code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case (__lowercase , __lowercase): return math.sqrt(sum(pow(a - b , 2) for a, b in zip(__lowercase , __lowercase))) def _snake_case (__lowercase , __lowercase): if dataset.ndim != value_array.ndim: UpperCamelCase_ = ( 'Wrong input data\'s dimensions... ' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__lowercase) try: if dataset.shape[1] != value_array.shape[1]: UpperCamelCase_ = ( 'Wrong input data\'s shape... ' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__lowercase) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape') if dataset.dtype != value_array.dtype: UpperCamelCase_ = ( 'Input data have different datatype... ' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__lowercase) UpperCamelCase_ = [] for value in value_array: UpperCamelCase_ = euclidean(__lowercase , dataset[0]) UpperCamelCase_ = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCamelCase_ = euclidean(__lowercase , __lowercase) if dist > temp_dist: UpperCamelCase_ = temp_dist UpperCamelCase_ = dataset_value.tolist() answer.append([vector, dist]) return answer def _snake_case (__lowercase , __lowercase): return np.dot(__lowercase , __lowercase) / (norm(__lowercase) * norm(__lowercase)) if __name__ == "__main__": import doctest doctest.testmod()
23
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _A ( snake_case__ : int , snake_case__ : int , snake_case__ : Optional[Any]=None , snake_case__ : Any=None ): if attention_mask is None: snake_case__ : Optional[int] = tf.cast(tf.math.not_equal(snake_case__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class snake_case : """simple docstring""" _lowerCAmelCase = OPTConfig _lowerCAmelCase = {} _lowerCAmelCase = 'gelu' def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=99 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=4 , lowerCamelCase=4 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=20 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=16 , lowerCamelCase=16 , ) -> List[str]: """simple docstring""" snake_case__ : List[str] = parent snake_case__ : List[str] = batch_size snake_case__ : str = seq_length snake_case__ : Union[str, Any] = is_training snake_case__ : Union[str, Any] = use_labels snake_case__ : Optional[int] = vocab_size snake_case__ : Any = hidden_size snake_case__ : Dict = num_hidden_layers snake_case__ : Optional[int] = num_attention_heads snake_case__ : Optional[int] = intermediate_size snake_case__ : List[Any] = hidden_act snake_case__ : List[Any] = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : Optional[Any] = max_position_embeddings snake_case__ : Union[str, Any] = eos_token_id snake_case__ : Optional[int] = pad_token_id snake_case__ : Dict = bos_token_id snake_case__ : List[Any] = embed_dim snake_case__ : Tuple = word_embed_proj_dim snake_case__ : Any = False def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ : str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ : int = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCamelCase , **self.config_updates , ) snake_case__ : Dict = prepare_opt_inputs_dict(lowerCamelCase , lowerCamelCase ) return config, inputs_dict def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: """simple docstring""" snake_case__ : Dict = TFOPTModel(config=lowerCamelCase ) snake_case__ : str = inputs_dict['''input_ids'''] snake_case__ : List[str] = input_ids[:1, :] snake_case__ : Tuple = inputs_dict['''attention_mask'''][:1, :] snake_case__ : Optional[Any] = 1 # first forward pass snake_case__ : List[Any] = model(lowerCamelCase , attention_mask=lowerCamelCase , use_cache=lowerCamelCase ) snake_case__ ,snake_case__ : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case__ : Optional[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case__ : str = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case__ : str = model(lowerCamelCase , attention_mask=lowerCamelCase )[0] snake_case__ : int = model(lowerCamelCase , attention_mask=lowerCamelCase , past_key_values=lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case__ : Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case__ : Any = output_from_no_past[:, -3:, random_slice_idx] snake_case__ : int = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase , lowerCamelCase , rtol=1E-3 ) @require_tf class snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () _lowerCAmelCase = (TFOPTForCausalLM,) if is_tf_available() else () _lowerCAmelCase = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = 1_0 def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Any = TFOPTModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=lowerCamelCase ) def lowercase__ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase ) def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ ,snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCamelCase , lowerCamelCase ): if hasattr(lowerCamelCase , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCamelCase , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings snake_case__ : Tuple = model_class(config=lowerCamelCase ) snake_case__ : Tuple = _get_word_embedding_weight(lowerCamelCase , model.get_input_embeddings() ) snake_case__ : List[Any] = _get_word_embedding_weight(lowerCamelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowerCamelCase ) snake_case__ : int = _get_word_embedding_weight(lowerCamelCase , model.get_input_embeddings() ) snake_case__ : Optional[Any] = _get_word_embedding_weight(lowerCamelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. snake_case__ : Any = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCamelCase ) # check that weights remain the same after resizing snake_case__ : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: snake_case__ : Optional[int] = False self.assertTrue(lowerCamelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCamelCase ) snake_case__ : Union[str, Any] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: snake_case__ : Optional[Any] = False self.assertTrue(lowerCamelCase ) def _A ( snake_case__ : Optional[Any] ): return tf.constant(snake_case__ , dtype=tf.intaa ) @require_tf class snake_case ( unittest.TestCase ): """simple docstring""" _lowerCAmelCase = 9_9 def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Any = tf.ones((4, 1) , dtype=tf.intaa ) * 2 snake_case__ : int = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) snake_case__ : Dict = input_ids.shape[0] snake_case__ : Optional[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class snake_case ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Optional[Any] = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) snake_case__ : List[str] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) snake_case__ : Optional[Any] = tf.not_equal(lowerCamelCase , model.config.pad_token_id ) with tf.GradientTape(): snake_case__ : List[str] = model(input_ids=lowerCamelCase , attention_mask=lowerCamelCase ).last_hidden_state snake_case__ : Dict = (1, 11, 512) self.assertEqual(output.shape , lowerCamelCase ) snake_case__ : int = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase , atol=4E-3 ) ) snake_case__ : Optional[int] = tf.function(lowerCamelCase , jit_compile=lowerCamelCase ) snake_case__ : Dict = xla_generate(lowerCamelCase , lowerCamelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase , atol=4E-2 ) ) @require_tf @slow class snake_case ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ) -> int: """simple docstring""" super().setUp() snake_case__ : str = '''facebook/opt-350m''' def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : List[Any] = TFOPTForCausalLM.from_pretrained(self.path_model ) snake_case__ : List[str] = GPTaTokenizer.from_pretrained(self.path_model ) snake_case__ : Dict = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False snake_case__ : Union[str, Any] = tokenizer(lowerCamelCase , return_tensors='''tf''' , padding=lowerCamelCase , add_special_tokens=lowerCamelCase ) snake_case__ : List[Any] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) snake_case__ : Tuple = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-4 ) ) snake_case__ : Optional[Any] = tf.function(lowerCamelCase , jit_compile=lowerCamelCase ) snake_case__ : int = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-4 ) ) @require_tf @slow class snake_case ( unittest.TestCase ): """simple docstring""" @property def lowercase__ ( self ) -> int: """simple docstring""" return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Union[str, Any] = '''facebook/opt-125m''' snake_case__ : Dict = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] snake_case__ : Dict = [] snake_case__ : Dict = GPTaTokenizer.from_pretrained(lowerCamelCase ) snake_case__ : Union[str, Any] = TFOPTForCausalLM.from_pretrained(lowerCamelCase ) for prompt in self.prompts: snake_case__ : Tuple = tokenizer(lowerCamelCase , return_tensors='''tf''' ).input_ids snake_case__ : Optional[int] = model.generate(lowerCamelCase , max_length=10 ) snake_case__ : Optional[int] = tokenizer.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase , lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Dict = '''facebook/opt-350m''' snake_case__ : Optional[Any] = GPTaTokenizer.from_pretrained(lowerCamelCase ) snake_case__ : Optional[int] = TFOPTForCausalLM.from_pretrained(lowerCamelCase ) snake_case__ : str = '''left''' # use different length sentences to test batching snake_case__ : List[str] = [ '''Hello, my dog is a little''', '''Today, I''', ] snake_case__ : List[str] = tokenizer(lowerCamelCase , return_tensors='''tf''' , padding=lowerCamelCase ) snake_case__ : Tuple = inputs['''input_ids'''] snake_case__ : Any = model.generate(input_ids=lowerCamelCase , attention_mask=inputs['''attention_mask'''] ) snake_case__ : Tuple = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids snake_case__ : Union[str, Any] = model.generate(input_ids=lowerCamelCase ) snake_case__ : str = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) snake_case__ : Optional[int] = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids snake_case__ : int = model.generate(input_ids=lowerCamelCase , max_length=model.config.max_length - num_paddings ) snake_case__ : int = tokenizer.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) snake_case__ : Optional[int] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCamelCase ) snake_case__ : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCamelCase ) snake_case__ : Any = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(lowerCamelCase , lowerCamelCase ) self.assertListEqual(lowerCamelCase , [non_padded_sentence, padded_sentence] ) def lowercase__ ( self ) -> Dict: """simple docstring""" snake_case__ : str = '''facebook/opt-350m''' snake_case__ : int = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] snake_case__ : Optional[Any] = [] snake_case__ : Dict = GPTaTokenizer.from_pretrained(lowerCamelCase ) snake_case__ : Optional[int] = TFOPTForCausalLM.from_pretrained(lowerCamelCase ) for prompt in self.prompts: snake_case__ : List[str] = tokenizer(lowerCamelCase , return_tensors='''tf''' ).input_ids snake_case__ : int = model.generate(lowerCamelCase , max_length=10 ) snake_case__ : Tuple = tokenizer.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase , lowerCamelCase )
261
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Union[str, Any] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
import numpy as np _SCREAMING_SNAKE_CASE : Any = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : List[Any] = np.array(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ , A__ : Any = np.where(letter == self.SQUARE ) A__ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = message.lower() A__ : str = message.replace(''' ''' , '''''' ) A__ : Union[str, Any] = message.replace('''j''' , '''i''' ) A__ : List[Any] = np.empty((2, len(UpperCamelCase__ )) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : Any = self.letter_to_numbers(message[letter_index] ) A__ : Optional[Any] = numbers[0] A__ : List[str] = numbers[1] A__ : List[str] = first_step.reshape(2 * len(UpperCamelCase__ ) ) A__ : List[Any] = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Dict = int(second_step[numbers_index * 2] ) A__ : List[str] = int(second_step[(numbers_index * 2) + 1] ) A__ : Dict = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = encoded_message + letter return encoded_message def __snake_case ( self , UpperCamelCase__ ): A__ : str = message.lower() message.replace(''' ''' , '''''' ) A__ : List[Any] = np.empty(2 * len(UpperCamelCase__ ) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : List[str] = self.letter_to_numbers(message[letter_index] ) A__ : Dict = numbers[0] A__ : int = numbers[1] A__ : Optional[Any] = first_step.reshape((2, len(UpperCamelCase__ )) ) A__ : int = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Tuple = int(second_step[0, numbers_index] ) A__ : Dict = int(second_step[1, numbers_index] ) A__ : List[str] = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = decoded_message + letter return decoded_message
55
1
from collections import Counter from timeit import timeit def A__ (snake_case : str = "" , ) -> List[str]: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def A__ (snake_case : str = "" ) -> int: if len(lowerCamelCase_ ) == 0: return True __UpperCamelCase : Any = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __UpperCamelCase : dict[str, int] = {} for character in lower_case_input_str: __UpperCamelCase : Any = character_freq_dict.get(lowerCamelCase_ , 0 ) + 1 __UpperCamelCase : Any = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A__ (snake_case : str = "" ) -> str: print("""\nFor string = """ , lowerCamelCase_ , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowerCamelCase_ ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowerCamelCase_ ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": a__ = input( '''Enter string to determine if it can be rearranged as a palindrome or not: ''' ).strip() benchmark(check_str) a__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"{check_str} can {'' if status else 'not '}be rearranged as a palindrome")
279
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class _SCREAMING_SNAKE_CASE ( snake_case ): lowerCamelCase_ = 'perceiver' def __init__( self : Any , snake_case_ : str=256 , snake_case_ : str=1280 , snake_case_ : str=768 , snake_case_ : List[Any]=1 , snake_case_ : int=26 , snake_case_ : Union[str, Any]=8 , snake_case_ : Any=8 , snake_case_ : Dict=None , snake_case_ : Optional[int]=None , snake_case_ : int="kv" , snake_case_ : List[str]=1 , snake_case_ : str=1 , snake_case_ : Optional[Any]="gelu" , snake_case_ : List[Any]=0.1 , snake_case_ : List[str]=0.02 , snake_case_ : Any=1E-12 , snake_case_ : List[Any]=True , snake_case_ : List[Any]=262 , snake_case_ : Tuple=2048 , snake_case_ : List[str]=56 , snake_case_ : Optional[Any]=[368, 496] , snake_case_ : str=16 , snake_case_ : Any=1920 , snake_case_ : Optional[int]=16 , snake_case_ : Optional[Any]=[1, 16, 224, 224] , **snake_case_ : Tuple , ): """simple docstring""" super().__init__(**snake_case_ ) A : List[Any] = num_latents A : List[Any] = d_latents A : List[str] = d_model A : Optional[int] = num_blocks A : int = num_self_attends_per_block A : int = num_self_attention_heads A : List[Any] = num_cross_attention_heads A : Union[str, Any] = qk_channels A : Optional[int] = v_channels A : Union[str, Any] = cross_attention_shape_for_attention A : List[Any] = self_attention_widening_factor A : List[str] = cross_attention_widening_factor A : Optional[int] = hidden_act A : List[Any] = attention_probs_dropout_prob A : str = initializer_range A : Tuple = layer_norm_eps A : List[str] = use_query_residual # masked language modeling attributes A : Tuple = vocab_size A : int = max_position_embeddings # image classification attributes A : Dict = image_size # flow attributes A : int = train_size # multimodal autoencoding attributes A : Dict = num_frames A : int = audio_samples_per_frame A : str = samples_per_patch A : Dict = output_shape class _SCREAMING_SNAKE_CASE ( snake_case ): @property def _UpperCAmelCase ( self : int ): """simple docstring""" if self.task == "multiple-choice": A : Union[str, Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def _UpperCAmelCase ( self : Any ): """simple docstring""" return 1E-4 def _UpperCAmelCase ( self : Optional[Any] , snake_case_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , snake_case_ : int = 3 , snake_case_ : int = 40 , snake_case_ : int = 40 , ): """simple docstring""" if isinstance(snake_case_ , snake_case_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A : List[str] = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A : str = preprocessor.num_special_tokens_to_add(snake_case_ ) A : str = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence A : int = [''' '''.join(['''a'''] ) * seq_length] * batch_size A : List[str] = dict(preprocessor(snake_case_ , return_tensors=snake_case_ ) ) A : Any = inputs.pop('''input_ids''' ) return inputs elif isinstance(snake_case_ , snake_case_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A : List[Any] = compute_effective_axis_dimension(snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch ) A : str = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) A : Optional[Any] = dict(preprocessor(images=snake_case_ , return_tensors=snake_case_ ) ) A : List[Any] = inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
256
0
def A_ ( A__ = 100_0000 ) -> int: a__ : Optional[Any] = limit + 1 a__ : Any = [0] * limit for first_term in range(1 , A__ ): for n in range(A__ , A__ , A__ ): a__ : List[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a a__ : Tuple = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
392
from collections import namedtuple lowercase : List[str] = namedtuple("""from_to""", """from_ to""") lowercase : Tuple = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.001, 1_0_0_0), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.00_454, 264.172), """cubicyard""": from_to(0.76_455, 1.30_795), """cubicfoot""": from_to(0.028, 35.3_147), """cup""": from_to(0.000_236_588, 4_226.75), } def A_ ( A__ , A__ , A__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + ', '.join(A__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + ', '.join(A__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
392
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , _A : List[Any] , _A : Union[str, Any]=13 , _A : List[str]=3 , _A : str=224 , _A : Optional[Any]=30 , _A : Tuple=400 , _A : Optional[int]=True , _A : Union[str, Any]=None , _A : Optional[int]=True , _A : List[Any]=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = size if size is not None else {'''height''': 18, '''width''': 18} __SCREAMING_SNAKE_CASE : Any = parent __SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size __SCREAMING_SNAKE_CASE : Optional[int] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = image_size __SCREAMING_SNAKE_CASE : Any = min_resolution __SCREAMING_SNAKE_CASE : Any = max_resolution __SCREAMING_SNAKE_CASE : int = do_resize __SCREAMING_SNAKE_CASE : Optional[int] = size __SCREAMING_SNAKE_CASE : Optional[int] = do_normalize __SCREAMING_SNAKE_CASE : List[Any] = image_mean __SCREAMING_SNAKE_CASE : Any = image_std def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __UpperCamelCase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = ViTImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = EfficientFormerImageProcessorTester(self ) @property def UpperCAmelCase__ ( self : str ): """simple docstring""" return self.image_proc_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , '''image_mean''' ) ) self.assertTrue(hasattr(A__ , '''image_std''' ) ) self.assertTrue(hasattr(A__ , '''do_normalize''' ) ) self.assertTrue(hasattr(A__ , '''do_resize''' ) ) self.assertTrue(hasattr(A__ , '''size''' ) ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" pass def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=A__ ) for image in image_inputs: self.assertIsInstance(A__ , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE : Any = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[int] = image_processor(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=A__ , numpify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : List[Any] = image_processor(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=A__ , torchify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE : Any = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
74
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : int = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
591
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase ): lowercase = ['''pixel_values'''] def __init__( self , lowercase = True , lowercase = None , lowercase = 0.9 , lowercase = PILImageResampling.BICUBIC , lowercase = True , lowercase = None , lowercase = 1 / 255 , lowercase = True , lowercase = True , lowercase = None , lowercase = None , **lowercase , ) -> None: super().__init__(**lowercase ) _a : str = size if size is not None else {'''shortest_edge''': 224} _a : List[Any] = get_size_dict(lowercase , default_to_square=lowercase ) _a : int = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _a : List[Any] = get_size_dict(lowercase , param_name='''crop_size''' ) _a : List[str] = do_resize _a : int = size _a : Tuple = crop_pct _a : List[Any] = resample _a : Dict = do_center_crop _a : Union[str, Any] = crop_size _a : int = do_rescale _a : List[str] = rescale_factor _a : Any = do_normalize _a : Any = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _a : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def snake_case__( self , lowercase , lowercase , lowercase = None , lowercase = PILImageResampling.BICUBIC , lowercase = None , **lowercase , ) -> np.ndarray: _a : Optional[int] = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: _a : Tuple = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: _a : str = int(size['''height'''] / crop_pct ) else: _a : Optional[Any] = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(lowercase ) ) _a : Optional[int] = get_resize_output_image_size(lowercase , size=lowercase , default_to_square=lowercase ) else: if "shortest_edge" in size: _a : Optional[Any] = get_resize_output_image_size(lowercase , size=size['''shortest_edge'''] , default_to_square=lowercase ) elif "height" in size and "width" in size: _a : int = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(lowercase ) ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def snake_case__( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: _a : List[str] = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase , size=(size['''height'''], size['''width''']) , data_format=lowercase , **lowercase ) def snake_case__( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> Dict: return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def snake_case__( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def snake_case__( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> PIL.Image.Image: _a : List[str] = do_resize if do_resize is not None else self.do_resize _a : str = crop_pct if crop_pct is not None else self.crop_pct _a : int = resample if resample is not None else self.resample _a : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _a : int = do_rescale if do_rescale is not None else self.do_rescale _a : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : int = do_normalize if do_normalize is not None else self.do_normalize _a : List[Any] = image_mean if image_mean is not None else self.image_mean _a : List[str] = image_std if image_std is not None else self.image_std _a : Union[str, Any] = size if size is not None else self.size _a : Dict = get_size_dict(lowercase , default_to_square=lowercase ) _a : int = crop_size if crop_size is not None else self.crop_size _a : Dict = get_size_dict(lowercase , param_name='''crop_size''' ) _a : Union[str, Any] = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _a : int = [to_numpy_array(lowercase ) for image in images] if do_resize: _a : Optional[int] = [self.resize(image=lowercase , size=lowercase , crop_pct=lowercase , resample=lowercase ) for image in images] if do_center_crop: _a : Union[str, Any] = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: _a : Union[str, Any] = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: _a : Any = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] _a : List[Any] = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _a : Optional[Any] = {'''pixel_values''': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
307
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json', } class UpperCamelCase_ ( UpperCamelCase ): lowercase = '''xlnet''' lowercase = ['''mems'''] lowercase = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowercase=32_000 , lowercase=1_024 , lowercase=24 , lowercase=16 , lowercase=4_096 , lowercase="gelu" , lowercase=True , lowercase="bi" , lowercase=0.02 , lowercase=1e-12 , lowercase=0.1 , lowercase=512 , lowercase=None , lowercase=True , lowercase=False , lowercase=False , lowercase=-1 , lowercase=False , lowercase="last" , lowercase=True , lowercase="tanh" , lowercase=0.1 , lowercase=5 , lowercase=5 , lowercase=5 , lowercase=1 , lowercase=2 , **lowercase , ) -> Optional[Any]: _a : str = vocab_size _a : int = d_model _a : str = n_layer _a : List[str] = n_head if d_model % n_head != 0: raise ValueError(F'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) _a : Dict = d_model // n_head _a : int = ff_activation _a : List[Any] = d_inner _a : str = untie_r _a : Any = attn_type _a : List[Any] = initializer_range _a : Optional[Any] = layer_norm_eps _a : Optional[Any] = dropout _a : List[str] = mem_len _a : str = reuse_len _a : int = bi_data _a : List[str] = clamp_len _a : List[str] = same_length _a : List[str] = summary_type _a : List[str] = summary_use_proj _a : List[Any] = summary_activation _a : int = summary_last_dropout _a : List[str] = start_n_top _a : Optional[Any] = end_n_top _a : Tuple = bos_token_id _a : Optional[int] = pad_token_id _a : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , lowercase , ) _a : Union[str, Any] = kwargs['''use_cache'''] _a : int = use_mems_eval _a : Optional[int] = use_mems_train super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) @property def snake_case__( self ) -> Optional[int]: logger.info(F'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def snake_case__( self , lowercase ) -> Any: # Message copied from Transformer-XL documentation raise NotImplementedError( F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
307
1
from __future__ import annotations from collections.abc import Iterator class lowerCAmelCase_ : def __init__( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = value SCREAMING_SNAKE_CASE_ : Node | None = None SCREAMING_SNAKE_CASE_ : Node | None = None class lowerCAmelCase_ : def __init__( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = tree def snake_case ( self ,snake_case__ ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
105
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" A = '''char''' A = '''bpe''' A = '''wp''' _a : str = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" A = ['''image_processor''', '''char_tokenizer'''] A = '''ViTImageProcessor''' A = '''MgpstrTokenizer''' def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ): __lowerCamelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCAmelCase , ) __lowerCamelCase = kwargs.pop("""feature_extractor""" ) __lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) __lowerCamelCase = tokenizer __lowerCamelCase = AutoTokenizer.from_pretrained("""gpt2""" ) __lowerCamelCase = AutoTokenizer.from_pretrained("""bert-base-uncased""" ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ): if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: __lowerCamelCase = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None: __lowerCamelCase = self.char_tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is None: return inputs elif images is None: return encodings else: __lowerCamelCase = encodings["""input_ids"""] return inputs def lowerCamelCase_ ( self , UpperCAmelCase ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = sequences __lowerCamelCase = char_preds.size(0 ) __lowerCamelCase , __lowerCamelCase = self._decode_helper(UpperCAmelCase , """char""" ) __lowerCamelCase , __lowerCamelCase = self._decode_helper(UpperCAmelCase , """bpe""" ) __lowerCamelCase , __lowerCamelCase = self._decode_helper(UpperCAmelCase , """wp""" ) __lowerCamelCase = [] __lowerCamelCase = [] for i in range(UpperCAmelCase ): __lowerCamelCase = [char_scores[i], bpe_scores[i], wp_scores[i]] __lowerCamelCase = [char_strs[i], bpe_strs[i], wp_strs[i]] __lowerCamelCase = scores.index(max(UpperCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) __lowerCamelCase = {} __lowerCamelCase = final_strs __lowerCamelCase = final_scores __lowerCamelCase = char_strs __lowerCamelCase = bpe_strs __lowerCamelCase = wp_strs return out def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase ): if format == DecodeType.CHARACTER: __lowerCamelCase = self.char_decode __lowerCamelCase = 1 __lowerCamelCase = """[s]""" elif format == DecodeType.BPE: __lowerCamelCase = self.bpe_decode __lowerCamelCase = 2 __lowerCamelCase = """#""" elif format == DecodeType.WORDPIECE: __lowerCamelCase = self.wp_decode __lowerCamelCase = 1_0_2 __lowerCamelCase = """[SEP]""" else: raise ValueError(f'''Format {format} is not supported.''' ) __lowerCamelCase , __lowerCamelCase = [], [] __lowerCamelCase = pred_logits.size(0 ) __lowerCamelCase = pred_logits.size(1 ) __lowerCamelCase , __lowerCamelCase = pred_logits.topk(1 , dim=-1 , largest=UpperCAmelCase , sorted=UpperCAmelCase ) __lowerCamelCase = preds_index.view(-1 , UpperCAmelCase )[:, 1:] __lowerCamelCase = decoder(UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase = torch.nn.functional.softmax(UpperCAmelCase , dim=2 ).max(dim=2 ) __lowerCamelCase = preds_max_prob[:, 1:] for index in range(UpperCAmelCase ): __lowerCamelCase = preds_str[index].find(UpperCAmelCase ) __lowerCamelCase = preds_str[index][:pred_eos] __lowerCamelCase = preds_index[index].cpu().tolist() __lowerCamelCase = pred_index.index(UpperCAmelCase ) if eos_token in pred_index else -1 __lowerCamelCase = preds_max_prob[index][: pred_eos_index + 1] __lowerCamelCase = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(UpperCAmelCase ) conf_scores.append(UpperCAmelCase ) return dec_strs, conf_scores def lowerCamelCase_ ( self , UpperCAmelCase ): __lowerCamelCase = [seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(UpperCAmelCase )] return decode_strs def lowerCamelCase_ ( self , UpperCAmelCase ): return self.bpe_tokenizer.batch_decode(UpperCAmelCase ) def lowerCamelCase_ ( self , UpperCAmelCase ): __lowerCamelCase = [seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(UpperCAmelCase )] return decode_strs
479
0
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase = False class lowerCamelCase ( unittest.TestCase ): def A( self , lowercase__=3_2): set_seed(0) __UpperCAmelCase : Dict = UNetaDModel(sample_size=lowercase__ , in_channels=3 , out_channels=3) __UpperCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1) return model, optimizer @slow def A( self): __UpperCAmelCase : Any = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable __UpperCAmelCase : Any = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='''linear''' , clip_sample=lowercase__ , ) __UpperCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='''linear''' , clip_sample=lowercase__ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) __UpperCAmelCase : str = [torch.randn((4, 3, 3_2, 3_2)).clip(-1 , 1).to(lowercase__) for _ in range(4)] __UpperCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2)).to(lowercase__) for _ in range(4)] __UpperCAmelCase : Any = [torch.randint(0 , 1_0_0_0 , (4,)).long().to(lowercase__) for _ in range(4)] # train with a DDPM scheduler __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.get_model_optimizer(resolution=3_2) model.train().to(lowercase__) for i in range(4): optimizer.zero_grad() __UpperCAmelCase : Optional[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) __UpperCAmelCase : Dict = model(lowercase__ , timesteps[i]).sample __UpperCAmelCase : Dict = torch.nn.functional.mse_loss(lowercase__ , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2) model.train().to(lowercase__) for i in range(4): optimizer.zero_grad() __UpperCAmelCase : int = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) __UpperCAmelCase : Union[str, Any] = model(lowercase__ , timesteps[i]).sample __UpperCAmelCase : str = torch.nn.functional.mse_loss(lowercase__ , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-5)) self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-5))
675
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A_ ( lowercase_ , lowercase_=False ) -> List[str]: _snake_case : Union[str, Any] = OmegaConf.load(lowercase_ ) if display: print(yaml.dump(OmegaConf.to_container(lowercase_ ) ) ) return config def A_ ( lowercase_ , lowercase_=None , lowercase_=None ) -> Any: if conf_path is None: _snake_case : Union[str, Any] = '''./model_checkpoints/vqgan_only.yaml''' _snake_case : List[Any] = load_config(lowercase_ , display=lowercase_ ) _snake_case : Tuple = VQModel(**config.model.params ) if ckpt_path is None: _snake_case : List[str] = '''./model_checkpoints/vqgan_only.pt''' _snake_case : Dict = torch.load(lowercase_ , map_location=lowercase_ ) if ".ckpt" in ckpt_path: _snake_case : List[str] = sd['''state_dict'''] model.load_state_dict(lowercase_ , strict=lowercase_ ) model.to(lowercase_ ) del sd return model def A_ ( lowercase_ , lowercase_ ) -> int: _snake_case , _snake_case , _snake_case : Tuple = model.encode(lowercase_ ) print(f'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) _snake_case : Optional[int] = model.decode(lowercase_ ) return xrec def A_ ( lowercase_ , lowercase_=False ) -> Union[str, Any]: _snake_case , _snake_case : Tuple = string.rsplit('''.''' , 1 ) if reload: _snake_case : Optional[int] = importlib.import_module(lowercase_ ) importlib.reload(lowercase_ ) return getattr(importlib.import_module(lowercase_ , package=lowercase_ ) , cls ) def A_ ( lowercase_ ) -> Union[str, Any]: if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def A_ ( lowercase_ , lowercase_ , lowercase_=True , lowercase_=True ) -> Tuple: _snake_case : Any = instantiate_from_config(lowercase_ ) if sd is not None: model.load_state_dict(lowercase_ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A_ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict: # load the specified checkpoint if ckpt: _snake_case : Tuple = torch.load(lowercase_ , map_location='''cpu''' ) _snake_case : Optional[int] = pl_sd['''global_step'''] print(f'''loaded model from global step {global_step}.''' ) else: _snake_case : int = {'''state_dict''': None} _snake_case : List[Any] = None _snake_case : int = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=lowercase_ , eval_mode=lowercase_ )['''model'''] return model, global_step
326
