = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] lowerCAmelCase__ = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: lowerCAmelCase__ = checkpoint[ F"input_blocks.{i}.0.op.weight" ] lowerCAmelCase__ = checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue lowerCAmelCase__ = renew_resnet_paths(UpperCamelCase_ ) lowerCAmelCase__ = {"old": F"input_blocks.{i}.0", "new": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} lowerCAmelCase__ = {"old": "resnets.2.op", "new": "downsamplers.0.op"} assign_to_checkpoint( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , additional_replacements=[meta_path, resnet_op] , config=UpperCamelCase_ ) if len(UpperCamelCase_ ): lowerCAmelCase__ = renew_attention_paths(UpperCamelCase_ ) lowerCAmelCase__ = { "old": F"input_blocks.{i}.1", "new": F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } lowerCAmelCase__ = { F"input_blocks.{i}.1.qkv.bias": { "key": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", "query": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", "value": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { "key": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", "query": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", "value": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , additional_replacements=[meta_path] , attention_paths_to_split=UpperCamelCase_ , config=UpperCamelCase_ , ) lowerCAmelCase__ = middle_blocks[0] lowerCAmelCase__ = middle_blocks[1] lowerCAmelCase__ = middle_blocks[2] lowerCAmelCase__ = renew_resnet_paths(UpperCamelCase_ ) assign_to_checkpoint(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , config=UpperCamelCase_ ) lowerCAmelCase__ = renew_resnet_paths(UpperCamelCase_ ) assign_to_checkpoint(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , config=UpperCamelCase_ ) lowerCAmelCase__ = renew_attention_paths(UpperCamelCase_ ) lowerCAmelCase__ = { "middle_block.1.qkv.bias": { "key": "mid_block.attentions.0.key.bias", "query": "mid_block.attentions.0.query.bias", "value": "mid_block.attentions.0.value.bias", }, "middle_block.1.qkv.weight": { "key": "mid_block.attentions.0.key.weight", "query": "mid_block.attentions.0.query.weight", "value": "mid_block.attentions.0.value.weight", }, } assign_to_checkpoint( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , attention_paths_to_split=UpperCamelCase_ , config=UpperCamelCase_ ) for i in range(UpperCamelCase_ ): lowerCAmelCase__ = i // (config["num_res_blocks"] + 1) lowerCAmelCase__ = i % (config["num_res_blocks"] + 1) lowerCAmelCase__ = [shave_segments(UpperCamelCase_ , 2 ) for name in output_blocks[i]] lowerCAmelCase__ = {} for layer in output_block_layers: lowerCAmelCase__ , lowerCAmelCase__ = layer.split("." )[0], shave_segments(UpperCamelCase_ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(UpperCamelCase_ ) else: lowerCAmelCase__ = [layer_name] if len(UpperCamelCase_ ) > 1: lowerCAmelCase__ = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] lowerCAmelCase__ = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] lowerCAmelCase__ = renew_resnet_paths(UpperCamelCase_ ) lowerCAmelCase__ = renew_resnet_paths(UpperCamelCase_ ) lowerCAmelCase__ = {"old": F"output_blocks.{i}.0", "new": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , additional_replacements=[meta_path] , config=UpperCamelCase_ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): lowerCAmelCase__ = list(output_block_list.values() ).index(["conv.weight", "conv.bias"] ) lowerCAmelCase__ = checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] lowerCAmelCase__ = checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(UpperCamelCase_ ) == 2: lowerCAmelCase__ = [] if len(UpperCamelCase_ ): lowerCAmelCase__ = renew_attention_paths(UpperCamelCase_ ) lowerCAmelCase__ = { "old": F"output_blocks.{i}.1", "new": F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } lowerCAmelCase__ = { F"output_blocks.{i}.1.qkv.bias": { "key": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", "query": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", "value": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { "key": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", "query": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", "value": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("qkv" in key for key in attentions ) else None , config=UpperCamelCase_ , ) else: lowerCAmelCase__ = renew_resnet_paths(UpperCamelCase_ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: lowerCAmelCase__ = ".".join(["output_blocks", str(UpperCamelCase_ ), path["old"]] ) lowerCAmelCase__ = ".".join(["up_blocks", str(UpperCamelCase_ ), "resnets", str(UpperCamelCase_ ), path["new"]] ) lowerCAmelCase__ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') a_ = parser.parse_args() a_ = torch.load(args.checkpoint_path) with open(args.config_file) as f: a_ = json.loads(f.read()) a_ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] a_ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: a_ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) a_ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) a_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
720
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
115
0
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case : Dict = logging.get_logger(__name__) _snake_case : Union[str, Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _snake_case : Tuple = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } _snake_case : Optional[Any] = {"facebook/blenderbot-3B": 1_28} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __snake_case ( ): '''simple docstring''' lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowercase = bs[:] lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(__magic_name__ ) cs.append(2**8 + n ) n += 1 lowercase = [chr(__magic_name__ ) for n in cs] return dict(zip(__magic_name__ , __magic_name__ ) ) def __snake_case ( __magic_name__ ): '''simple docstring''' lowercase = set() lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase = char return pairs class UpperCamelCase_ ( __a ): '''simple docstring''' UpperCamelCase : Tuple = VOCAB_FILES_NAMES UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int]="replace" , lowerCAmelCase__ :Dict="<s>" , lowerCAmelCase__ :Optional[int]="</s>" , lowerCAmelCase__ :int="</s>" , lowerCAmelCase__ :Any="<s>" , lowerCAmelCase__ :str="<unk>" , lowerCAmelCase__ :str="<pad>" , lowerCAmelCase__ :List[Any]="<mask>" , lowerCAmelCase__ :Dict=False , **lowerCAmelCase__ :Optional[Any] , ) ->Tuple: lowercase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token lowercase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token lowercase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token lowercase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token lowercase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token lowercase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8" ) as vocab_handle: lowercase = json.load(lowerCAmelCase__ ) lowercase = {v: k for k, v in self.encoder.items()} lowercase = errors # how to handle errors in decoding lowercase = bytes_to_unicode() lowercase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8" ) as merges_handle: lowercase = merges_handle.read().split("\n" )[1:-1] lowercase = [tuple(merge.split() ) for merge in bpe_merges] lowercase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) lowercase = {} lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def SCREAMING_SNAKE_CASE( self :List[str] ) ->Optional[Any]: return len(self.encoder ) def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->Optional[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE( self :List[Any] , lowerCAmelCase__ :Optional[int] ) ->Optional[int]: if token in self.cache: return self.cache[token] lowercase = tuple(lowerCAmelCase__ ) lowercase = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowercase = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase = bigram lowercase = [] lowercase = 0 while i < len(lowerCAmelCase__ ): try: lowercase = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase = tuple(lowerCAmelCase__ ) lowercase = new_word if len(lowerCAmelCase__ ) == 1: break else: lowercase = get_pairs(lowerCAmelCase__ ) lowercase = " ".join(lowerCAmelCase__ ) lowercase = word return word def SCREAMING_SNAKE_CASE( self :int , lowerCAmelCase__ :Optional[Any] ) ->Tuple: lowercase = [] for token in re.findall(self.pat , lowerCAmelCase__ ): lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def SCREAMING_SNAKE_CASE( self :Optional[Any] , lowerCAmelCase__ :int ) ->List[Any]: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE( self :str , lowerCAmelCase__ :Tuple ) ->str: return self.decoder.get(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE( self :Tuple , lowerCAmelCase__ :Optional[Any] ) ->int: lowercase = "".join(lowerCAmelCase__ ) lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def SCREAMING_SNAKE_CASE( self :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowercase = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowercase = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowercase = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE( self :int , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None , lowerCAmelCase__ :bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def SCREAMING_SNAKE_CASE( self :List[str] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) ->List[int]: lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE( self :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any]=False , **lowerCAmelCase__ :Optional[Any] ) ->Tuple: lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowercase = " " + text return (text, kwargs) def SCREAMING_SNAKE_CASE( self :Tuple , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) ->Any: return token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE( self :List[str] , lowerCAmelCase__ :"Conversation" ) ->List[int]: lowercase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(lowerCAmelCase__ ) lowercase = " ".join(lowerCAmelCase__ ) lowercase = self.encode(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > self.model_max_length: lowercase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
441
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case : Union[str, Any] = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Union[str, Any] = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _snake_case : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
441
1
"""simple docstring""" def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Any = 1 for i in range(1 , num + 1 ): fact *= i return fact def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : int = 0 while number > 0: lowercase__ : List[str] = number % 10 sum_of_digits += last_digit lowercase__ : Any = number // 10 # Removing the last_digit from the given number return sum_of_digits def a_ ( _lowerCAmelCase : int = 100 ): '''simple docstring''' lowercase__ : List[str] = factorial(_lowerCAmelCase ) lowercase__ : Tuple = split_and_add(_lowerCAmelCase ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
711
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self , a ) -> str: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): lowercase__ : str = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = 'sshleifer/tiny-gpt2' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , only_pretrain_model=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : List[Any] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a , multi_process=a , ) lowercase__ : Tuple = TensorFlowBenchmark(a , [config] ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : List[str] = AutoConfig.from_pretrained(a ) lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : List[str] = TensorFlowBenchmark(a , [config] ) lowercase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : Optional[Any] = TensorFlowBenchmark(a ) lowercase__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = 'sshleifer/tiny-gpt2' lowercase__ : Optional[int] = AutoConfig.from_pretrained(a ) lowercase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : str = TensorFlowBenchmark(a , [config] ) lowercase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = 'patrickvonplaten/t5-tiny-random' lowercase__ : Any = AutoConfig.from_pretrained(a ) lowercase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a , ) lowercase__ : int = TensorFlowBenchmark(a , configs=[config] ) lowercase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Any = 'sshleifer/tiny-gpt2' lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a , inference=a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a , multi_process=a , ) lowercase__ : Any = TensorFlowBenchmark(a ) lowercase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Any = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , save_to_csv=a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(a , 'env.csv' ) , multi_process=a , ) lowercase__ : Union[str, Any] = TensorFlowBenchmark(a ) benchmark.run() self.assertTrue(Path(os.path.join(a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a , 'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Tuple = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(a ): self.assertTrue(hasattr(a , 'sequential' ) ) self.assertTrue(hasattr(a , 'cumulative' ) ) self.assertTrue(hasattr(a , 'current' ) ) self.assertTrue(hasattr(a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a , 'log.txt' ) , log_print=a , trace_memory_line_by_line=a , eager_mode=a , multi_process=a , ) lowercase__ : Optional[int] = TensorFlowBenchmark(a ) lowercase__ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a , 'log.txt' ) ).exists() )
645
0
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[Any]: warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , _a , ) super().__init__(*_a , **_a)
503
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase = 5_0_0_0_0_0 lowercase , lowercase = os.path.split(__file__) lowercase = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def lowerCamelCase_ ( UpperCamelCase__ : datasets.Dataset, **UpperCamelCase__ : Any ): '''simple docstring''' UpperCamelCase__ = dataset.map(**UpperCamelCase__ ) @get_duration def lowerCamelCase_ ( UpperCamelCase__ : datasets.Dataset, **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' UpperCamelCase__ = dataset.filter(**UpperCamelCase__ ) def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCamelCase__ = generate_example_dataset( os.path.join(UpperCamelCase__, '''dataset.arrow''' ), UpperCamelCase__, num_examples=UpperCamelCase__ ) UpperCamelCase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''', use_fast=UpperCamelCase__ ) def tokenize(UpperCamelCase__ : List[Any] ): return tokenizer(examples['''text'''] ) UpperCamelCase__ = map(UpperCamelCase__ ) UpperCamelCase__ = map(UpperCamelCase__, batched=UpperCamelCase__ ) UpperCamelCase__ = map(UpperCamelCase__, function=lambda UpperCamelCase__ : None, batched=UpperCamelCase__ ) with dataset.formatted_as(type='''numpy''' ): UpperCamelCase__ = map(UpperCamelCase__, function=lambda UpperCamelCase__ : None, batched=UpperCamelCase__ ) with dataset.formatted_as(type='''pandas''' ): UpperCamelCase__ = map(UpperCamelCase__, function=lambda UpperCamelCase__ : None, batched=UpperCamelCase__ ) with dataset.formatted_as(type='''torch''', columns='''numbers''' ): UpperCamelCase__ = map(UpperCamelCase__, function=lambda UpperCamelCase__ : None, batched=UpperCamelCase__ ) with dataset.formatted_as(type='''tensorflow''', columns='''numbers''' ): UpperCamelCase__ = map(UpperCamelCase__, function=lambda UpperCamelCase__ : None, batched=UpperCamelCase__ ) UpperCamelCase__ = map(UpperCamelCase__, function=UpperCamelCase__, batched=UpperCamelCase__ ) UpperCamelCase__ = filter(UpperCamelCase__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(UpperCamelCase__, '''wb''' ) as f: f.write(json.dumps(UpperCamelCase__ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
240
0