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = "pytorch_model.bin" @dataclasses.dataclass class A : _SCREAMING_SNAKE_CASE = dataclasses.field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models."""} ) _SCREAMING_SNAKE_CASE = dataclasses.field( default=__UpperCAmelCase ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co."""} ,) @dataclasses.dataclass class A : _SCREAMING_SNAKE_CASE = dataclasses.field(metadata={"""help""": """A csv or a json file containing the training data."""} ) _SCREAMING_SNAKE_CASE = dataclasses.field(metadata={"""help""": """A csv or a json file containing the data to predict on."""} ) _SCREAMING_SNAKE_CASE = dataclasses.field( default=__UpperCAmelCase ,metadata={"""help""": """A csv or a json file containing the validation data."""} ) _SCREAMING_SNAKE_CASE = dataclasses.field( default=__UpperCAmelCase ,metadata={"""help""": """The name of the task to train on."""} ,) _SCREAMING_SNAKE_CASE = dataclasses.field( default=__UpperCAmelCase ,metadata={"""help""": """The list of labels for the task."""} ) @dataclasses.dataclass class A : _SCREAMING_SNAKE_CASE = dataclasses.field( metadata={"""help""": """The output directory where the model predictions and checkpoints will be written."""} ) _SCREAMING_SNAKE_CASE = dataclasses.field( default="""accuracy""" ,metadata={"""help""": """The evaluation metric used for the task."""} ) _SCREAMING_SNAKE_CASE = dataclasses.field( default="""no""" ,metadata={ """help""": """The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]""" } ,) _SCREAMING_SNAKE_CASE = dataclasses.field( default=10 ,metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} ,) _SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 ,metadata={ """help""": """How much the specified evaluation metric must improve to satisfy early stopping conditions.""" } ,) _SCREAMING_SNAKE_CASE = dataclasses.field( default=__UpperCAmelCase ,metadata={"""help""": """Whether to filter the pseudo-labeled data based on the confidence score."""} ,) _SCREAMING_SNAKE_CASE = dataclasses.field( default=__UpperCAmelCase ,metadata={"""help""": """Whether to filter the pseudo-labeled data based on the validation performance."""} ,) _SCREAMING_SNAKE_CASE = dataclasses.field( default=__UpperCAmelCase ,metadata={"""help""": """Whether to fine-tune on labeled data after pseudo training."""} ,) _SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 ,metadata={"""help""": """Confidence threshold for pseudo-labeled data filtering."""} ,) _SCREAMING_SNAKE_CASE = dataclasses.field( default=100 ,metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} ,) _SCREAMING_SNAKE_CASE = dataclasses.field( default=__UpperCAmelCase ,metadata={"""help""": """Random seed for initialization."""} ,) def A_ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict: _snake_case : Optional[Any] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _snake_case : Any = dataset.filter(lambda lowercase_ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _snake_case : Any = int(eval_result * len(lowercase_ ) ) print(lowercase_ ) _snake_case : Optional[int] = dataset.sort('''probability''' , reverse=lowercase_ ) _snake_case : int = dataset.select(range(lowercase_ ) ) _snake_case : Union[str, Any] = dataset.remove_columns(['''label''', '''probability'''] ) _snake_case : int = dataset.rename_column('''prediction''' , '''label''' ) _snake_case : Optional[Any] = dataset.map(lambda lowercase_ : {"label": idalabel[example["label"]]} ) _snake_case : Tuple = dataset.shuffle(seed=args.seed ) _snake_case : Dict = os.path.join(lowercase_ , f'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(lowercase_ , index=lowercase_ ) else: dataset.to_json(lowercase_ ) def A_ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) -> Union[str, Any]: _snake_case : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _snake_case : Optional[int] = STModelArguments(model_name_or_path=lowercase_ ) _snake_case : Optional[int] = STDataArguments(train_file=lowercase_ , infer_file=lowercase_ ) _snake_case : Union[str, Any] = STTrainingArguments(output_dir=lowercase_ ) _snake_case : int = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowercase_ ).items(): setattr(lowercase_ , lowercase_ , lowercase_ ) for key, value in kwargs.items(): if hasattr(lowercase_ , lowercase_ ): setattr(lowercase_ , lowercase_ , lowercase_ ) # Sanity checks _snake_case : Optional[Any] = {} _snake_case : int = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _snake_case : int = args.train_file _snake_case : str = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _snake_case : Optional[Any] = args.eval_file for key in data_files: _snake_case : Optional[Any] = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], f'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: _snake_case : int = extension else: assert extension == args.data_file_extension, f'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), f'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) _snake_case : Dict = f'''{args.output_dir}/self-train_iter-{{}}'''.format _snake_case : Any = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=lowercase_ ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) accelerator.wait_for_everyone() _snake_case : Dict = None _snake_case : str = None _snake_case : int = 0 _snake_case : Dict = False # Show the progress bar _snake_case : Any = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _snake_case : Union[str, Any] = data_dir_format(lowercase_ ) assert os.path.exists(lowercase_ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _snake_case : List[Any] = os.path.join(lowercase_ , '''stage-1''' ) _snake_case : str = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowercase_ , lowercase_ ): arguments_dict.update({key: value} ) _snake_case : List[Any] = os.path.join(lowercase_ , '''best-checkpoint''' , lowercase_ ) if os.path.exists(lowercase_ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , lowercase_ , lowercase_ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , lowercase_ ) finetune(**lowercase_ ) accelerator.wait_for_everyone() assert os.path.exists(lowercase_ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , lowercase_ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _snake_case : int = os.path.join(lowercase_ , '''best-checkpoint''' ) _snake_case : Any = os.path.join(lowercase_ , '''stage-2''' ) # Update arguments_dict _snake_case : Dict = model_path _snake_case : Union[str, Any] = data_files['''train'''] _snake_case : Optional[int] = current_output_dir _snake_case : Dict = os.path.join(lowercase_ , '''best-checkpoint''' , lowercase_ ) if os.path.exists(lowercase_ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , lowercase_ , lowercase_ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , lowercase_ ) finetune(**lowercase_ ) accelerator.wait_for_everyone() assert os.path.exists(lowercase_ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , lowercase_ ) _snake_case : List[Any] = iteration _snake_case : Any = data_dir_format(iteration + 1 ) _snake_case : Optional[int] = AutoConfig.from_pretrained(os.path.join(lowercase_ , '''best-checkpoint''' ) ) _snake_case : Union[str, Any] = config.idalabel _snake_case : Tuple = os.path.join(lowercase_ , '''eval_results_best-checkpoint.json''' ) _snake_case : Any = os.path.join(lowercase_ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(lowercase_ ) with open(lowercase_ , '''r''' ) as f: _snake_case : Tuple = float(json.load(lowercase_ )[args.eval_metric] ) _snake_case : List[str] = os.path.join(lowercase_ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(lowercase_ ) # Loading the dataset from local csv or json files. _snake_case : str = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] _snake_case : Dict = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(lowercase_ , exist_ok=lowercase_ ) shutil.copy(lowercase_ , os.path.join(lowercase_ , f'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(lowercase_ ): shutil.copy(lowercase_ , os.path.join(lowercase_ , f'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) accelerator.wait_for_everyone() _snake_case : Tuple = os.path.join(lowercase_ , f'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: _snake_case : Tuple = eval_result if best_iteration is None: _snake_case : Union[str, Any] = new_iteration _snake_case : List[Any] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _snake_case : Optional[int] = new_iteration _snake_case : Optional[int] = new_eval_result _snake_case : Optional[int] = 0 else: if new_eval_result == best_eval_result: _snake_case : int = new_iteration _snake_case : str = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _snake_case : Dict = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , lowercase_ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , lowercase_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase_ , f'''eval_results_iter-{iteration}.json''' ) , os.path.join(lowercase_ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , lowercase_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase_ , f'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(lowercase_ , '''eval_results_best-iteration.json''' ) , )
326
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = {"vocab_file": "spiece.model"} __magic_name__ = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } __magic_name__ = {"bert_for_seq_generation": 512} class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__( self , _snake_case , _snake_case="<s>" , _snake_case="</s>" , _snake_case="<unk>" , _snake_case="<pad>" , _snake_case="<::::>" , _snake_case = None , **_snake_case , ) -> None: """simple docstring""" UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , sep_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) UpperCAmelCase = vocab_file UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) @property def snake_case_ ( self ) -> List[str]: """simple docstring""" return self.sp_model.get_piece_size() def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self , _snake_case ) -> List[Any]: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case_ ( self , _snake_case ) -> List[str]: """simple docstring""" return self.sp_model.encode(_snake_case , out_type=_snake_case ) def snake_case_ ( self , _snake_case ) -> Tuple: """simple docstring""" return self.sp_model.piece_to_id(_snake_case ) def snake_case_ ( self , _snake_case ) -> List[str]: """simple docstring""" UpperCAmelCase = self.sp_model.IdToPiece(_snake_case ) return token def snake_case_ ( self , _snake_case ) -> Any: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_snake_case ) + token UpperCAmelCase = [] else: current_sub_tokens.append(_snake_case ) out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def snake_case_ ( self , _snake_case , _snake_case = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
391
__magic_name__ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = input('''Enter message: ''' ) UpperCAmelCase = input('''Enter key [alphanumeric]: ''' ) UpperCAmelCase = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): UpperCAmelCase = '''encrypt''' UpperCAmelCase = encrypt_message(A__ , A__ ) elif mode.lower().startswith('''d''' ): UpperCAmelCase = '''decrypt''' UpperCAmelCase = decrypt_message(A__ , A__ ) print(F"""\n{mode.title()}ed message:""" ) print(A__ ) def _lowerCAmelCase ( A__: str , A__: str ): '''simple docstring''' return translate_message(A__ , A__ , '''encrypt''' ) def _lowerCAmelCase ( A__: str , A__: str ): '''simple docstring''' return translate_message(A__ , A__ , '''decrypt''' ) def _lowerCAmelCase ( A__: str , A__: str , A__: str ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = 0 UpperCAmelCase = key.upper() for symbol in message: UpperCAmelCase = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(A__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(A__ ): UpperCAmelCase = 0 else: translated.append(A__ ) return "".join(A__ ) if __name__ == "__main__": main()
391
1
from math import asin, atan, cos, radians, sin, sqrt, tan UpperCamelCase__ : Optional[Any] = 6_378_137.0 UpperCamelCase__ : Union[str, Any] = 6_356_752.314_245 UpperCamelCase__ : int = 6_378_137 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ ) -> Dict: """simple docstring""" a = (AXIS_A - AXIS_B) / AXIS_A a = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) a = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) a = radians(snake_case_ ) a = radians(snake_case_ ) # Equation a = sin((phi_a - phi_a) / 2 ) a = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda a = sqrt(sin_sq_phi + (cos(snake_case_ ) * cos(snake_case_ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
387
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Any = KandinskyVaaInpaintPipeline A_ : str = ["""image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] A_ : Optional[int] = [ """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] A_ : Optional[Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] A_ : List[str] = False @property def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: return 32 @property def __lowerCAmelCase ( self : int ) -> Union[str, Any]: return 32 @property def __lowerCAmelCase ( self : Optional[int] ) -> Any: return self.time_input_dim @property def __lowerCAmelCase ( self : List[str] ) -> List[Any]: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: return 100 @property def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: torch.manual_seed(0 ) __magic_name__ : int = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __magic_name__ : List[str] = UNetaDConditionModel(**_A ) return model @property def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self : str ) -> str: torch.manual_seed(0 ) __magic_name__ : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self : Any ) -> str: __magic_name__ : str = self.dummy_unet __magic_name__ : Tuple = self.dummy_movq __magic_name__ : Dict = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_A , set_alpha_to_one=_A , steps_offset=1 , prediction_type='epsilon' , thresholding=_A , ) __magic_name__ : Dict = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __lowerCAmelCase ( self : int , _A : Union[str, Any] , _A : Union[str, Any]=0 ) -> Optional[int]: __magic_name__ : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _A ) # create init_image __magic_name__ : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : List[str] = Image.fromarray(np.uinta(_A ) ).convert('RGB' ).resize((256, 256) ) # create mask __magic_name__ : List[Any] = np.ones((64, 64) , dtype=np.floataa ) __magic_name__ : Optional[int] = 0 if str(_A ).startswith('mps' ): __magic_name__ : Union[str, Any] = torch.manual_seed(_A ) else: __magic_name__ : Any = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : Optional[Any] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def __lowerCAmelCase ( self : str ) -> Tuple: __magic_name__ : Dict = 'cpu' __magic_name__ : Union[str, Any] = self.get_dummy_components() __magic_name__ : str = self.pipeline_class(**_A ) __magic_name__ : List[Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __magic_name__ : Tuple = pipe(**self.get_dummy_inputs(_A ) ) __magic_name__ : Tuple = output.images __magic_name__ : str = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] __magic_name__ : List[str] = image[0, -3:, -3:, -1] __magic_name__ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) __magic_name__ : Dict = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def __lowerCAmelCase ( self : Any ) -> List[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : int ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: __magic_name__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) __magic_name__ : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __magic_name__ : List[Any] = np.ones((768, 768) , dtype=np.floataa ) __magic_name__ : Optional[int] = 0 __magic_name__ : List[Any] = 'a hat' __magic_name__ : Optional[Any] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) __magic_name__ : Dict = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) __magic_name__ : List[Any] = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) __magic_name__ : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) __magic_name__ , __magic_name__ : Any = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __magic_name__ : Optional[Any] = pipeline( image=_A , mask_image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) __magic_name__ : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A )
561
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowercase ( UpperCamelCase_ ): @slow @require_torch def _lowercase ( self : Any ) -> Any: """simple docstring""" UpperCAmelCase = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) UpperCAmelCase = BertTokenizer.from_pretrained("""bert-base-uncased""" ) UpperCAmelCase = bertabert.config.encoder.vocab_size UpperCAmelCase = tokenizer.sep_token_id UpperCAmelCase = tokenizer.cls_token_id UpperCAmelCase = 1_2_8 UpperCAmelCase = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) UpperCAmelCase = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) UpperCAmelCase = train_dataset.select(range(3_2 ) ) UpperCAmelCase = val_dataset.select(range(1_6 ) ) UpperCAmelCase = 4 def _map_to_encoder_decoder_inputs(__lowerCamelCase : Optional[int] ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCAmelCase = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=__A , max_length=5_1_2 ) UpperCAmelCase = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=__A , max_length=1_2_8 ) UpperCAmelCase = inputs.input_ids UpperCAmelCase = inputs.attention_mask UpperCAmelCase = outputs.input_ids UpperCAmelCase = outputs.input_ids.copy() UpperCAmelCase = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] UpperCAmelCase = outputs.attention_mask assert all(len(__A ) == 5_1_2 for x in inputs.input_ids ) assert all(len(__A ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(__lowerCamelCase : Union[str, Any] ): UpperCAmelCase = pred.label_ids UpperCAmelCase = pred.predictions # all unnecessary tokens are removed UpperCAmelCase = tokenizer.batch_decode(__A , skip_special_tokens=__A ) UpperCAmelCase = tokenizer.batch_decode(__A , skip_special_tokens=__A ) UpperCAmelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__A ) )] ) / len(__A ) return {"accuracy": accuracy} # map train dataset UpperCAmelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__A , batch_size=__A , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset UpperCAmelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__A , batch_size=__A , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = SeqaSeqTrainingArguments( output_dir=__A , per_device_train_batch_size=__A , per_device_eval_batch_size=__A , predict_with_generate=__A , evaluation_strategy="""steps""" , do_train=__A , do_eval=__A , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCAmelCase = SeqaSeqTrainer( model=__A , args=__A , compute_metrics=_compute_metrics , train_dataset=__A , eval_dataset=__A , tokenizer=__A , ) # start training trainer.train()
703
import numpy class __lowercase : def __init__( self : Union[str, Any] , __lowerCamelCase : numpy.ndarray , __lowerCamelCase : numpy.ndarray ) -> None: """simple docstring""" UpperCAmelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. UpperCAmelCase = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. UpperCAmelCase = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. UpperCAmelCase = numpy.random.rand(3 , 1 ) # Real output values provided. UpperCAmelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. UpperCAmelCase = numpy.zeros(output_array.shape ) def _lowercase ( self : List[str] ) -> numpy.ndarray: """simple docstring""" UpperCAmelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. UpperCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. UpperCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def _lowercase ( self : Optional[Any] ) -> None: """simple docstring""" UpperCAmelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) UpperCAmelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) UpperCAmelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def _lowercase ( self : Any , __lowerCamelCase : numpy.ndarray , __lowerCamelCase : int , __lowerCamelCase : bool ) -> None: """simple docstring""" for iteration in range(1 , iterations + 1 ): UpperCAmelCase = self.feedforward() self.back_propagation() if give_loss: UpperCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def _lowercase ( self : List[str] , __lowerCamelCase : numpy.ndarray ) -> int: """simple docstring""" UpperCAmelCase = input_arr UpperCAmelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) UpperCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) UpperCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _UpperCamelCase ( lowerCAmelCase_ ) ->numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def _UpperCamelCase ( lowerCAmelCase_ ) ->numpy.ndarray: return (value) * (1 - (value)) def _UpperCamelCase ( ) ->int: UpperCAmelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. UpperCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. UpperCAmelCase = TwoHiddenLayerNeuralNetwork( input_array=lowerCAmelCase_ , output_array=lowerCAmelCase_ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=lowerCAmelCase_ , iterations=1_0 , give_loss=lowerCAmelCase_ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
627
0
from ...processing_utils import ProcessorMixin class __lowercase ( __snake_case ): _A = "WhisperFeatureExtractor" _A = "WhisperTokenizer" def __init__(self : List[Any] , snake_case : Union[str, Any] , snake_case : Union[str, Any] ) -> List[Any]: super().__init__(snake_case , snake_case ) _lowercase : Dict = self.feature_extractor _lowercase : Dict = False def _a(self : List[Any] , snake_case : Any=None , snake_case : Optional[Any]=None , snake_case : Union[str, Any]=True ) -> int: return self.tokenizer.get_decoder_prompt_ids(task=snake_case , language=snake_case , no_timestamps=snake_case ) def __call__(self : int , *snake_case : Optional[Any] , **snake_case : List[str] ) -> Optional[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*snake_case , **snake_case ) _lowercase : Optional[int] = kwargs.pop("audio" , snake_case ) _lowercase : Optional[int] = kwargs.pop("sampling_rate" , snake_case ) _lowercase : Optional[int] = kwargs.pop("text" , snake_case ) if len(snake_case ) > 0: _lowercase : List[str] = args[0] _lowercase : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: _lowercase : Tuple = self.feature_extractor(snake_case , *snake_case , sampling_rate=snake_case , **snake_case ) if text is not None: _lowercase : str = self.tokenizer(snake_case , **snake_case ) if text is None: return inputs elif audio is None: return encodings else: _lowercase : Optional[Any] = encodings["input_ids"] return inputs def _a(self : List[str] , *snake_case : Union[str, Any] , **snake_case : Optional[Any] ) -> List[str]: return self.tokenizer.batch_decode(*snake_case , **snake_case ) def _a(self : str , *snake_case : Union[str, Any] , **snake_case : Dict ) -> Optional[int]: return self.tokenizer.decode(*snake_case , **snake_case ) def _a(self : Tuple , snake_case : str , snake_case : List[str]="np" ) -> Optional[Any]: return self.tokenizer.get_prompt_ids(snake_case , return_tensors=snake_case )
461
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __lowercase ( __snake_case ): def __init__(self : Dict , snake_case : str , snake_case : str=13 , snake_case : Union[str, Any]=7 , snake_case : int=True , snake_case : Any=True , snake_case : str=False , snake_case : Optional[Any]=True , snake_case : Optional[Any]=99 , snake_case : Dict=32 , snake_case : Union[str, Any]=5 , snake_case : List[str]=4 , snake_case : Optional[int]=37 , snake_case : Optional[int]="gelu" , snake_case : Optional[Any]=0.1 , snake_case : Optional[int]=0.1 , snake_case : List[Any]=512 , snake_case : List[Any]=16 , snake_case : Optional[int]=2 , snake_case : Tuple=0.02 , snake_case : Union[str, Any]=3 , snake_case : Any=4 , snake_case : Any=None , ) -> List[Any]: _lowercase : Dict = parent _lowercase : int = batch_size _lowercase : Optional[Any] = seq_length _lowercase : int = is_training _lowercase : Dict = use_input_mask _lowercase : Union[str, Any] = use_token_type_ids _lowercase : Tuple = use_labels _lowercase : int = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : int = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : Dict = hidden_act _lowercase : int = hidden_dropout_prob _lowercase : int = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : int = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : Optional[Any] = num_labels _lowercase : Optional[Any] = num_choices _lowercase : str = scope def _a(self : int ) -> Dict: _lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Tuple = None if self.use_input_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : Tuple = None if self.use_labels: _lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _a(self : Any ) -> Any: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _a(self : int , snake_case : Optional[Any] , snake_case : Tuple , snake_case : List[str] , snake_case : Tuple , snake_case : Any , snake_case : Dict ) -> Optional[int]: _lowercase : Optional[int] = DistilBertModel(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : List[Any] = model(snake_case , snake_case ) _lowercase : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a(self : int , snake_case : Optional[Any] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Optional[Any] , snake_case : Optional[Any] ) -> Dict: _lowercase : Optional[int] = DistilBertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : int = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a(self : Tuple , snake_case : List[str] , snake_case : Any , snake_case : List[str] , snake_case : Dict , snake_case : str , snake_case : str ) -> Any: _lowercase : Dict = DistilBertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : List[str] = model( snake_case , attention_mask=snake_case , start_positions=snake_case , end_positions=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a(self : Union[str, Any] , snake_case : str , snake_case : Dict , snake_case : Dict , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Dict ) -> Dict: _lowercase : str = self.num_labels _lowercase : Any = DistilBertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() _lowercase : Optional[Any] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a(self : int , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : str ) -> str: _lowercase : str = self.num_labels _lowercase : List[str] = DistilBertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : str = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a(self : List[str] , snake_case : int , snake_case : str , snake_case : Union[str, Any] , snake_case : Dict , snake_case : int , snake_case : Union[str, Any] ) -> Optional[Any]: _lowercase : str = self.num_choices _lowercase : Dict = DistilBertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : Tuple = model( snake_case , attention_mask=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a(self : List[str] ) -> List[str]: _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ((_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase)) : Union[str, Any] = config_and_inputs _lowercase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowercase ( __snake_case , __snake_case , unittest.TestCase ): _A = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _A = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) _A = True _A = True _A = True _A = True def _a(self : Dict ) -> List[Any]: _lowercase : Optional[Any] = DistilBertModelTester(self ) _lowercase : str = ConfigTester(self , config_class=snake_case , dim=37 ) def _a(self : int ) -> List[str]: self.config_tester.run_common_tests() def _a(self : Optional[Any] ) -> Optional[int]: _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*snake_case ) def _a(self : Any ) -> int: _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*snake_case ) def _a(self : Dict ) -> List[Any]: _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*snake_case ) def _a(self : str ) -> Tuple: _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*snake_case ) def _a(self : Any ) -> List[Any]: _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*snake_case ) def _a(self : Optional[int] ) -> Optional[int]: _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*snake_case ) @slow def _a(self : Optional[Any] ) -> Dict: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Tuple = DistilBertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @slow @require_torch_gpu def _a(self : Optional[int] ) -> Optional[int]: _lowercase , _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _lowercase : str = True _lowercase : Tuple = model_class(config=snake_case ) _lowercase : str = self._prepare_for_class(snake_case , snake_case ) _lowercase : Optional[int] = torch.jit.trace( snake_case , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(snake_case , os.path.join(snake_case , "traced_model.pt" ) ) _lowercase : Dict = torch.jit.load(os.path.join(snake_case , "traced_model.pt" ) , map_location=snake_case ) loaded(inputs_dict["input_ids"].to(snake_case ) , inputs_dict["attention_mask"].to(snake_case ) ) @require_torch class __lowercase ( unittest.TestCase ): @slow def _a(self : int ) -> str: _lowercase : Any = DistilBertModel.from_pretrained("distilbert-base-uncased" ) _lowercase : Dict = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _lowercase : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowercase : Optional[int] = model(snake_case , attention_mask=snake_case )[0] _lowercase : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , snake_case ) _lowercase : Any = torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case , atol=1e-4 ) )
461
1
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem A = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 A = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def UpperCamelCase_ ( lowerCamelCase : str ) -> str: """simple docstring""" if "://" in dataset_path: __magic_name__ : int = dataset_path.split('''://''' )[1] return dataset_path def UpperCamelCase_ ( lowerCamelCase : fsspec.AbstractFileSystem ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def UpperCamelCase_ ( lowerCamelCase : fsspec.AbstractFileSystem , lowerCamelCase : str , lowerCamelCase : str ) -> Tuple: """simple docstring""" __magic_name__ : Dict = not is_remote_filesystem(lowerCamelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowerCamelCase ) , fs._strip_protocol(lowerCamelCase ) ) else: fs.mv(lowerCamelCase , lowerCamelCase , recursive=lowerCamelCase ) def UpperCamelCase_ ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __magic_name__ : List[str] = None __magic_name__ : int = None __magic_name__ : List[Any] = threading.Lock()
147
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=lowerCamelCase__ ): """simple docstring""" snake_case_ = ['note_seq'] def __init__( self : List[Any] , *snake_case : Any , **snake_case : Any ) -> Any: '''simple docstring''' requires_backends(self , ['''note_seq'''] ) @classmethod def _UpperCAmelCase ( cls : List[str] , *snake_case : Optional[int] , **snake_case : str ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''note_seq'''] ) @classmethod def _UpperCAmelCase ( cls : Optional[int] , *snake_case : Optional[int] , **snake_case : Tuple ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''note_seq'''] )
147
1
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowercase ( __A , unittest.TestCase ): lowerCamelCase : Union[str, Any] = CpmAntTokenizer lowerCamelCase : Optional[Any] = False def lowercase__ ( self : Optional[Any] ): super().setUp() SCREAMING_SNAKE_CASE__ : Tuple = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Dict = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) SCREAMING_SNAKE_CASE__ : List[Any] = '今天天气真好!' SCREAMING_SNAKE_CASE__ : List[Any] = ['今天', '天气', '真', '好', '!'] SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = '今天天气真好!' SCREAMING_SNAKE_CASE__ : Optional[Any] = [tokenizer.bos_token] + tokens SCREAMING_SNAKE_CASE__ : List[str] = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer.decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
35
from typing import TYPE_CHECKING from ...utils import _LazyModule __SCREAMING_SNAKE_CASE = {'tokenization_bertweet': ['BertweetTokenizer']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
220
0
"""simple docstring""" import numpy as np def lowerCamelCase ( _snake_case ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
254
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class a : UpperCamelCase : int UpperCamelCase : int class a : def __init__( self , UpperCamelCase_ ): UpperCAmelCase__ : list[list[Edge]] = [[] for _ in range(UpperCamelCase_ )] UpperCAmelCase__ : Union[str, Any] = size def __getitem__( self , UpperCamelCase_ ): return iter(self._graph[vertex] ) @property def __snake_case ( self ): return self._size def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(UpperCamelCase_ , UpperCamelCase_ ) ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : List[str] = deque([start_vertex] ) UpperCAmelCase__ : list[int | None] = [None] * self.size UpperCAmelCase__ : List[str] = 0 while queue: UpperCAmelCase__ : Dict = queue.popleft() UpperCAmelCase__ : Optional[Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: UpperCAmelCase__ : Optional[int] = current_distance + edge.weight UpperCAmelCase__ : Optional[Any] = distances[edge.destination_vertex] if ( isinstance(UpperCamelCase_ , UpperCamelCase_ ) and new_distance >= dest_vertex_distance ): continue UpperCAmelCase__ : Dict = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
254
1
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ (_UpperCAmelCase): return getitem, k def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): return setitem, k, v def lowerCamelCase__ (_UpperCAmelCase): return delitem, k def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase): try: return fun(_UpperCAmelCase , *_UpperCAmelCase), None except Exception as e: return None, e a_ : Dict = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) a_ : Any = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] a_ : Any = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] a_ : str = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] a_ : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a_ : Union[str, Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items'), pytest.param(_overwrite_items , id='overwrite items'), pytest.param(_delete_items , id='delete items'), pytest.param(_access_absent_items , id='access absent items'), pytest.param(_add_with_resize_up , id='add with resize up'), pytest.param(_add_with_resize_down , id='add with resize down'), ) , ) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = HashMap(initial_block_size=4) SCREAMING_SNAKE_CASE = {} for _, (fun, *args) in enumerate(_UpperCAmelCase): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = _run_operation(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = _run_operation(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase) assert my_res == py_res assert str(_UpperCAmelCase) == str(_UpperCAmelCase) assert set(_UpperCAmelCase) == set(_UpperCAmelCase) assert len(_UpperCAmelCase) == len(_UpperCAmelCase) assert set(my.items()) == set(py.items()) def lowerCamelCase__ (): def is_public(_UpperCAmelCase) -> bool: return not name.startswith('_') SCREAMING_SNAKE_CASE = {name for name in dir({}) if is_public(_UpperCAmelCase)} SCREAMING_SNAKE_CASE = {name for name in dir(HashMap()) if is_public(_UpperCAmelCase)} assert dict_public_names > hash_public_names
73
"""simple docstring""" import string def A_ ( snake_case_ : str ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): UpperCamelCase : Optional[int] = """""" for symbol in message: if symbol in string.ascii_uppercase: UpperCamelCase : Optional[int] = string.ascii_uppercase.find(snake_case_ ) UpperCamelCase : str = num - key if num < 0: UpperCamelCase : Optional[int] = num + len(string.ascii_uppercase ) UpperCamelCase : Optional[int] = translated + string.ascii_uppercase[num] else: UpperCamelCase : List[str] = translated + symbol print(f'Decryption using Key #{key}: {translated}' ) def A_ ( ): '''simple docstring''' UpperCamelCase : List[Any] = input("""Encrypted message: """ ) UpperCamelCase : str = message.upper() decrypt(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
499
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __UpperCamelCase = random.Random() def UpperCamelCase_( _A :Tuple , _A :str=1.0 , _A :int=None , _A :Dict=None )-> str: if rng is None: UpperCamelCase__ = global_rng UpperCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case , snake_case=7 , snake_case=400 , snake_case=2000 , snake_case=10 , snake_case=160 , snake_case=8 , snake_case=0.0 , snake_case=4000 , snake_case=False , snake_case=True , ): '''simple docstring''' UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = min_seq_length UpperCamelCase__ = max_seq_length UpperCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ = padding_value UpperCamelCase__ = sampling_rate UpperCamelCase__ = return_attention_mask UpperCamelCase__ = do_normalize UpperCamelCase__ = feature_size UpperCamelCase__ = chunk_length UpperCamelCase__ = hop_length def snake_case__ ( self ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case__ ( self , snake_case=False , snake_case=False ): '''simple docstring''' def _flatten(snake_case ): return list(itertools.chain(*snake_case ) ) if equal_length: UpperCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase__ = [np.asarray(snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase__ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Any = WhisperFeatureExtractor if is_speech_available() else None def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = WhisperFeatureExtractionTester(self ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = feat_extract_first.save_pretrained(snake_case )[0] check_json_file_has_correct_format(snake_case ) UpperCamelCase__ = self.feature_extraction_class.from_pretrained(snake_case ) UpperCamelCase__ = feat_extract_first.to_dict() UpperCamelCase__ = feat_extract_second.to_dict() UpperCamelCase__ = feat_extract_first.mel_filters UpperCamelCase__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = os.path.join(snake_case , "feat_extract.json" ) feat_extract_first.to_json_file(snake_case ) UpperCamelCase__ = self.feature_extraction_class.from_json_file(snake_case ) UpperCamelCase__ = feat_extract_first.to_dict() UpperCamelCase__ = feat_extract_second.to_dict() UpperCamelCase__ = feat_extract_first.mel_filters UpperCamelCase__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase__ = [np.asarray(snake_case ) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ = feature_extractor(snake_case , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase__ = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-3 ) ) # Test batched UpperCamelCase__ = feature_extractor(snake_case , return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(snake_case , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ = np.asarray(snake_case ) UpperCamelCase__ = feature_extractor(snake_case , return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(snake_case , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-3 ) ) # Test truncation required UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] UpperCamelCase__ = [np.asarray(snake_case ) for speech_input in speech_inputs] UpperCamelCase__ = [x[: feature_extractor.n_samples] for x in speech_inputs] UpperCamelCase__ = [np.asarray(snake_case ) for speech_input in speech_inputs_truncated] UpperCamelCase__ = feature_extractor(snake_case , return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(snake_case , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-3 ) ) def snake_case__ ( self ): '''simple docstring''' import torch UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = np.random.rand(100 , 32 ).astype(np.floataa ) UpperCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def snake_case__ ( self , snake_case ): '''simple docstring''' UpperCamelCase__ = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech UpperCamelCase__ = ds.sort("id" ).select(range(snake_case ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on UpperCamelCase__ = self._load_datasamples(1 ) UpperCamelCase__ = WhisperFeatureExtractor() UpperCamelCase__ = feature_extractor(snake_case , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case , atol=1E-4 ) ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = self._load_datasamples(1 )[0] UpperCamelCase__ = ((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue UpperCamelCase__ = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case )[0] self.assertTrue(np.all(np.mean(snake_case ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case ) - 1 ) < 1E-3 ) )
185
def UpperCamelCase_( _A :str )-> int: UpperCamelCase__ = hex_num.strip() if not hex_num: raise ValueError("No value was passed to the function" ) UpperCamelCase__ = hex_num[0] == "-" if is_negative: UpperCamelCase__ = hex_num[1:] try: UpperCamelCase__ = int(_A , 16 ) except ValueError: raise ValueError("Invalid value was passed to the function" ) UpperCamelCase__ = "" while int_num > 0: UpperCamelCase__ = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("-" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
185
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class snake_case__ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self : Union[str, Any] ) ->List[Any]: torch.manual_seed(0 ) snake_case__ : Tuple = UNetaDConditionModel( block_out_channels=(3_2, 6_4), layers_per_block=1, sample_size=3_2, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=3_2, ) snake_case__ : int = DDIMScheduler() torch.manual_seed(0 ) snake_case__ : str = AutoencoderKL( block_out_channels=[3_2, 6_4], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) torch.manual_seed(0 ) snake_case__ : Optional[int] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=3_2, intermediate_size=3_7, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, ) snake_case__ : Optional[Any] = CLIPTextModel(_snake_case ) snake_case__ : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case__ : List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase_ ( self : Union[str, Any], _snake_case : Dict, _snake_case : Tuple=0 ) ->Tuple: snake_case__ : List[str] = torch.manual_seed(_snake_case ) snake_case__ : Union[str, Any] = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowercase_ ( self : Optional[Any] ) ->Tuple: snake_case__ : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case__ : str = self.get_dummy_components() snake_case__ : Any = StableDiffusionPanoramaPipeline(**_snake_case ) snake_case__ : Dict = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) snake_case__ : Union[str, Any] = self.get_dummy_inputs(_snake_case ) snake_case__ : Dict = sd_pipe(**_snake_case ).images snake_case__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case__ : Union[str, Any] = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : List[str] ) ->Optional[Any]: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self : List[Any] ) ->Union[str, Any]: super().test_inference_batch_single_identical(batch_size=2, expected_max_diff=3.25e-3 ) def lowercase_ ( self : List[str] ) ->Union[str, Any]: snake_case__ : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case__ : str = self.get_dummy_components() snake_case__ : Union[str, Any] = StableDiffusionPanoramaPipeline(**_snake_case ) snake_case__ : Optional[Any] = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) snake_case__ : List[Any] = self.get_dummy_inputs(_snake_case ) snake_case__ : Optional[int] = """french fries""" snake_case__ : List[str] = sd_pipe(**_snake_case, negative_prompt=_snake_case ) snake_case__ : Optional[Any] = output.images snake_case__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case__ : str = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Dict ) ->Tuple: snake_case__ : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case__ : str = self.get_dummy_components() snake_case__ : Dict = StableDiffusionPanoramaPipeline(**_snake_case ) snake_case__ : List[str] = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) snake_case__ : Any = self.get_dummy_inputs(_snake_case ) snake_case__ : List[str] = sd_pipe(**_snake_case, view_batch_size=2 ) snake_case__ : Dict = output.images snake_case__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case__ : Optional[Any] = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : List[Any] ) ->Optional[Any]: snake_case__ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case__ : Optional[int] = self.get_dummy_components() snake_case__ : List[str] = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, beta_schedule='scaled_linear' ) snake_case__ : Optional[Any] = StableDiffusionPanoramaPipeline(**_snake_case ) snake_case__ : List[str] = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) snake_case__ : Optional[int] = self.get_dummy_inputs(_snake_case ) snake_case__ : Tuple = sd_pipe(**_snake_case ).images snake_case__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case__ : Any = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Union[str, Any] ) ->str: snake_case__ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case__ : List[Any] = self.get_dummy_components() snake_case__ : Union[str, Any] = PNDMScheduler( beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, beta_schedule='scaled_linear', skip_prk_steps=_snake_case ) snake_case__ : List[str] = StableDiffusionPanoramaPipeline(**_snake_case ) snake_case__ : int = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) snake_case__ : List[str] = self.get_dummy_inputs(_snake_case ) snake_case__ : int = sd_pipe(**_snake_case ).images snake_case__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case__ : str = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[str] ) ->int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : int, _snake_case : Dict=0 ) ->Optional[Any]: snake_case__ : Dict = torch.manual_seed(_snake_case ) snake_case__ : Tuple = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowercase_ ( self : List[str] ) ->Union[str, Any]: snake_case__ : Union[str, Any] = """stabilityai/stable-diffusion-2-base""" snake_case__ : Union[str, Any] = DDIMScheduler.from_pretrained(_snake_case, subfolder='scheduler' ) snake_case__ : List[str] = StableDiffusionPanoramaPipeline.from_pretrained(_snake_case, scheduler=_snake_case, safety_checker=_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() snake_case__ : Union[str, Any] = self.get_inputs() snake_case__ : Tuple = pipe(**_snake_case ).images snake_case__ : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 2_0_4_8, 3) snake_case__ : List[Any] = np.array( [ 0.3_6_9_6_8_3_9_2, 0.2_7_0_2_5_3_7_2, 0.3_2_4_4_6_7_6_6, 0.2_8_3_7_9_3_8_7, 0.3_6_3_6_3_2_7_4, 0.3_0_7_3_3_3_4_7, 0.2_7_1_0_0_0_2_7, 0.2_7_0_5_4_1_2_5, 0.2_5_5_3_6_0_9_6, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def lowercase_ ( self : int ) ->Optional[Any]: snake_case__ : str = StableDiffusionPanoramaPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-base', safety_checker=_snake_case ) snake_case__ : Optional[int] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() snake_case__ : List[str] = self.get_inputs() snake_case__ : Union[str, Any] = pipe(**_snake_case ).images snake_case__ : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 2_0_4_8, 3) snake_case__ : Any = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase_ ( self : Optional[int] ) ->str: snake_case__ : Dict = 0 def callback_fn(_snake_case : int, _snake_case : int, _snake_case : torch.FloatTensor ) -> None: snake_case__ : Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case__ : Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 2_5_6) snake_case__ : Union[str, Any] = latents[0, -3:, -3:, -1] snake_case__ : Any = np.array( [ 0.1_8_6_8_1_8_6_9, 0.3_3_9_0_7_8_1_6, 0.5_3_6_1_2_7_6, 0.1_4_4_3_2_8_6_5, -0.0_2_8_5_6_6_1_1, -0.7_3_9_4_1_1_2_3, 0.2_3_3_9_7_9_8_7, 0.4_7_3_2_2_6_8_2, -0.3_7_8_2_3_1_6_4, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: snake_case__ : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 2_5_6) snake_case__ : Union[str, Any] = latents[0, -3:, -3:, -1] snake_case__ : int = np.array( [ 0.1_8_5_3_9_6_4_5, 0.3_3_9_8_7_2_4_8, 0.5_3_7_8_5_5_9, 0.1_4_4_3_7_1_4_2, -0.0_2_4_5_5_2_6_1, -0.7_3_3_8_3_1_7, 0.2_3_9_9_0_7_5_5, 0.4_7_3_5_6_2_7_2, -0.3_7_8_6_5_0_5, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 snake_case__ : str = False snake_case__ : Union[str, Any] = """stabilityai/stable-diffusion-2-base""" snake_case__ : Optional[int] = DDIMScheduler.from_pretrained(_snake_case, subfolder='scheduler' ) snake_case__ : int = StableDiffusionPanoramaPipeline.from_pretrained(_snake_case, scheduler=_snake_case, safety_checker=_snake_case ) snake_case__ : List[Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() snake_case__ : List[str] = self.get_inputs() pipe(**_snake_case, callback=_snake_case, callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase_ ( self : List[Any] ) ->List[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ : int = """stabilityai/stable-diffusion-2-base""" snake_case__ : List[str] = DDIMScheduler.from_pretrained(_snake_case, subfolder='scheduler' ) snake_case__ : Dict = StableDiffusionPanoramaPipeline.from_pretrained(_snake_case, scheduler=_snake_case, safety_checker=_snake_case ) snake_case__ : List[str] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case__ : str = self.get_inputs() snake_case__ : Union[str, Any] = pipe(**_snake_case ) snake_case__ : int = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 1_0**9
478
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): def __lowercase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() UpperCAmelCase__ : Tuple = dict(zip(A ,range(len(A ) ) ) ) UpperCAmelCase__ : Optional[Any] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } UpperCAmelCase__ : int = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16_000, """return_attention_mask""": False, """do_normalize""": True, } UpperCAmelCase__ : Optional[int] = tempfile.mkdtemp() UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase__ : Tuple = os.path.join(self.tmpdirname ,A ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) with open(self.feature_extraction_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) # load decoder from hub UpperCAmelCase__ : int = """hf-internal-testing/ngram-beam-search-decoder""" def __lowercase ( self : str ,**A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.add_kwargs_tokens_map.copy() kwargs.update(A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**A ) def __lowercase ( self : List[str] ,**A : Dict ): '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**A ) def __lowercase ( self : Any ,**A : List[Any] ): '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**A ) def __lowercase ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : Dict = self.get_feature_extractor() UpperCAmelCase__ : str = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : str = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,A ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,A ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(A ,"""include""" ): WavaVecaProcessorWithLM( tokenizer=A ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.get_feature_extractor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_decoder() UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) UpperCAmelCase__ : str = floats_list((3, 1_000) ) UpperCAmelCase__ : Optional[Any] = feature_extractor(A ,return_tensors="""np""" ) UpperCAmelCase__ : List[Any] = processor(A ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : int = self.get_feature_extractor() UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Optional[int] = self.get_decoder() UpperCAmelCase__ : List[Any] = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) UpperCAmelCase__ : List[Any] = """This is a test string""" UpperCAmelCase__ : int = processor(text=A ) UpperCAmelCase__ : Dict = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def __lowercase ( self : Tuple ,A : List[Any]=(2, 10, 16) ,A : Dict=77 ): '''simple docstring''' np.random.seed(A ) return np.random.rand(*A ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.get_feature_extractor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : int = self.get_decoder() UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) UpperCAmelCase__ : Dict = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) UpperCAmelCase__ : Tuple = processor.decode(A ) UpperCAmelCase__ : Union[str, Any] = decoder.decode_beams(A )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def __lowercase ( self : List[str] ,A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : List[Any] = self.get_decoder() UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) UpperCAmelCase__ : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase__ : List[str] = processor.batch_decode(A ) else: with get_context(A ).Pool() as pool: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(A ,A ) UpperCAmelCase__ : Optional[Any] = list(A ) with get_context("""fork""" ).Pool() as p: UpperCAmelCase__ : Union[str, Any] = decoder.decode_beams_batch(A ,A ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A ,decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] ,decoded_processor.text ) self.assertListEqual(A ,decoded_processor.logit_score ) self.assertListEqual(A ,decoded_processor.lm_score ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : List[Any] = self.get_decoder() UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) UpperCAmelCase__ : Dict = self._get_dummy_logits() UpperCAmelCase__ : Any = 15 UpperCAmelCase__ : Dict = -2_0.0 UpperCAmelCase__ : List[Any] = -4.0 UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( A ,beam_width=A ,beam_prune_logp=A ,token_min_logp=A ,) UpperCAmelCase__ : List[str] = decoded_processor_out.text UpperCAmelCase__ : List[str] = list(A ) with get_context("""fork""" ).Pool() as pool: UpperCAmelCase__ : Tuple = decoder.decode_beams_batch( A ,A ,beam_width=A ,beam_prune_logp=A ,token_min_logp=A ,) UpperCAmelCase__ : List[Any] = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase__ : Any = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase__ : List[str] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A ,A ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] ,A ) self.assertTrue(np.array_equal(A ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,A ,atol=1e-3 ) ) self.assertTrue(np.array_equal(A ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,A ,atol=1e-3 ) ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.get_feature_extractor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : int = self.get_decoder() UpperCAmelCase__ : str = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) UpperCAmelCase__ : Tuple = self._get_dummy_logits() UpperCAmelCase__ : Tuple = 2.0 UpperCAmelCase__ : str = 5.0 UpperCAmelCase__ : Union[str, Any] = -2_0.0 UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : str = processor.batch_decode( A ,alpha=A ,beta=A ,unk_score_offset=A ,lm_score_boundary=A ,) UpperCAmelCase__ : Any = decoded_processor_out.text UpperCAmelCase__ : Union[str, Any] = list(A ) decoder.reset_params( alpha=A ,beta=A ,unk_score_offset=A ,lm_score_boundary=A ,) with get_context("""fork""" ).Pool() as pool: UpperCAmelCase__ : List[Any] = decoder.decode_beams_batch( A ,A ,) UpperCAmelCase__ : Union[str, Any] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A ,A ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] ,A ) UpperCAmelCase__ : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,A ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCAmelCase__ : str = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : Any = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() UpperCAmelCase__ : Optional[int] = os.listdir(A ) UpperCAmelCase__ : List[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A ,A ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(A ) UpperCAmelCase__ : Tuple = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() UpperCAmelCase__ : Tuple = os.listdir(A ) UpperCAmelCase__ : Dict = os.listdir(A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A ,A ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCAmelCase__ : Tuple = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCAmelCase__ : Dict = floats_list((3, 1_000) ) UpperCAmelCase__ : List[str] = processor_wavaveca(A ,return_tensors="""np""" ) UpperCAmelCase__ : Dict = processor_auto(A ,return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1e-2 ) UpperCAmelCase__ : List[str] = self._get_dummy_logits() UpperCAmelCase__ : Tuple = processor_wavaveca.batch_decode(A ) UpperCAmelCase__ : List[str] = processor_auto.batch_decode(A ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : List[Any] = self.get_decoder() UpperCAmelCase__ : int = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg="""`processor` and `feature_extractor` model input names do not match""" ,) @staticmethod def __lowercase ( A : Optional[Any] ,A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [d[key] for d in offsets] return retrieved_list def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCAmelCase__ : Dict = self._get_dummy_logits()[0] UpperCAmelCase__ : List[str] = processor.decode(A ,output_word_offsets=A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(A ,A ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] ,"""word""" ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] ,"""word""" ) ,["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] ,"""start_offset""" ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] ,"""end_offset""" ) ,[1, 3, 5] ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCAmelCase__ : int = self._get_dummy_logits() UpperCAmelCase__ : Any = processor.batch_decode(A ,output_word_offsets=A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(A ,A ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(A ,"""word""" ) ) for o in outputs["""word_offsets"""]] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] ,"""word""" ) ,["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] ,"""start_offset""" ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] ,"""end_offset""" ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def __lowercase ( self : Tuple ): '''simple docstring''' import torch UpperCAmelCase__ : Any = load_dataset("""common_voice""" ,"""en""" ,split="""train""" ,streaming=A ) UpperCAmelCase__ : Tuple = ds.cast_column("""audio""" ,datasets.Audio(sampling_rate=16_000 ) ) UpperCAmelCase__ : Tuple = iter(A ) UpperCAmelCase__ : Optional[int] = next(A ) UpperCAmelCase__ : List[Any] = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) UpperCAmelCase__ : Tuple = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase__ : Tuple = processor(sample["""audio"""]["""array"""] ,return_tensors="""pt""" ).input_values with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(A ).logits.cpu().numpy() UpperCAmelCase__ : Any = processor.decode(logits[0] ,output_word_offsets=A ) UpperCAmelCase__ : str = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase__ : Union[str, Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] UpperCAmelCase__ : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(A ,"""word""" ) ) ,A ) self.assertEqual(""" """.join(self.get_from_offsets(A ,"""word""" ) ) ,output.text ) # output times UpperCAmelCase__ : str = torch.tensor(self.get_from_offsets(A ,"""start_time""" ) ) UpperCAmelCase__ : List[Any] = torch.tensor(self.get_from_offsets(A ,"""end_time""" ) ) # fmt: off UpperCAmelCase__ : Union[str, Any] = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) UpperCAmelCase__ : List[Any] = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(A ,A ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(A ,A ,atol=0.0_1 ) )
65
0
import os import re import shutil import sys import tempfile import unittest import black _lowercase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _lowercase = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class __A ( unittest.TestCase ): def _snake_case (self ): lowerCamelCase__ : Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) lowerCamelCase__ : List[str] = self.transformer_dir shutil.copy( os.path.join(UpperCamelCase_ , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def _snake_case (self ): lowerCamelCase__ : List[Any] = 'src/transformers' shutil.rmtree(self.transformer_dir ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ): lowerCamelCase__ : Optional[Any] = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: lowerCamelCase__ : Dict = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result lowerCamelCase__ : Tuple = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase__ : Any = black.format_str(UpperCamelCase_ , mode=UpperCamelCase_ ) lowerCamelCase__ : List[Any] = os.path.join(self.transformer_dir , """new_code.py""" ) with open(UpperCamelCase_ , """w""" , newline="""\n""" ) as f: f.write(UpperCamelCase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(UpperCamelCase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=UpperCamelCase_ ) with open(UpperCamelCase_ , """r""" ) as f: self.assertTrue(f.read() , UpperCamelCase_ ) def _snake_case (self ): lowerCamelCase__ : str = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case (self ): self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , UpperCamelCase_ , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , UpperCamelCase_ ) , ) # Copy consistency with a really long name lowerCamelCase__ : Optional[Any] = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , f"{long_class_name}LMPredictionHead" , re.sub("""Bert""" , UpperCamelCase_ , UpperCamelCase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , UpperCamelCase_ , overwrite_result=re.sub("""Bert""" , """TestModel""" , UpperCamelCase_ ) , ) def _snake_case (self ): lowerCamelCase__ : List[Any] = check_copies.LOCALIZED_READMES['README_zh-hans.md'] lowerCamelCase__ : Union[str, Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) lowerCamelCase__ : Union[str, Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) lowerCamelCase__ : Union[str, Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) lowerCamelCase__ : List[Any] = check_copies.convert_to_localized_md( UpperCamelCase_ , UpperCamelCase_ , localized_readme["""format_model_list"""] ) self.assertFalse(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase__ : str = check_copies.convert_to_localized_md( UpperCamelCase_ , UpperCamelCase_ , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(UpperCamelCase_ ) lowerCamelCase__ : int = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) lowerCamelCase__ : int = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) lowerCamelCase__ : int = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) lowerCamelCase__ : Tuple = check_copies.convert_to_localized_md( UpperCamelCase_ , UpperCamelCase_ , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
704
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _lowercase = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def _A (UpperCamelCase : Any ) ->List[str]: '''simple docstring''' lowerCamelCase__ : List[str] = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) _lowercase = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def _A (UpperCamelCase : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(s_dict.keys() ) for key in keys: lowerCamelCase__ : Dict = key for k, v in WHISPER_MAPPING.items(): if k in key: lowerCamelCase__ : Tuple = new_key.replace(UpperCamelCase , UpperCamelCase ) print(f"{key} -> {new_key}" ) lowerCamelCase__ : int = s_dict.pop(UpperCamelCase ) return s_dict def _A (UpperCamelCase : List[Any] ) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ ,lowerCamelCase__ : int = emb.weight.shape lowerCamelCase__ : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) lowerCamelCase__ : List[str] = emb.weight.data return lin_layer def _A (UpperCamelCase : str , UpperCamelCase : str ) ->bytes: '''simple docstring''' os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) lowerCamelCase__ : Any = os.path.basename(UpperCamelCase ) lowerCamelCase__ : int = url.split("""/""" )[-2] lowerCamelCase__ : Optional[int] = os.path.join(UpperCamelCase , UpperCamelCase ) if os.path.exists(UpperCamelCase ) and not os.path.isfile(UpperCamelCase ): raise RuntimeError(f"{download_target} exists and is not a regular file" ) if os.path.isfile(UpperCamelCase ): lowerCamelCase__ : Dict = open(UpperCamelCase , """rb""" ).read() if hashlib.shaaaa(UpperCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" ) with urllib.request.urlopen(UpperCamelCase ) as source, open(UpperCamelCase , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=80 , unit="""iB""" , unit_scale=UpperCamelCase , unit_divisor=1024 ) as loop: while True: lowerCamelCase__ : Tuple = source.read(8192 ) if not buffer: break output.write(UpperCamelCase ) loop.update(len(UpperCamelCase ) ) lowerCamelCase__ : Any = open(UpperCamelCase , """rb""" ).read() if hashlib.shaaaa(UpperCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def _A (UpperCamelCase : Dict , UpperCamelCase : Any ) ->Optional[Any]: '''simple docstring''' if ".pt" not in checkpoint_path: lowerCamelCase__ : Optional[Any] = _download(_MODELS[checkpoint_path] ) else: lowerCamelCase__ : Optional[Any] = torch.load(UpperCamelCase , map_location="""cpu""" ) lowerCamelCase__ : Optional[int] = original_checkpoint["""dims"""] lowerCamelCase__ : int = original_checkpoint["""model_state_dict"""] lowerCamelCase__ : Optional[int] = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(UpperCamelCase ) rename_keys(UpperCamelCase ) lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : str = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] lowerCamelCase__ : List[str] = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=UpperCamelCase , decoder_ffn_dim=UpperCamelCase , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) lowerCamelCase__ : List[str] = WhisperForConditionalGeneration(UpperCamelCase ) lowerCamelCase__ ,lowerCamelCase__ : str = model.model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) if len(UpperCamelCase ) > 0 and not set(UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" f" but all the following weights are missing {missing}" ) if tie_embeds: lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowerCamelCase__ : int = proj_out_weights model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _lowercase = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
96
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class lowercase_ ( a_ ): def __init__( self : Dict , *_lowercase : Optional[int] , **_lowercase : Tuple ): warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , A_ , ) super().__init__(*A_ , **A_ )
308
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class a ( UpperCAmelCase ): _lowercase = "conditional_detr" _lowercase = ["past_key_values"] _lowercase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , A_=True , A_=None , A_=3 , A_=300 , A_=6 , A_=2048 , A_=8 , A_=6 , A_=2048 , A_=8 , A_=0.0 , A_=0.0 , A_=True , A_="relu" , A_=256 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=1.0 , A_=False , A_="sine" , A_="resnet50" , A_=True , A_=False , A_=2 , A_=5 , A_=2 , A_=1 , A_=1 , A_=2 , A_=5 , A_=2 , A_=0.25 , **A_ , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _UpperCAmelCase : Tuple = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(A_ , A_ ): _UpperCAmelCase : Optional[Any] = backbone_config.get("model_type" ) _UpperCAmelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase : Dict = config_class.from_dict(A_ ) _UpperCAmelCase : Any = use_timm_backbone _UpperCAmelCase : List[Any] = backbone_config _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : int = num_queries _UpperCAmelCase : Union[str, Any] = d_model _UpperCAmelCase : Dict = encoder_ffn_dim _UpperCAmelCase : Any = encoder_layers _UpperCAmelCase : List[str] = encoder_attention_heads _UpperCAmelCase : Optional[int] = decoder_ffn_dim _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Optional[Any] = decoder_attention_heads _UpperCAmelCase : Optional[int] = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : List[str] = activation_function _UpperCAmelCase : Optional[int] = init_std _UpperCAmelCase : List[Any] = init_xavier_std _UpperCAmelCase : Optional[int] = encoder_layerdrop _UpperCAmelCase : List[str] = decoder_layerdrop _UpperCAmelCase : Optional[int] = encoder_layers _UpperCAmelCase : Union[str, Any] = auxiliary_loss _UpperCAmelCase : str = position_embedding_type _UpperCAmelCase : str = backbone _UpperCAmelCase : int = use_pretrained_backbone _UpperCAmelCase : Optional[int] = dilation # Hungarian matcher _UpperCAmelCase : Optional[int] = class_cost _UpperCAmelCase : Tuple = bbox_cost _UpperCAmelCase : Dict = giou_cost # Loss coefficients _UpperCAmelCase : Any = mask_loss_coefficient _UpperCAmelCase : int = dice_loss_coefficient _UpperCAmelCase : Any = cls_loss_coefficient _UpperCAmelCase : Any = bbox_loss_coefficient _UpperCAmelCase : Optional[int] = giou_loss_coefficient _UpperCAmelCase : List[Any] = focal_alpha super().__init__(is_encoder_decoder=A_ , **A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return self.encoder_attention_heads @property def _UpperCAmelCase ( self ): '''simple docstring''' return self.d_model def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _UpperCAmelCase : Tuple = self.backbone_config.to_dict() _UpperCAmelCase : Tuple = self.__class__.model_type return output class a ( UpperCAmelCase ): _lowercase = version.parse("1.11" ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return 1e-5 @property def _UpperCAmelCase ( self ): '''simple docstring''' return 12
300
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = None if token is not None: lowercase__ = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"""Bearer {token}"""} lowercase__ = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowercase__ = requests.get(lowerCamelCase_ , headers=lowerCamelCase_ ).json() lowercase__ = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) lowercase__ = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(lowerCamelCase_ ): lowercase__ = requests.get(url + F"""&page={i + 2}""" , headers=lowerCamelCase_ ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = None if token is not None: lowercase__ = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"""Bearer {token}"""} lowercase__ = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowercase__ = requests.get(lowerCamelCase_ , headers=lowerCamelCase_ ).json() lowercase__ = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) lowercase__ = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(lowerCamelCase_ ): lowercase__ = requests.get(url + F"""&page={i + 2}""" , headers=lowerCamelCase_ ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = None if token is not None: lowercase__ = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"""Bearer {token}"""} lowercase__ = requests.get(lowerCamelCase_ , headers=lowerCamelCase_ , allow_redirects=lowerCamelCase_ ) lowercase__ = result.headers['''Location'''] lowercase__ = requests.get(lowerCamelCase_ , allow_redirects=lowerCamelCase_ ) lowercase__ = os.path.join(lowerCamelCase_ , F"""{artifact_name}.zip""" ) with open(lowerCamelCase_ , '''wb''' ) as fp: fp.write(response.content ) def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = [] lowercase__ = [] lowercase__ = None with zipfile.ZipFile(lowerCamelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(lowerCamelCase_ ) as f: for line in f: lowercase__ = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowercase__ = line[: line.index(''': ''' )] lowercase__ = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed lowercase__ = line[len('''FAILED ''' ) :] failed_tests.append(lowerCamelCase_ ) elif filename == "job_name.txt": lowercase__ = line if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(lowerCamelCase_ )} for `errors` """ F"""and {len(lowerCamelCase_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" ''' problem.''' ) lowercase__ = None if job_name and job_links: lowercase__ = job_links.get(lowerCamelCase_ , lowerCamelCase_ ) # A list with elements of the form (line of error, error, failed test) lowercase__ = [x + [y] + [job_link] for x, y in zip(lowerCamelCase_ , lowerCamelCase_ )] return result def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = [] lowercase__ = [os.path.join(lowerCamelCase_ , lowerCamelCase_ ) for p in os.listdir(lowerCamelCase_ ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(lowerCamelCase_ , job_links=lowerCamelCase_ ) ) return errors def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = Counter() counter.update([x[1] for x in logs] ) lowercase__ = counter.most_common() lowercase__ = {} for error, count in counts: if error_filter is None or error not in error_filter: lowercase__ = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]} lowercase__ = dict(sorted(r.items() , key=lambda lowerCamelCase_ : item[1]["count"] , reverse=lowerCamelCase_ ) ) return r def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): lowercase__ = test.split('''/''' )[2] else: lowercase__ = None return test def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = [(x[0], x[1], get_model(x[2] )) for x in logs] lowercase__ = [x for x in logs if x[2] is not None] lowercase__ = {x[2] for x in logs} lowercase__ = {} for test in tests: lowercase__ = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowercase__ = counter.most_common() lowercase__ = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowercase__ = sum(error_counts.values() ) if n_errors > 0: lowercase__ = {'''count''': n_errors, '''errors''': error_counts} lowercase__ = dict(sorted(r.items() , key=lambda lowerCamelCase_ : item[1]["count"] , reverse=lowerCamelCase_ ) ) return r def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''| no. | error | status |''' lowercase__ = '''|-:|:-|:-|''' lowercase__ = [header, sep] for error in reduced_by_error: lowercase__ = reduced_by_error[error]['''count'''] lowercase__ = F"""| {count} | {error[:100]} | |""" lines.append(lowerCamelCase_ ) return "\n".join(lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''| model | no. of errors | major error | count |''' lowercase__ = '''|-:|-:|-:|-:|''' lowercase__ = [header, sep] for model in reduced_by_model: lowercase__ = reduced_by_model[model]['''count'''] lowercase__ , lowercase__ = list(reduced_by_model[model]['''errors'''].items() )[0] lowercase__ = F"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(lowerCamelCase_ ) return "\n".join(lowerCamelCase_ ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') A__ : List[Any] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) A__ : Any = get_job_links(args.workflow_run_id, token=args.token) A__ : Dict = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: A__ : int = k.find(' / ') A__ : Optional[Any] = k[index + len(' / ') :] A__ : Any = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) A__ : Optional[int] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) A__ : int = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error A__ : str = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors A__ : Optional[int] = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) A__ : Dict = reduce_by_error(errors) A__ : List[str] = reduce_by_model(errors) A__ : Any = make_github_table(reduced_by_error) A__ : Dict = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
671
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
1
def lowercase_ ( __snake_case : int , __snake_case : str ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowercase_ ( __snake_case : Any , __snake_case : Dict , __snake_case : List[Any] ) -> Optional[int]: '''simple docstring''' snake_case__ :Optional[Any] = 0 while b > 0: if b & 1: snake_case__ :Tuple = ((res % c) + (a % c)) % c a += a b >>= 1 return res
241
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowercase_ ( __snake_case : Optional[Any] ) -> List[Any]: '''simple docstring''' if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def lowercase_ ( __snake_case : str ) -> Tuple: '''simple docstring''' for char in word: snake_case__ :Dict = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def lowercase_ ( __snake_case : List[str] ) -> Any: '''simple docstring''' snake_case__ :Optional[int] = set() for token in tokens: snake_case__ :Dict = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) snake_case__ :Tuple = list(__snake_case ) return word_list def lowercase_ ( __snake_case : List[str] , __snake_case : set() ) -> int: '''simple docstring''' if not chinese_word_set: return bert_tokens snake_case__ :List[str] = max([len(__snake_case ) for w in chinese_word_set] ) snake_case__ :str = bert_tokens snake_case__ , snake_case__ :Dict = 0, len(__snake_case ) while start < end: snake_case__ :Any = True if is_chinese(bert_word[start] ): snake_case__ :Union[str, Any] = min(end - start , __snake_case ) for i in range(__snake_case , 1 , -1 ): snake_case__ :str = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case__ :int = "##" + bert_word[j] snake_case__ :str = start + i snake_case__ :Union[str, Any] = False break if single_word: start += 1 return bert_word def lowercase_ ( __snake_case : List[str] , __snake_case : LTP , __snake_case : BertTokenizer ) -> List[Any]: '''simple docstring''' snake_case__ :Union[str, Any] = [] for i in range(0 , len(__snake_case ) , 1_00 ): snake_case__ :Any = ltp_tokenizer.pipeline(lines[i : i + 1_00] , tasks=["cws"] ).cws snake_case__ :Optional[Any] = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) snake_case__ :int = [] for i in range(0 , len(__snake_case ) , 1_00 ): snake_case__ :str = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__snake_case , truncation=__snake_case , max_length=5_12 ) bert_res.extend(res["input_ids"] ) assert len(__snake_case ) == len(__snake_case ) snake_case__ :Union[str, Any] = [] for input_ids, chinese_word in zip(__snake_case , __snake_case ): snake_case__ :Dict = [] for id in input_ids: snake_case__ :Tuple = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) snake_case__ :Tuple = add_sub_symbol(__snake_case , __snake_case ) snake_case__ :Dict = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": snake_case__ :Optional[Any] = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def lowercase_ ( __snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: snake_case__ :Optional[int] = f.readlines() snake_case__ :Union[str, Any] = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case__ :Optional[int] = LTP(args.ltp ) # faster in GPU device snake_case__ :Optional[int] = BertTokenizer.from_pretrained(args.bert ) snake_case__ :str = prepare_ref(__snake_case , __snake_case , __snake_case ) with open(args.save_path , "w" , encoding="utf-8" ) as f: snake_case__ :List[str] = [json.dumps(__snake_case ) + "\n" for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": __UpperCAmelCase : Optional[int] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __UpperCAmelCase : str = parser.parse_args() main(args)
241