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) __magic_name__ = logging.getLogger(__name__) def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Any): A_ : List[Any] = np.argmax(lowerCamelCase , axis=1) return np.sum(outputs == labels) def lowerCamelCase ( lowerCamelCase : List[str]): with open(lowerCamelCase , encoding="""utf_8""") as f: A_ : str = csv.reader(lowerCamelCase) A_ : Tuple = [] next(lowerCamelCase) # skip the first line for line in tqdm(lowerCamelCase): output.append((""" """.join(line[1:5]), line[5], line[6], int(line[-1]) - 1)) return output def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict): A_ : int = [] for dataset in encoded_datasets: A_ : int = len(lowerCamelCase) A_ : Dict = np.zeros((n_batch, 2, input_len) , dtype=np.intaa) A_ : List[str] = np.zeros((n_batch, 2) , dtype=np.intaa) A_ : List[str] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa) A_ : Union[str, Any] = np.zeros((n_batch,) , dtype=np.intaa) for ( i, (story, conta, conta, mc_label), ) in enumerate(lowerCamelCase): A_ : List[Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A_ : Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A_ : Dict = with_conta A_ : Dict = with_conta A_ : str = len(lowerCamelCase) - 1 A_ : Any = len(lowerCamelCase) - 1 A_ : Optional[Any] = with_conta A_ : Dict = with_conta A_ : Optional[Any] = mc_label A_ : List[str] = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(lowerCamelCase) for t in all_inputs)) return tensor_datasets def lowerCamelCase ( ): A_ : List[Any] = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=lowerCamelCase , default="""openai-gpt""" , help="""pretrained model name""") parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""") parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""") parser.add_argument( """--output_dir""" , default=lowerCamelCase , type=lowerCamelCase , required=lowerCamelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument("""--train_dataset""" , type=lowerCamelCase , default="""""") parser.add_argument("""--eval_dataset""" , type=lowerCamelCase , default="""""") parser.add_argument("""--seed""" , type=lowerCamelCase , default=42) parser.add_argument("""--num_train_epochs""" , type=lowerCamelCase , default=3) parser.add_argument("""--train_batch_size""" , type=lowerCamelCase , default=8) parser.add_argument("""--eval_batch_size""" , type=lowerCamelCase , default=16) parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=lowerCamelCase , help="""Epsilon for Adam optimizer.""") parser.add_argument("""--max_grad_norm""" , type=lowerCamelCase , default=1) parser.add_argument( """--max_steps""" , default=-1 , type=lowerCamelCase , help=( """If > 0: set total number of training steps to perform. Override num_train_epochs.""" ) , ) parser.add_argument( """--gradient_accumulation_steps""" , type=lowerCamelCase , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--learning_rate""" , type=lowerCamelCase , default=6.25E-5) parser.add_argument("""--warmup_steps""" , default=0 , type=lowerCamelCase , help="""Linear warmup over warmup_steps.""") parser.add_argument("""--lr_schedule""" , type=lowerCamelCase , default="""warmup_linear""") parser.add_argument("""--weight_decay""" , type=lowerCamelCase , default=0.01) parser.add_argument("""--lm_coef""" , type=lowerCamelCase , default=0.9) parser.add_argument("""--n_valid""" , type=lowerCamelCase , default=374) parser.add_argument("""--server_ip""" , type=lowerCamelCase , default="""""" , help="""Can be used for distant debugging.""") parser.add_argument("""--server_port""" , type=lowerCamelCase , default="""""" , help="""Can be used for distant debugging.""") A_ : str = parser.parse_args() print(lowerCamelCase) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""") ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCamelCase) ptvsd.wait_for_attach() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) A_ : Optional[int] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""") A_ : List[str] = torch.cuda.device_count() logger.info("""device: {}, n_gpu {}""".format(lowerCamelCase , lowerCamelCase)) if not args.do_train and not args.do_eval: raise ValueError("""At least one of `do_train` or `do_eval` must be True.""") if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset A_ : int = ["""_start_""", """_delimiter_""", """_classify_"""] A_ : Any = OpenAIGPTTokenizer.from_pretrained(args.model_name) tokenizer.add_tokens(lowerCamelCase) A_ : Optional[int] = tokenizer.convert_tokens_to_ids(lowerCamelCase) A_ : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name) model.resize_token_embeddings(len(lowerCamelCase)) model.to(lowerCamelCase) # Load and encode the datasets def tokenize_and_encode(lowerCamelCase : List[Any]): if isinstance(lowerCamelCase , lowerCamelCase): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(lowerCamelCase)) elif isinstance(lowerCamelCase , lowerCamelCase): return obj return [tokenize_and_encode(lowerCamelCase) for o in obj] logger.info("""Encoding dataset...""") A_ : Dict = load_rocstories_dataset(args.train_dataset) A_ : Optional[Any] = load_rocstories_dataset(args.eval_dataset) A_ : Union[str, Any] = (train_dataset, eval_dataset) A_ : Optional[int] = tokenize_and_encode(lowerCamelCase) # Compute the max input length for the Transformer A_ : int = model.config.n_positions // 2 - 2 A_ : Union[str, Any] = max( len(story[:max_length]) + max(len(conta[:max_length]) , len(conta[:max_length])) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset) A_ : Tuple = min(lowerCamelCase , model.config.n_positions) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders A_ : Dict = pre_process_datasets(lowerCamelCase , lowerCamelCase , lowerCamelCase , *lowerCamelCase) A_ : Optional[Any] = tensor_datasets[0], tensor_datasets[1] A_ : List[Any] = TensorDataset(*lowerCamelCase) A_ : Tuple = RandomSampler(lowerCamelCase) A_ : Any = DataLoader(lowerCamelCase , sampler=lowerCamelCase , batch_size=args.train_batch_size) A_ : List[Any] = TensorDataset(*lowerCamelCase) A_ : Tuple = SequentialSampler(lowerCamelCase) A_ : int = DataLoader(lowerCamelCase , sampler=lowerCamelCase , batch_size=args.eval_batch_size) # Prepare optimizer if args.do_train: if args.max_steps > 0: A_ : str = args.max_steps A_ : Union[str, Any] = args.max_steps // (len(lowerCamelCase) // args.gradient_accumulation_steps) + 1 else: A_ : List[Any] = len(lowerCamelCase) // args.gradient_accumulation_steps * args.num_train_epochs A_ : Union[str, Any] = list(model.named_parameters()) A_ : Optional[Any] = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] A_ : List[Any] = [ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], """weight_decay""": 0.0}, ] A_ : Union[str, Any] = AdamW(lowerCamelCase , lr=args.learning_rate , eps=args.adam_epsilon) A_ : Any = get_linear_schedule_with_warmup( lowerCamelCase , num_warmup_steps=args.warmup_steps , num_training_steps=lowerCamelCase) if args.do_train: A_ : int = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs) , desc="""Epoch"""): A_ : List[str] = 0 A_ : str = 0 A_ : Union[str, Any] = tqdm(lowerCamelCase , desc="""Training""") for step, batch in enumerate(lowerCamelCase): A_ : Any = tuple(t.to(lowerCamelCase) for t in batch) A_ : List[str] = batch A_ : Any = model(lowerCamelCase , mc_token_ids=lowerCamelCase , lm_labels=lowerCamelCase , mc_labels=lowerCamelCase) A_ : Dict = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() A_ : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 A_ : Any = """Training loss: {:.2e} lr: {:.2e}""".format(lowerCamelCase , scheduler.get_lr()[0]) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer A_ : Optional[int] = model.module if hasattr(lowerCamelCase , """module""") else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` A_ : Dict = os.path.join(args.output_dir , lowerCamelCase) A_ : int = os.path.join(args.output_dir , lowerCamelCase) torch.save(model_to_save.state_dict() , lowerCamelCase) model_to_save.config.to_json_file(lowerCamelCase) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned A_ : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir) A_ : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir) model.to(lowerCamelCase) if args.do_eval: model.eval() A_ : Any = 0, 0 A_ : Any = 0, 0 for batch in tqdm(lowerCamelCase , desc="""Evaluating"""): A_ : List[Any] = tuple(t.to(lowerCamelCase) for t in batch) A_ : int = batch with torch.no_grad(): A_ : Any = model( lowerCamelCase , mc_token_ids=lowerCamelCase , lm_labels=lowerCamelCase , mc_labels=lowerCamelCase) A_ : Tuple = mc_logits.detach().cpu().numpy() A_ : Union[str, Any] = mc_labels.to("""cpu""").numpy() A_ : Dict = accuracy(lowerCamelCase , lowerCamelCase) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 A_ : Optional[Any] = eval_loss / nb_eval_steps A_ : Union[str, Any] = eval_accuracy / nb_eval_examples A_ : Tuple = tr_loss / nb_tr_steps if args.do_train else None A_ : str = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} A_ : Tuple = os.path.join(args.output_dir , """eval_results.txt""") with open(lowerCamelCase , """w""") as writer: logger.info("""***** Eval results *****""") for key in sorted(result.keys()): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key])) writer.write("""%s = %s\n""" % (key, str(result[key]))) if __name__ == "__main__": main()
720
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,_a : List[Any] ,_a : Dict=13 ,_a : List[Any]=7 ,_a : Optional[Any]=True ,_a : Any=True ,_a : Optional[int]=True ,_a : Union[str, Any]=99 ,_a : Union[str, Any]=32 ,_a : List[str]=5 ,_a : List[str]=4 ,_a : Dict=37 ,_a : List[Any]="gelu" ,_a : int=0.1 ,_a : Optional[int]=0.1 ,_a : Tuple=512 ,_a : Union[str, Any]=16 ,_a : Optional[Any]=2 ,_a : Optional[Any]=0.02 ,_a : Optional[int]=3 ,_a : str=4 ,_a : Optional[Any]=None ,): '''simple docstring''' A_ : Optional[Any] = parent A_ : str = batch_size A_ : int = seq_length A_ : Union[str, Any] = is_training A_ : Optional[Any] = use_token_type_ids A_ : int = use_labels A_ : Dict = vocab_size A_ : List[Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : int = intermediate_size A_ : Tuple = hidden_act A_ : int = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : Tuple = type_sequence_label_size A_ : int = initializer_range A_ : Optional[Any] = num_labels A_ : str = num_choices A_ : Optional[Any] = scope A_ : List[Any] = self.vocab_size - 1 def _a ( self : Any ): '''simple docstring''' A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A_ : List[Any] = None if self.use_token_type_ids: A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A_ : int = None A_ : str = None A_ : Union[str, Any] = None if self.use_labels: A_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A_ : Any = ids_tensor([self.batch_size] ,self.num_choices ) A_ : List[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) A_ : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _a ( self : Optional[int] ,_a : List[str] ,_a : str ,_a : int ,_a : int ,*_a : Union[str, Any] ): '''simple docstring''' A_ : Optional[Any] = OpenAIGPTModel(config=_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,head_mask=_a ) A_ : str = model(_a ,token_type_ids=_a ) A_ : Dict = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Dict ,_a : Optional[int] ,_a : Union[str, Any] ,_a : Dict ,_a : List[str] ,*_a : str ): '''simple docstring''' A_ : str = OpenAIGPTLMHeadModel(_a ) model.to(_a ) model.eval() A_ : Any = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Any ,_a : Dict ,_a : List[Any] ,_a : Dict ,_a : Union[str, Any] ,*_a : str ): '''simple docstring''' A_ : Any = OpenAIGPTDoubleHeadsModel(_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : List[str] ,_a : str ,_a : Tuple ,_a : Dict ,_a : Tuple ,*_a : Dict ): '''simple docstring''' A_ : List[str] = self.num_labels A_ : int = OpenAIGPTForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : Optional[Any] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _a ( self : Tuple ): '''simple docstring''' A_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : str = config_and_inputs A_ : int = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) a_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly a_ = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _a ( self : Tuple ,_a : Optional[int] ,_a : str ,_a : List[str] ,_a : List[str] ,_a : Any ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _a ( self : Optional[int] ,_a : str ,_a : Dict ,_a : Optional[int]=False ): '''simple docstring''' A_ : Any = super()._prepare_for_class(_a ,_a ,return_labels=_a ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A_ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=_a ,) A_ : Any = inputs_dict["""labels"""] A_ : Any = inputs_dict["""labels"""] A_ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=_a ,) A_ : int = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_a ) return inputs_dict def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Tuple = OpenAIGPTModelTester(self ) A_ : Optional[int] = ConfigTester(self ,config_class=_a ,n_embd=37 ) def _a ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_a ) def _a ( self : Tuple ): '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_a ) def _a ( self : List[Any] ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_a ) def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_a ) @slow def _a ( self : List[Any] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Union[str, Any] = OpenAIGPTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _a ( self : List[str] ): '''simple docstring''' A_ : Dict = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_a ) A_ : Dict = torch.tensor([[481, 4735, 544]] ,dtype=torch.long ,device=_a ) # the president is A_ : Dict = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A_ : int = model.generate(_a ,do_sample=_a ) self.assertListEqual(output_ids[0].tolist() ,_a )
27
0
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(SCREAMING_SNAKE_CASE__ ) ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Base Case if index == len(SCREAMING_SNAKE_CASE__ ): return True # Recursive Step for i in range(SCREAMING_SNAKE_CASE__ ): if valid_coloring(graph[index] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Color current vertex snake_case_ = i # Validate coloring if util_color(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ): return True # Backtrack snake_case_ = -1 return False def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [-1] * len(SCREAMING_SNAKE_CASE__ ) if util_color(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 0 ): return colored_vertices return []
39
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
39
1
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets _SCREAMING_SNAKE_CASE = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n" _SCREAMING_SNAKE_CASE = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n" _SCREAMING_SNAKE_CASE = R"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n" @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self :Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('string'), 'references': datasets.Value('string'), }), homepage='https://github.com/hendrycks/math', codebase_urls=['https://github.com/hendrycks/math'], ) def UpperCamelCase__ ( self :str, snake_case :Any, snake_case :Dict): """simple docstring""" _lowercase =0.0 for i, j in zip(snake_case, snake_case): n_correct += 1.0 if math_equivalence.is_equiv(snake_case, snake_case) else 0.0 _lowercase =n_correct / len(snake_case) return { "accuracy": accuracy, }
557
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _SCREAMING_SNAKE_CASE = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def _snake_case (_snake_case : Dict , _snake_case : List[str] , _snake_case : Any , _snake_case : Tuple , _snake_case : int) -> Dict: for attribute in key.split('.'): _lowercase =getattr(_snake_case , _snake_case) if weight_type is not None: _lowercase =getattr(_snake_case , _snake_case).shape else: _lowercase =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''') if weight_type == "weight": _lowercase =value elif weight_type == "weight_g": _lowercase =value elif weight_type == "weight_v": _lowercase =value elif weight_type == "bias": _lowercase =value else: _lowercase =value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''') def _snake_case (_snake_case : List[str] , _snake_case : Union[str, Any]) -> List[Any]: _lowercase =[] _lowercase =fairseq_model.state_dict() _lowercase =hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): _lowercase =False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == 'group' , ) _lowercase =True else: for key, mapped_key in MAPPING.items(): _lowercase ='unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.')[:-1]) != key): # special case since naming is very similar continue _lowercase =True if "*" in mapped_key: _lowercase =name.split(_snake_case)[0].split('.')[-2] _lowercase =mapped_key.replace('*' , _snake_case) if "weight_g" in name: _lowercase ='weight_g' elif "weight_v" in name: _lowercase ='weight_v' elif "bias" in name: _lowercase ='bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowercase ='weight' else: _lowercase =None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case) continue if not is_used: unused_weights.append(_snake_case) logger.warning(f'''Unused weights: {unused_weights}''') def _snake_case (_snake_case : Any , _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Any , _snake_case : int) -> Optional[Any]: _lowercase =full_name.split('conv_layers.')[-1] _lowercase =name.split('.') _lowercase =int(items[0]) _lowercase =int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''') _lowercase =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''') _lowercase =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''') _lowercase =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''') _lowercase =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(_snake_case) @torch.no_grad() def _snake_case (_snake_case : Optional[int] , _snake_case : List[str] , _snake_case : Union[str, Any]=None , _snake_case : str=None , _snake_case : Union[str, Any]=True) -> Dict: if config_path is not None: _lowercase =UniSpeechSatConfig.from_pretrained(_snake_case) else: _lowercase =UniSpeechSatConfig() _lowercase ='' if is_finetuned: _lowercase =UniSpeechSatForCTC(_snake_case) else: _lowercase =UniSpeechSatForPreTraining(_snake_case) _lowercase , _lowercase , _lowercase =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1])}) _lowercase =model[0].eval() recursively_load_weights(_snake_case , _snake_case) hf_wavavec.save_pretrained(_snake_case) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
557