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class a__ : A = 42 A = None A = None __lowerCamelCase : int = namedtuple('''CoinsDistribResult''', '''moves excess''') def _snake_case ( lowerCAmelCase : TreeNode | None ): """simple docstring""" if root is None: return 0 # Validation def count_nodes(lowerCAmelCase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowerCAmelCase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowerCAmelCase ) != count_coins(lowerCAmelCase ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(lowerCAmelCase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) SCREAMING_SNAKE_CASE_ : Any = get_distrib(node.left ) SCREAMING_SNAKE_CASE_ : Dict = get_distrib(node.right ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 - left_distrib_excess SCREAMING_SNAKE_CASE_ : str = 1 - right_distrib_excess SCREAMING_SNAKE_CASE_ : int = ( left_distrib_moves + right_distrib_moves + abs(lowerCAmelCase ) + abs(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : Any = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowerCAmelCase , lowerCAmelCase ) return get_distrib(lowerCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
702
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( A__ , unittest.TestCase ): A = BioGptTokenizer A = False def __UpperCamelCase ( self : str ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE_ : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] SCREAMING_SNAKE_CASE_ : List[Any] = dict(zip(_A,range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""] SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ : str = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w" ) as fp: fp.write(json.dumps(_A ) ) with open(self.merges_file,"w" ) as fp: fp.write("\n".join(_A ) ) def __UpperCamelCase ( self : List[str],_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = "lower newer" SCREAMING_SNAKE_CASE_ : Optional[int] = "lower newer" return input_text, output_text def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = BioGptTokenizer(self.vocab_file,self.merges_file ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = "lower" SCREAMING_SNAKE_CASE_ : int = ["low", "er</w>"] SCREAMING_SNAKE_CASE_ : int = tokenizer.tokenize(_A ) self.assertListEqual(_A,_A ) SCREAMING_SNAKE_CASE_ : int = tokens + ["<unk>"] SCREAMING_SNAKE_CASE_ : int = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ),_A ) @slow def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.encode("sequence builders",add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.encode("multi-sequence build",add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_A ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.build_inputs_with_special_tokens(_A,_A ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
316
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class lowercase ( __lowerCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """data2vec-text""" def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=2 , __a=0.02 , __a=1E-1_2 , __a=1 , __a=0 , __a=2 , __a="absolute" , __a=True , __a=None , **__a , ) -> Any: """simple docstring""" super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = use_cache UpperCAmelCase__ = classifier_dropout class lowercase ( __lowerCamelCase ): '''simple docstring''' @property def UpperCamelCase__ (self ) -> int: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
146
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) UpperCAmelCase__ : Union[str, Any] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
65
0
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Tuple = [randint(-1000, 1000 ) for i in range(10 )] _SCREAMING_SNAKE_CASE : int = randint(-5000, 5000 ) return (arr, r) UpperCamelCase__ =make_dataset() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): for triplet in permutations(__lowerCamelCase, 3 ): if sum(__lowerCamelCase ) == target: return tuple(sorted(__lowerCamelCase ) ) return (0, 0, 0) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): arr.sort() _SCREAMING_SNAKE_CASE : List[str] = len(__lowerCamelCase ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE : Optional[Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Optional[int] = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" _SCREAMING_SNAKE_CASE : Dict = "\ntriplet_sum1(*dataset)\n" _SCREAMING_SNAKE_CASE : str = "\ntriplet_sum2(*dataset)\n" _SCREAMING_SNAKE_CASE : Optional[int] = repeat(setup=__lowerCamelCase, stmt=__lowerCamelCase, repeat=5, number=10000 ) _SCREAMING_SNAKE_CASE : Tuple = repeat(setup=__lowerCamelCase, stmt=__lowerCamelCase, repeat=5, number=10000 ) return (min(__lowerCamelCase ), min(__lowerCamelCase )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase__ =solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
717
from __future__ import annotations from scipy.special import comb # type: ignore class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : List[str] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _SCREAMING_SNAKE_CASE : Optional[int] = len(__lowerCamelCase ) - 1 def UpperCamelCase_ ( self , __lowerCamelCase ) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." _SCREAMING_SNAKE_CASE : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __lowerCamelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__lowerCamelCase ) , 5 ) == 1 return output_values def UpperCamelCase_ ( self , __lowerCamelCase ) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." _SCREAMING_SNAKE_CASE : Optional[int] = self.basis_function(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = 0.0 _SCREAMING_SNAKE_CASE : Union[str, Any] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def UpperCamelCase_ ( self , __lowerCamelCase = 0.01 ) -> int: from matplotlib import pyplot as plt # type: ignore _SCREAMING_SNAKE_CASE : list[float] = [] # x coordinates of points to plot _SCREAMING_SNAKE_CASE : list[float] = [] # y coordinates of points to plot _SCREAMING_SNAKE_CASE : Dict = 0.0 while t <= 1: _SCREAMING_SNAKE_CASE : str = self.bezier_curve_function(__lowerCamelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _SCREAMING_SNAKE_CASE : List[Any] = [i[0] for i in self.list_of_points] _SCREAMING_SNAKE_CASE : Dict = [i[1] for i in self.list_of_points] plt.plot( __lowerCamelCase , __lowerCamelCase , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(__lowerCamelCase , __lowerCamelCase , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
381
0
from __future__ import annotations import requests def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): snake_case__ = F"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(__lowerCAmelCase ).json() def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase = 10 ): snake_case__ = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" snake_case__ = requests.get(__lowerCAmelCase ).json()[:max_stories] return [get_hackernews_story(__lowerCAmelCase ) for story_id in story_ids] def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase = 10 ): snake_case__ = hackernews_top_stories(__lowerCAmelCase ) return "\n".join("* [{title}]({url})".format(**__lowerCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
276
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } __magic_name__ = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } __magic_name__ = { '''ctrl''': 256, } __magic_name__ = { '''Pregnancy''': 168_629, '''Christianity''': 7_675, '''Explain''': 106_423, '''Fitness''': 63_440, '''Saving''': 63_163, '''Ask''': 27_171, '''Ass''': 95_985, '''Joke''': 163_509, '''Questions''': 45_622, '''Thoughts''': 49_605, '''Retail''': 52_342, '''Feminism''': 164_338, '''Writing''': 11_992, '''Atheism''': 192_263, '''Netflix''': 48_616, '''Computing''': 39_639, '''Opinion''': 43_213, '''Alone''': 44_967, '''Funny''': 58_917, '''Gaming''': 40_358, '''Human''': 4_088, '''India''': 1_331, '''Joker''': 77_138, '''Diet''': 36_206, '''Legal''': 11_859, '''Norman''': 4_939, '''Tip''': 72_689, '''Weight''': 52_343, '''Movies''': 46_273, '''Running''': 23_425, '''Science''': 2_090, '''Horror''': 37_793, '''Confession''': 60_572, '''Finance''': 12_250, '''Politics''': 16_360, '''Scary''': 191_985, '''Support''': 12_654, '''Technologies''': 32_516, '''Teenage''': 66_160, '''Event''': 32_769, '''Learned''': 67_460, '''Notion''': 182_770, '''Wikipedia''': 37_583, '''Books''': 6_665, '''Extract''': 76_050, '''Confessions''': 102_701, '''Conspiracy''': 75_932, '''Links''': 63_674, '''Narcissus''': 150_425, '''Relationship''': 54_766, '''Relationships''': 134_796, '''Reviews''': 41_671, '''News''': 4_256, '''Translation''': 26_820, '''multilingual''': 128_406, } def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): snake_case__ = set() snake_case__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ = char snake_case__ = set(__lowerCAmelCase ) return pairs class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Tuple = VOCAB_FILES_NAMES _A : str = PRETRAINED_VOCAB_FILES_MAP _A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : List[Any] = CONTROL_CODES def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="<unk>" , **lowerCamelCase ): super().__init__(unk_token=lowerCamelCase , **lowerCamelCase ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: snake_case__ = json.load(lowerCamelCase ) snake_case__ = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: snake_case__ = merges_handle.read().split("\n" )[1:-1] snake_case__ = [tuple(merge.split() ) for merge in merges] snake_case__ = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) snake_case__ = {} @property def A_ ( self ): return len(self.encoder ) def A_ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def A_ ( self , lowerCamelCase ): if token in self.cache: return self.cache[token] snake_case__ = tuple(lowerCamelCase ) snake_case__ = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) snake_case__ = get_pairs(lowerCamelCase ) if not pairs: return token while True: snake_case__ = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__ , snake_case__ = bigram snake_case__ = [] snake_case__ = 0 while i < len(lowerCamelCase ): try: snake_case__ = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ = tuple(lowerCamelCase ) snake_case__ = new_word if len(lowerCamelCase ) == 1: break else: snake_case__ = get_pairs(lowerCamelCase ) snake_case__ = "@@ ".join(lowerCamelCase ) snake_case__ = word[:-4] snake_case__ = word return word def A_ ( self , lowerCamelCase ): snake_case__ = [] snake_case__ = re.findall(r"\S+\n?" , lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase ).split(" " ) ) ) return split_tokens def A_ ( self , lowerCamelCase ): return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def A_ ( self , lowerCamelCase ): return self.decoder.get(lowerCamelCase , self.unk_token ) def A_ ( self , lowerCamelCase ): snake_case__ = " ".join(lowerCamelCase ).replace("@@ " , "" ).strip() return out_string def A_ ( self , lowerCamelCase , lowerCamelCase = None ): if not os.path.isdir(lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) snake_case__ = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) snake_case__ = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
276
1
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __a = logging.get_logger(__name__) class __a( _a ): """simple docstring""" lowerCAmelCase = ['''input_values''', '''attention_mask'''] def __init__( self ,_SCREAMING_SNAKE_CASE = 1 ,_SCREAMING_SNAKE_CASE = 16_000 ,_SCREAMING_SNAKE_CASE = 0.0 ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = 80 ,_SCREAMING_SNAKE_CASE = 16 ,_SCREAMING_SNAKE_CASE = 64 ,_SCREAMING_SNAKE_CASE = "hann_window" ,_SCREAMING_SNAKE_CASE = 1.0 ,_SCREAMING_SNAKE_CASE = 80 ,_SCREAMING_SNAKE_CASE = 7_600 ,_SCREAMING_SNAKE_CASE = 1e-10 ,_SCREAMING_SNAKE_CASE = 2 ,_SCREAMING_SNAKE_CASE = True ,**_SCREAMING_SNAKE_CASE ,) -> Dict: super().__init__(feature_size=_SCREAMING_SNAKE_CASE ,sampling_rate=_SCREAMING_SNAKE_CASE ,padding_value=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = do_normalize UpperCAmelCase_ : Dict = return_attention_mask UpperCAmelCase_ : List[str] = num_mel_bins UpperCAmelCase_ : str = hop_length UpperCAmelCase_ : List[Any] = win_length UpperCAmelCase_ : Optional[Any] = win_function UpperCAmelCase_ : int = frame_signal_scale UpperCAmelCase_ : List[str] = fmin UpperCAmelCase_ : List[Any] = fmax UpperCAmelCase_ : str = mel_floor UpperCAmelCase_ : List[str] = reduction_factor UpperCAmelCase_ : Dict = win_length * sampling_rate // 1_000 UpperCAmelCase_ : Dict = hop_length * sampling_rate // 1_000 UpperCAmelCase_ : Optional[Any] = optimal_fft_length(self.sample_size ) UpperCAmelCase_ : List[Any] = (self.n_fft // 2) + 1 UpperCAmelCase_ : Tuple = window_function(window_length=self.sample_size ,name=self.win_function ,periodic=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = mel_filter_bank( num_frequency_bins=self.n_freqs ,num_mel_filters=self.num_mel_bins ,min_frequency=self.fmin ,max_frequency=self.fmax ,sampling_rate=self.sampling_rate ,norm='''slaney''' ,mel_scale='''slaney''' ,) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' ,_SCREAMING_SNAKE_CASE ,) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' ,_SCREAMING_SNAKE_CASE ,) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def a__ ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: UpperCAmelCase_ : Optional[int] = np.array(_SCREAMING_SNAKE_CASE ,np.intaa ) UpperCAmelCase_ : Optional[int] = [] for vector, length in zip(_SCREAMING_SNAKE_CASE ,attention_mask.sum(-1 ) ): UpperCAmelCase_ : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCAmelCase_ : Dict = padding_value normed_input_values.append(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : Tuple = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def a__ ( self ,_SCREAMING_SNAKE_CASE ,) -> np.ndarray: UpperCAmelCase_ : Optional[int] = spectrogram( _SCREAMING_SNAKE_CASE ,window=self.window ,frame_length=self.sample_size ,hop_length=self.sample_stride ,fft_length=self.n_fft ,mel_filters=self.mel_filters ,mel_floor=self.mel_floor ,log_mel='''log10''' ,) return log_mel_spec.T def __call__( self ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> BatchFeature: if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if audio is not None: UpperCAmelCase_ : Dict = self._process_audio( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) else: UpperCAmelCase_ : Dict = None if audio_target is not None: UpperCAmelCase_ : str = self._process_audio( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) if inputs is None: return inputs_target else: UpperCAmelCase_ : int = inputs_target['''input_values'''] UpperCAmelCase_ : Optional[Any] = inputs_target.get('''attention_mask''' ) if decoder_attention_mask is not None: UpperCAmelCase_ : Any = decoder_attention_mask return inputs def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> BatchFeature: UpperCAmelCase_ : Dict = isinstance(_SCREAMING_SNAKE_CASE ,np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) UpperCAmelCase_ : Optional[Any] = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE ,(list, tuple) ) and (isinstance(speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase_ : Optional[int] = [np.asarray(_SCREAMING_SNAKE_CASE ,dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE ,np.ndarray ): UpperCAmelCase_ : Tuple = np.asarray(_SCREAMING_SNAKE_CASE ,dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE ,np.ndarray ) and speech.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : int = speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase_ : Any = [speech] # needed to make pad() work on spectrogram inputs UpperCAmelCase_ : Optional[Any] = self.feature_size # convert into correct format for padding if is_target: UpperCAmelCase_ : Optional[int] = [self._extract_mel_features(_SCREAMING_SNAKE_CASE ) for waveform in speech] UpperCAmelCase_ : str = BatchFeature({'''input_values''': features} ) UpperCAmelCase_ : List[Any] = self.num_mel_bins else: UpperCAmelCase_ : List[str] = BatchFeature({'''input_values''': speech} ) UpperCAmelCase_ : Optional[int] = self.pad( _SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,pad_to_multiple_of=_SCREAMING_SNAKE_CASE ,return_attention_mask=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : Union[str, Any] = feature_size_hack # convert input values to correct format UpperCAmelCase_ : Dict = padded_inputs['''input_values'''] if not isinstance(input_values[0] ,np.ndarray ): UpperCAmelCase_ : Union[str, Any] = [np.asarray(_SCREAMING_SNAKE_CASE ,dtype=np.floataa ) for array in input_values] elif ( not isinstance(_SCREAMING_SNAKE_CASE ,np.ndarray ) and isinstance(input_values[0] ,np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): UpperCAmelCase_ : Any = [array.astype(np.floataa ) for array in input_values] elif isinstance(_SCREAMING_SNAKE_CASE ,np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : Optional[int] = input_values.astype(np.floataa ) # convert attention_mask to correct format UpperCAmelCase_ : Optional[Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: UpperCAmelCase_ : str = [np.asarray(_SCREAMING_SNAKE_CASE ,dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: UpperCAmelCase_ : str = ( attention_mask if self._get_padding_strategies(_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD else None ) UpperCAmelCase_ : Optional[Any] = self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] ,attention_mask=_SCREAMING_SNAKE_CASE ,padding_value=self.padding_value ) if return_tensors is not None: UpperCAmelCase_ : Tuple = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return padded_inputs def a__ ( self ) -> Dict[str, Any]: UpperCAmelCase_ : str = super().to_dict() # Don't serialize these as they are derived from the other properties. UpperCAmelCase_ : Tuple = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
709
import os import string import sys __a = 1 << 8 __a = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } __a = KEYMAP['up'] __a = KEYMAP['left'] if sys.platform == "win32": __a = [] __a = { B'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, B'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, B'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, B'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, B'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, B'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, B'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, B'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): __a = ord(str(i)) def lowerCamelCase__ ( ): '''simple docstring''' if os.name == "nt": import msvcrt UpperCAmelCase_ : Union[str, Any] = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_lowercase ) == 0: # Read the keystroke UpperCAmelCase_ : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): UpperCAmelCase_ : Union[str, Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: UpperCAmelCase_ : List[Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(_lowercase ) if ord(_lowercase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) UpperCAmelCase_ : Tuple = chr(KEYMAP['''esc'''] ) except KeyError: UpperCAmelCase_ : Dict = cha[1] else: UpperCAmelCase_ : int = ch.decode(_lowercase ) else: UpperCAmelCase_ : Optional[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty UpperCAmelCase_ : str = sys.stdin.fileno() UpperCAmelCase_ : Optional[Any] = termios.tcgetattr(_lowercase ) try: tty.setraw(_lowercase ) UpperCAmelCase_ : Dict = sys.stdin.read(1 ) finally: termios.tcsetattr(_lowercase , termios.TCSADRAIN , _lowercase ) return ch def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Dict = get_raw_chars() if ord(_lowercase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_lowercase ) == KEYMAP["esc"]: UpperCAmelCase_ : Union[str, Any] = get_raw_chars() if ord(_lowercase ) == KEYMAP["mod_int"]: UpperCAmelCase_ : Optional[int] = get_raw_chars() if ord(_lowercase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_lowercase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_lowercase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
300
0
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=0.2 , _lowerCAmelCase=0.2 ) -> List[Any]: _lowerCAmelCase = bp_numa _lowerCAmelCase = bp_numa _lowerCAmelCase = bp_numa _lowerCAmelCase = conva_get[:2] _lowerCAmelCase = conva_get[2] _lowerCAmelCase = size_pa _lowerCAmelCase = rate_w _lowerCAmelCase = rate_t _lowerCAmelCase = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] _lowerCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _lowerCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _lowerCAmelCase = -2 * np.random.rand(self.conva[1] ) + 1 _lowerCAmelCase = -2 * np.random.rand(self.num_bpa ) + 1 _lowerCAmelCase = -2 * np.random.rand(self.num_bpa ) + 1 def _snake_case ( self , _lowerCAmelCase ) -> List[str]: # save model dict with pickle _lowerCAmelCase = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(_lowerCAmelCase , "wb" ) as f: pickle.dump(_lowerCAmelCase , _lowerCAmelCase ) print(f'''Model saved: {save_path}''' ) @classmethod def _snake_case ( cls , _lowerCAmelCase ) -> Any: # read saved model with open(_lowerCAmelCase , "rb" ) as f: _lowerCAmelCase = pickle.load(_lowerCAmelCase ) # noqa: S301 _lowerCAmelCase = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) _lowerCAmelCase = model_dic.get("size_pooling1" ) _lowerCAmelCase = model_dic.get("num_bp1" ) _lowerCAmelCase = model_dic.get("num_bp2" ) _lowerCAmelCase = model_dic.get("num_bp3" ) _lowerCAmelCase = model_dic.get("rate_weight" ) _lowerCAmelCase = model_dic.get("rate_thre" ) # create model instance _lowerCAmelCase = CNN(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # modify model parameter _lowerCAmelCase = model_dic.get("w_conv1" ) _lowerCAmelCase = model_dic.get("wkj" ) _lowerCAmelCase = model_dic.get("vji" ) _lowerCAmelCase = model_dic.get("thre_conv1" ) _lowerCAmelCase = model_dic.get("thre_bp2" ) _lowerCAmelCase = model_dic.get("thre_bp3" ) return conv_ins def _snake_case ( self , _lowerCAmelCase ) -> List[str]: return 1 / (1 + np.exp(-1 * x )) def _snake_case ( self , _lowerCAmelCase ) -> Tuple: return round(_lowerCAmelCase , 3 ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: # convolution process _lowerCAmelCase = convs[0] _lowerCAmelCase = convs[1] _lowerCAmelCase = np.shape(_lowerCAmelCase )[0] # get the data slice of original image data, data_focus _lowerCAmelCase = [] for i_focus in range(0 , size_data - size_conv + 1 , _lowerCAmelCase ): for j_focus in range(0 , size_data - size_conv + 1 , _lowerCAmelCase ): _lowerCAmelCase = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_lowerCAmelCase ) # calculate the feature map of every single kernel, and saved as list of matrix _lowerCAmelCase = [] _lowerCAmelCase = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_lowerCAmelCase ): _lowerCAmelCase = [] for i_focus in range(len(_lowerCAmelCase ) ): _lowerCAmelCase = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_lowerCAmelCase ) ) _lowerCAmelCase = np.asmatrix(_lowerCAmelCase ).reshape( _lowerCAmelCase , _lowerCAmelCase ) data_featuremap.append(_lowerCAmelCase ) # expanding the data slice to One dimenssion _lowerCAmelCase = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_lowerCAmelCase ) ) _lowerCAmelCase = np.asarray(_lowerCAmelCase ) return focus_list, data_featuremap def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="average_pool" ) -> Any: # pooling process _lowerCAmelCase = len(featuremaps[0] ) _lowerCAmelCase = int(size_map / size_pooling ) _lowerCAmelCase = [] for i_map in range(len(_lowerCAmelCase ) ): _lowerCAmelCase = featuremaps[i_map] _lowerCAmelCase = [] for i_focus in range(0 , _lowerCAmelCase , _lowerCAmelCase ): for j_focus in range(0 , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_lowerCAmelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_lowerCAmelCase ) ) _lowerCAmelCase = np.asmatrix(_lowerCAmelCase ).reshape(_lowerCAmelCase , _lowerCAmelCase ) featuremap_pooled.append(_lowerCAmelCase ) return featuremap_pooled def _snake_case ( self , _lowerCAmelCase ) -> List[str]: # expanding three dimension data to one dimension list _lowerCAmelCase = [] for i in range(len(_lowerCAmelCase ) ): _lowerCAmelCase = np.shape(data[i] ) _lowerCAmelCase = data[i].reshape(1 , shapes[0] * shapes[1] ) _lowerCAmelCase = data_listed.getA().tolist()[0] data_expanded.extend(_lowerCAmelCase ) _lowerCAmelCase = np.asarray(_lowerCAmelCase ) return data_expanded def _snake_case ( self , _lowerCAmelCase ) -> Any: # expanding matrix to one dimension list _lowerCAmelCase = np.asarray(_lowerCAmelCase ) _lowerCAmelCase = np.shape(_lowerCAmelCase ) _lowerCAmelCase = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = [] _lowerCAmelCase = 0 for i_map in range(_lowerCAmelCase ): _lowerCAmelCase = np.ones((size_map, size_map) ) for i in range(0 , _lowerCAmelCase , _lowerCAmelCase ): for j in range(0 , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = pd_pool[ i_pool ] _lowerCAmelCase = i_pool + 1 _lowerCAmelCase = np.multiply( _lowerCAmelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_lowerCAmelCase ) return pd_all def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=bool ) -> Tuple: # model traning print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(_lowerCAmelCase )) ) print((" - - Shape: Teach_Data ", np.shape(_lowerCAmelCase )) ) _lowerCAmelCase = 0 _lowerCAmelCase = [] _lowerCAmelCase = 10000 while rp < n_repeat and mse >= error_accuracy: _lowerCAmelCase = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(_lowerCAmelCase ) ): # print('------------Learning Image: %d--------------'%p) _lowerCAmelCase = np.asmatrix(datas_train[p] ) _lowerCAmelCase = np.asarray(datas_teach[p] ) _lowerCAmelCase , _lowerCAmelCase = self.convolute( _lowerCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _lowerCAmelCase = self.pooling(_lowerCAmelCase , self.size_poolinga ) _lowerCAmelCase = np.shape(_lowerCAmelCase ) _lowerCAmelCase = self._expand(_lowerCAmelCase ) _lowerCAmelCase = data_bp_input _lowerCAmelCase = np.dot(_lowerCAmelCase , self.vji.T ) - self.thre_bpa _lowerCAmelCase = self.sig(_lowerCAmelCase ) _lowerCAmelCase = np.dot(_lowerCAmelCase , self.wkj.T ) - self.thre_bpa _lowerCAmelCase = self.sig(_lowerCAmelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _lowerCAmelCase = np.multiply( (data_teach - bp_outa) , np.multiply(_lowerCAmelCase , (1 - bp_outa) ) ) _lowerCAmelCase = np.multiply( np.dot(_lowerCAmelCase , self.wkj ) , np.multiply(_lowerCAmelCase , (1 - bp_outa) ) ) _lowerCAmelCase = np.dot(_lowerCAmelCase , self.vji ) _lowerCAmelCase = pd_i_all / (self.size_poolinga * self.size_poolinga) _lowerCAmelCase = pd_conva_pooled.T.getA().tolist() _lowerCAmelCase = self._calculate_gradient_from_pool( _lowerCAmelCase , _lowerCAmelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): _lowerCAmelCase = self._expand_mat(pd_conva_all[k_conv] ) _lowerCAmelCase = self.rate_weight * np.dot(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) _lowerCAmelCase = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer _lowerCAmelCase = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _lowerCAmelCase = self.vji + pd_j_all.T * bp_outa * self.rate_weight _lowerCAmelCase = self.thre_bpa - pd_k_all * self.rate_thre _lowerCAmelCase = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _lowerCAmelCase = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _lowerCAmelCase = rp + 1 _lowerCAmelCase = error_count / patterns all_mse.append(_lowerCAmelCase ) def draw_error(): _lowerCAmelCase = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_lowerCAmelCase , "+-" ) plt.plot(_lowerCAmelCase , "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(_lowerCAmelCase , alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: # model predict _lowerCAmelCase = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(_lowerCAmelCase )) ) for p in range(len(_lowerCAmelCase ) ): _lowerCAmelCase = np.asmatrix(datas_test[p] ) _lowerCAmelCase , _lowerCAmelCase = self.convolute( _lowerCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _lowerCAmelCase = self.pooling(_lowerCAmelCase , self.size_poolinga ) _lowerCAmelCase = self._expand(_lowerCAmelCase ) _lowerCAmelCase = data_bp_input _lowerCAmelCase = bp_outa * self.vji.T - self.thre_bpa _lowerCAmelCase = self.sig(_lowerCAmelCase ) _lowerCAmelCase = bp_outa * self.wkj.T - self.thre_bpa _lowerCAmelCase = self.sig(_lowerCAmelCase ) produce_out.extend(bp_outa.getA().tolist() ) _lowerCAmelCase = [list(map(self.do_round , _lowerCAmelCase ) ) for each in produce_out] return np.asarray(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Tuple: # return the data of image after convoluting process so we can check it out _lowerCAmelCase = np.asmatrix(_lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = self.convolute( _lowerCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _lowerCAmelCase = self.pooling(_lowerCAmelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
18
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = result.headers["Location"] _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F'''{artifact_name}.zip''' ) with open(SCREAMING_SNAKE_CASE_ , "wb" ) as fp: fp.write(response.content ) def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE_ ) as f: for line in f: _lowerCAmelCase = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _lowerCAmelCase = line[: line.index(": " )] _lowerCAmelCase = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed _lowerCAmelCase = line[len("FAILED " ) :] failed_tests.append(SCREAMING_SNAKE_CASE_ ) elif filename == "job_name.txt": _lowerCAmelCase = line if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE_ )} for `errors` ''' F'''and {len(SCREAMING_SNAKE_CASE_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' " problem." ) _lowerCAmelCase = None if job_name and job_links: _lowerCAmelCase = job_links.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # A list with elements of the form (line of error, error, failed test) _lowerCAmelCase = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] return result def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE_ , job_links=SCREAMING_SNAKE_CASE_ ) ) return errors def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str=None ): '''simple docstring''' _lowerCAmelCase = Counter() counter.update([x[1] for x in logs] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: _lowerCAmelCase = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = test.split("::" )[0] if test.startswith("tests/models/" ): _lowerCAmelCase = test.split("/" )[2] else: _lowerCAmelCase = None return test def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] _lowerCAmelCase = [x for x in logs if x[2] is not None] _lowerCAmelCase = {x[2] for x in logs} _lowerCAmelCase = {} for test in tests: _lowerCAmelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _lowerCAmelCase = sum(error_counts.values() ) if n_errors > 0: _lowerCAmelCase = {"count": n_errors, "errors": error_counts} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| no. | error | status |" _lowerCAmelCase = "|-:|:-|:-|" _lowerCAmelCase = [header, sep] for error in reduced_by_error: _lowerCAmelCase = reduced_by_error[error]["count"] _lowerCAmelCase = F'''| {count} | {error[:100]} | |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| model | no. of errors | major error | count |" _lowerCAmelCase = "|-:|-:|-:|-:|" _lowerCAmelCase = [header, sep] for model in reduced_by_model: _lowerCAmelCase = reduced_by_model[model]["count"] _lowerCAmelCase , _lowerCAmelCase = list(reduced_by_model[model]["errors"].items() )[0] _lowerCAmelCase = F'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _SCREAMING_SNAKE_CASE = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _SCREAMING_SNAKE_CASE = get_job_links(args.workflow_run_id, token=args.token) _SCREAMING_SNAKE_CASE = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _SCREAMING_SNAKE_CASE = k.find(" / ") _SCREAMING_SNAKE_CASE = k[index + len(" / ") :] _SCREAMING_SNAKE_CASE = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _SCREAMING_SNAKE_CASE = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _SCREAMING_SNAKE_CASE = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _SCREAMING_SNAKE_CASE = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = reduce_by_error(errors) _SCREAMING_SNAKE_CASE = reduce_by_model(errors) _SCREAMING_SNAKE_CASE = make_github_table(reduced_by_error) _SCREAMING_SNAKE_CASE = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
18
1
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowerCAmelCase = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowerCAmelCase = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowerCAmelCase = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowerCAmelCase = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowerCAmelCase = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]), ("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowerCAmelCase = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowerCAmelCase = ( ("""JH AH TH KH QH""", 2_3), ("""JH 9H TH KH QH""", 2_2), ("""JC KH JS JD JH""", 2_1), ("""KH KC 3S 3H 3D""", 2_0), ("""8C 9C 5C 3C TC""", 1_9), ("""JS QS 9H TS KH""", 1_8), ("""7C 7S KH 2H 7H""", 1_7), ("""3C KH 5D 5S KH""", 1_6), ("""QH 8H KD JH 8S""", 1_5), ("""2D 6D 9D TH 7D""", 1_4), ) def UpperCAmelCase_ (): """simple docstring""" _a, _a : Union[str, Any] = randrange(len(_UpperCamelCase ) ), randrange(len(_UpperCamelCase ) ) _a : Dict = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] _a, _a : str = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def UpperCAmelCase_ (__a : int = 1_0_0 ): """simple docstring""" return (generate_random_hand() for _ in range(_UpperCamelCase )) @pytest.mark.parametrize('hand, expected' , _UpperCamelCase ) def UpperCAmelCase_ (__a : Dict , __a : Any ): """simple docstring""" assert PokerHand(_UpperCamelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , _UpperCamelCase ) def UpperCAmelCase_ (__a : List[str] , __a : List[Any] ): """simple docstring""" assert PokerHand(_UpperCamelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , _UpperCamelCase ) def UpperCAmelCase_ (__a : Tuple , __a : Dict , __a : Dict ): """simple docstring""" _a : Tuple = PokerHand(_UpperCamelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , _UpperCamelCase ) def UpperCAmelCase_ (__a : Optional[int] , __a : int ): """simple docstring""" assert PokerHand(_UpperCamelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , _UpperCamelCase ) def UpperCAmelCase_ (__a : List[Any] , __a : Any ): """simple docstring""" assert PokerHand(_UpperCamelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , _UpperCamelCase ) def UpperCAmelCase_ (__a : Optional[int] , __a : Dict , __a : Any ): """simple docstring""" assert PokerHand(_UpperCamelCase ).compare_with(PokerHand(_UpperCamelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def UpperCAmelCase_ (__a : List[str] , __a : Dict , __a : str ): """simple docstring""" assert PokerHand(_UpperCamelCase ).compare_with(PokerHand(_UpperCamelCase ) ) == expected def UpperCAmelCase_ (): """simple docstring""" _a : int = [PokerHand(_UpperCamelCase ) for hand in SORTED_HANDS] _a : Union[str, Any] = poker_hands.copy() shuffle(_UpperCamelCase ) _a : List[str] = chain(sorted(_UpperCamelCase ) ) for index, hand in enumerate(_UpperCamelCase ): assert hand == poker_hands[index] def UpperCAmelCase_ (): """simple docstring""" _a : Union[str, Any] = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=_UpperCamelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def UpperCAmelCase_ (): """simple docstring""" _a : Dict = PokerHand('2C 4S AS 3D 5C' ) _a : str = True _a : Optional[Any] = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = 0 _a : Union[str, Any] = os.path.abspath(os.path.dirname(_UpperCamelCase ) ) _a : List[str] = os.path.join(_UpperCamelCase , 'poker_hands.txt' ) with open(_UpperCamelCase ) as file_hand: for line in file_hand: _a : Any = line[:1_4].strip() _a : Optional[Any] = line[1_5:].strip() _a, _a : List[str] = PokerHand(_UpperCamelCase ), PokerHand(_UpperCamelCase ) _a : List[str] = player.compare_with(_UpperCamelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
716
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCAmelCase_ (__a : Dict , __a : Any=7 ): """simple docstring""" _a : Dict = None if token is not None: _a : Union[str, Any] = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} # The id of a workflow (not of a workflow run) _a : Optional[Any] = '636036' _a : str = f"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" _a : List[Any] = requests.get(__a , headers=__a ).json() return result["workflow_runs"] def UpperCAmelCase_ (__a : Tuple ): """simple docstring""" _a : Optional[Any] = get_daily_ci_runs(__a ) _a : List[str] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _a : Tuple = workflow_run['id'] break return workflow_run_id def UpperCAmelCase_ (__a : Optional[Any] , __a : Optional[int] , __a : Union[str, Any] ): """simple docstring""" _a : Tuple = get_last_daily_ci_runs(__a ) if workflow_run_id is not None: _a : Optional[int] = get_artifacts_links(worflow_run_id=__a , token=__a ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _a : Optional[Any] = artifacts_links[artifact_name] download_artifact( artifact_name=__a , artifact_url=__a , output_dir=__a , token=__a ) def UpperCAmelCase_ (__a : Tuple , __a : List[str] , __a : Any ): """simple docstring""" get_last_daily_ci_artifacts(__a , __a , __a ) _a : List[Any] = {} for artifact_name in artifact_names: _a : int = os.path.join(__a , f"""{artifact_name}.zip""" ) if os.path.isfile(__a ): _a : str = {} with zipfile.ZipFile(__a ) as z: for filename in z.namelist(): if not os.path.isdir(__a ): # read the file with z.open(__a ) as f: _a : Optional[Any] = f.read().decode('UTF-8' ) return results
319
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : List[str] = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
543
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict lowerCAmelCase : Dict = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def a__ ( snake_case__ , snake_case__ ) -> Optional[Any]: return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def a__ ( snake_case__ ) -> int: lowerCamelCase = _TestCommandArgs(dataset=snake_case__ , all_configs=snake_case__ , save_infos=snake_case__ ) lowerCamelCase = TestCommand(*snake_case__ ) test_command.run() lowerCamelCase = os.path.join(snake_case__ , """README.md""" ) assert os.path.exists(snake_case__ ) lowerCamelCase = DatasetInfosDict.from_directory(snake_case__ ) lowerCamelCase = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 2_35_15_63, """num_examples""": 1_00_00, }, { """name""": """validation""", """num_bytes""": 23_84_18, """num_examples""": 10_00, }, ] , download_size=3_94_06_80 , dataset_size=2_58_99_81 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCamelCase , lowerCamelCase = getattr(dataset_infos["""default"""] , snake_case__ ), getattr(expected_dataset_infos["""default"""] , snake_case__ ) if key == "num_bytes": assert is_apercent_close(snake_case__ , snake_case__ ) elif key == "splits": assert list(snake_case__ ) == list(snake_case__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