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def __snake_case ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float , _lowerCAmelCase : int = 16000 ) -> Tuple: A_ : Dict = int(round(sample_rate * max_length ) ) if len(_lowerCAmelCase ) <= sample_length: return wav A_ : Union[str, Any] = randint(0 , len(_lowerCAmelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __magic_name__ : """simple docstring""" __UpperCamelCase = field(default=lowerCamelCase__ , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) __UpperCamelCase = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __UpperCamelCase = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) __UpperCamelCase = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) __UpperCamelCase = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __UpperCamelCase = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class __magic_name__ : """simple docstring""" __UpperCamelCase = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) __UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`." , snake_case , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def __snake_case ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A_ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_ , A_ , A_ : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_ , A_ , A_ : List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _lowerCAmelCase , _lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A_ : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(_lowerCAmelCase ) transformers.utils.logging.set_verbosity(_lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. A_ : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A_ : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. A_ : Optional[Any] = DatasetDict() A_ : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) A_ : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--audio_column_name` to the correct audio column - one of " f"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--label_column_name` to the correct text column - one of " f"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy A_ : Union[str, Any] = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. A_ : int = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) A_ : Union[str, Any] = feature_extractor.model_input_names[0] def train_transforms(_lowerCAmelCase : Optional[Any] ): A_ : Any = [] for audio in batch[data_args.audio_column_name]: A_ : Dict = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_lowerCAmelCase ) A_ : int = feature_extractor(_lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) A_ : Any = {model_input_name: inputs.get(_lowerCAmelCase )} A_ : Optional[Any] = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_lowerCAmelCase : Union[str, Any] ): A_ : int = [audio["array"] for audio in batch[data_args.audio_column_name]] A_ : int = feature_extractor(_lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) A_ : Union[str, Any] = {model_input_name: inputs.get(_lowerCAmelCase )} A_ : Tuple = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A_ : Dict = raw_datasets["train"].features[data_args.label_column_name].names A_ , A_ : int = {}, {} for i, label in enumerate(_lowerCAmelCase ): A_ : str = str(_lowerCAmelCase ) A_ : List[str] = label # Load the accuracy metric from the datasets package A_ : Dict = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_lowerCAmelCase : Optional[int] ): A_ : List[str] = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_lowerCAmelCase , references=eval_pred.label_ids ) A_ : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_lowerCAmelCase ) , labelaid=_lowerCAmelCase , idalabel=_lowerCAmelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A_ : Union[str, Any] = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: A_ : Dict = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_lowerCAmelCase , output_all_columns=_lowerCAmelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: A_ : int = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_lowerCAmelCase , output_all_columns=_lowerCAmelCase ) # Initialize our trainer A_ : Optional[int] = Trainer( model=_lowerCAmelCase , args=_lowerCAmelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) # Training if training_args.do_train: A_ : Tuple = None if training_args.resume_from_checkpoint is not None: A_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: A_ : int = last_checkpoint A_ : Dict = trainer.train(resume_from_checkpoint=_lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A_ : int = trainer.evaluate() trainer.log_metrics("eval" , _lowerCAmelCase ) trainer.save_metrics("eval" , _lowerCAmelCase ) # Write model card and (optionally) push to hub A_ : str = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCAmelCase ) else: trainer.create_model_card(**_lowerCAmelCase ) if __name__ == "__main__": main()
454
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 ) -> Any: if n_shave_prefix_segments >= 0: return ".".join(path.split("." )[n_shave_prefix_segments:] ) else: return ".".join(path.split("." )[:n_shave_prefix_segments] ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any]=0 ) -> int: A_ : Union[str, Any] = [] for old_item in old_list: A_ : Tuple = old_item.replace("in_layers.0" , "norm1" ) A_ : str = new_item.replace("in_layers.2" , "conv1" ) A_ : List[str] = new_item.replace("out_layers.0" , "norm2" ) A_ : Optional[int] = new_item.replace("out_layers.3" , "conv2" ) A_ : Union[str, Any] = new_item.replace("emb_layers.1" , "time_emb_proj" ) A_ : Tuple = new_item.replace("skip_connection" , "conv_shortcut" ) A_ : Any = shave_segments(_lowerCAmelCase , n_shave_prefix_segments=_lowerCAmelCase ) mapping.append({"old": old_item, "new": new_item} ) return mapping def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=0 ) -> Tuple: A_ : Any = [] for old_item in old_list: A_ : int = old_item A_ : Dict = new_item.replace("norm.weight" , "group_norm.weight" ) A_ : Any = new_item.replace("norm.bias" , "group_norm.bias" ) A_ : Any = new_item.replace("proj_out.weight" , "proj_attn.weight" ) A_ : List[str] = new_item.replace("proj_out.bias" , "proj_attn.bias" ) A_ : List[Any] = shave_segments(_lowerCAmelCase , n_shave_prefix_segments=_lowerCAmelCase ) mapping.append({"old": old_item, "new": new_item} ) return mapping def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : List[str]=None ) -> Optional[Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): A_ : Any = old_checkpoint[path] A_ : Tuple = old_tensor.shape[0] // 3 A_ : Union[str, Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) A_ : Optional[Any] = old_tensor.shape[0] // config["num_head_channels"] // 3 A_ : int = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) A_ , A_ , A_ : Optional[int] = old_tensor.split(channels // num_heads , dim=1 ) A_ : Tuple = query.reshape(_lowerCAmelCase ) A_ : List[Any] = key.reshape(_lowerCAmelCase ) A_ : Union[str, Any] = value.reshape(_lowerCAmelCase ) for path in paths: A_ : Any = path["new"] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here A_ : List[str] = new_path.replace("middle_block.0" , "mid_block.resnets.0" ) A_ : int = new_path.replace("middle_block.1" , "mid_block.attentions.0" ) A_ : Tuple = new_path.replace("middle_block.2" , "mid_block.resnets.1" ) if additional_replacements is not None: for replacement in additional_replacements: A_ : Tuple = new_path.replace(replacement["old"] , replacement["new"] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: A_ : Tuple = old_checkpoint[path["old"]][:, :, 0] else: A_ : str = old_checkpoint[path["old"]] def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[int]: A_ : Any = {} A_ : Union[str, Any] = checkpoint["time_embed.0.weight"] A_ : List[Any] = checkpoint["time_embed.0.bias"] A_ : Any = checkpoint["time_embed.2.weight"] A_ : Optional[Any] = checkpoint["time_embed.2.bias"] A_ : List[str] = checkpoint["input_blocks.0.0.weight"] A_ : Union[str, Any] = checkpoint["input_blocks.0.0.bias"] A_ : str = checkpoint["out.0.weight"] A_ : Optional[int] = checkpoint["out.0.bias"] A_ : Optional[int] = checkpoint["out.2.weight"] A_ : Optional[int] = checkpoint["out.2.bias"] # Retrieves the keys for the input blocks only A_ : List[str] = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "input_blocks" in layer} ) A_ : Union[str, Any] = { layer_id: [key for key in checkpoint if f"input_blocks.{layer_id}" in key] for layer_id in range(_lowerCAmelCase ) } # Retrieves the keys for the middle blocks only A_ : Union[str, Any] = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "middle_block" in layer} ) A_ : Tuple = { layer_id: [key for key in checkpoint if f"middle_block.{layer_id}" in key] for layer_id in range(_lowerCAmelCase ) } # Retrieves the keys for the output blocks only A_ : Dict = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "output_blocks" in layer} ) A_ : Optional[Any] = { layer_id: [key for key in checkpoint if f"output_blocks.{layer_id}" in key] for layer_id in range(_lowerCAmelCase ) } for i in range(1 , _lowerCAmelCase ): A_ : Union[str, Any] = (i - 1) // (config["num_res_blocks"] + 1) A_ : Optional[int] = (i - 1) % (config["num_res_blocks"] + 1) A_ : str = [key for key in input_blocks[i] if f"input_blocks.{i}.0" in key] A_ : List[Any] = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] if f"input_blocks.{i}.0.op.weight" in checkpoint: A_ : Tuple = checkpoint[ f"input_blocks.{i}.0.op.weight" ] A_ : List[Any] = checkpoint[ f"input_blocks.{i}.0.op.bias" ] continue A_ : List[Any] = renew_resnet_paths(_lowerCAmelCase ) A_ : Any = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} A_ : Any = {"old": "resnets.2.op", "new": "downsamplers.0.op"} assign_to_checkpoint( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path, resnet_op] , config=_lowerCAmelCase ) if len(_lowerCAmelCase ): A_ : Tuple = renew_attention_paths(_lowerCAmelCase ) A_ : List[str] = { "old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}", } A_ : Any = { f"input_blocks.{i}.1.qkv.bias": { "key": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", "query": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", "value": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, f"input_blocks.{i}.1.qkv.weight": { "key": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", "query": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", "value": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=_lowerCAmelCase , config=_lowerCAmelCase , ) A_ : List[Any] = middle_blocks[0] A_ : Tuple = middle_blocks[1] A_ : Dict = middle_blocks[2] A_ : str = renew_resnet_paths(_lowerCAmelCase ) assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , config=_lowerCAmelCase ) A_ : Tuple = renew_resnet_paths(_lowerCAmelCase ) assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , config=_lowerCAmelCase ) A_ : Any = renew_attention_paths(_lowerCAmelCase ) A_ : Optional[int] = { "middle_block.1.qkv.bias": { "key": "mid_block.attentions.0.key.bias", "query": "mid_block.attentions.0.query.bias", "value": "mid_block.attentions.0.value.bias", }, "middle_block.1.qkv.weight": { "key": "mid_block.attentions.0.key.weight", "query": "mid_block.attentions.0.query.weight", "value": "mid_block.attentions.0.value.weight", }, } assign_to_checkpoint( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , attention_paths_to_split=_lowerCAmelCase , config=_lowerCAmelCase ) for i in range(_lowerCAmelCase ): A_ : Optional[int] = i // (config["num_res_blocks"] + 1) A_ : Optional[Any] = i % (config["num_res_blocks"] + 1) A_ : Optional[Any] = [shave_segments(_lowerCAmelCase , 2 ) for name in output_blocks[i]] A_ : Union[str, Any] = {} for layer in output_block_layers: A_ , A_ : str = layer.split("." )[0], shave_segments(_lowerCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(_lowerCAmelCase ) else: A_ : List[str] = [layer_name] if len(_lowerCAmelCase ) > 1: A_ : Dict = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] A_ : List[Any] = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] A_ : Optional[Any] = renew_resnet_paths(_lowerCAmelCase ) A_ : Any = renew_resnet_paths(_lowerCAmelCase ) A_ : Optional[Any] = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , config=_lowerCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): A_ : int = list(output_block_list.values() ).index(["conv.weight", "conv.bias"] ) A_ : Union[str, Any] = checkpoint[ f"output_blocks.{i}.{index}.conv.weight" ] A_ : int = checkpoint[ f"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(_lowerCAmelCase ) == 2: A_ : Union[str, Any] = [] if len(_lowerCAmelCase ): A_ : Dict = renew_attention_paths(_lowerCAmelCase ) A_ : Union[str, Any] = { "old": f"output_blocks.{i}.1", "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", } A_ : Any = { f"output_blocks.{i}.1.qkv.bias": { "key": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", "query": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", "value": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, f"output_blocks.{i}.1.qkv.weight": { "key": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", "query": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", "value": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("qkv" in key for key in attentions ) else None , config=_lowerCAmelCase , ) else: A_ : Optional[int] = renew_resnet_paths(_lowerCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: A_ : List[Any] = ".".join(["output_blocks", str(_lowerCAmelCase ), path["old"]] ) A_ : Optional[Any] = ".".join(["up_blocks", str(_lowerCAmelCase ), "resnets", str(_lowerCAmelCase ), path["new"]] ) A_ : Optional[int] = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') _lowerCAmelCase : Optional[Any] = parser.parse_args() _lowerCAmelCase : Optional[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowerCAmelCase : str = json.loads(f.read()) _lowerCAmelCase : Tuple = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowerCAmelCase : Optional[Any] = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowerCAmelCase : List[str] = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) _lowerCAmelCase : List[str] = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) _lowerCAmelCase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
454
1
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __UpperCamelCase ( lowercase__ , lowercase__ ): lowercase : Union[str, Any] = 1 @register_to_config def __init__( self :str ,_UpperCamelCase :Optional[Any]=2_0_0_0 ,_UpperCamelCase :Optional[int]=0.1 ,_UpperCamelCase :Optional[int]=2_0 ,_UpperCamelCase :Dict=1E-3 ): snake_case_ : str = None snake_case_ : Dict = None snake_case_ : List[Any] = None def a__ ( self :List[Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Union[str, torch.device] = None ): snake_case_ : Any = torch.linspace(1 ,self.config.sampling_eps ,_UpperCamelCase ,device=_UpperCamelCase ) def a__ ( self :Tuple ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Dict ,_UpperCamelCase :str=None ): if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score snake_case_ : Optional[Any] = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) snake_case_ : Dict = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) snake_case_ : List[str] = std.flatten() while len(std.shape ) < len(score.shape ): snake_case_ : Optional[int] = std.unsqueeze(-1 ) snake_case_ : Any = -score / std # compute snake_case_ : Dict = -1.0 / len(self.timesteps ) snake_case_ : Union[str, Any] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) snake_case_ : str = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): snake_case_ : Union[str, Any] = beta_t.unsqueeze(-1 ) snake_case_ : List[Any] = -0.5 * beta_t * x snake_case_ : List[Any] = torch.sqrt(_UpperCamelCase ) snake_case_ : Union[str, Any] = drift - diffusion**2 * score snake_case_ : int = x + drift * dt # add noise snake_case_ : Tuple = randn_tensor(x.shape ,layout=x.layout ,generator=_UpperCamelCase ,device=x.device ,dtype=x.dtype ) snake_case_ : Optional[Any] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :Union[str, Any] ): return self.config.num_train_timesteps
267
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : List[str] = KandinskyVaaPriorPipeline lowercase : Optional[Any] = ['prompt'] lowercase : Dict = ['prompt', 'negative_prompt'] lowercase : Dict = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] lowercase : int = False @property def a__ ( self :int ): return 3_2 @property def a__ ( self :Any ): return 3_2 @property def a__ ( self :Union[str, Any] ): return self.time_input_dim @property def a__ ( self :int ): return self.time_input_dim * 4 @property def a__ ( self :Dict ): return 1_0_0 @property def a__ ( self :List[Any] ): snake_case_ : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def a__ ( self :int ): torch.manual_seed(0 ) snake_case_ : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,) return CLIPTextModelWithProjection(_UpperCamelCase ) @property def a__ ( self :Dict ): torch.manual_seed(0 ) snake_case_ : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 1_2, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } snake_case_ : int = PriorTransformer(**_UpperCamelCase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 snake_case_ : Any = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def a__ ( self :Optional[int] ): torch.manual_seed(0 ) snake_case_ : Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,image_size=2_2_4 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=1_4 ,) snake_case_ : Optional[Any] = CLIPVisionModelWithProjection(_UpperCamelCase ) return model @property def a__ ( self :List[Any] ): snake_case_ : Any = CLIPImageProcessor( crop_size=2_2_4 ,do_center_crop=_UpperCamelCase ,do_normalize=_UpperCamelCase ,do_resize=_UpperCamelCase ,image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] ,image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] ,resample=3 ,size=2_2_4 ,) return image_processor def a__ ( self :List[Any] ): snake_case_ : Tuple = self.dummy_prior snake_case_ : Any = self.dummy_image_encoder snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : Any = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_image_processor snake_case_ : Tuple = UnCLIPScheduler( variance_type="""fixed_small_log""" ,prediction_type="""sample""" ,num_train_timesteps=1_0_0_0 ,clip_sample=_UpperCamelCase ,clip_sample_range=10.0 ,) snake_case_ : Tuple = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def a__ ( self :Dict ,_UpperCamelCase :str ,_UpperCamelCase :Union[str, Any]=0 ): if str(_UpperCamelCase ).startswith("""mps""" ): snake_case_ : Optional[int] = torch.manual_seed(_UpperCamelCase ) else: snake_case_ : int = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ : Dict = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def a__ ( self :int ): snake_case_ : Union[str, Any] = """cpu""" snake_case_ : int = self.get_dummy_components() snake_case_ : int = self.pipeline_class(**_UpperCamelCase ) snake_case_ : Union[str, Any] = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ : Any = pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) snake_case_ : List[Any] = output.image_embeds snake_case_ : List[Any] = pipe( **self.get_dummy_inputs(_UpperCamelCase ) ,return_dict=_UpperCamelCase ,)[0] snake_case_ : Dict = image[0, -1_0:] snake_case_ : Optional[Any] = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) snake_case_ : Optional[int] = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a__ ( self :List[Any] ): snake_case_ : Any = torch_device == """cpu""" snake_case_ : Any = True snake_case_ : Dict = False self._test_inference_batch_single_identical( test_max_difference=_UpperCamelCase ,relax_max_difference=_UpperCamelCase ,test_mean_pixel_difference=_UpperCamelCase ,) @skip_mps def a__ ( self :str ): snake_case_ : str = torch_device == """cpu""" snake_case_ : List[str] = False self._test_attention_slicing_forward_pass( test_max_difference=_UpperCamelCase ,test_mean_pixel_difference=_UpperCamelCase ,)
267
1