543
1
def __A ( _A ): """simple docstring""" if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __a = gray_code_sequence_string(_A ) # # convert them to integers for i in range(len(_A ) ): __a = int(sequence[i] , 2 ) return sequence def __A ( _A ): """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __a = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __a = gray_code_sequence_string(bit_count - 1 ) __a = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __a = "0" + smaller_sequence[i] sequence.append(_A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __a = "1" + smaller_sequence[i] sequence.append(_A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
713
def __A ( _A = 100_0000 ): """simple docstring""" __a = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _A ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
525
0
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowercase__ : Tuple = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[Any] = 'linear' _snake_case : Dict = 'cosine' _snake_case : Optional[Any] = 'cosine_with_restarts' _snake_case : List[Any] = 'polynomial' _snake_case : Optional[int] = 'constant' _snake_case : Tuple = 'constant_with_warmup' _snake_case : int = 'piecewise_constant' def a__ ( lowercase : Optimizer, lowercase : int = -1 ) -> List[str]: """simple docstring""" return LambdaLR(lowercase, lambda lowercase : 1, last_epoch=lowercase ) def a__ ( lowercase : Optimizer, lowercase : int, lowercase : int = -1 ) -> Optional[Any]: """simple docstring""" def lr_lambda(lowercase : int ): if current_step < num_warmup_steps: return float(lowercase ) / float(max(1.0, lowercase ) ) return 1.0 return LambdaLR(lowercase, lowercase, last_epoch=lowercase ) def a__ ( lowercase : Optimizer, lowercase : str, lowercase : int = -1 ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: _UpperCamelCase , _UpperCamelCase = rule_str.split(''':''' ) _UpperCamelCase = int(lowercase ) _UpperCamelCase = float(lowercase ) _UpperCamelCase = value _UpperCamelCase = float(rule_list[-1] ) def create_rules_function(lowercase : Optional[int], lowercase : str ): def rule_func(lowercase : int ) -> float: _UpperCamelCase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowercase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _UpperCamelCase = create_rules_function(lowercase, lowercase ) return LambdaLR(lowercase, lowercase, last_epoch=lowercase ) def a__ ( lowercase : Optional[int], lowercase : Union[str, Any], lowercase : str, lowercase : List[str]=-1 ) -> Optional[Any]: """simple docstring""" def lr_lambda(lowercase : int ): if current_step < num_warmup_steps: return float(lowercase ) / float(max(1, lowercase ) ) return max( 0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowercase, lowercase, lowercase ) def a__ ( lowercase : Optimizer, lowercase : int, lowercase : int, lowercase : float = 0.5, lowercase : int = -1 ) -> Tuple: """simple docstring""" def lr_lambda(lowercase : str ): if current_step < num_warmup_steps: return float(lowercase ) / float(max(1, lowercase ) ) _UpperCamelCase = float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(lowercase ) * 2.0 * progress )) ) return LambdaLR(lowercase, lowercase, lowercase ) def a__ ( lowercase : Optimizer, lowercase : int, lowercase : int, lowercase : int = 1, lowercase : int = -1 ) -> Optional[int]: """simple docstring""" def lr_lambda(lowercase : List[str] ): if current_step < num_warmup_steps: return float(lowercase ) / float(max(1, lowercase ) ) _UpperCamelCase = float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(lowercase ) * progress) % 1.0) )) ) return LambdaLR(lowercase, lowercase, lowercase ) def a__ ( lowercase : int, lowercase : List[Any], lowercase : Any, lowercase : List[str]=1e-7, lowercase : List[Any]=1.0, lowercase : Any=-1 ) -> List[Any]: """simple docstring""" _UpperCamelCase = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(lowercase : int ): if current_step < num_warmup_steps: return float(lowercase ) / float(max(1, lowercase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _UpperCamelCase = lr_init - lr_end _UpperCamelCase = num_training_steps - num_warmup_steps _UpperCamelCase = 1 - (current_step - num_warmup_steps) / decay_steps _UpperCamelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowercase, lowercase, lowercase ) lowercase__ : List[str] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def a__ ( lowercase : Union[str, SchedulerType], lowercase : Optimizer, lowercase : Optional[str] = None, lowercase : Optional[int] = None, lowercase : Optional[int] = None, lowercase : int = 1, lowercase : float = 1.0, lowercase : int = -1, ) -> Any: """simple docstring""" _UpperCamelCase = SchedulerType(lowercase ) _UpperCamelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowercase, last_epoch=lowercase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowercase, step_rules=lowercase, last_epoch=lowercase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowercase, num_warmup_steps=lowercase, last_epoch=lowercase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowercase, num_warmup_steps=lowercase, num_training_steps=lowercase, num_cycles=lowercase, last_epoch=lowercase, ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowercase, num_warmup_steps=lowercase, num_training_steps=lowercase, power=lowercase, last_epoch=lowercase, ) return schedule_func( lowercase, num_warmup_steps=lowercase, num_training_steps=lowercase, last_epoch=lowercase )
98
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self :Dict ): __lowerCamelCase : Union[str, Any] =inspect.getfile(accelerate.test_utils ) __lowerCamelCase : Union[str, Any] =os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __lowerCamelCase : List[str] =test_metrics @require_cpu def __lowercase ( self :Optional[Any] ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __lowercase ( self :int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __lowercase ( self :int ): self.test_metrics.main() @require_multi_gpu def __lowercase ( self :Dict ): print(f'Found {torch.cuda.device_count()} devices.' ) __lowerCamelCase : Union[str, Any] =['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowercase , env=os.environ.copy() )
179
0
from __future__ import annotations from math import pi def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
716
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time snake_case_ : Optional[Any] =Lock() def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowerCAmelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __A = min(lowerCAmelCase__ , lowerCAmelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowerCAmelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __A = max(lowerCAmelCase__ , lowerCAmelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowerCAmelCase__ ) def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' __A = [] __A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __A = Pipe() __A = Pipe() process_array_.append( Process( target=lowerCAmelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __A = temp_rs __A = temp_rr for i in range(1 , len(lowerCAmelCase__ ) - 1 ): __A = Pipe() __A = Pipe() process_array_.append( Process( target=lowerCAmelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __A = temp_rs __A = temp_rr process_array_.append( Process( target=lowerCAmelCase__ , args=( len(lowerCAmelCase__ ) - 1, arr[len(lowerCAmelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowerCAmelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowerCAmelCase__ ) ): __A = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCAmelCase ( ): '''simple docstring''' __A = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*lowerCAmelCase__ ) __A = odd_even_transposition(lowerCAmelCase__ ) print("Sorted List\n" ) print(*lowerCAmelCase__ ) if __name__ == "__main__": main()
205
0
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = RoFormerTokenizer UpperCAmelCase__ = RoFormerTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = True def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: super().setUp() def lowerCamelCase__ ( self : Optional[Any] , **__snake_case : Union[str, Any] ) -> Tuple: return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__snake_case ) def lowerCamelCase__ ( self : Dict , **__snake_case : Optional[int] ) -> List[Any]: return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__snake_case ) def lowerCamelCase__ ( self : Dict ) -> Tuple: __magic_name__: Dict = """永和服装饰品有限公司,今天天气非常好""" __magic_name__: Union[str, Any] = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: __magic_name__: int = self.get_tokenizer() __magic_name__, __magic_name__: List[Any] = self.get_chinese_input_output_texts() __magic_name__: Any = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , output_text.split() ) __magic_name__: List[str] = tokens + [tokenizer.unk_token] __magic_name__: Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def lowerCamelCase__ ( self : Any ) -> Tuple: __magic_name__: str = self.get_rust_tokenizer() __magic_name__, __magic_name__: Optional[Any] = self.get_chinese_input_output_texts() __magic_name__: Any = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , output_text.split() ) __magic_name__: List[Any] = tokens + [tokenizer.unk_token] __magic_name__: List[str] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def lowerCamelCase__ ( self : Dict ) -> List[str]: pass def lowerCamelCase__ ( self : Tuple ) -> Optional[int]: pass def lowerCamelCase__ ( self : Union[str, Any] ) -> int: pass
96
from __future__ import annotations __magic_name__ = list[list[int]] # assigning initial values to the grid __magic_name__ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __magic_name__ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _lowerCAmelCase ( A__: Matrix , A__: int , A__: int , A__: int ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _lowerCAmelCase ( A__: Matrix ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _lowerCAmelCase ( A__: Matrix ): '''simple docstring''' if location := find_empty_location(A__ ): UpperCAmelCase , UpperCAmelCase = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(A__ , A__ , A__ , A__ ): UpperCAmelCase = digit if sudoku(A__ ) is not None: return grid UpperCAmelCase = 0 return None def _lowerCAmelCase ( A__: Matrix ): '''simple docstring''' for row in grid: for cell in row: print(A__ , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") __magic_name__ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
254
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCamelCase : Union[str, Any] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class UpperCAmelCase_ ( _a): lowerCamelCase__ : Optional[Any] = "markuplm" def __init__( self , a=3_0_5_2_2 , a=7_6_8 , a=1_2 , a=1_2 , a=3_0_7_2 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=2 , a=0.02 , a=1e-12 , a=0 , a=0 , a=2 , a=2_5_6 , a=1_0_2_4 , a=2_1_6 , a=1_0_0_1 , a=3_2 , a=5_0 , a="absolute" , a=True , a=None , **a , ) -> List[str]: super().__init__( pad_token_id=a , bos_token_id=a , eos_token_id=a , **a , ) lowercase__ : int = vocab_size lowercase__ : Optional[int] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : int = hidden_act lowercase__ : Dict = intermediate_size lowercase__ : Tuple = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : str = type_vocab_size lowercase__ : List[Any] = initializer_range lowercase__ : str = layer_norm_eps lowercase__ : List[Any] = position_embedding_type lowercase__ : Optional[int] = use_cache lowercase__ : str = classifier_dropout # additional properties lowercase__ : Dict = max_depth lowercase__ : Dict = max_xpath_tag_unit_embeddings lowercase__ : List[str] = max_xpath_subs_unit_embeddings lowercase__ : Union[str, Any] = tag_pad_id lowercase__ : List[Any] = subs_pad_id lowercase__ : int = xpath_unit_hidden_size
645
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=3_2 , a=2 , a=3 , a=1_6 , a=[1, 2, 1] , a=[2, 2, 4] , a=2 , a=2.0 , a=True , a=0.0 , a=0.0 , a=0.1 , a="gelu" , a=False , a=True , a=0.02 , a=1e-5 , a=True , a=None , a=True , a=1_0 , a=8 , a=["stage1", "stage2", "stage3"] , a=[1, 2, 3] , ) -> int: lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Dict = image_size lowercase__ : str = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : List[str] = embed_dim lowercase__ : Any = depths lowercase__ : Dict = num_heads lowercase__ : List[str] = window_size lowercase__ : int = mlp_ratio lowercase__ : Tuple = qkv_bias lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Tuple = drop_path_rate lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = use_absolute_embeddings lowercase__ : Optional[Any] = patch_norm lowercase__ : Any = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : List[str] = is_training lowercase__ : int = scope lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = type_sequence_label_size lowercase__ : List[str] = encoder_stride lowercase__ : Optional[Any] = out_features lowercase__ : Dict = out_indices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Tuple = MaskFormerSwinModel(config=a ) model.to(a ) model.eval() lowercase__ : str = model(a ) lowercase__ : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : List[Any] = MaskFormerSwinBackbone(config=a ) model.to(a ) model.eval() lowercase__ : int = model(a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(a ): lowercase__ : Dict = ['stem'] lowercase__ : List[str] = MaskFormerSwinBackbone(config=a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase__ : List[str] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase__ : str = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = MaskFormerSwinModelTester(self ) lowercase__ : Tuple = ConfigTester(self , config_class=a , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def _UpperCAmelCase ( self ) -> Optional[int]: pass def _UpperCAmelCase ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> str: return def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a ) @unittest.skip('Swin does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip('Swin does not support feedforward chunking' ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> str: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) lowercase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def _UpperCAmelCase ( self ) -> int: pass def _UpperCAmelCase ( self , a , a , a , a ) -> Tuple: lowercase__ : Dict = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[Any] = outputs.hidden_states lowercase__ : str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a ) , a ) # Swin has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = 3 lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : int = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(a ): lowercase__ : Union[str, Any] = 0 return t def check_equivalence(a , a , a , a={} ): with torch.no_grad(): lowercase__ : Optional[Any] = model(**a , return_dict=a , **a ) lowercase__ : Optional[int] = model(**a , return_dict=a , **a ).to_tuple() def recursive_check(a , a ): if isinstance(a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a , a ): recursive_check(a , a ) elif isinstance(a , a ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(a , a ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(a ) , set_nan_tensor_to_zero(a ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}. Dict has""" f""" `nan`: {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}.""" ) , ) recursive_check(a , a ) for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) model.to(a ) model.eval() lowercase__ : Tuple = self._prepare_for_class(a , a ) lowercase__ : Optional[Any] = self._prepare_for_class(a , a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : List[Any] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a ) lowercase__ : int = self._prepare_for_class(a , a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) lowercase__ : Dict = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : Optional[int] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ ( unittest.TestCase , _a): lowerCamelCase__ : Dict = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase__ : Optional[int] = MaskFormerSwinConfig def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Optional[int] = MaskFormerSwinModelTester(self ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : int = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: lowercase__ : Optional[Any] = backbone_class(a ) backbone.to(a ) backbone.eval() lowercase__ : Union[str, Any] = backbone(**a ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , a ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase__ : List[str] = backbone(**a , output_hidden_states=a ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase__ , lowercase__ , lowercase__ : int = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase__ : List[Any] = backbone(**a , output_attentions=a ) self.assertIsNotNone(outputs.attentions )
645
1
"""simple docstring""" from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCAmelCase = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' _lowerCAmelCase = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' _lowerCAmelCase = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def UpperCamelCase ( _A , _A ) -> List[Any]: return float((preds == labels).mean() ) def UpperCamelCase ( _A , _A ) -> List[str]: lowercase : int = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) lowercase : List[Any] = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def UpperCamelCase ( _A , _A ) -> int: lowercase : str = float(pearsonr(UpperCamelCase_ , UpperCamelCase_ )[0] ) lowercase : str = float(spearmanr(UpperCamelCase_ , UpperCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase (datasets.Metric ): def __snake_case ( self :Dict ) ->Union[str, Any]: if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def __snake_case ( self :Optional[int] , __magic_name__ :Any , __magic_name__ :Any ) ->Union[str, Any]: if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__snake_case , __snake_case )} elif self.config_name == "stsb": return pearson_and_spearman(__snake_case , __snake_case ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__snake_case , __snake_case ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__snake_case , __snake_case )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
264
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } __UpperCAmelCase : str = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } __UpperCAmelCase : Union[str, Any] = { 'ctrl': 256, } __UpperCAmelCase : Tuple = { 'Pregnancy': 168_629, 'Christianity': 7_675, 'Explain': 106_423, 'Fitness': 63_440, 'Saving': 63_163, 'Ask': 27_171, 'Ass': 95_985, 'Joke': 163_509, 'Questions': 45_622, 'Thoughts': 49_605, 'Retail': 52_342, 'Feminism': 164_338, 'Writing': 11_992, 'Atheism': 192_263, 'Netflix': 48_616, 'Computing': 39_639, 'Opinion': 43_213, 'Alone': 44_967, 'Funny': 58_917, 'Gaming': 40_358, 'Human': 4_088, 'India': 1_331, 'Joker': 77_138, 'Diet': 36_206, 'Legal': 11_859, 'Norman': 4_939, 'Tip': 72_689, 'Weight': 52_343, 'Movies': 46_273, 'Running': 23_425, 'Science': 2_090, 'Horror': 37_793, 'Confession': 60_572, 'Finance': 12_250, 'Politics': 16_360, 'Scary': 191_985, 'Support': 12_654, 'Technologies': 32_516, 'Teenage': 66_160, 'Event': 32_769, 'Learned': 67_460, 'Notion': 182_770, 'Wikipedia': 37_583, 'Books': 6_665, 'Extract': 76_050, 'Confessions': 102_701, 'Conspiracy': 75_932, 'Links': 63_674, 'Narcissus': 150_425, 'Relationship': 54_766, 'Relationships': 134_796, 'Reviews': 41_671, 'News': 4_256, 'Translation': 26_820, 'multilingual': 128_406, } def lowerCamelCase_ ( UpperCamelCase_ ): _a : Any = set() _a : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _a : Any = char _a : Dict = set(UpperCamelCase_ ) return pairs class lowerCamelCase ( SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Optional[Any] = CONTROL_CODES def __init__( self : Union[str, Any] , __snake_case : Dict , __snake_case : int , __snake_case : Optional[Any]="<unk>" , **__snake_case : Tuple ) -> Tuple: super().__init__(unk_token=__snake_case , **__snake_case ) with open(__snake_case , encoding='''utf-8''' ) as vocab_handle: _a : List[str] = json.load(__snake_case ) _a : List[Any] = {v: k for k, v in self.encoder.items()} with open(__snake_case , encoding='''utf-8''' ) as merges_handle: _a : str = merges_handle.read().split('''\n''' )[1:-1] _a : List[str] = [tuple(merge.split() ) for merge in merges] _a : Optional[Any] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) _a : int = {} @property def snake_case_ ( self : str ) -> Tuple: return len(self.encoder ) def snake_case_ ( self : Optional[Any] ) -> Optional[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self : Optional[Any] , __snake_case : str ) -> Tuple: if token in self.cache: return self.cache[token] _a : int = tuple(__snake_case ) _a : Any = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _a : Tuple = get_pairs(__snake_case ) if not pairs: return token while True: _a : List[str] = min(__snake_case , key=lambda __snake_case : self.bpe_ranks.get(__snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _a , _a : Tuple = bigram _a : Tuple = [] _a : Tuple = 0 while i < len(__snake_case ): try: _a : List[Any] = word.index(__snake_case , __snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _a : str = j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _a : Tuple = tuple(__snake_case ) _a : str = new_word if len(__snake_case ) == 1: break else: _a : Dict = get_pairs(__snake_case ) _a : List[Any] = '''@@ '''.join(__snake_case ) _a : int = word[:-4] _a : List[str] = word return word def snake_case_ ( self : Optional[Any] , __snake_case : Any ) -> Optional[int]: _a : Any = [] _a : Union[str, Any] = re.findall(r'''\S+\n?''' , __snake_case ) for token in words: split_tokens.extend(list(self.bpe(__snake_case ).split(''' ''' ) ) ) return split_tokens def snake_case_ ( self : int , __snake_case : str ) -> Dict: return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def snake_case_ ( self : int , __snake_case : List[Any] ) -> List[str]: return self.decoder.get(__snake_case , self.unk_token ) def snake_case_ ( self : List[str] , __snake_case : Tuple ) -> int: _a : List[str] = ''' '''.join(__snake_case ).replace('''@@ ''' , '''''' ).strip() return out_string def snake_case_ ( self : Any , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[Any] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _a : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '''\n''' ) _a : Any = 0 with open(__snake_case , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _a : List[str] = token_index writer.write(''' '''.join(__snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
471
0
"""simple docstring""" import re from filelock import FileLock try: import nltk __A : Dict = True except (ImportError, ModuleNotFoundError): __A : Union[str, Any] = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def snake_case__ ( _lowerCamelCase ) ->str: """simple docstring""" re.sub("<n>", "", _lowerCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowerCamelCase ) )
701
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] , lowercase__ : List[Any] , lowercase__ : int=1_3 , lowercase__ : Optional[int]=7 , lowercase__ : Any=True , lowercase__ : int=True , lowercase__ : List[Any]=True , lowercase__ : Union[str, Any]=True , lowercase__ : Any=9_9 , lowercase__ : Tuple=[1, 1, 2] , lowercase__ : str=1 , lowercase__ : Union[str, Any]=3_2 , lowercase__ : int=4 , lowercase__ : Dict=8 , lowercase__ : Tuple=3_7 , lowercase__ : int="gelu_new" , lowercase__ : Tuple=0.1 , lowercase__ : int=0.1 , lowercase__ : Dict=0.0 , lowercase__ : int=5_1_2 , lowercase__ : str=3 , lowercase__ : List[Any]=0.0_2 , lowercase__ : Any=3 , lowercase__ : Union[str, Any]=4 , lowercase__ : Tuple=None , lowercase__ : List[Any]=False , ): __lowercase : Any = parent __lowercase : Tuple = batch_size __lowercase : Union[str, Any] = seq_length __lowercase : List[Any] = is_training __lowercase : Tuple = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Any = vocab_size __lowercase : Union[str, Any] = block_sizes __lowercase : Optional[Any] = num_decoder_layers __lowercase : str = d_model __lowercase : Tuple = n_head __lowercase : Any = d_head __lowercase : Dict = d_inner __lowercase : Optional[Any] = hidden_act __lowercase : int = hidden_dropout __lowercase : int = attention_dropout __lowercase : Tuple = activation_dropout __lowercase : int = max_position_embeddings __lowercase : Optional[Any] = type_vocab_size __lowercase : Union[str, Any] = 2 __lowercase : Optional[int] = num_labels __lowercase : List[str] = num_choices __lowercase : List[Any] = scope __lowercase : List[str] = initializer_std # Used in the tests to check the size of the first attention layer __lowercase : str = n_head # Used in the tests to check the size of the first hidden state __lowercase : List[str] = self.d_model # Used in the tests to check the number of output hidden states/attentions __lowercase : Optional[Any] = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __lowercase : Dict = self.num_hidden_layers + 2 def snake_case ( self : List[Any] ): __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[int] = None if self.use_input_mask: __lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : List[str] = None if self.use_token_type_ids: __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Any = None __lowercase : str = None __lowercase : str = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Union[str, Any] = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def snake_case ( self : Dict , lowercase__ : str , lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : int , lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : Optional[int] , ): __lowercase : int = TFFunnelModel(config=lowercase__ ) __lowercase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowercase : List[Any] = model(lowercase__ ) __lowercase : Optional[Any] = [input_ids, input_mask] __lowercase : int = model(lowercase__ ) __lowercase : Tuple = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __lowercase : int = False __lowercase : int = TFFunnelModel(config=lowercase__ ) __lowercase : List[str] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __lowercase : str = False __lowercase : int = TFFunnelModel(config=lowercase__ ) __lowercase : Dict = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def snake_case ( self : Union[str, Any] , lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : Optional[int] , lowercase__ : int , lowercase__ : str , lowercase__ : Dict , lowercase__ : Union[str, Any] , ): __lowercase : List[str] = TFFunnelBaseModel(config=lowercase__ ) __lowercase : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowercase : List[Any] = model(lowercase__ ) __lowercase : List[Any] = [input_ids, input_mask] __lowercase : Optional[int] = model(lowercase__ ) __lowercase : Optional[Any] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) __lowercase : Any = False __lowercase : Any = TFFunnelBaseModel(config=lowercase__ ) __lowercase : Union[str, Any] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) __lowercase : List[Any] = False __lowercase : Optional[int] = TFFunnelBaseModel(config=lowercase__ ) __lowercase : Optional[int] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def snake_case ( self : Optional[int] , lowercase__ : str , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : Optional[Any] , ): __lowercase : Tuple = TFFunnelForPreTraining(config=lowercase__ ) __lowercase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowercase : Union[str, Any] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self : int , lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : int , lowercase__ : Any , lowercase__ : str , lowercase__ : Optional[Any] , ): __lowercase : Optional[int] = TFFunnelForMaskedLM(config=lowercase__ ) __lowercase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowercase : Optional[int] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : Union[str, Any] , lowercase__ : str , lowercase__ : Any , lowercase__ : Any , lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : int , lowercase__ : int , ): __lowercase : str = self.num_labels __lowercase : List[Any] = TFFunnelForSequenceClassification(config=lowercase__ ) __lowercase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowercase : int = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self : Tuple , lowercase__ : Tuple , lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : str , lowercase__ : Union[str, Any] , ): __lowercase : Dict = self.num_choices __lowercase : List[str] = TFFunnelForMultipleChoice(config=lowercase__ ) __lowercase : Any = tf.tile(tf.expand_dims(lowercase__ , 1 ) , (1, self.num_choices, 1) ) __lowercase : Optional[Any] = tf.tile(tf.expand_dims(lowercase__ , 1 ) , (1, self.num_choices, 1) ) __lowercase : Tuple = tf.tile(tf.expand_dims(lowercase__ , 1 ) , (1, self.num_choices, 1) ) __lowercase : Optional[int] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __lowercase : str = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self : Any , lowercase__ : Tuple , lowercase__ : str , lowercase__ : List[str] , lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Any , lowercase__ : Optional[int] , ): __lowercase : Tuple = self.num_labels __lowercase : int = TFFunnelForTokenClassification(config=lowercase__ ) __lowercase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowercase : int = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self : Optional[int] , lowercase__ : str , lowercase__ : Tuple , lowercase__ : str , lowercase__ : List[Any] , lowercase__ : int , lowercase__ : str , lowercase__ : int , ): __lowercase : List[str] = TFFunnelForQuestionAnswering(config=lowercase__ ) __lowercase : str = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowercase : Union[str, Any] = model(lowercase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self : str ): __lowercase : Optional[int] = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) : List[Any] = config_and_inputs __lowercase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[Any] = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) __UpperCAmelCase : Optional[int] = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : Dict = False __UpperCAmelCase : Union[str, Any] = False def snake_case ( self : Dict ): __lowercase : List[Any] = TFFunnelModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=lowercase__ ) def snake_case ( self : List[Any] ): self.config_tester.run_common_tests() def snake_case ( self : Any ): __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def snake_case ( self : List[Any] ): __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def snake_case ( self : str ): __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def snake_case ( self : Any ): __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) def snake_case ( self : str ): __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) @require_tf class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) __UpperCAmelCase : str = False __UpperCAmelCase : Optional[Any] = False def snake_case ( self : List[Any] ): __lowercase : Optional[int] = TFFunnelModelTester(self , base=lowercase__ ) __lowercase : List[Any] = ConfigTester(self , config_class=lowercase__ ) def snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def snake_case ( self : List[str] ): __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowercase__ ) def snake_case ( self : Union[str, Any] ): __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def snake_case ( self : List[Any] ): __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ )
281
0
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser( description=( "Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="bert", choices=["bert"]) parser.add_argument("--model_name", default="bert-base-uncased", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") _snake_case : Dict = parser.parse_args() if args.model_type == "bert": _snake_case : Dict = BertForMaskedLM.from_pretrained(args.model_name) _snake_case : List[Any] = "bert" else: raise ValueError("args.model_type should be \"bert\".") _snake_case : List[str] = model.state_dict() _snake_case : List[Any] = {} for w in ["word_embeddings", "position_embeddings"]: _snake_case : Union[str, Any] = state_dict[f'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: _snake_case : Dict = state_dict[f'''{prefix}.embeddings.LayerNorm.{w}'''] _snake_case : str = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _snake_case : Optional[Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] _snake_case : int = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] _snake_case : Optional[Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] _snake_case : int = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] _snake_case : Any = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] _snake_case : List[str] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] _snake_case : Union[str, Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] _snake_case : Tuple = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 _snake_case : Dict = state_dict["cls.predictions.decoder.weight"] _snake_case : Tuple = state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: _snake_case : Dict = state_dict[f'''cls.predictions.transform.dense.{w}'''] _snake_case : int = state_dict[f'''cls.predictions.transform.LayerNorm.{w}'''] print(f'''N layers selected for distillation: {std_idx}''') print(f'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(f'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
81
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _snake_case : Optional[int] = logging.get_logger(__name__) class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Optional[Any] , *lowerCamelCase : Any , **lowerCamelCase : Union[str, Any] ) -> None: warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
81
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
713
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = """trocr""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self , a__=5_02_65 , a__=10_24 , a__=12 , a__=16 , a__=40_96 , a__="gelu" , a__=5_12 , a__=0.1 , a__=0.0 , a__=0.0 , a__=2 , a__=0.02 , a__=0.0 , a__=True , a__=False , a__=True , a__=True , a__=1 , a__=0 , a__=2 , **a__ , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = d_model _UpperCAmelCase = decoder_layers _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = activation_function _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = init_std _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = use_cache _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_learned_position_embeddings _UpperCAmelCase = layernorm_embedding super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , decoder_start_token_id=a__ , **a__ , )
494
0
def UpperCamelCase_ ( __a , __a , __a , __a ) -> int: a__, a__ : Union[str, Any] = len(__a ), len(grid[0] ) if ( min(__a , __a ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) a__ : List[Any] = 0 count += depth_first_search(__a , row + 1 , __a , __a ) count += depth_first_search(__a , row - 1 , __a , __a ) count += depth_first_search(__a , __a , col + 1 , __a ) count += depth_first_search(__a , __a , col - 1 , __a ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
37
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: a__ : Union[str, Any] = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") a__ : Union[str, Any] = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(__a ): os.makedirs(__a ) a__ : Any = model.state_dict() def to_tf_var_name(__a ): for patt, repl in iter(__a ): a__ : Tuple = name.replace(__a , __a ) return f'''bert/{name}''' def create_tf_var(__a , __a , __a ): a__ : Tuple = tf.dtypes.as_dtype(tensor.dtype ) a__ : Dict = tf.get_variable(dtype=__a , shape=tensor.shape , name=__a , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__a ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: a__ : int = to_tf_var_name(__a ) a__ : Union[str, Any] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): a__ : int = torch_tensor.T a__ : Optional[Any] = create_tf_var(tensor=__a , name=__a , session=__a ) tf.keras.backend.set_value(__a , __a ) a__ : int = session.run(__a ) print(f'''Successfully created {tf_name}: {np.allclose(__a , __a )}''' ) a__ : Any = tf.train.Saver(tf.trainable_variables() ) saver.save(__a , os.path.join(__a , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCamelCase_ ( __a=None ) -> int: a__ : Dict = argparse.ArgumentParser() parser.add_argument("--model_name" , type=__a , required=__a , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=__a , default=__a , required=__a , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=__a , required=__a , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=__a , required=__a , help="Directory in which to save tensorflow model" ) a__ : Optional[Any] = parser.parse_args(__a ) a__ : Tuple = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__a , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
37
1
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : int = 10 , __lowerCamelCase : int = 10_00 , __lowerCamelCase : bool = True ) -> int: assert ( isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int ) -> int: return int((number_a + number_a) / 2 ) def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ) -> None: assert ( isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(__lowerCamelCase : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) _snake_case = lower _snake_case = higher _snake_case = [] while True: _snake_case = get_avg(__lowerCamelCase , __lowerCamelCase ) last_numbers.append(__lowerCamelCase ) if answer(__lowerCamelCase ) == "low": _snake_case = number elif answer(__lowerCamelCase ) == "high": _snake_case = number else: break print(f'''guess the number : {last_numbers[-1]}''' ) print(f'''details : {last_numbers!s}''' ) def _UpperCAmelCase ( ) -> None: _snake_case = int(input('''Enter lower value : ''' ).strip() ) _snake_case = int(input('''Enter high value : ''' ).strip() ) _snake_case = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
717
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowerCAmelCase__ ( unittest.TestCase ): __a = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING __a = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def lowercase ( self : Optional[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] ): _snake_case = AudioClassificationPipeline(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) # test with a raw waveform _snake_case = np.zeros((34000,) ) _snake_case = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def lowercase ( self : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int ): _snake_case , _snake_case = examples _snake_case = audio_classifier(_lowerCamelCase ) # by default a model is initialized with num_labels=2 self.assertEqual( _lowerCamelCase , [ {'''score''': ANY(_lowerCamelCase ), '''label''': ANY(_lowerCamelCase )}, {'''score''': ANY(_lowerCamelCase ), '''label''': ANY(_lowerCamelCase )}, ] , ) _snake_case = audio_classifier(_lowerCamelCase , top_k=1 ) self.assertEqual( _lowerCamelCase , [ {'''score''': ANY(_lowerCamelCase ), '''label''': ANY(_lowerCamelCase )}, ] , ) self.run_torchaudio(_lowerCamelCase ) @require_torchaudio def lowercase ( self : Optional[int] , _lowerCamelCase : str ): import datasets # test with a local file _snake_case = datasets.load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) _snake_case = dataset[0]['''audio''']['''array'''] _snake_case = audio_classifier(_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ {'''score''': ANY(_lowerCamelCase ), '''label''': ANY(_lowerCamelCase )}, {'''score''': ANY(_lowerCamelCase ), '''label''': ANY(_lowerCamelCase )}, ] , ) @require_torch def lowercase ( self : Union[str, Any] ): _snake_case = '''anton-l/wav2vec2-random-tiny-classifier''' _snake_case = pipeline('''audio-classification''' , model=_lowerCamelCase ) _snake_case = np.ones((8000,) ) _snake_case = audio_classifier(_lowerCamelCase , top_k=4 ) _snake_case = [ {'''score''': 0.0_8_4_2, '''label''': '''no'''}, {'''score''': 0.0_8_3_8, '''label''': '''up'''}, {'''score''': 0.0_8_3_7, '''label''': '''go'''}, {'''score''': 0.0_8_3_4, '''label''': '''right'''}, ] _snake_case = [ {'''score''': 0.0_8_4_5, '''label''': '''stop'''}, {'''score''': 0.0_8_4_4, '''label''': '''on'''}, {'''score''': 0.0_8_4_1, '''label''': '''right'''}, {'''score''': 0.0_8_3_4, '''label''': '''left'''}, ] self.assertIn(nested_simplify(_lowerCamelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _snake_case = {'''array''': np.ones((8000,) ), '''sampling_rate''': audio_classifier.feature_extractor.sampling_rate} _snake_case = audio_classifier(_lowerCamelCase , top_k=4 ) self.assertIn(nested_simplify(_lowerCamelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def lowercase ( self : Optional[int] ): import datasets _snake_case = '''superb/wav2vec2-base-superb-ks''' _snake_case = pipeline('''audio-classification''' , model=_lowerCamelCase ) _snake_case = datasets.load_dataset('''anton-l/superb_dummy''' , '''ks''' , split='''test''' ) _snake_case = np.array(dataset[3]['''speech'''] , dtype=np.floataa ) _snake_case = audio_classifier(_lowerCamelCase , top_k=4 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=3 ) , [ {'''score''': 0.9_8_1, '''label''': '''go'''}, {'''score''': 0.0_0_7, '''label''': '''up'''}, {'''score''': 0.0_0_6, '''label''': '''_unknown_'''}, {'''score''': 0.0_0_1, '''label''': '''down'''}, ] , ) @require_tf @unittest.skip('''Audio classification is not implemented for TF''' ) def lowercase ( self : Optional[int] ): pass
430
0
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __lowerCamelCase = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def a__ ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Any, UpperCamelCase_ : int=None ): if rng is None: UpperCAmelCase__ :Optional[Any] = random.Random() UpperCAmelCase__ :int = 1 for dim in shape: total_dims *= dim UpperCAmelCase__ :List[str] = [] for _ in range(UpperCamelCase_ ): values.append(rng.randint(0, vocab_size - 1 ) ) UpperCAmelCase__ :Union[str, Any] = np.array(UpperCamelCase_, dtype=jnp.intaa ).reshape(UpperCamelCase_ ) return output def a__ ( UpperCamelCase_ : List[str], UpperCamelCase_ : Any=None ): UpperCAmelCase__ :Union[str, Any] = ids_tensor(UpperCamelCase_, vocab_size=2, rng=UpperCamelCase_ ) # make sure that at least one token is attended to for each batch UpperCAmelCase__ :Optional[int] = 1 return attn_mask @require_flax class UpperCAmelCase : UpperCAmelCase = None UpperCAmelCase = () def __SCREAMING_SNAKE_CASE ( self : Any ): UpperCAmelCase__ , UpperCAmelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 UpperCAmelCase__ :List[str] = 2 UpperCAmelCase__ :str = inputs['''input_ids'''].shape[-1] // 2 UpperCAmelCase__ :str = inputs['''input_ids'''][:max_batch_size, :sequence_length] UpperCAmelCase__ :Optional[Any] = jnp.ones_like(__lowerCamelCase ) UpperCAmelCase__ :Optional[int] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens UpperCAmelCase__ :List[str] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` UpperCAmelCase__ :Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ :int = self._get_input_ids_and_config() UpperCAmelCase__ :str = False UpperCAmelCase__ :Any = max_length UpperCAmelCase__ :str = 0 for model_class in self.all_generative_model_classes: UpperCAmelCase__ :Dict = model_class(__lowerCamelCase ) UpperCAmelCase__ :List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase__ :Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase__ :List[Any] = pt_model_class(__lowerCamelCase ).eval() UpperCAmelCase__ :int = load_flax_weights_in_pytorch_model(__lowerCamelCase , flax_model.params ) UpperCAmelCase__ :List[Any] = flax_model.generate(__lowerCamelCase ).sequences UpperCAmelCase__ :int = pt_model.generate(torch.tensor(__lowerCamelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: UpperCAmelCase__ :Optional[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ :Union[str, Any] = self._get_input_ids_and_config() UpperCAmelCase__ :List[str] = False UpperCAmelCase__ :Dict = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ :Tuple = model_class(__lowerCamelCase ) UpperCAmelCase__ :List[str] = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) UpperCAmelCase__ :List[str] = jit(model.generate ) UpperCAmelCase__ :Union[str, Any] = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __SCREAMING_SNAKE_CASE ( self : str ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ :List[str] = self._get_input_ids_and_config() UpperCAmelCase__ :Dict = True UpperCAmelCase__ :List[str] = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ :List[str] = model_class(__lowerCamelCase ) UpperCAmelCase__ :Union[str, Any] = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) UpperCAmelCase__ :Tuple = jit(model.generate ) UpperCAmelCase__ :Optional[Any] = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __SCREAMING_SNAKE_CASE ( self : Any ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ :Optional[int] = self._get_input_ids_and_config() UpperCAmelCase__ :Tuple = False UpperCAmelCase__ :Union[str, Any] = max_length UpperCAmelCase__ :List[Any] = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase__ :Tuple = model_class(__lowerCamelCase ) UpperCAmelCase__ :str = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) UpperCAmelCase__ :Any = jit(model.generate ) UpperCAmelCase__ :Any = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ :Dict = self._get_input_ids_and_config() UpperCAmelCase__ :Union[str, Any] = False UpperCAmelCase__ :Tuple = max_length UpperCAmelCase__ :Union[str, Any] = 2 UpperCAmelCase__ :Union[str, Any] = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase__ :str = model_class(__lowerCamelCase ) UpperCAmelCase__ :List[Any] = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def __SCREAMING_SNAKE_CASE ( self : Any ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ :List[str] = self._get_input_ids_and_config() UpperCAmelCase__ :Any = True UpperCAmelCase__ :Union[str, Any] = max_length UpperCAmelCase__ :Optional[Any] = 0.8 UpperCAmelCase__ :List[str] = 1_0 UpperCAmelCase__ :Dict = 0.3 UpperCAmelCase__ :Any = 1 UpperCAmelCase__ :Dict = 8 UpperCAmelCase__ :List[str] = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase__ :List[Any] = model_class(__lowerCamelCase ) UpperCAmelCase__ :Tuple = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) UpperCAmelCase__ :Tuple = jit(model.generate ) UpperCAmelCase__ :Dict = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ :List[str] = self._get_input_ids_and_config() UpperCAmelCase__ :List[Any] = max_length UpperCAmelCase__ :List[str] = 1 UpperCAmelCase__ :Dict = 8 UpperCAmelCase__ :Tuple = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase__ :Any = model_class(__lowerCamelCase ) UpperCAmelCase__ :Any = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) UpperCAmelCase__ :Any = jit(model.generate ) UpperCAmelCase__ :Union[str, Any] = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ :Tuple = self._get_input_ids_and_config() UpperCAmelCase__ :str = max_length UpperCAmelCase__ :str = 2 UpperCAmelCase__ :List[str] = 1 UpperCAmelCase__ :List[str] = 8 UpperCAmelCase__ :str = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase__ :Tuple = model_class(__lowerCamelCase ) UpperCAmelCase__ :str = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) UpperCAmelCase__ :str = jit(model.generate ) UpperCAmelCase__ :List[Any] = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __SCREAMING_SNAKE_CASE ( self : Dict ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ :Any = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase__ :List[str] = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase__ :List[str] = False UpperCAmelCase__ :List[Any] = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ :str = model_class(__lowerCamelCase ) UpperCAmelCase__ :Optional[int] = model.generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) UpperCAmelCase__ :Any = jit(model.generate ) UpperCAmelCase__ :Dict = jit_generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __SCREAMING_SNAKE_CASE ( self : int ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ :Dict = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase__ :Tuple = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase__ :Optional[int] = True UpperCAmelCase__ :Tuple = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ :Any = model_class(__lowerCamelCase ) UpperCAmelCase__ :List[str] = model.generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) UpperCAmelCase__ :Optional[Any] = jit(model.generate ) UpperCAmelCase__ :Tuple = jit_generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ :Dict = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase__ :int = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase__ :Union[str, Any] = 2 UpperCAmelCase__ :List[str] = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ :Union[str, Any] = model_class(__lowerCamelCase ) UpperCAmelCase__ :Any = model.generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) UpperCAmelCase__ :List[Any] = jit(model.generate ) UpperCAmelCase__ :str = jit_generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class UpperCAmelCase ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): UpperCAmelCase__ :List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''' ) UpperCAmelCase__ :Dict = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase__ :Union[str, Any] = '''Hello world''' UpperCAmelCase__ :List[str] = tokenizer(__lowerCamelCase , return_tensors='''np''' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCamelCase , '''do_samples''' ): model.generate(__lowerCamelCase , do_samples=__lowerCamelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCamelCase , '''foo''' ): UpperCAmelCase__ :Optional[int] = {'''foo''': '''bar'''} model.generate(__lowerCamelCase , **__lowerCamelCase )
467
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class UpperCAmelCase ( _snake_case ): UpperCAmelCase = "imagegpt" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[Any] , __lowerCamelCase : List[Any]=5_1_2 + 1 , __lowerCamelCase : Dict=3_2 * 3_2 , __lowerCamelCase : List[str]=5_1_2 , __lowerCamelCase : List[Any]=2_4 , __lowerCamelCase : Any=8 , __lowerCamelCase : Tuple=None , __lowerCamelCase : Any="quick_gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=True , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Dict=False , **__lowerCamelCase : str , ): UpperCAmelCase__ :Dict = vocab_size UpperCAmelCase__ :str = n_positions UpperCAmelCase__ :Tuple = n_embd UpperCAmelCase__ :Dict = n_layer UpperCAmelCase__ :List[Any] = n_head UpperCAmelCase__ :str = n_inner UpperCAmelCase__ :Optional[Any] = activation_function UpperCAmelCase__ :str = resid_pdrop UpperCAmelCase__ :Optional[Any] = embd_pdrop UpperCAmelCase__ :Tuple = attn_pdrop UpperCAmelCase__ :int = layer_norm_epsilon UpperCAmelCase__ :List[Any] = initializer_range UpperCAmelCase__ :List[Any] = scale_attn_weights UpperCAmelCase__ :List[str] = use_cache UpperCAmelCase__ :Tuple = scale_attn_by_inverse_layer_idx UpperCAmelCase__ :Union[str, Any] = reorder_and_upcast_attn UpperCAmelCase__ :List[Any] = tie_word_embeddings super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase ) class UpperCAmelCase ( _snake_case ): @property def __SCREAMING_SNAKE_CASE ( self : str ): return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __SCREAMING_SNAKE_CASE ( self : Dict , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 3_2 , __lowerCamelCase : int = 3_2 , ): UpperCAmelCase__ :Tuple = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) UpperCAmelCase__ :Dict = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return inputs
467
1
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
496
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __UpperCamelCase( _A : Optional[int] , _A : Union[str, Any] , _A : Optional[int] , _A : Any , _A : Optional[int]=True , _A : List[Any]="pt" ): '''simple docstring''' UpperCAmelCase__ : List[str] = {'''add_prefix_space''': True} if isinstance(_A , _A ) and not line.startswith(''' ''' ) else {} UpperCAmelCase__ : str = padding_side return tokenizer( [line] , max_length=_A , padding='''max_length''' if pad_to_max_length else None , truncation=_A , return_tensors=_A , add_special_tokens=_A , **_A , ) def __UpperCamelCase( _A : Any , _A : Union[str, Any] , _A : str=None , ): '''simple docstring''' UpperCAmelCase__ : List[Any] = input_ids.ne(_A ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _lowercase ( lowerCAmelCase ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_="train" ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_="" ,) -> Any: '''simple docstring''' super().__init__() UpperCAmelCase__ : List[str] = Path(lowerCamelCase_ ).joinpath(type_path + '''.source''' ) UpperCAmelCase__ : Optional[int] = Path(lowerCamelCase_ ).joinpath(type_path + '''.target''' ) UpperCAmelCase__ : Tuple = self.get_char_lens(self.src_file ) UpperCAmelCase__ : Union[str, Any] = max_source_length UpperCAmelCase__ : Optional[int] = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' UpperCAmelCase__ : str = tokenizer UpperCAmelCase__ : Optional[int] = prefix if n_obs is not None: UpperCAmelCase__ : Optional[int] = self.src_lens[:n_obs] UpperCAmelCase__ : int = src_lang UpperCAmelCase__ : Dict = tgt_lang def __len__( self ) -> Optional[int]: '''simple docstring''' return len(self.src_lens ) def __getitem__( self ,lowerCamelCase_ ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = index + 1 # linecache starts at 1 UpperCAmelCase__ : Tuple = self.prefix + linecache.getline(str(self.src_file ) ,lowerCamelCase_ ).rstrip('''\n''' ) UpperCAmelCase__ : List[str] = linecache.getline(str(self.tgt_file ) ,lowerCamelCase_ ).rstrip('''\n''' ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,lowerCamelCase_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right UpperCAmelCase__ : int = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,lowerCamelCase_ ) else self.tokenizer ) UpperCAmelCase__ : Any = self.tokenizer.generator if isinstance(self.tokenizer ,lowerCamelCase_ ) else self.tokenizer UpperCAmelCase__ : List[Any] = encode_line(lowerCamelCase_ ,lowerCamelCase_ ,self.max_source_length ,'''right''' ) UpperCAmelCase__ : Dict = encode_line(lowerCamelCase_ ,lowerCamelCase_ ,self.max_target_length ,'''right''' ) UpperCAmelCase__ : Any = source_inputs['''input_ids'''].squeeze() UpperCAmelCase__ : Any = target_inputs['''input_ids'''].squeeze() UpperCAmelCase__ : int = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCAmelCase__ ( lowerCamelCase_ ) -> Any: '''simple docstring''' return [len(lowerCamelCase_ ) for x in Path(lowerCamelCase_ ).open().readlines()] def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase__ : List[Any] = torch.stack([x['''input_ids'''] for x in batch] ) UpperCAmelCase__ : int = torch.stack([x['''attention_mask'''] for x in batch] ) UpperCAmelCase__ : List[Any] = torch.stack([x['''decoder_input_ids'''] for x in batch] ) UpperCAmelCase__ : Optional[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,lowerCamelCase_ ) else self.tokenizer.pad_token_id ) UpperCAmelCase__ : Optional[Any] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,lowerCamelCase_ ) else self.tokenizer.pad_token_id ) UpperCAmelCase__ : Dict = trim_batch(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = trim_batch(lowerCamelCase_ ,lowerCamelCase_ ,attention_mask=lowerCamelCase_ ) UpperCAmelCase__ : str = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch UpperCamelCase__ : int = getLogger(__name__) def __UpperCamelCase( _A : List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(_A ) ) def __UpperCamelCase( _A : str ): '''simple docstring''' UpperCAmelCase__ : Dict = get_git_info() save_json(_A , os.path.join(_A , '''git_log.json''' ) ) def __UpperCamelCase( _A : Tuple , _A : Optional[Any] , _A : List[Any]=4 , **_A : Optional[Any] ): '''simple docstring''' with open(_A , '''w''' ) as f: json.dump(_A , _A , indent=_A , **_A ) def __UpperCamelCase( _A : Tuple ): '''simple docstring''' with open(_A ) as f: return json.load(_A ) def __UpperCamelCase( ): '''simple docstring''' UpperCAmelCase__ : int = git.Repo(search_parent_directories=_A ) UpperCAmelCase__ : int = { '''repo_id''': str(_A ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def __UpperCamelCase( _A : Callable , _A : Iterable ): '''simple docstring''' return list(map(_A , _A ) ) def __UpperCamelCase( _A : str , _A : str ): '''simple docstring''' with open(_A , '''wb''' ) as f: return pickle.dump(_A , _A ) def __UpperCamelCase( _A : int ): '''simple docstring''' def remove_articles(_A : int ): return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , _A ) def white_space_fix(_A : List[Any] ): return " ".join(text.split() ) def remove_punc(_A : Tuple ): UpperCAmelCase__ : Optional[int] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_A : Any ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_A ) ) ) ) def __UpperCamelCase( _A : Optional[Any] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = normalize_answer(_A ).split() UpperCAmelCase__ : str = normalize_answer(_A ).split() UpperCAmelCase__ : str = Counter(_A ) & Counter(_A ) UpperCAmelCase__ : Optional[Any] = sum(common.values() ) if num_same == 0: return 0 UpperCAmelCase__ : Union[str, Any] = 1.0 * num_same / len(_A ) UpperCAmelCase__ : List[Any] = 1.0 * num_same / len(_A ) UpperCAmelCase__ : Dict = (2 * precision * recall) / (precision + recall) return fa def __UpperCamelCase( _A : Dict , _A : Tuple ): '''simple docstring''' return normalize_answer(_A ) == normalize_answer(_A ) def __UpperCamelCase( _A : List[str] , _A : List[str] ): '''simple docstring''' assert len(_A ) == len(_A ) UpperCAmelCase__ : Optional[int] = 0 for hypo, pred in zip(_A , _A ): em += exact_match_score(_A , _A ) if len(_A ) > 0: em /= len(_A ) return {"em": em} def __UpperCamelCase( _A : int ): '''simple docstring''' return model_prefix.startswith('''rag''' ) def __UpperCamelCase( _A : str , _A : Any , _A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Any = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead UpperCAmelCase__ : Optional[int] = '''dropout_rate''' for p in extra_params: if getattr(_A , _A , _A ): if not hasattr(_A , _A ) and not hasattr(_A , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(_A ) ) delattr(_A , _A ) continue UpperCAmelCase__ : int = p if hasattr(_A , _A ) else equivalent_param[p] setattr(_A , _A , getattr(_A , _A ) ) delattr(_A , _A ) return hparams, config
496
1
"""simple docstring""" from math import pow, sqrt def _A ( *_a : float ): """simple docstring""" A = len(_a ) > 0 and all(value > 0.0 for value in values ) return result def _A ( _a : float , _a : float ): """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_a , _a ) else ValueError("""Input Error: Molar mass values must greater than 0.""" ) ) def _A ( _a : float , _a : float , _a : float ): """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_a , _a , _a ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def _A ( _a : float , _a : float , _a : float ): """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_a , _a , _a ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def _A ( _a : float , _a : float , _a : float ): """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(_a , _a , _a ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def _A ( _a : float , _a : float , _a : float ): """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(_a , _a , _a ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) )
617
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Any: A = [1_0, 2_0, 3_0, 4_0, 5_0, 6_0] A = [2, 4, 6, 8, 1_0, 1_2] A = 1_0_0 self.assertEqual(kp.calc_profit(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) ,2_1_0 ) def UpperCamelCase__ ( self ) -> List[Any]: self.assertRaisesRegex(lowerCamelCase_ ,"""max_weight must greater than zero.""" ) def UpperCamelCase__ ( self ) -> Any: self.assertRaisesRegex(lowerCamelCase_ ,"""Weight can not be negative.""" ) def UpperCamelCase__ ( self ) -> str: self.assertRaisesRegex(lowerCamelCase_ ,"""Profit can not be negative.""" ) def UpperCamelCase__ ( self ) -> Optional[int]: self.assertRaisesRegex(lowerCamelCase_ ,"""max_weight must greater than zero.""" ) def UpperCamelCase__ ( self ) -> str: self.assertRaisesRegex( lowerCamelCase_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
617
1
import numpy as np def _A ( __A: np.ndarray ,__A: np.ndarray ,__A: float = 1e-12 ,__A: int = 1_0_0 ,): '''simple docstring''' assert np.shape(__A )[0] == np.shape(__A )[1] # Ensure proper dimensionality. assert np.shape(__A )[0] == np.shape(__A )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__A ) == np.iscomplexobj(__A ) __magic_name__ : List[str] = np.iscomplexobj(__A ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__A ,input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __magic_name__ : Any = False __magic_name__ : Optional[int] = 0 __magic_name__ : Tuple = 0 __magic_name__ : Union[str, Any] = 1e12 while not convergence: # Multiple matrix by the vector. __magic_name__ : List[str] = np.dot(__A ,__A ) # Normalize the resulting output vector. __magic_name__ : Optional[int] = w / np.linalg.norm(__A ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __magic_name__ : Any = vector.conj().T if is_complex else vector.T __magic_name__ : Any = np.dot(__A ,np.dot(__A ,__A ) ) # Check convergence. __magic_name__ : Tuple = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __magic_name__ : Optional[Any] = True __magic_name__ : Any = lambda_ if is_complex: __magic_name__ : int = np.real(lambda_ ) return lambda_, vector def _A ( ): '''simple docstring''' __magic_name__ : Optional[Any] = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]] ) __magic_name__ : int = np.array([4_1, 4, 2_0] ) __magic_name__ : str = real_input_matrix.astype(np.complexaaa ) __magic_name__ : Optional[Any] = np.triu(1J * complex_input_matrix ,1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __magic_name__ : Union[str, Any] = np.array([4_1, 4, 2_0] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __magic_name__ : Dict = real_input_matrix __magic_name__ : Optional[int] = real_vector elif problem_type == "complex": __magic_name__ : Dict = complex_input_matrix __magic_name__ : List[str] = complex_vector # Our implementation. __magic_name__ : Optional[int] = power_iteration(__A ,__A ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __magic_name__ : Dict = np.linalg.eigh(__A ) # Last eigenvalue is the maximum one. __magic_name__ : List[Any] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __magic_name__ : Any = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__A ) - np.abs(__A ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
714
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase ( _lowerCamelCase ,unittest.TestCase ): '''simple docstring''' UpperCamelCase__ =CanineTokenizer UpperCamelCase__ =False def UpperCAmelCase__ ( self : Tuple ) -> List[str]: super().setUp() __magic_name__ : Optional[int] = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: return CanineTokenizer.from_pretrained('''google/canine-s''' ) def UpperCAmelCase__ ( self : Dict , **lowerCamelCase_ : Optional[int] ) -> CanineTokenizer: __magic_name__ : int = self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) __magic_name__ : List[str] = 1024 return tokenizer @require_torch def UpperCAmelCase__ ( self : int ) -> int: __magic_name__ : List[Any] = self.canine_tokenizer __magic_name__ : Any = ['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off __magic_name__ : Optional[int] = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] # fmt: on __magic_name__ : List[Any] = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors='''pt''' ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) __magic_name__ : Tuple = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]: __magic_name__ : Any = self.canine_tokenizer __magic_name__ : Dict = ['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] __magic_name__ : Dict = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' , lowerCamelCase_ ) self.assertIn('''attention_mask''' , lowerCamelCase_ ) self.assertIn('''token_type_ids''' , lowerCamelCase_ ) @require_torch def UpperCAmelCase__ ( self : int ) -> Optional[int]: __magic_name__ : int = self.canine_tokenizer __magic_name__ : Dict = [ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] __magic_name__ : List[Any] = tokenizer( text_target=lowerCamelCase_ , max_length=32 , padding='''max_length''' , truncation=lowerCamelCase_ , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: # safety check on max_len default value so we are sure the test works __magic_name__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __magic_name__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : str = tempfile.mkdtemp() __magic_name__ : Any = ''' He is very happy, UNwant\u00E9d,running''' __magic_name__ : str = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) __magic_name__ : str = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) __magic_name__ : Tuple = after_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) shutil.rmtree(lowerCamelCase_ ) __magic_name__ : Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : Any = tempfile.mkdtemp() __magic_name__ : Any = ''' He is very happy, UNwant\u00E9d,running''' __magic_name__ : str = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __magic_name__ : str = chr(0XE007 ) additional_special_tokens.append(lowerCamelCase_ ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __magic_name__ : Tuple = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) __magic_name__ : List[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) __magic_name__ : Optional[int] = after_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertIn(lowerCamelCase_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __magic_name__ : List[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCamelCase_ ) def UpperCAmelCase__ ( self : int ) -> Optional[int]: __magic_name__ : Any = self.get_tokenizers(do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __magic_name__ , __magic_name__ : str = self.get_clean_sequence(lowerCamelCase_ ) # a special token for Canine can be defined as follows: __magic_name__ : Optional[Any] = 0XE005 __magic_name__ : Optional[Any] = chr(lowerCamelCase_ ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) __magic_name__ : Optional[int] = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(len(lowerCamelCase_ ) , 1 ) __magic_name__ : Union[str, Any] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=lowerCamelCase_ ) __magic_name__ : str = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) __magic_name__ : Optional[Any] = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , input_encoded + special_token_id ) __magic_name__ : Any = tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: __magic_name__ : str = self.get_tokenizers(do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __magic_name__ : Tuple = chr(0XE005 ) __magic_name__ : Optional[int] = chr(0XE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=lowerCamelCase_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) __magic_name__ : List[str] = tokenizer.tokenize(lowerCamelCase_ ) __magic_name__ : Optional[int] = tokenizer.tokenize(lowerCamelCase_ ) self.assertEqual(len(lowerCamelCase_ ) , 1 ) self.assertEqual(len(lowerCamelCase_ ) , 1 ) self.assertEqual(token_a[0] , lowerCamelCase_ ) self.assertEqual(token_a[0] , lowerCamelCase_ ) @require_tokenizers def UpperCAmelCase__ ( self : str ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __magic_name__ : str = 0XE006 __magic_name__ : Optional[int] = chr(lowerCamelCase_ ) __magic_name__ : Optional[Any] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(lowerCamelCase_ ) tokenizer.from_pretrained(lowerCamelCase_ ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: __magic_name__ : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: __magic_name__ : List[Any] = json.load(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: __magic_name__ : int = json.load(lowerCamelCase_ ) # a special token for Canine can be defined as follows: __magic_name__ : List[str] = 0XE006 __magic_name__ : List[str] = chr(lowerCamelCase_ ) __magic_name__ : int = [new_token_a] __magic_name__ : str = [new_token_a] with open(os.path.join(lowerCamelCase_ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCamelCase_ , lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCamelCase_ , lowerCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ : int = tokenizer_class.from_pretrained(lowerCamelCase_ , extra_ids=0 ) self.assertIn(lowerCamelCase_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __magic_name__ : Optional[int] = 0XE007 __magic_name__ : List[str] = chr(lowerCamelCase_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ : List[str] = [AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ )] __magic_name__ : str = tokenizer_class.from_pretrained( lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , extra_ids=0 ) self.assertIn(lowerCamelCase_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def UpperCAmelCase__ ( self : Any ) -> List[str]: __magic_name__ : Optional[int] = self.get_tokenizers(do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __magic_name__ : Union[str, Any] = '''hello world''' if self.space_between_special_tokens: __magic_name__ : List[Any] = '''[CLS] hello world [SEP]''' else: __magic_name__ : List[str] = input __magic_name__ : Dict = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) __magic_name__ : Union[str, Any] = tokenizer.decode(lowerCamelCase_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(lowerCamelCase_ , [output, output.lower()] ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: __magic_name__ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __magic_name__ : str = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] __magic_name__ : Any = '''a''' __magic_name__ : List[str] = ord(lowerCamelCase_ ) for attr in attributes_list: setattr(lowerCamelCase_ , attr + '''_id''' , lowerCamelCase_ ) self.assertEqual(getattr(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(getattr(lowerCamelCase_ , attr + '''_id''' ) , lowerCamelCase_ ) setattr(lowerCamelCase_ , attr + '''_id''' , lowerCamelCase_ ) self.assertEqual(getattr(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(getattr(lowerCamelCase_ , attr + '''_id''' ) , lowerCamelCase_ ) setattr(lowerCamelCase_ , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(lowerCamelCase_ , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(lowerCamelCase_ , '''additional_special_tokens_ids''' ) , [] ) __magic_name__ : Any = 0XE006 __magic_name__ : str = chr(lowerCamelCase_ ) setattr(lowerCamelCase_ , '''additional_special_tokens_ids''' , [additional_special_token_id] ) self.assertListEqual(getattr(lowerCamelCase_ , '''additional_special_tokens''' ) , [additional_special_token] ) self.assertListEqual(getattr(lowerCamelCase_ , '''additional_special_tokens_ids''' ) , [additional_special_token_id] ) def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: pass def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: pass def UpperCAmelCase__ ( self : Tuple ) -> Any: pass def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: pass def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: pass def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: pass def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: pass def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]: pass
501
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : Any = logging.get_logger(__name__) def lowercase__ ( snake_case_ :Union[tf.Tensor, np.ndarray] ): if isinstance(snake_case_ , np.ndarray ): return list(tensor.shape ) __UpperCAmelCase = tf.shape(snake_case_ ) if tensor.shape == tf.TensorShape(snake_case_ ): return dynamic __UpperCAmelCase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )] def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :Optional[int] = None , snake_case_ :Optional[str] = None ): return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ ) def lowercase__ ( snake_case_ :List[Any] , snake_case_ :Any , snake_case_ :Optional[Any] , snake_case_ :List[Any]=1E-5 , snake_case_ :Optional[Any]=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized __UpperCAmelCase , __UpperCAmelCase = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __UpperCAmelCase = [1] * inputs.shape.rank __UpperCAmelCase = shape_list(snake_case_ )[axis] __UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ ) __UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ ) # Compute layer normalization using the batch_normalization # function. __UpperCAmelCase = tf.nn.batch_normalization( snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , ) return outputs def lowercase__ ( snake_case_ :Any , snake_case_ :str=0 , snake_case_ :Union[str, Any]=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __UpperCAmelCase = tf.shape(snake_case_ ) __UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :tf.Tensor ): if not isinstance(snake_case_ , tf.Tensor ): __UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __UpperCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __UpperCAmelCase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __UpperCAmelCase = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :int , snake_case_ :str = "input_ids" ): tf.debugging.assert_less( snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowercase__ ( snake_case_ :Tuple , snake_case_ :int , snake_case_ :str ): __UpperCAmelCase = 64_512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __UpperCAmelCase = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) __UpperCAmelCase = np.asarray(snake_case_ ) __UpperCAmelCase = 1 __UpperCAmelCase = np.array_split(snake_case_ , snake_case_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __UpperCAmelCase = np.array_split(snake_case_ , snake_case_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(snake_case_ ): __UpperCAmelCase = chunk_data else: __UpperCAmelCase = data def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Dict ): if name in group.attrs: __UpperCAmelCase = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]] else: __UpperCAmelCase = [] __UpperCAmelCase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def lowercase__ ( snake_case_ :Dict ): def _expand_single_ad_tensor(snake_case_ :Tuple ): if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(snake_case_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
49