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) SCREAMING_SNAKE_CASE : List[str] = logging.getLogger(__name__) SCREAMING_SNAKE_CASE : List[Any] = {"facebook/bart-base": BartForConditionalGeneration} SCREAMING_SNAKE_CASE : List[str] = {"facebook/bart-base": BartTokenizer} def UpperCamelCase_( ) -> Tuple: _lowercase : Optional[Any] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=lowerCamelCase_ , default=lowerCamelCase_ , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=lowerCamelCase_ , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=lowerCamelCase_ , default=lowerCamelCase_ , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=lowerCamelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=lowerCamelCase_ , ) parser.add_argument( '--config_name' , type=lowerCamelCase_ , default=lowerCamelCase_ , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=lowerCamelCase_ , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=lowerCamelCase_ , default=lowerCamelCase_ , help='Where to store the final ONNX file.' ) _lowercase : Optional[Any] = parser.parse_args() return args def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_="cpu" ) -> str: _lowercase : List[Any] = model_dict[model_name].from_pretrained(lowerCamelCase_ ).to(lowerCamelCase_ ) _lowercase : Optional[Any] = tokenizer_dict[model_name].from_pretrained(lowerCamelCase_ ) if model_name in ["facebook/bart-base"]: _lowercase : Optional[int] = 0 _lowercase : Any = None _lowercase : List[str] = 0 return huggingface_model, tokenizer def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: model.eval() _lowercase : str = None _lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(lowerCamelCase_ ) ) with torch.no_grad(): _lowercase : str = 'My friends are cool but they eat too many carbs.' _lowercase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='pt' ).to(model.device ) _lowercase : Optional[Any] = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=lowerCamelCase_ , max_length=lowerCamelCase_ , early_stopping=lowerCamelCase_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( lowerCamelCase_ , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , lowerCamelCase_ , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=lowerCamelCase_ , ) logger.info('Model exported to {}'.format(lowerCamelCase_ ) ) _lowercase : Any = remove_dup_initializers(os.path.abspath(lowerCamelCase_ ) ) logger.info('Deduplicated and optimized model written to {}'.format(lowerCamelCase_ ) ) _lowercase : int = onnxruntime.InferenceSession(lowerCamelCase_ ) _lowercase : Any = ort_sess.run( lowerCamelCase_ , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(lowerCamelCase_ ), 'max_length': np.array(lowerCamelCase_ ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def UpperCamelCase_( ) -> Tuple: _lowercase : int = parse_args() _lowercase : Optional[Any] = 5 _lowercase : str = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _lowercase : Optional[int] = torch.device(args.device ) _lowercase , _lowercase : List[str] = load_model_tokenizer(args.model_name_or_path , lowerCamelCase_ ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(lowerCamelCase_ ) if args.max_length: _lowercase : int = args.max_length if args.num_beams: _lowercase : Union[str, Any] = args.num_beams if args.output_file_path: _lowercase : List[Any] = args.output_file_path else: _lowercase : List[Any] = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
89
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Optional[int] = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def UpperCamelCase ( self, lowerCamelCase=0) -> str: """simple docstring""" _lowercase : Optional[int] = np.random.RandomState(lowerCamelCase) _lowercase : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = self.get_dummy_inputs() _lowercase : Tuple = pipe(**lowerCamelCase).images _lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : List[Any] = np.array([0.6_5_0_7_2, 0.5_8_4_9_2, 0.4_8_2_1_9, 0.5_5_5_2_1, 0.5_3_1_8_0, 0.5_5_9_3_9, 0.5_0_6_9_7, 0.3_9_8_0_0, 0.4_6_4_5_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : List[Any] = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images _lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : List[Any] = np.array([0.6_5_8_6_3, 0.5_9_4_2_5, 0.4_9_3_2_6, 0.5_6_3_1_3, 0.5_3_8_7_5, 0.5_6_6_2_7, 0.5_1_0_6_5, 0.3_9_7_7_7, 0.4_6_3_3_0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Optional[int] = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Union[str, Any] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : Union[str, Any] = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Any = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_dummy_inputs() _lowercase : Any = pipe(**lowerCamelCase).images _lowercase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : Union[str, Any] = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_dummy_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : List[str] = np.array([0.5_3_8_1_7, 0.6_0_8_1_2, 0.4_7_3_8_4, 0.4_9_5_3_0, 0.5_1_8_9_4, 0.4_9_8_1_4, 0.4_7_9_8_4, 0.3_8_9_5_8, 0.4_4_2_7_1]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Union[str, Any] = self.get_dummy_inputs() _lowercase : Any = pipe(**lowerCamelCase).images _lowercase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : Any = np.array([0.5_3_8_9_5, 0.6_0_8_0_8, 0.4_7_9_3_3, 0.4_9_6_0_8, 0.5_1_8_8_6, 0.4_9_9_5_0, 0.4_8_0_5_3, 0.3_8_9_5_7, 0.4_4_2_0_0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = self.get_dummy_inputs() _lowercase : Any = 3 * [inputs['prompt']] # forward _lowercase : int = pipe(**lowerCamelCase) _lowercase : Optional[int] = output.images[0, -3:, -3:, -1] _lowercase : int = self.get_dummy_inputs() _lowercase : Union[str, Any] = 3 * [inputs.pop('prompt')] _lowercase : Union[str, Any] = pipe.tokenizer( lowerCamelCase, padding='max_length', max_length=pipe.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='np', ) _lowercase : Tuple = text_inputs['input_ids'] _lowercase : Any = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa))[0] _lowercase : List[Any] = prompt_embeds # forward _lowercase : Union[str, Any] = pipe(**lowerCamelCase) _lowercase : Union[str, Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1E-4 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[Any] = self.get_dummy_inputs() _lowercase : Any = 3 * ['this is a negative prompt'] _lowercase : str = negative_prompt _lowercase : Optional[int] = 3 * [inputs['prompt']] # forward _lowercase : int = pipe(**lowerCamelCase) _lowercase : str = output.images[0, -3:, -3:, -1] _lowercase : Union[str, Any] = self.get_dummy_inputs() _lowercase : str = 3 * [inputs.pop('prompt')] _lowercase : Optional[int] = [] for p in [prompt, negative_prompt]: _lowercase : Tuple = pipe.tokenizer( lowerCamelCase, padding='max_length', max_length=pipe.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='np', ) _lowercase : Dict = text_inputs['input_ids'] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa))[0]) _lowercase , _lowercase : str = embeds # forward _lowercase : Dict = pipe(**lowerCamelCase) _lowercase : Tuple = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): @property def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : int = ort.SessionOptions() _lowercase : str = False return options def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=lowerCamelCase, feature_extractor=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = 'A painting of a squirrel eating a burger' np.random.seed(0) _lowercase : Union[str, Any] = sd_pipe([prompt], guidance_scale=6.0, num_inference_steps=10, output_type='np') _lowercase : Optional[Any] = output.images _lowercase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array([0.0_4_5_2, 0.0_3_9_0, 0.0_0_8_7, 0.0_3_5_0, 0.0_6_1_7, 0.0_3_6_4, 0.0_5_4_4, 0.0_5_2_3, 0.0_7_2_0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : str = DDIMScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx') _lowercase : str = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = 'open neural network exchange' _lowercase : List[Any] = np.random.RandomState(0) _lowercase : Optional[Any] = sd_pipe([prompt], guidance_scale=7.5, num_inference_steps=10, generator=lowerCamelCase, output_type='np') _lowercase : Optional[Any] = output.images _lowercase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Optional[int] = np.array([0.2_8_6_7, 0.1_9_7_4, 0.1_4_8_1, 0.7_2_9_4, 0.7_2_5_1, 0.6_6_6_7, 0.4_1_9_4, 0.5_6_4_2, 0.6_4_8_6]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Dict = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx') _lowercase : Dict = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = 'open neural network exchange' _lowercase : str = np.random.RandomState(0) _lowercase : Dict = sd_pipe([prompt], guidance_scale=7.5, num_inference_steps=10, generator=lowerCamelCase, output_type='np') _lowercase : Optional[Any] = output.images _lowercase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Optional[Any] = np.array([0.2_3_0_6, 0.1_9_5_9, 0.1_5_9_3, 0.6_5_4_9, 0.6_3_9_4, 0.5_4_0_8, 0.5_0_6_5, 0.6_0_1_0, 0.6_1_6_1]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : List[Any] = 0 def test_callback_fn(lowerCamelCase, lowerCamelCase, lowerCamelCase) -> None: _lowercase : List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) _lowercase : Any = latents[0, -3:, -3:, -1] _lowercase : Tuple = np.array( [-0.6_7_7_2, -0.3_8_3_5, -1.2_4_5_6, 0.1_9_0_5, -1.0_9_7_4, 0.6_9_6_7, -1.9_3_5_3, 0.0_1_7_8, 1.0_1_6_7]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) _lowercase : List[Any] = latents[0, -3:, -3:, -1] _lowercase : str = np.array( [-0.3_3_5_1, 0.2_2_4_1, -0.1_8_3_7, -0.2_3_2_5, -0.6_5_7_7, 0.3_3_9_3, -0.0_2_4_1, 0.5_8_9_9, 1.3_8_7_5]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1E-3 _lowercase : Any = False _lowercase : int = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', safety_checker=lowerCamelCase, feature_extractor=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = 'Andromeda galaxy in a bottle' _lowercase : str = np.random.RandomState(0) pipe( prompt=lowerCamelCase, num_inference_steps=5, guidance_scale=7.5, generator=lowerCamelCase, callback=lowerCamelCase, callback_steps=1, ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', safety_checker=lowerCamelCase, feature_extractor=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) assert isinstance(lowerCamelCase, lowerCamelCase) assert pipe.safety_checker is None _lowercase : Optional[int] = pipe('example prompt', num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase) _lowercase : Any = OnnxStableDiffusionPipeline.from_pretrained(lowerCamelCase) # sanity check that the pipeline still works assert pipe.safety_checker is None _lowercase : List[str] = pipe('example prompt', num_inference_steps=2).images[0] assert image is not None
89
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
712
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. SCREAMING_SNAKE_CASE_ = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" a_ :List[Any] =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a_ :List[Any] =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a_ :List[Any] ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a_ :Tuple ={ config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __a ( self : int ): '''simple docstring''' __a = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) __a = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) __a = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}] ) __a = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], ] , ) __a = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) # Legacy behavior __a = text_classifier("""This is great !""" , return_all_scores=SCREAMING_SNAKE_CASE__ ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) __a = text_classifier("""This is great !""" , return_all_scores=SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [[{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}]] ) __a = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], ] , ) __a = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ {"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_0""", """score""": 0.5_0_4}, ] , ) @require_torch def __a ( self : Optional[int] ): '''simple docstring''' import torch __a = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) __a = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) @require_tf def __a ( self : List[str] ): '''simple docstring''' __a = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) __a = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) @slow @require_torch def __a ( self : int ): '''simple docstring''' __a = pipeline("""text-classification""" ) __a = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __a = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __a = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """POSITIVE""", """score""": 0.9_8_8}] ) @slow @require_tf def __a ( self : Union[str, Any] ): '''simple docstring''' __a = pipeline("""text-classification""" , framework="""tf""" ) __a = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __a = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __a = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """POSITIVE""", """score""": 0.9_8_8}] ) def __a ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' __a = TextClassificationPipeline(model=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def __a ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' __a = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __a = """HuggingFace is in""" __a = text_classifier(SCREAMING_SNAKE_CASE__ ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) __a = ["""HuggingFace is in """, """Paris is in France"""] __a = text_classifier(SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )}, {"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __a = text_classifier(SCREAMING_SNAKE_CASE__ , top_k=SCREAMING_SNAKE_CASE__ ) __a = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [[{"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )}] * N, [{"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )}] * N] , ) __a = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} __a = text_classifier(SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , {"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __a = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(SCREAMING_SNAKE_CASE__ ): text_classifier(SCREAMING_SNAKE_CASE__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __a = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
201
0
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> bool: lowercase__ = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
235
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore lowercase_ = """ Human: <<task>> Assistant: """ lowercase_ = """huggingface-tools/default-prompts""" lowercase_ = {"""chat""": """chat_prompt_template.txt""", """run""": """run_prompt_template.txt"""} def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="run" ) -> Union[str, Any]: if prompt_or_repo_id is None: lowercase__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , _SCREAMING_SNAKE_CASE ) is not None: return prompt_or_repo_id lowercase__ = cached_file( _SCREAMING_SNAKE_CASE , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(_SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: return f.read()
235
1
"""simple docstring""" import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Dict = f'{sampling_rate}' snake_case_ : Any = """1""" snake_case_ : Any = """f32le""" snake_case_ : Optional[int] = [ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(lowerCAmelCase__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: snake_case_ : str = ffmpeg_process.communicate(lowerCAmelCase__ ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error snake_case_ : str = output_stream[0] snake_case_ : List[Any] = np.frombuffer(lowerCAmelCase__ , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] = "f32le" , ): """simple docstring""" snake_case_ : int = f'{sampling_rate}' snake_case_ : str = """1""" if format_for_conversion == "s16le": snake_case_ : Union[str, Any] = 2 elif format_for_conversion == "f32le": snake_case_ : Dict = 4 else: raise ValueError(f'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) snake_case_ : Optional[int] = platform.system() if system == "Linux": snake_case_ : Dict = """alsa""" snake_case_ : List[str] = """default""" elif system == "Darwin": snake_case_ : str = """avfoundation""" snake_case_ : Tuple = """:0""" elif system == "Windows": snake_case_ : Union[str, Any] = """dshow""" snake_case_ : Tuple = """default""" snake_case_ : Dict = [ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] snake_case_ : Union[str, Any] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample snake_case_ : str = _ffmpeg_stream(lowerCAmelCase__ , lowerCAmelCase__ ) for item in iterator: yield item def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Any = "f32le" , ): """simple docstring""" if stream_chunk_s is not None: snake_case_ : Any = stream_chunk_s else: snake_case_ : Optional[Any] = chunk_length_s snake_case_ : List[Any] = ffmpeg_microphone(lowerCAmelCase__ , lowerCAmelCase__ , format_for_conversion=lowerCAmelCase__ ) if format_for_conversion == "s16le": snake_case_ : Optional[Any] = np.intaa snake_case_ : Union[str, Any] = 2 elif format_for_conversion == "f32le": snake_case_ : List[str] = np.floataa snake_case_ : Any = 4 else: raise ValueError(f'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) if stride_length_s is None: snake_case_ : Dict = chunk_length_s / 6 snake_case_ : str = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(lowerCAmelCase__ , (int, float) ): snake_case_ : List[str] = [stride_length_s, stride_length_s] snake_case_ : int = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample snake_case_ : Dict = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample snake_case_ : int = datetime.datetime.now() snake_case_ : Union[str, Any] = datetime.timedelta(seconds=lowerCAmelCase__ ) for item in chunk_bytes_iter(lowerCAmelCase__ , lowerCAmelCase__ , stride=(stride_left, stride_right) , stream=lowerCAmelCase__ ): # Put everything back in numpy scale snake_case_ : Tuple = np.frombuffer(item["""raw"""] , dtype=lowerCAmelCase__ ) snake_case_ : Any = ( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) snake_case_ : Optional[Any] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 1_0 * delta: # We're late !! SKIP continue yield item def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple = False ): """simple docstring""" snake_case_ : Tuple = b"""""" snake_case_ , snake_case_ : Optional[int] = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}' ) snake_case_ : Optional[int] = 0 for raw in iterator: acc += raw if stream and len(lowerCAmelCase__ ) < chunk_len: snake_case_ : List[str] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(lowerCAmelCase__ ) >= chunk_len: # We are flushing the accumulator snake_case_ : Dict = (_stride_left, stride_right) snake_case_ : Optional[int] = {"""raw""": acc[:chunk_len], """stride""": stride} if stream: snake_case_ : Optional[Any] = False yield item snake_case_ : List[Any] = stride_left snake_case_ : int = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(lowerCAmelCase__ ) > stride_left: snake_case_ : str = {"""raw""": acc, """stride""": (_stride_left, 0)} if stream: snake_case_ : Union[str, Any] = False yield item def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : str = 2**2_4 # 16Mo try: with subprocess.Popen(lowerCAmelCase__ , stdout=subprocess.PIPE , bufsize=lowerCAmelCase__ ) as ffmpeg_process: while True: snake_case_ : Any = ffmpeg_process.stdout.read(lowerCAmelCase__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