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def lowercase__( __SCREAMING_SNAKE_CASE : Any ): lowercase_ : Union[str, Any] = 3_84 lowercase_ : Union[str, Any] = 7 if "tiny" in model_name: lowercase_ : int = 96 lowercase_ : List[Any] = (2, 2, 6, 2) lowercase_ : Union[str, Any] = (3, 6, 12, 24) elif "small" in model_name: lowercase_ : Optional[int] = 96 lowercase_ : List[Any] = (2, 2, 18, 2) lowercase_ : List[Any] = (3, 6, 12, 24) elif "base" in model_name: lowercase_ : Any = 1_28 lowercase_ : Tuple = (2, 2, 18, 2) lowercase_ : Optional[int] = (4, 8, 16, 32) lowercase_ : Union[str, Any] = 12 lowercase_ : Optional[int] = 5_12 elif "large" in model_name: lowercase_ : Union[str, Any] = 1_92 lowercase_ : Any = (2, 2, 18, 2) lowercase_ : int = (6, 12, 24, 48) lowercase_ : Optional[Any] = 12 lowercase_ : Union[str, Any] = 7_68 # set label information lowercase_ : Union[str, Any] = 1_50 lowercase_ : Union[str, Any] = 'huggingface/label-files' lowercase_ : Any = 'ade20k-id2label.json' lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : Any = {v: k for k, v in idalabel.items()} lowercase_ : Any = SwinConfig( embed_dim=__SCREAMING_SNAKE_CASE , depths=__SCREAMING_SNAKE_CASE , num_heads=__SCREAMING_SNAKE_CASE , window_size=__SCREAMING_SNAKE_CASE , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) lowercase_ : int = UperNetConfig( backbone_config=__SCREAMING_SNAKE_CASE , auxiliary_in_channels=__SCREAMING_SNAKE_CASE , num_labels=__SCREAMING_SNAKE_CASE , idalabel=__SCREAMING_SNAKE_CASE , labelaid=__SCREAMING_SNAKE_CASE , ) return config def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = [] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.stages.{i}.downsample.reduction.weight''', F'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.weight''', F'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.bias''', F'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase_ : str = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = val def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowercase_ : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase_ : Dict = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) lowercase_ : List[Any] = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Union[str, Any] = in_proj_weight[:dim, :] lowercase_ : List[str] = in_proj_bias[: dim] lowercase_ : int = in_proj_weight[ dim : dim * 2, : ] lowercase_ : List[Any] = in_proj_bias[ dim : dim * 2 ] lowercase_ : Optional[Any] = in_proj_weight[ -dim :, : ] lowercase_ : Optional[Any] = in_proj_bias[-dim :] # fmt: on def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ , lowercase_ : List[Any] = x.shape lowercase_ : str = x.reshape(__SCREAMING_SNAKE_CASE , 4 , in_channel // 4 ) lowercase_ : Tuple = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return x def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase_ , lowercase_ : List[str] = x.shape lowercase_ : List[str] = x.reshape(__SCREAMING_SNAKE_CASE , in_channel // 4 , 4 ) lowercase_ : Optional[Any] = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return x def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[str] = x.shape[0] lowercase_ : List[str] = x.reshape(4 , in_channel // 4 ) lowercase_ : str = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(__SCREAMING_SNAKE_CASE ) return x def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = x.shape[0] lowercase_ : List[str] = x.reshape(in_channel // 4 , 4 ) lowercase_ : Tuple = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(__SCREAMING_SNAKE_CASE ) return x def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : int = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } lowercase_ : List[Any] = model_name_to_url[model_name] lowercase_ : Optional[Any] = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' , file_name=__SCREAMING_SNAKE_CASE )[ 'state_dict' ] for name, param in state_dict.items(): print(__SCREAMING_SNAKE_CASE , param.shape ) lowercase_ : int = get_upernet_config(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = UperNetForSemanticSegmentation(__SCREAMING_SNAKE_CASE ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase_ : Any = state_dict.pop(__SCREAMING_SNAKE_CASE ) if "bn" in key: lowercase_ : List[Any] = key.replace('bn' , 'batch_norm' ) lowercase_ : Optional[Any] = val # rename keys lowercase_ : Tuple = create_rename_keys(__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowercase_ : List[str] = reverse_correct_unfold_reduction_order(__SCREAMING_SNAKE_CASE ) if "norm" in key: lowercase_ : str = reverse_correct_unfold_norm_order(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) # verify on image lowercase_ : Optional[int] = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' lowercase_ : Union[str, Any] = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ).convert('RGB' ) lowercase_ : Any = SegformerImageProcessor() lowercase_ : str = processor(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values with torch.no_grad(): lowercase_ : Any = model(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = outputs.logits print(logits.shape ) print('First values of logits:' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": lowercase_ : Any = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": lowercase_ : Tuple = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": lowercase_ : Tuple = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": lowercase_ : Tuple = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[F"upernet-swin-{size}" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
425
0
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) _A = parser.parse_args() _A = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) _A = CLIPImageProcessor() _A = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") _A = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
718
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib _A = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } _A = logging.WARNING def lowercase_ ( ) -> Optional[int]: lowerCAmelCase__ : List[str] = os.getenv("""DATASETS_VERBOSITY""" , __UpperCAmelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def lowercase_ ( ) -> str: return __name__.split(""".""" )[0] def lowercase_ ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def lowercase_ ( ) -> None: # Apply our default configuration to the library root logger. lowerCAmelCase__ : Tuple = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowercase_ ( ) -> None: lowerCAmelCase__ : int = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowercase_ ( __UpperCAmelCase = None ) -> logging.Logger: if name is None: lowerCAmelCase__ : Union[str, Any] = _get_library_name() return logging.getLogger(__UpperCAmelCase ) def lowercase_ ( ) -> int: return _get_library_root_logger().getEffectiveLevel() def lowercase_ ( __UpperCAmelCase ) -> None: _get_library_root_logger().setLevel(__UpperCAmelCase ) def lowercase_ ( ) -> int: return set_verbosity(__UpperCAmelCase ) def lowercase_ ( ) -> str: return set_verbosity(__UpperCAmelCase ) def lowercase_ ( ) -> List[str]: return set_verbosity(__UpperCAmelCase ) def lowercase_ ( ) -> int: return set_verbosity(__UpperCAmelCase ) def lowercase_ ( ) -> None: lowerCAmelCase__ : Optional[int] = False def lowercase_ ( ) -> None: lowerCAmelCase__ : str = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _lowerCamelCase : def __init__( self : Optional[int] , *UpperCamelCase : Optional[int] , **UpperCamelCase : List[str] ) -> Dict: # pylint: disable=unused-argument """simple docstring""" lowerCAmelCase__ : Dict = args[0] if args else None def __iter__( self : Dict ) -> Dict: """simple docstring""" return iter(self._iterator ) def __getattr__( self : str , UpperCamelCase : List[Any] ) -> Any: """simple docstring""" def empty_fn(*UpperCamelCase : Optional[int] , **UpperCamelCase : int ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Tuple ) -> Tuple: """simple docstring""" return self def __exit__( self : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" return _A = True class _lowerCamelCase : def __call__( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , UpperCamelCase : Any=False , **UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*UpperCamelCase , **UpperCamelCase ) else: return EmptyTqdm(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : Tuple , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Dict ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Tuple = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() _A = _tqdm_cls() def lowercase_ ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def lowercase_ ( ) -> Any: global _tqdm_active lowerCAmelCase__ : List[str] = True def lowercase_ ( ) -> Tuple: global _tqdm_active lowerCAmelCase__ : List[str] = False
507
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
521
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase__ =logging.get_logger(__name__) class UpperCamelCase__ ( enum.Enum ): _SCREAMING_SNAKE_CASE : List[str] = 0 _SCREAMING_SNAKE_CASE : Optional[int] = 1 @add_end_docstrings(__lowercase ) class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : int = "generated" def __init__(self : Dict , *snake_case_ : Optional[Any] , **snake_case_ : List[Any] ): super().__init__(*snake_case_ , **snake_case_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def lowerCAmelCase (self : Any , snake_case_ : Optional[Any]=None , snake_case_ : Dict=None , snake_case_ : List[Any]=None , snake_case_ : Dict=None , snake_case_ : Any=None , snake_case_ : int=None , **snake_case_ : List[str] , ): __a : Dict = {} if truncation is not None: __a : str = truncation __a : Tuple = generate_kwargs __a : Optional[int] = {} if return_tensors is not None and return_type is None: __a : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: __a : str = return_type if clean_up_tokenization_spaces is not None: __a : Union[str, Any] = clean_up_tokenization_spaces if stop_sequence is not None: __a : Dict = self.tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) if len(snake_case_ ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) __a : Tuple = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCAmelCase (self : List[Any] , snake_case_ : int , snake_case_ : int , snake_case_ : int ): return True def lowerCAmelCase (self : List[Any] , *snake_case_ : str , snake_case_ : Dict ): __a : Tuple = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , snake_case_ ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) __a : List[str] = ([prefix + arg for arg in args[0]],) __a : List[Any] = True elif isinstance(args[0] , snake_case_ ): __a : str = (prefix + args[0],) __a : int = False else: raise ValueError( f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`" ) __a : Any = self.tokenizer(*snake_case_ , padding=snake_case_ , truncation=snake_case_ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__(self : int , *snake_case_ : Optional[int] , **snake_case_ : List[str] ): __a : str = super().__call__(*snake_case_ , **snake_case_ ) if ( isinstance(args[0] , snake_case_ ) and all(isinstance(snake_case_ , snake_case_ ) for el in args[0] ) and all(len(snake_case_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def lowerCAmelCase (self : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Optional[Any]=TruncationStrategy.DO_NOT_TRUNCATE , **snake_case_ : int ): __a : Optional[int] = self._parse_and_tokenize(snake_case_ , truncation=snake_case_ , **snake_case_ ) return inputs def lowerCAmelCase (self : Any , snake_case_ : List[str] , **snake_case_ : Union[str, Any] ): if self.framework == "pt": __a , __a : List[str] = model_inputs['''input_ids'''].shape elif self.framework == "tf": __a , __a : List[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy() __a : Optional[Any] = generate_kwargs.get('''min_length''' , self.model.config.min_length ) __a : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(snake_case_ , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) __a : str = self.model.generate(**snake_case_ , **snake_case_ ) __a : Union[str, Any] = output_ids.shape[0] if self.framework == "pt": __a : Optional[Any] = output_ids.reshape(snake_case_ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": __a : int = tf.reshape(snake_case_ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def lowerCAmelCase (self : Dict , snake_case_ : Dict , snake_case_ : List[str]=ReturnType.TEXT , snake_case_ : str=False ): __a : Optional[int] = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: __a : Optional[Any] = {f"{self.return_name}_token_ids": output_ids} elif return_type == ReturnType.TEXT: __a : str = { f"{self.return_name}_text": self.tokenizer.decode( snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ , ) } records.append(snake_case_ ) return records @add_end_docstrings(__lowercase ) class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Tuple = "summary" def __call__(self : Optional[Any] , *snake_case_ : Optional[int] , **snake_case_ : List[str] ): return super().__call__(*snake_case_ , **snake_case_ ) def lowerCAmelCase (self : Union[str, Any] , snake_case_ : int , snake_case_ : int , snake_case_ : int ): if max_length < min_length: logger.warning(f"Your min_length={min_length} must be inferior than your max_length={max_length}." ) if input_length < max_length: logger.warning( f"Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is " '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})" ) @add_end_docstrings(__lowercase ) class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Dict = "translation" def lowerCAmelCase (self : Union[str, Any] , snake_case_ : int , snake_case_ : int , snake_case_ : int ): if input_length > 0.9 * max_length: logger.warning( f"Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider " '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def lowerCAmelCase (self : Any , *snake_case_ : int , snake_case_ : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , snake_case_ : Any=None , snake_case_ : Tuple=None ): if getattr(self.tokenizer , '''_build_translation_inputs''' , snake_case_ ): return self.tokenizer._build_translation_inputs( *snake_case_ , return_tensors=self.framework , truncation=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ ) else: return super()._parse_and_tokenize(*snake_case_ , truncation=snake_case_ ) def lowerCAmelCase (self : Optional[int] , snake_case_ : int=None , snake_case_ : str=None , **snake_case_ : Optional[Any] ): __a , __a , __a : str = super()._sanitize_parameters(**snake_case_ ) if src_lang is not None: __a : Optional[int] = src_lang if tgt_lang is not None: __a : Tuple = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. __a : int = kwargs.get('''task''' , self.task ) __a : Union[str, Any] = task.split('''_''' ) if task and len(snake_case_ ) == 4: # translation, XX, to YY __a : str = items[1] __a : str = items[3] return preprocess_params, forward_params, postprocess_params def __call__(self : Optional[int] , *snake_case_ : Optional[Any] , **snake_case_ : Any ): return super().__call__(*snake_case_ , **snake_case_ )
521
1
'''simple docstring''' def _a( UpperCamelCase__ : list[list[float]] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : list[list[float]] =[] for data in source_data: for i, el in enumerate(UpperCamelCase__ ): if len(UpperCamelCase__ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(UpperCamelCase__ ) ) return data_lists def _a( UpperCamelCase__ : list[list[float]], UpperCamelCase__ : list[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : list[list[float]] =[] for dlist, weight in zip(UpperCamelCase__, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] =min(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] =max(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : list[float] =[] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: SCREAMING_SNAKE_CASE__ : List[str] =f"Invalid weight of {weight:f} provided" raise ValueError(UpperCamelCase__ ) score_lists.append(UpperCamelCase__ ) return score_lists def _a( UpperCamelCase__ : list[list[float]] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : list[float] =[0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] =final_scores[j] + ele return final_scores def _a( UpperCamelCase__ : list[list[float]], UpperCamelCase__ : list[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =get_data(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =calculate_each_score(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] =generate_final_scores(UpperCamelCase__ ) # append scores to source data for i, ele in enumerate(UpperCamelCase__ ): source_data[i].append(UpperCamelCase__ ) return source_data
665
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : @staticmethod def __magic_name__ ( *__lowercase : int , **__lowercase : Optional[Any] ) -> Optional[Any]: pass @is_pipeline_test @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @require_torch def __magic_name__ ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ : List[Any] =pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) SCREAMING_SNAKE_CASE__ : List[str] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE__ : Any =image_classifier(__lowercase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowercase ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) SCREAMING_SNAKE_CASE__ : int =image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], ] , ) @require_tf def __magic_name__ ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] =pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) SCREAMING_SNAKE_CASE__ : Dict =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE__ : Tuple =image_classifier(__lowercase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__lowercase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) SCREAMING_SNAKE_CASE__ : List[Any] =image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, {'''score''': 0.333, '''label''': ANY(__lowercase )}, ], ] , ) @slow @require_torch def __magic_name__ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Union[str, Any] =pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE__ : Any =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE__ : List[str] =image_classifier(__lowercase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowercase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def __magic_name__ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ : str =pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE__ : Optional[Any] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE__ : Any =image_classifier(__lowercase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowercase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) SCREAMING_SNAKE_CASE__ : List[Any] =image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
665
1
"""simple docstring""" def _lowercase ( __snake_case ,__snake_case ) -> List[Any]: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def _lowercase ( __snake_case ,__snake_case=0 ) -> Tuple: return sorted(__snake_case ,key=lambda __snake_case : x[column] ) def _lowercase ( __snake_case ,__snake_case ,__snake_case=float("inf" ) ) -> str: for i in range(points_counts - 1 ): for j in range(i + 1 ,__snake_case ): __lowerCAmelCase : Optional[int] = euclidean_distance_sqr(points[i] ,points[j] ) if current_dis < min_dis: __lowerCAmelCase : List[Any] = current_dis return min_dis def _lowercase ( __snake_case ,__snake_case ,__snake_case=float("inf" ) ) -> List[Any]: for i in range(min(6 ,points_counts - 1 ) ,__snake_case ): for j in range(max(0 ,i - 6 ) ,__snake_case ): __lowerCAmelCase : Any = euclidean_distance_sqr(points[i] ,points[j] ) if current_dis < min_dis: __lowerCAmelCase : Optional[int] = current_dis return min_dis def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Tuple: # base case if points_counts <= 3: return dis_between_closest_pair(__snake_case ,__snake_case ) # recursion __lowerCAmelCase : Optional[int] = points_counts // 2 __lowerCAmelCase : str = closest_pair_of_points_sqr( __snake_case ,points_sorted_on_y[:mid] ,__snake_case ) __lowerCAmelCase : Any = closest_pair_of_points_sqr( __snake_case ,points_sorted_on_y[mid:] ,points_counts - mid ) __lowerCAmelCase : Optional[int] = min(__snake_case ,__snake_case ) __lowerCAmelCase : Tuple = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(__snake_case ) __lowerCAmelCase : Any = dis_between_closest_in_strip( __snake_case ,len(__snake_case ) ,__snake_case ) return min(__snake_case ,__snake_case ) def _lowercase ( __snake_case ,__snake_case ) -> Union[str, Any]: __lowerCAmelCase : str = column_based_sort(__snake_case ,column=0 ) __lowerCAmelCase : Tuple = column_based_sort(__snake_case ,column=1 ) return ( closest_pair_of_points_sqr( __snake_case ,__snake_case ,__snake_case ) ) ** 0.5 if __name__ == "__main__": __snake_case : List[str] = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
293
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' @register_to_config def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: float , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: bool = False , ) -> Any: """simple docstring""" super().__init__() __lowerCAmelCase : str = nn.Embedding(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = nn.Embedding(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = False __lowerCAmelCase : Optional[Any] = nn.Dropout(p=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = TaConfig( vocab_size=_SCREAMING_SNAKE_CASE , d_model=_SCREAMING_SNAKE_CASE , num_heads=_SCREAMING_SNAKE_CASE , d_kv=_SCREAMING_SNAKE_CASE , d_ff=_SCREAMING_SNAKE_CASE , dropout_rate=_SCREAMING_SNAKE_CASE , feed_forward_proj=_SCREAMING_SNAKE_CASE , is_decoder=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : str = nn.ModuleList() for lyr_num in range(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : int = TaBlock(_SCREAMING_SNAKE_CASE) self.encoders.append(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = TaLayerNorm(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = nn.Dropout(p=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.token_embedder(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = encoder_input_tokens.shape[1] __lowerCAmelCase : List[Any] = torch.arange(_SCREAMING_SNAKE_CASE , device=encoder_input_tokens.device) x += self.position_encoding(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = self.dropout_pre(_SCREAMING_SNAKE_CASE) # inverted the attention mask __lowerCAmelCase : List[Any] = encoder_input_tokens.size() __lowerCAmelCase : Any = self.get_extended_attention_mask(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) for lyr in self.encoders: __lowerCAmelCase : Union[str, Any] = lyr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)[0] __lowerCAmelCase : int = self.layer_norm(_SCREAMING_SNAKE_CASE) return self.dropout_post(_SCREAMING_SNAKE_CASE), encoder_inputs_mask
293
1
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class a_ ( UpperCamelCase_ , unittest.TestCase ): _snake_case = MobileBertTokenizer _snake_case = MobileBertTokenizerFast _snake_case = True _snake_case = True _snake_case = filter_non_english _snake_case = """google/mobilebert-uncased""" def SCREAMING_SNAKE_CASE__ (self) -> str: """simple docstring""" super().setUp() __snake_case : str = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) __snake_case : str = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def SCREAMING_SNAKE_CASE__ (self , __a) -> Tuple: """simple docstring""" __snake_case : Any = 'UNwant\u00E9d,running' __snake_case : Union[str, Any] = 'unwanted, running' return input_text, output_text def SCREAMING_SNAKE_CASE__ (self) -> Any: """simple docstring""" __snake_case : Dict = self.tokenizer_class(self.vocab_file) __snake_case : int = tokenizer.tokenize('UNwant\u00E9d,running') self.assertListEqual(__a , ['un', '##want', '##ed', ',', 'runn', '##ing']) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a) , [9, 6, 7, 1_2, 1_0, 1_1]) def SCREAMING_SNAKE_CASE__ (self) -> Optional[int]: """simple docstring""" if not self.test_rust_tokenizer: return __snake_case : Dict = self.get_tokenizer() __snake_case : Optional[Any] = self.get_rust_tokenizer() __snake_case : int = 'UNwant\u00E9d,running' __snake_case : Tuple = tokenizer.tokenize(__a) __snake_case : int = rust_tokenizer.tokenize(__a) self.assertListEqual(__a , __a) __snake_case : Union[str, Any] = tokenizer.encode(__a , add_special_tokens=__a) __snake_case : int = rust_tokenizer.encode(__a , add_special_tokens=__a) self.assertListEqual(__a , __a) __snake_case : Optional[int] = self.get_rust_tokenizer() __snake_case : List[str] = tokenizer.encode(__a) __snake_case : int = rust_tokenizer.encode(__a) self.assertListEqual(__a , __a) # With lower casing __snake_case : Tuple = self.get_tokenizer(do_lower_case=__a) __snake_case : int = self.get_rust_tokenizer(do_lower_case=__a) __snake_case : Optional[int] = 'UNwant\u00E9d,running' __snake_case : str = tokenizer.tokenize(__a) __snake_case : Any = rust_tokenizer.tokenize(__a) self.assertListEqual(__a , __a) __snake_case : List[str] = tokenizer.encode(__a , add_special_tokens=__a) __snake_case : Dict = rust_tokenizer.encode(__a , add_special_tokens=__a) self.assertListEqual(__a , __a) __snake_case : Optional[Any] = self.get_rust_tokenizer() __snake_case : Union[str, Any] = tokenizer.encode(__a) __snake_case : Optional[Any] = rust_tokenizer.encode(__a) self.assertListEqual(__a , __a) def SCREAMING_SNAKE_CASE__ (self) -> Tuple: """simple docstring""" __snake_case : str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz') , ['ah', '\u535A', '\u63A8', 'zz']) def SCREAMING_SNAKE_CASE__ (self) -> List[Any]: """simple docstring""" __snake_case : Dict = BasicTokenizer(do_lower_case=__a) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['hello', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def SCREAMING_SNAKE_CASE__ (self) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = BasicTokenizer(do_lower_case=__a , strip_accents=__a) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hällo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['h\u00E9llo']) def SCREAMING_SNAKE_CASE__ (self) -> Optional[Any]: """simple docstring""" __snake_case : int = BasicTokenizer(do_lower_case=__a , strip_accents=__a) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def SCREAMING_SNAKE_CASE__ (self) -> Any: """simple docstring""" __snake_case : Union[str, Any] = BasicTokenizer(do_lower_case=__a) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def SCREAMING_SNAKE_CASE__ (self) -> Dict: """simple docstring""" __snake_case : int = BasicTokenizer(do_lower_case=__a) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?']) def SCREAMING_SNAKE_CASE__ (self) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = BasicTokenizer(do_lower_case=__a , strip_accents=__a) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HäLLo', '!', 'how', 'Are', 'yoU', '?']) def SCREAMING_SNAKE_CASE__ (self) -> Any: """simple docstring""" __snake_case : int = BasicTokenizer(do_lower_case=__a , strip_accents=__a) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HaLLo', '!', 'how', 'Are', 'yoU', '?']) def SCREAMING_SNAKE_CASE__ (self) -> Any: """simple docstring""" __snake_case : Optional[Any] = BasicTokenizer(do_lower_case=__a , never_split=['[UNK]']) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]']) def SCREAMING_SNAKE_CASE__ (self) -> Any: """simple docstring""" __snake_case : Optional[int] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __snake_case : Optional[Any] = {} for i, token in enumerate(__a): __snake_case : str = i __snake_case : Optional[Any] = WordpieceTokenizer(vocab=__a , unk_token='[UNK]') self.assertListEqual(tokenizer.tokenize('') , []) self.assertListEqual(tokenizer.tokenize('unwanted running') , ['un', '##want', '##ed', 'runn', '##ing']) self.assertListEqual(tokenizer.tokenize('unwantedX running') , ['[UNK]', 'runn', '##ing']) def SCREAMING_SNAKE_CASE__ (self) -> Union[str, Any]: """simple docstring""" self.assertTrue(_is_whitespace(' ')) self.assertTrue(_is_whitespace('\t')) self.assertTrue(_is_whitespace('\r')) self.assertTrue(_is_whitespace('\n')) self.assertTrue(_is_whitespace('\u00A0')) self.assertFalse(_is_whitespace('A')) self.assertFalse(_is_whitespace('-')) def SCREAMING_SNAKE_CASE__ (self) -> List[Any]: """simple docstring""" self.assertTrue(_is_control('\u0005')) self.assertFalse(_is_control('A')) self.assertFalse(_is_control(' ')) self.assertFalse(_is_control('\t')) self.assertFalse(_is_control('\r')) def SCREAMING_SNAKE_CASE__ (self) -> Tuple: """simple docstring""" self.assertTrue(_is_punctuation('-')) self.assertTrue(_is_punctuation('$')) self.assertTrue(_is_punctuation('`')) self.assertTrue(_is_punctuation('.')) self.assertFalse(_is_punctuation('A')) self.assertFalse(_is_punctuation(' ')) def SCREAMING_SNAKE_CASE__ (self) -> Dict: """simple docstring""" __snake_case : Any = self.get_tokenizer() __snake_case : Union[str, Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']]) self.assertListEqual( [rust_tokenizer.tokenize(__a) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']]) @slow def SCREAMING_SNAKE_CASE__ (self) -> Union[str, Any]: """simple docstring""" __snake_case : int = self.tokenizer_class.from_pretrained('google/mobilebert-uncased') __snake_case : Optional[Any] = tokenizer.encode('sequence builders' , add_special_tokens=__a) __snake_case : Optional[int] = tokenizer.encode('multi-sequence build' , add_special_tokens=__a) __snake_case : List[Any] = tokenizer.build_inputs_with_special_tokens(__a) __snake_case : str = tokenizer.build_inputs_with_special_tokens(__a , __a) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def SCREAMING_SNAKE_CASE__ (self) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): __snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a) __snake_case : Dict = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" __snake_case : Union[str, Any] = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) __snake_case : List[Any] = tokenizer_r.do_lower_case if hasattr(__a , 'do_lower_case') else False __snake_case : Tuple = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'Allen'), ((2_1, 2_3), '##NL'), ((2_3, 2_4), '##P'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'allen'), ((2_1, 2_3), '##nl'), ((2_3, 2_4), '##p'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'])) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping']) def SCREAMING_SNAKE_CASE__ (self) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = ['的', '人', '有'] __snake_case : List[str] = ''.join(__a) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): __snake_case : Any = True __snake_case : int = self.tokenizer_class.from_pretrained(__a , **__a) __snake_case : int = self.rust_tokenizer_class.from_pretrained(__a , **__a) __snake_case : List[Any] = tokenizer_p.encode(__a , add_special_tokens=__a) __snake_case : Optional[Any] = tokenizer_r.encode(__a , add_special_tokens=__a) __snake_case : int = tokenizer_r.convert_ids_to_tokens(__a) __snake_case : List[Any] = tokenizer_p.convert_ids_to_tokens(__a) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a) self.assertListEqual(__a , __a) __snake_case : Tuple = False __snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a) __snake_case : Optional[int] = self.tokenizer_class.from_pretrained(__a , **__a) __snake_case : str = tokenizer_r.encode(__a , add_special_tokens=__a) __snake_case : int = tokenizer_p.encode(__a , add_special_tokens=__a) __snake_case : str = tokenizer_r.convert_ids_to_tokens(__a) __snake_case : Any = tokenizer_p.convert_ids_to_tokens(__a) # it is expected that only the first Chinese character is not preceded by "##". __snake_case : Optional[Any] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(__a) ] self.assertListEqual(__a , __a) self.assertListEqual(__a , __a)
61
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class a_ ( unittest.TestCase ): def __init__(self , __a , __a=7 , __a=3 , __a=1_8 , __a=3_0 , __a=4_0_0 , __a=True , __a=None , __a=True , __a=None , __a=True , __a=[0.48_145_466, 0.4_578_275, 0.40_821_073] , __a=[0.26_862_954, 0.26_130_258, 0.27_577_711] , __a=True , ) -> List[Any]: """simple docstring""" __snake_case : Tuple = size if size is not None else {'height': 2_2_4, 'width': 2_2_4} __snake_case : Any = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} __snake_case : Optional[int] = parent __snake_case : Dict = batch_size __snake_case : str = num_channels __snake_case : Optional[Any] = image_size __snake_case : Optional[int] = min_resolution __snake_case : Tuple = max_resolution __snake_case : Optional[int] = do_resize __snake_case : Optional[int] = size __snake_case : Union[str, Any] = do_center_crop __snake_case : List[Any] = crop_size __snake_case : int = do_normalize __snake_case : Optional[Any] = image_mean __snake_case : str = image_std __snake_case : Optional[Any] = do_convert_rgb def SCREAMING_SNAKE_CASE__ (self) -> Optional[int]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def SCREAMING_SNAKE_CASE__ (self , __a=False , __a=False , __a=False) -> List[str]: """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __snake_case : Optional[int] = [] for i in range(self.batch_size): image_inputs.append( np.random.randint( 2_5_5 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta)) else: __snake_case : Dict = [] for i in range(self.batch_size): __snake_case ,__snake_case : Optional[Any] = np.random.choice(np.arange(self.min_resolution , self.max_resolution) , 2) image_inputs.append(np.random.randint(2_5_5 , size=(self.num_channels, width, height) , dtype=np.uinta)) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __snake_case : int = [Image.fromarray(np.moveaxis(__a , 0 , -1)) for x in image_inputs] if torchify: __snake_case : List[Any] = [torch.from_numpy(__a) for x in image_inputs] return image_inputs @require_torch @require_vision class a_ ( UpperCamelCase_ , unittest.TestCase ): _snake_case = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ (self) -> int: """simple docstring""" __snake_case : Union[str, Any] = ChineseCLIPImageProcessingTester(self , do_center_crop=__a) @property def SCREAMING_SNAKE_CASE__ (self) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ (self) -> Dict: """simple docstring""" __snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a , 'do_resize')) self.assertTrue(hasattr(__a , 'size')) self.assertTrue(hasattr(__a , 'do_center_crop')) self.assertTrue(hasattr(__a , 'center_crop')) self.assertTrue(hasattr(__a , 'do_normalize')) self.assertTrue(hasattr(__a , 'image_mean')) self.assertTrue(hasattr(__a , 'image_std')) self.assertTrue(hasattr(__a , 'do_convert_rgb')) def SCREAMING_SNAKE_CASE__ (self) -> int: """simple docstring""" __snake_case : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'height': 2_2_4, 'width': 2_2_4}) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8}) __snake_case : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4) self.assertEqual(image_processor.size , {'shortest_edge': 4_2}) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4}) def SCREAMING_SNAKE_CASE__ (self) -> Union[str, Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE__ (self) -> List[Any]: """simple docstring""" __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images __snake_case : Optional[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a , Image.Image) # Test not batched input __snake_case : int = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __snake_case : List[Any] = image_processing(__a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ (self) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __snake_case : Optional[int] = self.image_processor_tester.prepare_inputs(equal_resolution=__a , numpify=__a) for image in image_inputs: self.assertIsInstance(__a , np.ndarray) # Test not batched input __snake_case : List[Any] = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __snake_case : int = image_processing(__a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ (self) -> Dict: """simple docstring""" __snake_case : Any = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __snake_case : Tuple = self.image_processor_tester.prepare_inputs(equal_resolution=__a , torchify=__a) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __snake_case : Union[str, Any] = image_processing(__a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) @require_torch @require_vision class a_ ( UpperCamelCase_ , unittest.TestCase ): _snake_case = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ (self) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=__a) __snake_case : List[Any] = 3 @property def SCREAMING_SNAKE_CASE__ (self) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ (self) -> Dict: """simple docstring""" __snake_case : Any = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a , 'do_resize')) self.assertTrue(hasattr(__a , 'size')) self.assertTrue(hasattr(__a , 'do_center_crop')) self.assertTrue(hasattr(__a , 'center_crop')) self.assertTrue(hasattr(__a , 'do_normalize')) self.assertTrue(hasattr(__a , 'image_mean')) self.assertTrue(hasattr(__a , 'image_std')) self.assertTrue(hasattr(__a , 'do_convert_rgb')) def SCREAMING_SNAKE_CASE__ (self) -> Tuple: """simple docstring""" pass def SCREAMING_SNAKE_CASE__ (self) -> int: """simple docstring""" __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images __snake_case : Union[str, Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a , Image.Image) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __snake_case : Optional[int] = image_processing(__a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
61
1
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __SCREAMING_SNAKE_CASE : Optional[int] =re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex __SCREAMING_SNAKE_CASE : List[Any] =10 __SCREAMING_SNAKE_CASE : Optional[int] =256 def UpperCamelCase__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) < MIN_NUM_TOKENS: return None lowercase = MinHash(num_perm=lowerCAmelCase__ ) for token in set(lowerCAmelCase__ ): min_hash.update(token.encode() ) return min_hash def UpperCamelCase__ ( lowerCAmelCase__ ): return {t for t in NON_ALPHA.split(lowerCAmelCase__ ) if len(t.strip() ) > 0} class A_ : def __init__( self : List[Any] , *, snake_case__ : float = 0.85 , ): lowercase = duplication_jaccard_threshold lowercase = NUM_PERM lowercase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowercase = defaultdict(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : int , snake_case__ : Tuple , snake_case__ : MinHash ): lowercase = self._index.query(snake_case__ ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(snake_case__ , snake_case__ ) if len(snake_case__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(snake_case__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = [] for base, duplicates in self._duplicate_clusters.items(): lowercase = [base] + list(snake_case__ ) # reformat the cluster to be a list of dict lowercase = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(snake_case__ ) return duplicate_clusters def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case__ : Any ): lowercase = self.get_duplicate_clusters() with open(snake_case__ , """w""" ) as f: json.dump(snake_case__ , snake_case__ ) def UpperCamelCase__ ( lowerCAmelCase__ ): lowercase , lowercase = element lowercase = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCamelCase__ ( lowerCAmelCase__ ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash ,ThreadedIterator(lowerCAmelCase__ ,max_queue_size=10_000 ) ,chunksize=100 ,): if data is not None: yield data def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase__ ) ) ,max_queue_size=100 ) ): di.add(lowerCAmelCase__ ,lowerCAmelCase__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = get_tokens(lowerCAmelCase__ ) lowercase = get_tokens(lowerCAmelCase__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __SCREAMING_SNAKE_CASE : Union[str, Any] =None def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = [] for elementa in cluster: lowercase = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: lowercase = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase__ ,lowerCAmelCase__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowercase = 1 extremes.append(lowerCAmelCase__ ) return extremes def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): global _shared_dataset lowercase = dataset lowercase = [] lowercase = partial(_find_cluster_extremes_shared ,jaccard_threshold=lowerCAmelCase__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase__ ,lowerCAmelCase__ ,) ,total=len(lowerCAmelCase__ ) ,): extremes_list.append(lowerCAmelCase__ ) return extremes_list def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ = 0.85 ): lowercase = make_duplicate_clusters(lowerCAmelCase__ ,lowerCAmelCase__ ) lowercase = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} lowercase = {} lowercase = find_extremes(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) for extremes in extremes_clusters: for element in extremes: lowercase = element lowercase = duplicate_indices - set(extreme_dict.keys() ) lowercase = dataset.filter(lambda lowerCAmelCase__ ,lowerCAmelCase__ : idx not in remove_indices ,with_indices=lowerCAmelCase__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowercase = element["""base_index"""] in extreme_dict if element["is_extreme"]: lowercase = extreme_dict[element["""base_index"""]]["""copies"""] print(f"""Original dataset size: {len(lowerCAmelCase__ )}""" ) print(f"""Number of duplicate clusters: {len(lowerCAmelCase__ )}""" ) print(f"""Files in duplicate cluster: {len(lowerCAmelCase__ )}""" ) print(f"""Unique files in duplicate cluster: {len(lowerCAmelCase__ )}""" ) print(f"""Filtered dataset size: {len(lowerCAmelCase__ )}""" ) return ds_filter, duplicate_clusters