714
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') a_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a_ = '''>>zh<<''' a_ = '''Helsinki-NLP/''' if is_torch_available(): a_ = '''pt''' elif is_tf_available(): a_ = '''tf''' else: a_ = '''jax''' @require_sentencepiece class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = MarianTokenizer _A : List[str] = False _A : List[str] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] snake_case_ : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Any = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) snake_case_ : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self , **lowercase__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return ( "This is a test", "This is a test", ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """</s>""" snake_case_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) snake_case_ : Tuple = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) snake_case_ : Dict = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) snake_case_ : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) snake_case_ : str = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[str] = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : str = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) snake_case_ : Dict = """Tämä on testi""" snake_case_ : List[Any] = """This is a test""" snake_case_ : Optional[int] = [76, 7, 20_47, 2] snake_case_ : List[str] = [69, 12, 11, 9_40, 2] snake_case_ : Any = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : str = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
48
0
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a : Optional[Any] = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowercase ( __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase : List[str] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: UpperCAmelCase : int = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: UpperCAmelCase : List[Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case , snake_case=1_3 , snake_case=7 , snake_case=True , snake_case=False , snake_case=9_9 , snake_case=1_6 , snake_case=2 , snake_case=4 , snake_case=4 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=3_2 , snake_case=2 , snake_case=1 , snake_case=0 , snake_case=0.02 , ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : Any = seq_length UpperCAmelCase : Dict = is_training UpperCAmelCase : int = use_labels UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : List[Any] = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : Optional[Any] = hidden_dropout_prob UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase : Any = max_position_embeddings UpperCAmelCase : Dict = eos_token_id UpperCAmelCase : Any = pad_token_id UpperCAmelCase : List[str] = bos_token_id UpperCAmelCase : Any = initializer_range def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) UpperCAmelCase : List[str] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) UpperCAmelCase : Any = shift_tokens_right(snake_case , 1 , 2 ) UpperCAmelCase : Tuple = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=snake_case , ) UpperCAmelCase : List[str] = prepare_blenderbot_inputs_dict(snake_case , snake_case , snake_case ) return config, inputs_dict def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : int = self.prepare_config_and_inputs() return config, inputs_dict def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : List[str] = 2_0 UpperCAmelCase : List[str] = model_class_name(snake_case ) UpperCAmelCase : List[str] = model.encode(inputs_dict["input_ids"] ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCAmelCase : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , snake_case , snake_case ) UpperCAmelCase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) UpperCAmelCase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase : Tuple = model.decode( decoder_input_ids[:, :-1] , snake_case , decoder_attention_mask=snake_case , past_key_values=snake_case , decoder_position_ids=snake_case , ) UpperCAmelCase : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, -1:] , snake_case , decoder_attention_mask=snake_case , past_key_values=outputs_cache.past_key_values , decoder_position_ids=snake_case , ) UpperCAmelCase : List[Any] = model.decode(snake_case , snake_case ) UpperCAmelCase : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"Max diff is {diff}" ) def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[Any] = 2_0 UpperCAmelCase : Optional[int] = model_class_name(snake_case ) UpperCAmelCase : Optional[int] = model.encode(inputs_dict["input_ids"] ) UpperCAmelCase , UpperCAmelCase : List[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCAmelCase : Dict = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase : Tuple = model.init_cache(decoder_input_ids.shape[0] , snake_case , snake_case ) UpperCAmelCase : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase : int = model.decode( decoder_input_ids[:, :-1] , snake_case , decoder_attention_mask=snake_case , past_key_values=snake_case , decoder_position_ids=snake_case , ) UpperCAmelCase : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase : List[Any] = model.decode( decoder_input_ids[:, -1:] , snake_case , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=snake_case , decoder_position_ids=snake_case , ) UpperCAmelCase : Any = model.decode(snake_case , snake_case , decoder_attention_mask=snake_case ) UpperCAmelCase : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"Max diff is {diff}" ) @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : str = 99 def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) UpperCAmelCase : List[Any] = input_ids.shape[0] UpperCAmelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = self._get_config_and_data() UpperCAmelCase : Any = FlaxBlenderbotForConditionalGeneration(snake_case ) UpperCAmelCase : Optional[Any] = lm_model(input_ids=snake_case ) UpperCAmelCase : Dict = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) UpperCAmelCase : Union[str, Any] = FlaxBlenderbotForConditionalGeneration(snake_case ) UpperCAmelCase : int = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) UpperCAmelCase : Dict = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) UpperCAmelCase : List[str] = lm_model(input_ids=snake_case , decoder_input_ids=snake_case ) UpperCAmelCase : Optional[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) UpperCAmelCase : Any = shift_tokens_right(snake_case , 1 , 2 ) UpperCAmelCase : str = np.equal(snake_case , 1 ).astype(np.floataa ).sum() UpperCAmelCase : int = np.equal(snake_case , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(snake_case , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class UpperCamelCase__ ( lowercase__ , unittest.TestCase , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = True SCREAMING_SNAKE_CASE__ : str = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = FlaxBlenderbotModelTester(self ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(snake_case , snake_case , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(snake_case , snake_case , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase : int = self._prepare_for_class(snake_case , snake_case ) UpperCAmelCase : Tuple = model_class(snake_case ) @jax.jit def encode_jitted(snake_case , snake_case=None , **snake_case ): return model.encode(input_ids=snake_case , attention_mask=snake_case ) with self.subTest("JIT Enabled" ): UpperCAmelCase : Optional[int] = encode_jitted(**snake_case ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase : Any = encode_jitted(**snake_case ).to_tuple() self.assertEqual(len(snake_case ) , len(snake_case ) ) for jitted_output, output in zip(snake_case , snake_case ): self.assertEqual(jitted_output.shape , output.shape ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase : str = model_class(snake_case ) UpperCAmelCase : List[Any] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) UpperCAmelCase : Dict = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(snake_case , snake_case , snake_case ): return model.decode( decoder_input_ids=snake_case , decoder_attention_mask=snake_case , encoder_outputs=snake_case , ) with self.subTest("JIT Enabled" ): UpperCAmelCase : List[Any] = decode_jitted(**snake_case ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase : str = decode_jitted(**snake_case ).to_tuple() self.assertEqual(len(snake_case ) , len(snake_case ) ) for jitted_output, output in zip(snake_case , snake_case ): self.assertEqual(jitted_output.shape , output.shape ) @slow def A_ ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase : Tuple = model_class_name.from_pretrained("facebook/blenderbot-400M-distill" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCAmelCase : Optional[int] = np.ones((1, 1) ) * model.config.eos_token_id UpperCAmelCase : List[Any] = model(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU." ) @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[int] = {"num_beams": 1, "early_stopping": True, "min_length": 1_5, "max_length": 2_5} UpperCAmelCase : Any = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} UpperCAmelCase : List[str] = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=snake_case ) UpperCAmelCase : str = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B" ) UpperCAmelCase : Union[str, Any] = ["Sam"] UpperCAmelCase : Optional[int] = tokenizer(snake_case , return_tensors="jax" ) UpperCAmelCase : str = model.generate(**snake_case , **snake_case ) UpperCAmelCase : Tuple = "Sam is a great name. It means \"sun\" in Gaelic." UpperCAmelCase : List[Any] = tokenizer.batch_decode(snake_case , **snake_case ) assert generated_txt[0].strip() == tgt_text
679
'''simple docstring''' import collections import importlib.util import os import re from pathlib import Path a : str = "src/transformers" # Matches is_xxx_available() a : Union[str, Any] = re.compile(R"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} a : int = re.compile(R"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a : Any = re.compile(R"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available a : Dict = re.compile(R"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") a : Any = re.compile(R"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a : List[str] = re.compile(R"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", a : Union[str, Any] = re.compile("^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], a : List[str] = re.compile("^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo a : Any = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: a : Union[str, Any] = re.compile(R"^\s*try:") # Catches a line with else: a : Tuple = re.compile(R"^\s*else:") def lowercase ( __magic_name__ ): '''simple docstring''' if _re_test_backend.search(__magic_name__ ) is None: return None UpperCAmelCase : Optional[int] = [b[0] for b in _re_backend.findall(__magic_name__ )] backends.sort() return "_and_".join(__magic_name__ ) def lowercase ( __magic_name__ ): '''simple docstring''' with open(__magic_name__ , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase : str = f.readlines() UpperCAmelCase : Optional[int] = 0 while line_index < len(__magic_name__ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__magic_name__ ): return None # First grab the objects without a specific backend in _import_structure UpperCAmelCase : str = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: UpperCAmelCase : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__magic_name__ ): UpperCAmelCase : int = _re_one_line_import_struct.search(__magic_name__ ).groups()[0] UpperCAmelCase : Any = re.findall("\[([^\]]+)\]" , __magic_name__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue UpperCAmelCase : Optional[int] = _re_import_struct_key_value.search(__magic_name__ ) if single_line_import_search is not None: UpperCAmelCase : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(__magic_name__ ) > 0] objects.extend(__magic_name__ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 UpperCAmelCase : Dict = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase : List[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): UpperCAmelCase : List[str] = lines[line_index] if _re_import_struct_add_one.search(__magic_name__ ) is not None: objects.append(_re_import_struct_add_one.search(__magic_name__ ).groups()[0] ) elif _re_import_struct_add_many.search(__magic_name__ ) is not None: UpperCAmelCase : List[str] = _re_import_struct_add_many.search(__magic_name__ ).groups()[0].split(", " ) UpperCAmelCase : int = [obj[1:-1] for obj in imports if len(__magic_name__ ) > 0] objects.extend(__magic_name__ ) elif _re_between_brackets.search(__magic_name__ ) is not None: UpperCAmelCase : Optional[Any] = _re_between_brackets.search(__magic_name__ ).groups()[0].split(", " ) UpperCAmelCase : Optional[int] = [obj[1:-1] for obj in imports if len(__magic_name__ ) > 0] objects.extend(__magic_name__ ) elif _re_quote_object.search(__magic_name__ ) is not None: objects.append(_re_quote_object.search(__magic_name__ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 UpperCAmelCase : Optional[int] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCAmelCase : List[str] = [] while ( line_index < len(__magic_name__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): UpperCAmelCase : int = lines[line_index] UpperCAmelCase : Tuple = _re_import.search(__magic_name__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCAmelCase : Optional[Any] = {"none": objects} # Let's continue with backend-specific objects while line_index < len(__magic_name__ ): # If the line is an if is_backend_available, we grab all objects associated. UpperCAmelCase : Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase : List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): UpperCAmelCase : str = lines[line_index] UpperCAmelCase : Tuple = _re_import.search(__magic_name__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 UpperCAmelCase : Dict = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' def find_duplicates(__magic_name__ ): return [k for k, v in collections.Counter(__magic_name__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCAmelCase : Tuple = [] for key in import_dict_objects.keys(): UpperCAmelCase : List[str] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) UpperCAmelCase : Any = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCAmelCase : List[Any] = "base imports" if key == "none" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def lowercase ( ): '''simple docstring''' UpperCAmelCase : int = [] for root, _, files in os.walk(__magic_name__ ): if "__init__.py" in files: UpperCAmelCase : Dict = os.path.join(__magic_name__ , "__init__.py" ) UpperCAmelCase : Optional[Any] = parse_init(__magic_name__ ) if objects is not None: UpperCAmelCase : int = analyze_results(*__magic_name__ ) if len(__magic_name__ ) > 0: UpperCAmelCase : Union[str, Any] = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("\n".join(__magic_name__ ) ) if len(__magic_name__ ) > 0: raise ValueError("\n\n".join(__magic_name__ ) ) def lowercase ( ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = [] for path, directories, files in os.walk(__magic_name__ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(__magic_name__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__magic_name__ ) / folder).glob("*.py" ) ) ) == 0: continue UpperCAmelCase : Any = str((Path(__magic_name__ ) / folder).relative_to(__magic_name__ ) ) UpperCAmelCase : Optional[Any] = short_path.replace(os.path.sep , "." ) submodules.append(__magic_name__ ) for fname in files: if fname == "__init__.py": continue UpperCAmelCase : List[str] = str((Path(__magic_name__ ) / fname).relative_to(__magic_name__ ) ) UpperCAmelCase : str = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(__magic_name__ ) return submodules a : str = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", ] def lowercase ( ): '''simple docstring''' UpperCAmelCase : str = importlib.util.spec_from_file_location( "transformers" , os.path.join(__magic_name__ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) UpperCAmelCase : Optional[int] = spec.loader.load_module() UpperCAmelCase : Dict = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__magic_name__ ) > 0: UpperCAmelCase : List[str] = "\n".join(F"- {module}" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F"{list_of_modules}\n" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
679
1
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = False, False, False @dataclass class __A : '''simple docstring''' __lowercase: Optional[int] = None __lowercase: bool = True __lowercase: bool = True __lowercase: Optional[str] = None # Automatically constructed __lowercase: ClassVar[str] = "dict" __lowercase: ClassVar[Any] = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()}) __lowercase: str = field(default="""Audio""" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE) def __call__( self : str ) ->Optional[int]: """simple docstring""" return self.pa_type def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : int ) ->int: """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install \'soundfile\'.""" ) from err if isinstance(_a , _a ): return {"bytes": None, "path": value} elif isinstance(_a , _a ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes snake_case_ = BytesIO() sf.write(_a , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a \'sampling_rate\' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) snake_case_ = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 32_767 else: snake_case_ = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 32_767 snake_case_ = BytesIO(bytes() ) sf.write(_a , _a , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F"""An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.""" ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any = None ) ->Dict: """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) snake_case_ , snake_case_ = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(F"""An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install \'librosa\' and \'soundfile\'.""" ) from err snake_case_ = xsplitext(_a )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: snake_case_ = token_per_repo_id or {} snake_case_ = path.split("""::""" )[-1] try: snake_case_ = string_to_dict(_a , config.HUB_DATASETS_URL )["""repo_id"""] snake_case_ = token_per_repo_id[repo_id] except (ValueError, KeyError): snake_case_ = None with xopen(_a , """rb""" , use_auth_token=_a ) as f: snake_case_ , snake_case_ = sf.read(_a ) else: snake_case_ , snake_case_ = sf.read(_a ) snake_case_ = array.T if self.mono: snake_case_ = librosa.to_mono(_a ) if self.sampling_rate and self.sampling_rate != sampling_rate: snake_case_ = librosa.resample(_a , orig_sr=_a , target_sr=self.sampling_rate ) snake_case_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : List[Any] ) ->int: """simple docstring""" if pa.types.is_string(storage.type ): snake_case_ = pa.array([None] * len(_a ) , type=pa.binary() ) snake_case_ = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): snake_case_ = pa.array([None] * len(_a ) , type=pa.string() ) snake_case_ = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): snake_case_ = pa.array([Audio().encode_example(_a ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: snake_case_ = storage.field("""bytes""" ) else: snake_case_ = pa.array([None] * len(_a ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: snake_case_ = storage.field("""path""" ) else: snake_case_ = pa.array([None] * len(_a ) , type=pa.string() ) snake_case_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(_a , self.pa_type ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Tuple ) ->Any: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(UpperCAmelCase_ : str ): with xopen(_a , """rb""" ) as f: snake_case_ = f.read() return bytes_ snake_case_ = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) snake_case_ = pa.array( [os.path.basename(_a ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) snake_case_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_a , self.pa_type )
720
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/' __SCREAMING_SNAKE_CASE : List[Any] = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def _a ( _SCREAMING_SNAKE_CASE ) -> int: if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: snake_case_ = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: snake_case_ = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = {} import re snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) snake_case_ = re.compile( r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) snake_case_ = re.compile( r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) snake_case_ = re.compile( r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]] snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case_ = prefix + resnet_block snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]] snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case_ = prefix + resnet_block snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]] snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case_ = prefix + resnet_block snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # keep original key else: snake_case_ = original_key snake_case_ = replace_key(_SCREAMING_SNAKE_CASE ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) snake_case_ = original_key snake_case_ = original_key snake_case_ = value return new_dict @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE ) open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content ) snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]] snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE ) snake_case_ = [] snake_case_ = {} for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ): snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""] snake_case_ = {} for k in old_dic.keys(): if k.endswith(""".b""" ): snake_case_ = old_dic[k] elif k.endswith(""".w""" ): snake_case_ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: snake_case_ = old_dic[k] else: snake_case_ = old_dic[k] snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}""" snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) weight_dict.append(_SCREAMING_SNAKE_CASE ) snake_case_ = weight_dict.pop(0 ) model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) return weight_dict if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) __SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
2
0
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a = HfApi() a = {} # fmt: off a = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) a = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) a = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) a = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) a = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) a = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) a = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) a = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) a = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) a = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) a = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) a = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) a = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) a = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) a = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on a = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
687
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = list(__magic_name__ ) _lowerCAmelCase :Dict = list(__magic_name__ ) _lowerCAmelCase :Any = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count += 1 _lowerCAmelCase :Union[str, Any] = '_' if count > 1: return False else: return "".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :int = [] while True: _lowerCAmelCase :str = ['$'] * len(__magic_name__ ) _lowerCAmelCase :Optional[int] = [] for i in range(len(__magic_name__ ) ): for j in range(i + 1 , len(__magic_name__ ) ): _lowerCAmelCase :int = compare_string(binary[i] , binary[j] ) if k is False: _lowerCAmelCase :str = '*' _lowerCAmelCase :Union[str, Any] = '*' temp.append('X' ) for i in range(len(__magic_name__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__magic_name__ ) == 0: return pi _lowerCAmelCase :Any = list(set(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ): """simple docstring""" _lowerCAmelCase :str = [] for minterm in minterms: _lowerCAmelCase :Any = '' for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(__magic_name__ ) return temp def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = list(__magic_name__ ) _lowerCAmelCase :List[Any] = list(__magic_name__ ) _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :List[str] = [0] * len(__magic_name__ ) for i in range(len(chart[0] ) ): _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Optional[Any] = -1 for j in range(len(__magic_name__ ) ): if chart[j][i] == 1: count += 1 _lowerCAmelCase :List[Any] = j if count == 1: _lowerCAmelCase :Dict = 1 for i in range(len(__magic_name__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__magic_name__ ) ): _lowerCAmelCase :Dict = 0 temp.append(prime_implicants[i] ) while True: _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Any = -1 _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): _lowerCAmelCase :str = chart[i].count(1 ) if count_n > max_n: _lowerCAmelCase :Optional[Any] = count_n _lowerCAmelCase :Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 0 def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )] for i in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = prime_implicants[i].count('_' ) for j in range(len(__magic_name__ ) ): if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ): _lowerCAmelCase :str = 1 return chart def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) ) _lowerCAmelCase :Tuple = [ float(__magic_name__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = check(__magic_name__ ) print('Prime Implicants are:' ) print(__magic_name__ ) _lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ ) print('Essential Prime Implicants are:' ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _lowerCamelCase : int = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCamelCase__ ( datasets.BuilderConfig ): __UpperCAmelCase = 10_000 __UpperCAmelCase = None __UpperCAmelCase = None class lowerCamelCase__ ( datasets.ArrowBasedBuilder ): __UpperCAmelCase = ParquetConfig def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _UpperCamelCase ( self , lowerCAmelCase__ ) -> Dict: """simple docstring""" if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _UpperCamelCase :Dict =dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCamelCase :Dict =data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase :Union[str, Any] =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _UpperCamelCase :Optional[Any] =[dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _UpperCamelCase :Optional[int] =[] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase :Union[str, Any] =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _UpperCamelCase :int =[dl_manager.iter_files(lowerCAmelCase__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(lowerCAmelCase__ ): with open(lowerCAmelCase__ , """rb""" ) as f: _UpperCamelCase :List[Any] =datasets.Features.from_arrow_schema(pq.read_schema(lowerCAmelCase__ ) ) break splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"""files""": files} ) ) return splits def _UpperCamelCase ( self , lowerCAmelCase__ ) -> pa.Table: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _UpperCamelCase :Optional[int] =table_cast(lowerCAmelCase__ , self.info.features.arrow_schema ) return pa_table def _UpperCamelCase ( self , lowerCAmelCase__ ) -> Optional[int]: """simple docstring""" _UpperCamelCase :str =self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): with open(lowerCAmelCase__ , """rb""" ) as f: _UpperCamelCase :Any =pq.ParquetFile(lowerCAmelCase__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): _UpperCamelCase :Optional[Any] =pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'''{file_idx}_{batch_idx}''', self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}''' ) raise
512
'''simple docstring''' def _lowerCAmelCase ( __a , __a ) -> float: '''simple docstring''' def get_matched_characters(__a , __a ) -> str: _UpperCamelCase :Any =[] _UpperCamelCase :List[str] =min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _UpperCamelCase :int =int(max(0 , i - limit ) ) _UpperCamelCase :List[Any] =int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__a ) _UpperCamelCase :Optional[int] =F'''{_stra[0:_stra.index(__a )]} {_stra[_stra.index(__a ) + 1:]}''' return "".join(__a ) # matching characters _UpperCamelCase :str =get_matched_characters(__a , __a ) _UpperCamelCase :List[Any] =get_matched_characters(__a , __a ) _UpperCamelCase :List[str] =len(__a ) # transposition _UpperCamelCase :Optional[Any] =( len([(ca, ca) for ca, ca in zip(__a , __a ) if ca != ca] ) // 2 ) if not match_count: _UpperCamelCase :List[str] =0.0 else: _UpperCamelCase :Union[str, Any] =( 1 / 3 * ( match_count / len(__a ) + match_count / len(__a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _UpperCamelCase :int =0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
512
1
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class _snake_case : @staticmethod def SCREAMING_SNAKE_CASE__ ( *a , **a) -> Dict: pass def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = hashlib.mda(image.tobytes()) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class _snake_case ( unittest.TestCase ): _lowercase : Optional[int] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Any: SCREAMING_SNAKE_CASE = DepthEstimationPipeline(model=lowerCamelCase__ , image_processor=lowerCamelCase__) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def SCREAMING_SNAKE_CASE__ ( self , a , a) -> List[str]: SCREAMING_SNAKE_CASE = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png') self.assertEqual({'predicted_depth': ANY(torch.Tensor), 'depth': ANY(Image.Image)} , lowerCamelCase__) import datasets SCREAMING_SNAKE_CASE = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test') SCREAMING_SNAKE_CASE = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png'), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ]) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor), 'depth': ANY(Image.Image)}, {'predicted_depth': ANY(torch.Tensor), 'depth': ANY(Image.Image)}, {'predicted_depth': ANY(torch.Tensor), 'depth': ANY(Image.Image)}, {'predicted_depth': ANY(torch.Tensor), 'depth': ANY(Image.Image)}, {'predicted_depth': ANY(torch.Tensor), 'depth': ANY(Image.Image)}, ] , lowerCamelCase__ , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF') def SCREAMING_SNAKE_CASE__ ( self) -> int: pass @slow @require_torch def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = 'Intel/dpt-large' SCREAMING_SNAKE_CASE = pipeline('depth-estimation' , model=lowerCamelCase__) SCREAMING_SNAKE_CASE = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg') SCREAMING_SNAKE_CASE = hashimage(outputs['depth']) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item()) , 29.3_04) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item()) , 2.6_62) @require_torch def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT')
73
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase , __lowerCamelCase = analyze_text(UpperCamelCase__ ) __lowerCamelCase = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. __lowerCamelCase = sum(single_char_strings.values() ) # one length string __lowerCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __lowerCamelCase = single_char_strings[ch] __lowerCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(UpperCamelCase__ ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string __lowerCamelCase = sum(two_char_strings.values() ) __lowerCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __lowerCamelCase = cha + cha if sequence in two_char_strings: __lowerCamelCase = two_char_strings[sequence] __lowerCamelCase = int(UpperCamelCase__ ) / all_sum my_sec_sum += prob * math.loga(UpperCamelCase__ ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def lowerCamelCase_ ( UpperCamelCase__ : str ) -> tuple[dict, dict]: """simple docstring""" __lowerCamelCase = Counter() # type: ignore __lowerCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(UpperCamelCase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase_ ( ) -> Dict: """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
469
0
"""simple docstring""" import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowercase (_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case = None ,_snake_case = None ,_snake_case = None ,) -> Dict: '''simple docstring''' if config_name_or_path is None: __UpperCamelCase = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: __UpperCamelCase = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __UpperCamelCase = question_encoder_name_or_path __UpperCamelCase = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. __UpperCamelCase = RagConfig.from_pretrained(_snake_case ) __UpperCamelCase = AutoConfig.from_pretrained(_snake_case ) __UpperCamelCase = AutoConfig.from_pretrained(_snake_case ) __UpperCamelCase = gen_config __UpperCamelCase = question_encoder_config __UpperCamelCase = model_class.from_pretrained_question_encoder_generator( _snake_case ,_snake_case ,config=_snake_case ) rag_model.save_pretrained(_snake_case ) # Sanity check. model_class.from_pretrained(_snake_case ) # Save tokenizers. __UpperCamelCase = AutoTokenizer.from_pretrained(_snake_case ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) __UpperCamelCase = AutoTokenizer.from_pretrained(_snake_case ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) _A = parser.parse_args() _A = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
228
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = {"vocab_file": "spiece.model"} _A = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } _A = {"bert_for_seq_generation": 512} class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : Optional[Any] = VOCAB_FILES_NAMES _snake_case : Tuple = PRETRAINED_VOCAB_FILES_MAP _snake_case : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : List[int] = [] _snake_case : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self : Tuple , A_ : List[str] , A_ : List[str]="<s>" , A_ : Optional[int]="</s>" , A_ : Dict="<unk>" , A_ : Optional[int]="<pad>" , A_ : int="<::::>" , A_ : Optional[Dict[str, Any]] = None , **A_ : Optional[int] , )-> None: __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , pad_token=A_ , sep_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) __UpperCamelCase = vocab_file __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def A ( self : Optional[Any] )-> List[str]: return self.sp_model.get_piece_size() def A ( self : List[Any] )-> int: __UpperCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] )-> Dict: __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None return state def __setstate__( self : str , A_ : Optional[Any] )-> List[Any]: __UpperCamelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase = {} __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : Optional[Any] , A_ : str )-> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def A ( self : List[str] , A_ : Union[str, Any] )-> str: return self.sp_model.piece_to_id(A_ ) def A ( self : List[Any] , A_ : Dict )-> Optional[Any]: __UpperCamelCase = self.sp_model.IdToPiece(A_ ) return token def A ( self : List[Any] , A_ : Any )-> Union[str, Any]: __UpperCamelCase = [] __UpperCamelCase = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def A ( self : int , A_ : str , A_ : Optional[str] = None )-> Tuple[str]: if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCamelCase = os.path.join( A_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , "wb" ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
228
1
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __lowerCAmelCase = logging.get_logger(__name__) @add_end_docstrings(lowercase) class __SCREAMING_SNAKE_CASE ( lowercase): def __init__( self : List[Any] , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Any ): super().__init__(*__UpperCamelCase , **__UpperCamelCase ) requires_backends(self , "decord" ) self.check_model_type(__UpperCamelCase ) def UpperCAmelCase__ ( self : Any , __UpperCamelCase : Dict=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Dict=None ): _UpperCAmelCase = {} if frame_sampling_rate is not None: _UpperCAmelCase = frame_sampling_rate if num_frames is not None: _UpperCAmelCase = num_frames _UpperCAmelCase = {} if top_k is not None: _UpperCAmelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[str] , __UpperCamelCase : Union[str, List[str]] , **__UpperCamelCase : List[str] ): return super().__call__(__UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Optional[Any]=1 ): if num_frames is None: _UpperCAmelCase = self.model.config.num_frames if video.startswith("http://" ) or video.startswith("https://" ): _UpperCAmelCase = BytesIO(requests.get(__UpperCamelCase ).content ) _UpperCAmelCase = VideoReader(__UpperCamelCase ) videoreader.seek(0 ) _UpperCAmelCase = 0 _UpperCAmelCase = num_frames * frame_sampling_rate - 1 _UpperCAmelCase = np.linspace(__UpperCamelCase , __UpperCamelCase , num=__UpperCamelCase , dtype=np.intaa ) _UpperCAmelCase = videoreader.get_batch(__UpperCamelCase ).asnumpy() _UpperCAmelCase = list(__UpperCamelCase ) _UpperCAmelCase = self.image_processor(__UpperCamelCase , return_tensors=self.framework ) return model_inputs def UpperCAmelCase__ ( self : List[Any] , __UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = self.model(**__UpperCamelCase ) return model_outputs def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=5 ): if top_k > self.model.config.num_labels: _UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": _UpperCAmelCase = model_outputs.logits.softmax(-1 )[0] _UpperCAmelCase , _UpperCAmelCase = probs.topk(__UpperCamelCase ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _UpperCAmelCase = scores.tolist() _UpperCAmelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__UpperCamelCase , __UpperCamelCase )]
684
def __lowerCamelCase ( _lowerCAmelCase ) -> str: _UpperCAmelCase = [] _UpperCAmelCase = set({"(", "[", "{"} ) _UpperCAmelCase = set({")", "]", "}"} ) _UpperCAmelCase = {"{": "}", "[": "]", "(": ")"} for i in range(len(_lowerCAmelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_lowerCAmelCase ) == 0 or (len(_lowerCAmelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_lowerCAmelCase ) == 0 def __lowerCamelCase ( ) -> str: _UpperCAmelCase = input("Enter sequence of brackets: " ) if is_balanced(_lowerCAmelCase ): print(_lowerCAmelCase , "is balanced" ) else: print(_lowerCAmelCase , "is not balanced" ) if __name__ == "__main__": main()
684
1
'''simple docstring''' import math def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): __lowercase = factor * value __lowercase = value while not is_prime(lowerCamelCase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase_ ) return value
56
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
1
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar __A : str = TypeVar('T') __A : Optional[int] = TypeVar('U') class _SCREAMING_SNAKE_CASE ( Generic[T, U] ): '''simple docstring''' def __init__( self : Any , __lowerCamelCase : T | None , __lowerCamelCase : U | None ): SCREAMING_SNAKE_CASE = key SCREAMING_SNAKE_CASE = val SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None def __repr__( self : int ): return ( f"Node: key: {self.key}, val: {self.val}, " f"has next: {bool(self.next )}, has prev: {bool(self.prev )}" ) class _SCREAMING_SNAKE_CASE ( Generic[T, U] ): '''simple docstring''' def __init__( self : Tuple ): SCREAMING_SNAKE_CASE = DoubleLinkedListNode(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE = DoubleLinkedListNode(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.rear, self.head def __repr__( self : Optional[int] ): SCREAMING_SNAKE_CASE = ["DoubleLinkedList"] SCREAMING_SNAKE_CASE = self.head while node.next is not None: rep.append(str(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE = node.next rep.append(str(self.rear ) ) return ",\n ".join(UpperCamelCase__ ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : DoubleLinkedListNode[T, U] ): SCREAMING_SNAKE_CASE = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None SCREAMING_SNAKE_CASE = node SCREAMING_SNAKE_CASE = previous SCREAMING_SNAKE_CASE = node SCREAMING_SNAKE_CASE = self.rear def _snake_case ( self : str , __lowerCamelCase : DoubleLinkedListNode[T, U] ): if node.prev is None or node.next is None: return None SCREAMING_SNAKE_CASE = node.next SCREAMING_SNAKE_CASE = node.prev SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None return node class _SCREAMING_SNAKE_CASE ( Generic[T, U] ): '''simple docstring''' lowerCamelCase__ = {} def __init__( self : Optional[Any] , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = DoubleLinkedList() SCREAMING_SNAKE_CASE = capacity SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = {} def __repr__( self : List[str] ): return ( f"CacheInfo(hits={self.hits}, misses={self.miss}, " f"capacity={self.capacity}, current size={self.num_keys})" ) def __contains__( self : str , __lowerCamelCase : T ): return key in self.cache def _snake_case ( self : Union[str, Any] , __lowerCamelCase : T ): if key in self.cache: self.hits += 1 SCREAMING_SNAKE_CASE = self.cache[key] SCREAMING_SNAKE_CASE = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(UpperCamelCase__ ) return node.val self.miss += 1 return None def _snake_case ( self : Optional[Any] , __lowerCamelCase : T , __lowerCamelCase : U ): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity SCREAMING_SNAKE_CASE = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(UpperCamelCase__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 SCREAMING_SNAKE_CASE = DoubleLinkedListNode(UpperCamelCase__ , UpperCamelCase__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value SCREAMING_SNAKE_CASE = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list SCREAMING_SNAKE_CASE = value self.list.add(UpperCamelCase__ ) @classmethod def _snake_case ( cls : List[Any] , __lowerCamelCase : int = 128 ): def cache_decorator_inner(__lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*__lowerCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: SCREAMING_SNAKE_CASE = LRUCache(UpperCamelCase__ ) SCREAMING_SNAKE_CASE = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: SCREAMING_SNAKE_CASE = func(*UpperCamelCase__ ) cls.decorator_function_to_instance_map[func].put(args[0] , UpperCamelCase__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(UpperCamelCase__ , "cache_info" , UpperCamelCase__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
16
import math def a__ ( A_ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(A_ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a__ ( A_ = 0.1 ): '''simple docstring''' __magic_name__ = 3 __magic_name__ = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1, (j + 2) * (j + 2), j + 1 ): primes += is_prime(A_ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
529
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""", """BridgeTower/bridgetower-base-itm-mlm""": ( """https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "bridgetower_vision_model" def __init__( self : Dict , __A : Optional[int]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=3 , __A : Optional[Any]=1_6 , __A : Any=2_8_8 , __A : str=1 , __A : Any=1e-0_5 , __A : Optional[int]=False , __A : Optional[Any]=True , __A : List[str]=False , **__A : Union[str, Any] , ): super().__init__(**__A ) snake_case__ : Any = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : Any = num_channels snake_case__ : str = patch_size snake_case__ : Dict = image_size snake_case__ : Union[str, Any] = initializer_factor snake_case__ : Dict = layer_norm_eps snake_case__ : Tuple = stop_gradient snake_case__ : Any = share_layernorm snake_case__ : Tuple = remove_last_layer @classmethod def _lowercase ( cls : Dict , __A : Union[str, os.PathLike] , **__A : Tuple ): snake_case__ : Tuple = cls.get_config_dict(__A , **__A ) if config_dict.get("model_type" ) == "bridgetower": snake_case__ : List[Any] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "bridgetower_text_model" def __init__( self : Optional[int] , __A : str=5_0_2_6_5 , __A : List[Any]=7_6_8 , __A : int=1_2 , __A : Optional[Any]=1_2 , __A : str=1 , __A : Dict=3_0_7_2 , __A : Tuple="gelu" , __A : Optional[Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_4 , __A : List[str]=1 , __A : List[Any]=1e-0_5 , __A : int=1 , __A : str=0 , __A : str=2 , __A : Union[str, Any]="absolute" , __A : Optional[Any]=True , **__A : Optional[Any] , ): super().__init__(**__A ) snake_case__ : List[str] = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : Dict = num_attention_heads snake_case__ : Tuple = hidden_act snake_case__ : Any = initializer_factor snake_case__ : List[Any] = intermediate_size snake_case__ : Tuple = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : Any = max_position_embeddings snake_case__ : Union[str, Any] = type_vocab_size snake_case__ : Optional[int] = layer_norm_eps snake_case__ : Optional[Any] = position_embedding_type snake_case__ : Union[str, Any] = use_cache snake_case__ : List[str] = pad_token_id snake_case__ : Tuple = bos_token_id snake_case__ : Dict = eos_token_id @classmethod def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Union[str, Any] ): snake_case__ : Any = cls.get_config_dict(__A , **__A ) if config_dict.get("model_type" ) == "bridgetower": snake_case__ : Optional[int] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "bridgetower" def __init__( self : Optional[int] , __A : Dict=True , __A : Union[str, Any]="gelu" , __A : Tuple=7_6_8 , __A : Dict=1 , __A : Optional[Any]=1e-0_5 , __A : Optional[int]=False , __A : int="add" , __A : List[Any]=1_2 , __A : Any=6 , __A : List[str]=False , __A : int=False , __A : List[Any]=None , __A : Union[str, Any]=None , **__A : str , ): # TODO: remove this once the Hub files are updated. snake_case__ : Optional[int] = kwargs.pop("text_config_dict" , __A ) snake_case__ : Tuple = kwargs.pop("vision_config_dict" , __A ) super().__init__(**__A ) snake_case__ : Dict = share_cross_modal_transformer_layers snake_case__ : Optional[int] = hidden_act snake_case__ : Optional[Any] = hidden_size snake_case__ : Any = initializer_factor snake_case__ : Any = layer_norm_eps snake_case__ : Optional[Any] = share_link_tower_layers snake_case__ : Any = link_tower_type snake_case__ : Optional[Any] = num_attention_heads snake_case__ : Dict = num_hidden_layers snake_case__ : Tuple = tie_word_embeddings snake_case__ : Any = init_layernorm_from_vision_encoder if text_config is None: snake_case__ : Optional[Any] = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: snake_case__ : int = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) snake_case__ : Optional[int] = BridgeTowerTextConfig(**__A ) snake_case__ : Optional[Any] = BridgeTowerVisionConfig(**__A ) @classmethod def _lowercase ( cls : Any , __A : BridgeTowerTextConfig , __A : BridgeTowerVisionConfig , **__A : List[str] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__A ) def _lowercase ( self : Tuple ): snake_case__ : Tuple = copy.deepcopy(self.__dict__ ) snake_case__ : str = self.text_config.to_dict() snake_case__ : Dict = self.vision_config.to_dict() snake_case__ : str = self.__class__.model_type return output
717
def SCREAMING_SNAKE_CASE ( snake_case_ : list ): if len(snake_case_ ) <= 1: return lst snake_case__ : List[Any] = 1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case__ : Union[str, Any] = 1 return lst if __name__ == "__main__": __lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
25
0
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError("""Input value must be a \'int\' type""" ) return bin(_SCREAMING_SNAKE_CASE ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
336
__A : Dict = "Alexander Joslin" import operator as op from .stack import Stack def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A = Stack() _A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 _A = operator_stack.peek() operator_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
27
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ : Tuple = logging.get_logger(__name__) UpperCamelCase_ : Dict = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __lowerCAmelCase ( _lowercase ): """simple docstring""" snake_case = "gpt_neox" def __init__( self : Dict , _snake_case : List[Any]=50_432 , _snake_case : Optional[Any]=6_144 , _snake_case : Dict=44 , _snake_case : Any=64 , _snake_case : Any=24_576 , _snake_case : str="gelu" , _snake_case : List[Any]=0.2_5 , _snake_case : Union[str, Any]=10_000 , _snake_case : int=0.0 , _snake_case : int=0.0 , _snake_case : Any=0.1 , _snake_case : str=2_048 , _snake_case : Any=0.0_2 , _snake_case : Optional[Any]=1e-5 , _snake_case : List[str]=True , _snake_case : Union[str, Any]=0 , _snake_case : Optional[Any]=2 , _snake_case : Dict=False , _snake_case : Union[str, Any]=True , _snake_case : List[Any]=None , **_snake_case : Any , ) -> str: """simple docstring""" super().__init__(bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = rotary_pct A_ = rotary_emb_base A_ = attention_dropout A_ = hidden_dropout A_ = classifier_dropout A_ = initializer_range A_ = layer_norm_eps A_ = use_cache A_ = tie_word_embeddings A_ = use_parallel_residual A_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def lowerCamelCase__ ( self : Dict ) -> Tuple: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _snake_case ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F'got {self.rope_scaling}' ) A_ = self.rope_scaling.get("type" , _snake_case ) A_ = self.rope_scaling.get("factor" , _snake_case ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(_snake_case , _snake_case ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
482
"""simple docstring""" import os import pytest from attr import dataclass UpperCamelCase_ : str = '''us-east-1''' # defaults region @dataclass class __lowerCAmelCase : """simple docstring""" snake_case = 42 snake_case = "arn:aws:iam::558105141721:role/sagemaker_execution_role" snake_case = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 5_00, "save_steps": 55_00, } snake_case = {**hyperparameters, "max_steps": 10_00} @property def lowerCamelCase__ ( self : int ) -> str: """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCamelCase__ ( self : Any ) -> str: """simple docstring""" return F'{self.framework}-transfromers-test' @property def lowerCamelCase__ ( self : List[Any] ) -> str: """simple docstring""" return F'./tests/sagemaker/scripts/{self.framework}' @property def lowerCamelCase__ ( self : Any ) -> str: """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def A_ (__a ): '''simple docstring''' A_ = SageMakerTestEnvironment(framework=request.cls.framework )
482
1
'''simple docstring''' from __future__ import annotations def lowercase__( _UpperCamelCase : list[int] , _UpperCamelCase : int )-> list[int]: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = len(_UpperCamelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _UpperCamelCase = i + 1 else: _UpperCamelCase = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
138
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def a ( self ): torch.manual_seed(0 ) _UpperCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def a ( self ): _UpperCamelCase = self.dummy_uncond_unet _UpperCamelCase = ScoreSdeVeScheduler() _UpperCamelCase = ScoreSdeVePipeline(unet=A_ , scheduler=A_ ) sde_ve.to(A_ ) sde_ve.set_progress_bar_config(disable=A_ ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=A_ ).images _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=A_ , return_dict=A_ )[ 0 ] _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def a ( self ): _UpperCamelCase = "google/ncsnpp-church-256" _UpperCamelCase = UNetaDModel.from_pretrained(A_ ) _UpperCamelCase = ScoreSdeVeScheduler.from_pretrained(A_ ) _UpperCamelCase = ScoreSdeVePipeline(unet=A_ , scheduler=A_ ) sde_ve.to(A_ ) sde_ve.set_progress_bar_config(disable=A_ ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = sde_ve(num_inference_steps=10 , output_type="numpy" , generator=A_ ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _UpperCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
138
1
'''simple docstring''' import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments A_ : Dict =logging.getLogger(__name__) @dataclass class __UpperCAmelCase ( __a ): __A : Optional[float] = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) __A : bool = field(default=__a , metadata={'help': 'Whether to SortishSamler or not.'} ) __A : bool = field( default=__a , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) __A : bool = field(default=__a , metadata={'help': 'whether to use adafactor'} ) __A : Optional[float] = field( default=__a , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) __A : Optional[float] = field( default=__a , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) __A : Optional[float] = field(default=__a , metadata={'help': 'Dropout probability. Goes into model.config.'} ) __A : Optional[float] = field( default=__a , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) __A : Optional[str] = field( default='linear' , metadata={'help': f"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
716
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu A_ : Tuple =[ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def snake_case_ ( __snake_case : List[Any] , __snake_case : List[Any]=None , __snake_case : Dict=None , __snake_case : Dict=None) -> Dict: lowerCAmelCase_ = True while ask_again: lowerCAmelCase_ = input(__snake_case) try: if default is not None and len(__snake_case) == 0: return default return convert_value(__snake_case) if convert_value is not None else result except Exception: if error_message is not None: print(__snake_case) def snake_case_ ( __snake_case : Union[str, Any] , __snake_case : int=[] , __snake_case : Any=None , __snake_case : List[str]=0) -> str: lowerCAmelCase_ = BulletMenu(__snake_case , __snake_case) lowerCAmelCase_ = menu.run(default_choice=__snake_case) return convert_value(__snake_case) if convert_value is not None else result def snake_case_ ( __snake_case : Tuple) -> Any: lowerCAmelCase_ = int(__snake_case) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value]) def snake_case_ ( __snake_case : List[str]) -> Union[str, Any]: lowerCAmelCase_ = int(__snake_case) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value]) def snake_case_ ( __snake_case : Tuple) -> int: lowerCAmelCase_ = int(__snake_case) return DynamoBackend(DYNAMO_BACKENDS[value]).value def snake_case_ ( __snake_case : Optional[int]) -> str: lowerCAmelCase_ = int(__snake_case) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value]) def snake_case_ ( __snake_case : int) -> Optional[Any]: lowerCAmelCase_ = int(__snake_case) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value]) def snake_case_ ( __snake_case : List[str]) -> Optional[Any]: return {"yes": True, "no": False}[value.lower()] class __UpperCAmelCase ( argparse.RawDescriptionHelpFormatter ): def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = super()._format_usage(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
606
0
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: # Initialise PyTorch model __lowerCAmelCase: Dict = BertConfig.from_json_file(_A ) print(F"Building PyTorch model from configuration: {config}" ) __lowerCAmelCase: Any = BertForPreTraining(_A ) # Load weights from tf checkpoint load_tf_weights_in_bert(_A , _A , _A ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
346
_A = '''Alexander Joslin''' import operator as op from .stack import Stack def __UpperCamelCase ( _A ): lowerCAmelCase_ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowerCAmelCase_ = Stack() lowerCAmelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_A ) ) elif i in operators: # RULE 2 operator_stack.push(_A ) elif i == ")": # RULE 4 lowerCAmelCase_ = operator_stack.peek() operator_stack.pop() lowerCAmelCase_ = operand_stack.peek() operand_stack.pop() lowerCAmelCase_ = operand_stack.peek() operand_stack.pop() lowerCAmelCase_ = operators[opr](_A , _A ) operand_stack.push(_A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _A = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
431
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def A ( lowercase__ : Dict ) -> Any: if "cls_token" in name: UpperCamelCase__ :str = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: UpperCamelCase__ :List[str] = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: UpperCamelCase__ :Union[str, Any] = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase__ :Dict = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: UpperCamelCase__ :Union[str, Any] = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: UpperCamelCase__ :Tuple = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: UpperCamelCase__ :Any = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: UpperCamelCase__ :Dict = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: UpperCamelCase__ :Tuple = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: UpperCamelCase__ :Optional[Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: UpperCamelCase__ :Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCamelCase__ :Any = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: UpperCamelCase__ :Optional[int] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCamelCase__ :Union[str, Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: UpperCamelCase__ :Optional[Any] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: UpperCamelCase__ :List[Any] = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: UpperCamelCase__ :int = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase__ :Any = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase__ :Optional[Any] = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def A ( lowercase__ : List[str] , lowercase__ : Optional[int] ) -> List[Any]: for key in orig_state_dict.copy().keys(): UpperCamelCase__ :Any = orig_state_dict.pop(lowercase__ ) if "qkv" in key: UpperCamelCase__ :str = key.split(""".""" ) UpperCamelCase__ :List[str] = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase__ :Dict = config.decoder_hidden_size UpperCamelCase__ :List[str] = """decoder.decoder_layers.""" if "weight" in key: UpperCamelCase__ :Tuple = val[:dim, :] UpperCamelCase__ :Optional[Any] = val[dim : dim * 2, :] UpperCamelCase__ :int = val[-dim:, :] elif "bias" in key: UpperCamelCase__ :List[str] = val[:dim] UpperCamelCase__ :List[str] = val[dim : dim * 2] UpperCamelCase__ :int = val[-dim:] else: UpperCamelCase__ :str = config.hidden_size UpperCamelCase__ :List[Any] = """vit.encoder.layer.""" if "weight" in key: UpperCamelCase__ :Tuple = val[:dim, :] UpperCamelCase__ :int = val[dim : dim * 2, :] UpperCamelCase__ :List[Any] = val[-dim:, :] elif "bias" in key: UpperCamelCase__ :Optional[Any] = val[:dim] UpperCamelCase__ :Union[str, Any] = val[dim : dim * 2] UpperCamelCase__ :List[Any] = val[-dim:] else: UpperCamelCase__ :str = val return orig_state_dict def A ( lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Union[str, Any]: UpperCamelCase__ :Dict = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase__ :Dict = 1024 UpperCamelCase__ :int = 4096 UpperCamelCase__ :Optional[Any] = 24 UpperCamelCase__ :List[str] = 16 elif "huge" in checkpoint_url: UpperCamelCase__ :Union[str, Any] = 14 UpperCamelCase__ :Optional[Any] = 1280 UpperCamelCase__ :Tuple = 5120 UpperCamelCase__ :Any = 32 UpperCamelCase__ :str = 16 UpperCamelCase__ :Optional[int] = ViTMAEForPreTraining(lowercase__ ) UpperCamelCase__ :List[str] = torch.hub.load_state_dict_from_url(lowercase__ , map_location="""cpu""" )["""model"""] UpperCamelCase__ :Union[str, Any] = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase__ :Any = convert_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() UpperCamelCase__ :Optional[Any] = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" UpperCamelCase__ :Dict = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) UpperCamelCase__ :Optional[int] = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase__ :Union[str, Any] = image_processor(images=lowercase__ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) UpperCamelCase__ :List[Any] = model(**lowercase__ ) UpperCamelCase__ :Dict = outputs.logits if "large" in checkpoint_url: UpperCamelCase__ :Optional[Any] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase__ :List[str] = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase__ :Dict = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowercase__ , atol=1E-4 ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCamelCase = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
702
from collections.abc import Callable import numpy as np def A ( lowercase__ : Callable , lowercase__ : float , lowercase__ : float , lowercase__ : float , lowercase__ : float ) -> np.ndarray: UpperCamelCase__ :List[str] = int(np.ceil((x_end - xa) / step_size ) ) UpperCamelCase__ :int = np.zeros((n + 1,) ) UpperCamelCase__ :Union[str, Any] = ya UpperCamelCase__ :List[Any] = xa for k in range(lowercase__ ): UpperCamelCase__ :List[str] = y[k] + step_size * ode_func(lowercase__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
383
0
import os from collections.abc import Iterator def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = "." ) -> Iterator[str]: """simple docstring""" for dir_path, dir_names, filenames in os.walk(_SCREAMING_SNAKE_CASE ): _A = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_SCREAMING_SNAKE_CASE )[1] in (".py", ".ipynb"): yield os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).lstrip('./' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return F"{i * ' '}*" if i else "\n##" def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_SCREAMING_SNAKE_CASE ) or old_parts[i] != new_part) and new_part: print(F"{md_prefix(_SCREAMING_SNAKE_CASE )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = "." ) -> None: """simple docstring""" _A = '' for filepath in sorted(good_file_paths(_SCREAMING_SNAKE_CASE ) ): _A, _A = os.path.split(_SCREAMING_SNAKE_CASE ) if filepath != old_path: _A = print_path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = (filepath.count(os.sep ) + 1) if filepath else 0 _A = F"{filepath}/{filename}".replace(' ' , '%20' ) _A = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F"{md_prefix(_SCREAMING_SNAKE_CASE )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md(".")
27
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES __a: Dict = """tiny-wmt19-en-ru""" # Build # borrowed from a test __a: Optional[int] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] __a: Optional[Any] = dict(zip(vocab, range(len(vocab)))) __a: Union[str, Any] = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] with tempfile.TemporaryDirectory() as tmpdirname: __a: Tuple = Path(tmpdirname) __a: Optional[Any] = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""] __a: List[Any] = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""] __a: Any = build_dir / VOCAB_FILES_NAMES["""merges_file"""] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) __a: str = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) __a: Tuple = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=10_00, tgt_vocab_size=10_00, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) __a: List[Any] = FSMTForConditionalGeneration(config) print(F'num of params {tiny_model.num_parameters()}') # Test __a: Dict = tokenizer(["""Making tiny model"""], return_tensors="""pt""") __a: str = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-ru
152
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __magic_name__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: _lowerCAmelCase = AutoConfig.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) _lowerCAmelCase = TFAutoModel.from_pretrained(__magic_name__ , from_pt=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) _lowerCAmelCase = AutoModel.from_pretrained(__magic_name__ , from_tf=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: _lowerCAmelCase = AutoConfig.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) _lowerCAmelCase = TFAutoModelForPreTraining.from_pretrained(__magic_name__ , from_pt=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) _lowerCAmelCase = AutoModelForPreTraining.from_pretrained(__magic_name__ , from_tf=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = AutoConfig.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) _lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained(__magic_name__ , from_pt=__magic_name__ ) _lowerCAmelCase , _lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ , from_pt=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__magic_name__ , from_tf=__magic_name__ ) _lowerCAmelCase , _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ , from_tf=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = AutoConfig.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) _lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(__magic_name__ , from_pt=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) _lowerCAmelCase = AutoModelWithLMHead.from_pretrained(__magic_name__ , from_tf=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = AutoConfig.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) _lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained(__magic_name__ , from_pt=__magic_name__ ) _lowerCAmelCase , _lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ , from_pt=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) _lowerCAmelCase = AutoModelForMaskedLM.from_pretrained(__magic_name__ , from_tf=__magic_name__ ) _lowerCAmelCase , _lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ , from_tf=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = AutoConfig.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) _lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(__magic_name__ , from_pt=__magic_name__ ) _lowerCAmelCase , _lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ , from_pt=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ , from_tf=__magic_name__ ) _lowerCAmelCase , _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ , from_tf=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: _lowerCAmelCase = AutoConfig.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) _lowerCAmelCase = TFAutoModelForSequenceClassification.from_pretrained(__magic_name__ , from_pt=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) _lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(__magic_name__ , from_tf=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: _lowerCAmelCase = AutoConfig.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) _lowerCAmelCase = TFAutoModelForQuestionAnswering.from_pretrained(__magic_name__ , from_pt=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) _lowerCAmelCase = AutoModelForQuestionAnswering.from_pretrained(__magic_name__ , from_tf=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(__magic_name__ , from_pt=__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=__magic_name__ ) , 1_4_4_1_0 ) _lowerCAmelCase = AutoModelWithLMHead.from_pretrained(__magic_name__ , from_tf=__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=__magic_name__ ) , 1_4_4_1_0 ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(__magic_name__ , from_pt=__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=__magic_name__ ) , 1_4_4_1_0 ) _lowerCAmelCase = AutoModelWithLMHead.from_pretrained(__magic_name__ , from_tf=__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=__magic_name__ ) , 1_4_4_1_0 )
309
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _UpperCamelCase ,unittest.TestCase ): UpperCamelCase : str = FunnelTokenizer UpperCamelCase : Dict = FunnelTokenizerFast UpperCamelCase : List[Any] = True UpperCamelCase : Dict = True def _lowerCamelCase ( self ): """simple docstring""" super().setUp() _lowerCAmelCase = [ '<unk>', '<cls>', '<sep>', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _lowerCamelCase ( self , **__magic_name__ ): """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def _lowerCamelCase ( self , **__magic_name__ ): """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **__magic_name__ ) def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = 'UNwant\u00E9d,running' _lowerCAmelCase = 'unwanted, running' return input_text, output_text def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.tokenizer_class(self.vocab_file ) _lowerCAmelCase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(__magic_name__ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [7, 4, 5, 1_0, 8, 9] ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: _lowerCAmelCase = tokenizer('UNwant\u00E9d,running' ) _lowerCAmelCase = len(inputs['input_ids'] ) - 1 self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len ) _lowerCAmelCase = tokenizer('UNwant\u00E9d,running' , 'UNwant\u00E9d,running' ) self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len + [1] * sentence_len )
309
1
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def UpperCAmelCase__ ( UpperCAmelCase__ = 8 ) -> str: A_ = ascii_letters + digits + punctuation return "".join(secrets.choice(SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ ) ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(SCREAMING_SNAKE_CASE_ ) A_ = i // 3 A_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) A_ = ( chars_incl + random(SCREAMING_SNAKE_CASE_, quotient + remainder ) + random(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) + random(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) A_ = list(SCREAMING_SNAKE_CASE_ ) shuffle(SCREAMING_SNAKE_CASE_ ) return "".join(SCREAMING_SNAKE_CASE_ ) # random is a generalised function for letters, characters and numbers def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: return "".join(secrets.choice(SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ ) ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: pass # Put your code here... def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> int: pass # Put your code here... def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> int: pass # Put your code here... def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ = 8 ) -> bool: if len(SCREAMING_SNAKE_CASE_ ) < min_length: # Your Password must be at least 8 characters long return False A_ = any(char in ascii_uppercase for char in password ) A_ = any(char in ascii_lowercase for char in password ) A_ = any(char in digits for char in password ) A_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def UpperCAmelCase__ ( ) -> List[Any]: A_ = int(input("""Please indicate the max length of your password: """ ).strip() ) A_ = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""", password_generator(SCREAMING_SNAKE_CASE_ ) ) print( """Alternative Password generated:""", alternative_password_generator(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
288
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": __UpperCamelCase = input('''Enter image url: ''').strip() print(f'''Downloading image from {url} ...''') __UpperCamelCase = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image __UpperCamelCase = soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] __UpperCamelCase = requests.get(image_url).content __UpperCamelCase = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, '''wb''') as fp: fp.write(image_data) print(f'''Done. Image saved to disk as {file_name}.''')
247
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class __lowercase (_UpperCAmelCase , _UpperCAmelCase ): _UpperCamelCase = """bit""" _UpperCamelCase = ["""preactivation""", """bottleneck"""] _UpperCamelCase = ["""SAME""", """VALID"""] def __init__( self , A_=3 , A_=64 , A_=[256, 512, 1024, 2048] , A_=[3, 4, 6, 3] , A_="preactivation" , A_="relu" , A_=None , A_=32 , A_=0.0 , A_=False , A_=32 , A_=1 , A_=None , A_=None , **A_ , ) ->Union[str, Any]: '''simple docstring''' super().__init__(**A_ ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __lowerCAmelCase : List[Any] = global_padding.upper() else: raise ValueError(f"""Padding strategy {global_padding} not supported""" ) __lowerCAmelCase : List[str] = num_channels __lowerCAmelCase : List[Any] = embedding_size __lowerCAmelCase : Any = hidden_sizes __lowerCAmelCase : Union[str, Any] = depths __lowerCAmelCase : Dict = layer_type __lowerCAmelCase : Tuple = hidden_act __lowerCAmelCase : Optional[Any] = global_padding __lowerCAmelCase : List[str] = num_groups __lowerCAmelCase : List[Any] = drop_path_rate __lowerCAmelCase : List[Any] = embedding_dynamic_padding __lowerCAmelCase : int = output_stride __lowerCAmelCase : Optional[int] = width_factor __lowerCAmelCase : Dict = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(A_ ) + 1 )] __lowerCAmelCase, __lowerCAmelCase : List[Any] = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names )
583
from __future__ import annotations import typing from collections import Counter def _lowercase ( lowercase__ ): __lowerCAmelCase : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(lowercase__ , max_perimeter + 1 ): __lowerCAmelCase : Optional[int] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(lowercase__ ): __lowerCAmelCase : Optional[int] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _lowercase ( lowercase__ = 1_0_0_0 ): __lowerCAmelCase : Optional[int] = pythagorean_triple(lowercase__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
583
1