428
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __SCREAMING_SNAKE_CASE : Union[str, Any] =False class A_ ( unittest.TestCase ): pass @nightly @require_torch_gpu class A_ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase = """A painting of a squirrel eating a burger """ lowercase = torch.manual_seed(0 ) lowercase = pipe( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case__ ) lowercase = VersatileDiffusionTextToImagePipeline.from_pretrained(snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase = generator.manual_seed(0 ) lowercase = pipe( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowercase = VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase = """A painting of a squirrel eating a burger """ lowercase = torch.manual_seed(0 ) lowercase = pipe( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images lowercase = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowercase = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
428
1
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class A__ ( __snake_case ): def __init__( self ): '''simple docstring''' UpperCamelCase : Any = [] def __UpperCamelCase( self , A_ , A_ , A_ , **A_ ): '''simple docstring''' self.events.append("on_init_end" ) def __UpperCamelCase( self , A_ , A_ , A_ , **A_ ): '''simple docstring''' self.events.append("on_train_begin" ) def __UpperCamelCase( self , A_ , A_ , A_ , **A_ ): '''simple docstring''' self.events.append("on_train_end" ) def __UpperCamelCase( self , A_ , A_ , A_ , **A_ ): '''simple docstring''' self.events.append("on_epoch_begin" ) def __UpperCamelCase( self , A_ , A_ , A_ , **A_ ): '''simple docstring''' self.events.append("on_epoch_end" ) def __UpperCamelCase( self , A_ , A_ , A_ , **A_ ): '''simple docstring''' self.events.append("on_step_begin" ) def __UpperCamelCase( self , A_ , A_ , A_ , **A_ ): '''simple docstring''' self.events.append("on_step_end" ) def __UpperCamelCase( self , A_ , A_ , A_ , **A_ ): '''simple docstring''' self.events.append("on_evaluate" ) def __UpperCamelCase( self , A_ , A_ , A_ , **A_ ): '''simple docstring''' self.events.append("on_predict" ) def __UpperCamelCase( self , A_ , A_ , A_ , **A_ ): '''simple docstring''' self.events.append("on_save" ) def __UpperCamelCase( self , A_ , A_ , A_ , **A_ ): '''simple docstring''' self.events.append("on_log" ) def __UpperCamelCase( self , A_ , A_ , A_ , **A_ ): '''simple docstring''' self.events.append("on_prediction_step" ) @require_torch class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = tempfile.mkdtemp() def __UpperCamelCase( self ): '''simple docstring''' shutil.rmtree(self.output_dir ) def __UpperCamelCase( self , A_=0 , A_=0 , A_=64 , A_=64 , A_=None , A_=False , **A_ ): '''simple docstring''' UpperCamelCase : Dict = RegressionDataset(length=A_ ) UpperCamelCase : int = RegressionDataset(length=A_ ) UpperCamelCase : List[Any] = RegressionModelConfig(a=A_ , b=A_ ) UpperCamelCase : Any = RegressionPreTrainedModel(A_ ) UpperCamelCase : Any = TrainingArguments(self.output_dir , disable_tqdm=A_ , report_to=[] , **A_ ) return Trainer( A_ , A_ , train_dataset=A_ , eval_dataset=A_ , callbacks=A_ , ) def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' self.assertEqual(len(A_ ) , len(A_ ) ) # Order doesn't matter UpperCamelCase : Optional[int] = sorted(A_ , key=lambda A_ : cb.__name__ if isinstance(A_ , A_ ) else cb.__class__.__name__ ) UpperCamelCase : Optional[Any] = sorted(A_ , key=lambda A_ : cb.__name__ if isinstance(A_ , A_ ) else cb.__class__.__name__ ) for cba, cba in zip(A_ , A_ ): if isinstance(A_ , A_ ) and isinstance(A_ , A_ ): self.assertEqual(A_ , A_ ) elif isinstance(A_ , A_ ) and not isinstance(A_ , A_ ): self.assertEqual(A_ , cba.__class__ ) elif not isinstance(A_ , A_ ) and isinstance(A_ , A_ ): self.assertEqual(cba.__class__ , A_ ) else: self.assertEqual(A_ , A_ ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Any = ["on_init_end", "on_train_begin"] UpperCamelCase : int = 0 UpperCamelCase : str = len(trainer.get_eval_dataloader() ) UpperCamelCase : Tuple = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs ): expected_events.append("on_epoch_begin" ) for _ in range(A_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save" ) expected_events.append("on_epoch_end" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.get_trainer() UpperCamelCase : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) # Callbacks passed at init are added to the default callbacks UpperCamelCase : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback UpperCamelCase : List[str] = self.get_trainer(disable_tqdm=A_ ) UpperCamelCase : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] UpperCamelCase : Any = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(A_ ) expected_callbacks.remove(A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) UpperCamelCase : List[Any] = self.get_trainer() UpperCamelCase : Optional[int] = trainer.pop_callback(A_ ) self.assertEqual(cb.__class__ , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) trainer.add_callback(A_ ) expected_callbacks.insert(0 , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) # We can also add, pop, or remove by instance UpperCamelCase : Dict = self.get_trainer() UpperCamelCase : int = trainer.callback_handler.callbacks[0] trainer.remove_callback(A_ ) expected_callbacks.remove(A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) UpperCamelCase : List[Any] = self.get_trainer() UpperCamelCase : Tuple = trainer.callback_handler.callbacks[0] UpperCamelCase : Optional[Any] = trainer.pop_callback(A_ ) self.assertEqual(A_ , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) trainer.add_callback(A_ ) expected_callbacks.insert(0 , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) def __UpperCamelCase( self ): '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore" , category=A_ ) UpperCamelCase : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() UpperCamelCase : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) # Independent log/save/eval UpperCamelCase : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() UpperCamelCase : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) UpperCamelCase : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() UpperCamelCase : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) UpperCamelCase : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps" ) trainer.train() UpperCamelCase : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) UpperCamelCase : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch" ) trainer.train() UpperCamelCase : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) # A bit of everything UpperCamelCase : Optional[Any] = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , ) trainer.train() UpperCamelCase : List[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning" ) as warn_mock: UpperCamelCase : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(A_ ) in warn_mock.call_args[0][0]
38
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __lowerCamelCase : Dict = logging.get_logger(__name__) class A__ ( __snake_case ): _UpperCAmelCase :Tuple = ['audio_values', 'audio_mask'] def __init__( self , A_=2048 , A_=1 , A_=[16, 16] , A_=128 , A_=4_4100 , A_=86 , A_=2048 , A_=0.0 , **A_ , ): '''simple docstring''' super().__init__( feature_size=A_ , sampling_rate=A_ , padding_value=A_ , **A_ , ) UpperCamelCase : Optional[int] = spectrogram_length UpperCamelCase : Dict = num_channels UpperCamelCase : Optional[Any] = patch_size UpperCamelCase : str = feature_size // self.patch_size[1] UpperCamelCase : List[str] = n_fft UpperCamelCase : int = sampling_rate // hop_length_to_sampling_rate UpperCamelCase : Optional[int] = sampling_rate UpperCamelCase : int = padding_value UpperCamelCase : str = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=A_ , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=A_ , norm="slaney" , mel_scale="slaney" , ).T def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Union[str, Any] = spectrogram( A_ , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="dB" , db_range=80.0 , ) UpperCamelCase : List[Any] = log_spec[:, :-1] UpperCamelCase : Optional[int] = log_spec - 20.0 UpperCamelCase : str = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , A_ , A_ = None , A_ = True , A_ = None , A_ = False , A_ = False , **A_ , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" F""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) UpperCamelCase : Optional[int] = isinstance(A_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : Union[str, Any] = is_batched_numpy or ( isinstance(A_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : int = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A_ , np.ndarray ): UpperCamelCase : str = np.asarray(A_ , dtype=np.floataa ) elif isinstance(A_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : Tuple = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis UpperCamelCase : str = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , A_ ): UpperCamelCase : int = [np.asarray(A_ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask UpperCamelCase : List[str] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: UpperCamelCase : str = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] UpperCamelCase : Tuple = np.array(A_ ).astype(np.floataa ) # convert into correct format for padding UpperCamelCase : Union[str, Any] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch UpperCamelCase : Any = np.ones([len(A_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) UpperCamelCase : List[str] = padded_audio_features * self.padding_value for i in range(len(A_ ) ): UpperCamelCase : Union[str, Any] = audio_features[i] UpperCamelCase : Optional[int] = feature # return as BatchFeature if return_attention_mask: UpperCamelCase : Optional[Any] = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: UpperCamelCase : int = {"audio_values": padded_audio_features} UpperCamelCase : Any = BatchFeature(data=A_ , tensor_type=A_ ) return encoded_inputs
38
1
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : float | Decimal, lowerCamelCase__ : float = 10**-10 ): _a = a while True: _a = Decimal(lowerCamelCase__ ) - ( Decimal(eval(lowerCamelCase__ ) ) / Decimal(eval(str(diff(lowerCamelCase__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(lowerCamelCase__ ) ) < precision: # noqa: S307 return float(lowerCamelCase__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(f'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(f'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
131
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=2 , snake_case_=9_9 , snake_case_=0 , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=2 , snake_case_=0.02 , snake_case_=2 , snake_case_=4 , snake_case_="last" , snake_case_=True , snake_case_=None , snake_case_=0 , ) -> Any: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_lengths _a = use_token_type_ids _a = use_labels _a = gelu_activation _a = sinusoidal_embeddings _a = causal _a = asm _a = n_langs _a = vocab_size _a = n_special _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = summary_type _a = use_proj _a = scope _a = bos_token_id def __lowerCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_input_lengths: _a = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , 2 ).float() _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __lowerCAmelCase ( self ) -> str: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Optional[int]: _a = XLMModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ , lengths=snake_case_ , langs=snake_case_ ) _a = model(snake_case_ , langs=snake_case_ ) _a = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Union[str, Any]: _a = XLMWithLMHeadModel(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> str: _a = XLMForQuestionAnsweringSimple(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ ) _a = model(snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ ) _a = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Optional[int]: _a = XLMForQuestionAnswering(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ ) _a = model( snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , cls_index=snake_case_ , is_impossible=snake_case_ , p_mask=snake_case_ , ) _a = model( snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , cls_index=snake_case_ , is_impossible=snake_case_ , ) ((_a) , ) = result_with_labels.to_tuple() _a = model(snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ ) ((_a) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Tuple: _a = XLMForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ ) _a = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Union[str, Any]: _a = self.num_labels _a = XLMForTokenClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> str: _a = self.num_choices _a = XLMForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class A ( a , a , a , unittest.TestCase ): __UpperCAmelCase : str = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __UpperCAmelCase : int = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __UpperCAmelCase : List[Any] = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_=False ) -> List[Any]: _a = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def __lowerCAmelCase ( self ) -> Dict: _a = XLMModelTester(self ) _a = ConfigTester(self , config_class=snake_case_ , emb_dim=3_7 ) def __lowerCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*snake_case_ ) def __lowerCAmelCase ( self ) -> Dict: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=False , snake_case_=1 ) -> Dict: self.assertIsInstance(snake_case_ , snake_case_ ) self.assertListEqual( [isinstance(snake_case_ , snake_case_ ) for iter_attentions in attentions] , [True] * len(snake_case_ ) ) self.assertEqual(len(snake_case_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(snake_case_ ): # adds PAD dummy token _a = min_length + idx + 1 _a = min_length + idx + 1 _a = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(snake_case_ ) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=False , snake_case_=1 ) -> Dict: self.assertIsInstance(snake_case_ , snake_case_ ) self.assertListEqual( [isinstance(snake_case_ , snake_case_ ) for iter_hidden_states in hidden_states] , [True] * len(snake_case_ ) , ) self.assertEqual(len(snake_case_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(snake_case_ ): # adds PAD dummy token _a = min_length + idx + 1 _a = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(snake_case_ ) , ) pass @slow def __lowerCAmelCase ( self ) -> Optional[Any]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = XLMModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(snake_case_ ) _a = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=snake_case_ ) # the president _a = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _a = model.generate(snake_case_ , do_sample=snake_case_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , snake_case_ )
131
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a=13 , __a=32 , __a=3 , __a=4 , __a=[10, 20, 30, 40] , __a=[2, 2, 3, 2] , __a=True , __a=True , __a=37 , __a="gelu" , __a=10 , __a=0.0_2 , __a=["stage2", "stage3", "stage4"] , __a=[2, 3, 4] , __a=None , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_stages __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = initializer_range __lowerCAmelCase = out_features __lowerCAmelCase = out_indices __lowerCAmelCase = scope def snake_case ( self ): __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def snake_case ( self ): return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = ConvNextModel(config=__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = ConvNextForImageClassification(__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = ConvNextBackbone(config=__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowerCAmelCase = None __lowerCAmelCase = ConvNextBackbone(config=__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def snake_case ( self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict =( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) __UpperCAmelCase : str =( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : List[str] =True __UpperCAmelCase : Union[str, Any] =False __UpperCAmelCase : Tuple =False __UpperCAmelCase : List[str] =False __UpperCAmelCase : Tuple =False def snake_case ( self ): __lowerCAmelCase = ConvNextModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def snake_case ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self ): return @unittest.skip(reason="ConvNext does not use inputs_embeds" ) def snake_case ( self ): pass @unittest.skip(reason="ConvNext does not support input and output embeddings" ) def snake_case ( self ): pass @unittest.skip(reason="ConvNext does not use feedforward chunking" ) def snake_case ( self ): pass def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__a ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__a ) def snake_case ( self ): def check_hidden_states_output(__a , __a , __a ): __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(__a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(__a , __a , __a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def snake_case ( self ): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = ConvNextModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case ( self ): return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None @slow def snake_case ( self ): __lowerCAmelCase = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(__a ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**__a ) # verify the logits __lowerCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __a ) __lowerCAmelCase = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ,lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =(ConvNextBackbone,) if is_torch_available() else () __UpperCAmelCase : Dict =ConvNextConfig __UpperCAmelCase : List[str] =False def snake_case ( self ): __lowerCAmelCase = ConvNextModelTester(self )
282
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a=13 , __a=10 , __a=3 , __a=2 , __a=2 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.0_2 , __a="divided_space_time" , __a=None , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = patch_size __lowerCAmelCase = num_frames __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = attention_type __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = (num_frames) * self.num_patches_per_frame + 1 def snake_case ( self ): __lowerCAmelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def snake_case ( self ): __lowerCAmelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __lowerCAmelCase = self.num_labels return config def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = TimesformerModel(config=__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = TimesformerForVideoClassification(__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a ) # verify the logits shape __lowerCAmelCase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __a ) def snake_case ( self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] =(TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () __UpperCAmelCase : Tuple =( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) __UpperCAmelCase : Any =False __UpperCAmelCase : Optional[int] =False __UpperCAmelCase : Union[str, Any] =False __UpperCAmelCase : Any =False def snake_case ( self ): __lowerCAmelCase = TimesformerModelTester(self ) __lowerCAmelCase = ConfigTester( self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def snake_case ( self , __a , __a , __a=False ): __lowerCAmelCase = copy.deepcopy(__a ) if return_labels: if model_class in get_values(__a ): __lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) return inputs_dict def snake_case ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def snake_case ( self ): pass def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__a ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__a ) @slow def snake_case ( self ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = TimesformerModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case ( self ): if not self.has_attentions: pass else: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: __lowerCAmelCase = self.model_tester.seq_length __lowerCAmelCase = self.model_tester.num_frames __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __lowerCAmelCase = len(__a ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 1 , len(__a ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def snake_case ( self ): def check_hidden_states_output(__a , __a , __a ): __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__a ) , __a ) __lowerCAmelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(__a , __a , __a ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) __lowerCAmelCase = np.load(_UpperCamelCase ) return list(_UpperCamelCase ) @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case ( self ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def snake_case ( self ): __lowerCAmelCase = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( __a ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(video[:8] , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**__a ) # verify the logits __lowerCAmelCase = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __a ) __lowerCAmelCase = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) )
282
1
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = """T5Config""" class lowerCamelCase_ ( lowercase ): __lowercase : Optional[int] = "mt5" __lowercase : Dict = MTaConfig class lowerCamelCase_ ( lowercase ): __lowercase : Union[str, Any] = "mt5" __lowercase : int = MTaConfig class lowerCamelCase_ ( lowercase ): __lowercase : Optional[int] = "mt5" __lowercase : Tuple = MTaConfig
147
from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=lowercase ): __lowercase : str = ["note_seq"] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> List[str]: """simple docstring""" requires_backends(self , ["note_seq"] ) @classmethod def lowercase ( cls , *lowerCamelCase_ , **lowerCamelCase_ ) -> List[str]: """simple docstring""" requires_backends(cls , ["note_seq"] ) @classmethod def lowercase ( cls , *lowerCamelCase_ , **lowerCamelCase_ ) -> str: """simple docstring""" requires_backends(cls , ["note_seq"] )
147
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Dict , __magic_name__ : WhisperForConditionalGeneration , __magic_name__ : WhisperProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> str: super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=__magic_name__ , speech_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , feature_extractor=__magic_name__ , ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> int: if slice_size == "auto": lowerCamelCase_ : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: self.enable_attention_slicing(__magic_name__ ) @torch.no_grad() def __call__( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any]=1_6000 , __magic_name__ : int = 512 , __magic_name__ : int = 512 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : List[str] , ) -> Any: lowerCamelCase_ : Union[str, Any] = self.speech_processor.feature_extractor( __magic_name__ , return_tensors="pt" , sampling_rate=__magic_name__ ).input_features.to(self.device ) lowerCamelCase_ : Tuple = self.speech_model.generate(__magic_name__ , max_length=48_0000 ) lowerCamelCase_ : Any = self.speech_processor.tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , normalize=__magic_name__ )[ 0 ] if isinstance(__magic_name__ , __magic_name__ ): lowerCamelCase_ : List[str] = 1 elif isinstance(__magic_name__ , __magic_name__ ): lowerCamelCase_ : int = len(__magic_name__ ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(__magic_name__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__magic_name__ , __magic_name__ ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(__magic_name__ )}." ) # get prompt text embeddings lowerCamelCase_ : Dict = self.tokenizer( __magic_name__ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) lowerCamelCase_ : int = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase_ : Any = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCamelCase_ : List[str] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCamelCase_ : Optional[int] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[int] = text_embeddings.shape lowerCamelCase_ : Dict = text_embeddings.repeat(1 , __magic_name__ , 1 ) lowerCamelCase_ : Optional[Any] = text_embeddings.view(bs_embed * num_images_per_prompt , __magic_name__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase_ : Any = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ : List[str] if negative_prompt is None: lowerCamelCase_ : Optional[int] = [""] * batch_size elif type(__magic_name__ ) is not type(__magic_name__ ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(__magic_name__ )} !=" F" {type(__magic_name__ )}." ) elif isinstance(__magic_name__ , __magic_name__ ): lowerCamelCase_ : str = [negative_prompt] elif batch_size != len(__magic_name__ ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(__magic_name__ )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: lowerCamelCase_ : List[Any] = negative_prompt lowerCamelCase_ : Union[str, Any] = text_input_ids.shape[-1] lowerCamelCase_ : List[str] = self.tokenizer( __magic_name__ , padding="max_length" , max_length=__magic_name__ , truncation=__magic_name__ , return_tensors="pt" , ) lowerCamelCase_ : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase_ : Any = uncond_embeddings.shape[1] lowerCamelCase_ : Dict = uncond_embeddings.repeat(1 , __magic_name__ , 1 ) lowerCamelCase_ : List[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , __magic_name__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase_ : int = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase_ : Union[str, Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCamelCase_ : Tuple = torch.randn(__magic_name__ , generator=__magic_name__ , device="cpu" , dtype=__magic_name__ ).to( self.device ) else: lowerCamelCase_ : str = torch.randn(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCamelCase_ : int = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__magic_name__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCamelCase_ : str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase_ : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase_ : Optional[int] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase_ : Tuple = {} if accepts_eta: lowerCamelCase_ : Dict = eta for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ : Optional[int] = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) # predict the noise residual lowerCamelCase_ : Any = self.unet(__magic_name__ , __magic_name__ , encoder_hidden_states=__magic_name__ ).sample # perform guidance if do_classifier_free_guidance: lowerCamelCase_ , lowerCamelCase_ : str = noise_pred.chunk(2 ) lowerCamelCase_ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ : List[str] = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__magic_name__ , __magic_name__ , __magic_name__ ) lowerCamelCase_ : Dict = 1 / 0.1_8215 * latents lowerCamelCase_ : Optional[Any] = self.vae.decode(__magic_name__ ).sample lowerCamelCase_ : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase_ : List[Any] = self.numpy_to_pil(__magic_name__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__magic_name__ , nsfw_content_detected=__magic_name__ )
253
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __a ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple=() , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Optional[Any]="no" , __UpperCAmelCase : Tuple="29500" ) -> Any: """simple docstring""" lowerCamelCase_ : Union[str, Any] = False lowerCamelCase_ : str = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): lowerCamelCase_ : Any = True elif "IPython" in sys.modules: lowerCamelCase_ : List[Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: lowerCamelCase_ : Dict = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" , __UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: lowerCamelCase_ : str = 8 lowerCamelCase_ : Optional[int] = PrepareForLaunch(__UpperCAmelCase , distributed_type="TPU" ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*__UpperCAmelCase ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr="127.0.01" , master_port=__UpperCAmelCase , mixed_precision=__UpperCAmelCase ): lowerCamelCase_ : List[Any] = PrepareForLaunch(__UpperCAmelCase , distributed_type="MULTI_GPU" ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCamelCase_ : List[str] = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*__UpperCAmelCase ) def __a ( __UpperCAmelCase : str , __UpperCAmelCase : List[Any]=() , __UpperCAmelCase : Optional[Any]=2 ) -> List[Any]: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr="127.0.01" , master_port="29500" , accelerate_mixed_precision="no" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="yes" , ): lowerCamelCase_ : List[str] = PrepareForLaunch(__UpperCAmelCase , debug=__UpperCAmelCase ) start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method="fork" )
253
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> float: """simple docstring""" if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, ) -> float: """simple docstring""" if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, ) -> float: """simple docstring""" if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( snake_case_, nominal_annual_percentage_rate / 3_6_5, number_of_years * 3_6_5 ) if __name__ == "__main__": import doctest doctest.testmod()
387
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class lowerCamelCase_ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : str ,__lowerCamelCase : float ,__lowerCamelCase : Callable ,__lowerCamelCase : int ,__lowerCamelCase : float = 1.0 ,__lowerCamelCase : str = None ,): '''simple docstring''' super().__init__() a = initial_learning_rate a = warmup_steps a = power a = decay_schedule_fn a = name def __call__( self : int ,__lowerCamelCase : str ): '''simple docstring''' with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. a = tf.cast(__lowerCamelCase ,tf.floataa ) a = tf.cast(self.warmup_steps ,tf.floataa ) a = global_step_float / warmup_steps_float a = self.initial_learning_rate * tf.math.pow(__lowerCamelCase ,self.power ) return tf.cond( global_step_float < warmup_steps_float ,lambda: warmup_learning_rate ,lambda: self.decay_schedule_fn(step - self.warmup_steps ) ,name=__lowerCamelCase ,) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ = 0.0, snake_case_ = 0.9, snake_case_ = 0.999, snake_case_ = 1e-8, snake_case_ = None, snake_case_ = None, snake_case_ = 0.0, snake_case_ = 1.0, snake_case_ = None, ) -> List[str]: """simple docstring""" a = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=snake_case_, decay_steps=num_train_steps - num_warmup_steps, end_learning_rate=init_lr * min_lr_ratio, power=snake_case_, ) if num_warmup_steps: a = WarmUp( initial_learning_rate=snake_case_, decay_schedule_fn=snake_case_, warmup_steps=snake_case_, ) if weight_decay_rate > 0.0: a = AdamWeightDecay( learning_rate=snake_case_, weight_decay_rate=snake_case_, beta_a=snake_case_, beta_a=snake_case_, epsilon=snake_case_, clipnorm=snake_case_, global_clipnorm=snake_case_, exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''], include_in_weight_decay=snake_case_, ) else: a = tf.keras.optimizers.Adam( learning_rate=snake_case_, beta_a=snake_case_, beta_a=snake_case_, epsilon=snake_case_, clipnorm=snake_case_, global_clipnorm=snake_case_, ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class lowerCamelCase_ ( a_ ): def __init__( self : Any ,__lowerCamelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 ,__lowerCamelCase : float = 0.9 ,__lowerCamelCase : float = 0.999 ,__lowerCamelCase : float = 1e-7 ,__lowerCamelCase : bool = False ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : Optional[List[str]] = None ,__lowerCamelCase : Optional[List[str]] = None ,__lowerCamelCase : str = "AdamWeightDecay" ,**__lowerCamelCase : Optional[Any] ,): '''simple docstring''' super().__init__(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ) a = weight_decay_rate a = include_in_weight_decay a = exclude_from_weight_decay @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str ,__lowerCamelCase : Any ): '''simple docstring''' a = {'''WarmUp''': WarmUp} return super(__lowerCamelCase ,cls ).from_config(__lowerCamelCase ,custom_objects=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : str ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' super(__lowerCamelCase ,self )._prepare_local(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a = tf.constant( self.weight_decay_rate ,name='''adam_weight_decay_rate''' ) def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ): '''simple docstring''' a = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] ,use_locking=self._use_locking ,) return tf.no_op() def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : Dict=None ,**__lowerCamelCase : int ): '''simple docstring''' a , a = list(zip(*__lowerCamelCase ) ) return super(__lowerCamelCase ,self ).apply_gradients(zip(__lowerCamelCase ,__lowerCamelCase ) ,name=__lowerCamelCase ,**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Any ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Dict ): '''simple docstring''' if apply_state is None: return self._decayed_lr_t[var_dtype], {} a = apply_state or {} a = apply_state.get((var_device, var_dtype) ) if coefficients is None: a = self._fallback_apply_state(__lowerCamelCase ,__lowerCamelCase ) a = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Tuple=None ): '''simple docstring''' a , a = self._get_lr(var.device ,var.dtype.base_dtype ,__lowerCamelCase ) a = self._decay_weights_op(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) with tf.control_dependencies([decay] ): return super(__lowerCamelCase ,self )._resource_apply_dense(__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Dict ,__lowerCamelCase : List[str]=None ): '''simple docstring''' a , a = self._get_lr(var.device ,var.dtype.base_dtype ,__lowerCamelCase ) a = self._decay_weights_op(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) with tf.control_dependencies([decay] ): return super(__lowerCamelCase ,self )._resource_apply_sparse(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : int ): '''simple docstring''' if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__lowerCamelCase ,__lowerCamelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__lowerCamelCase ,__lowerCamelCase ) is not None: return False return True class lowerCamelCase_ ( a_ ): def __init__( self : Optional[int] ): '''simple docstring''' a = [] a = None @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' if self._accum_steps is None: a = tf.Variable( tf.constant(0 ,dtype=tf.intaa ) ,trainable=__lowerCamelCase ,synchronization=tf.VariableSynchronization.ON_READ ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA ,) return self._accum_steps.value() @property def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : str ,__lowerCamelCase : List[str] ): '''simple docstring''' if not self._gradients: a = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__lowerCamelCase ) ,trainable=__lowerCamelCase ,synchronization=tf.VariableSynchronization.ON_READ ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA ,) if gradient is not None else gradient for gradient in gradients ] ) if len(__lowerCamelCase ) != len(self._gradients ): raise ValueError(F"""Expected {len(self._gradients )} gradients, but got {len(__lowerCamelCase )}""" ) for accum_gradient, gradient in zip(self._gradients ,__lowerCamelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__lowerCamelCase ) self._accum_steps.assign_add(1 ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__lowerCamelCase ) )
387
1
import operator def A__ ( snake_case_ : list , snake_case_ : bool = False , snake_case_ : list | None = None ): SCREAMING_SNAKE_CASE__: List[Any]= operator.lt if reverse else operator.gt SCREAMING_SNAKE_CASE__: Union[str, Any]= solution or [] if not arr: return solution SCREAMING_SNAKE_CASE__: Union[str, Any]= [arr.pop(0 )] for i, item in enumerate(snake_case_ ): if _operator(snake_case_ , sublist[-1] ): sublist.append(snake_case_ ) arr.pop(snake_case_ ) # merging sublist into solution list if not solution: solution.extend(snake_case_ ) else: while sublist: SCREAMING_SNAKE_CASE__: Optional[Any]= sublist.pop(0 ) for i, xx in enumerate(snake_case_ ): if not _operator(snake_case_ , snake_case_ ): solution.insert(snake_case_ , snake_case_ ) break else: solution.append(snake_case_ ) strand_sort(snake_case_ , snake_case_ , snake_case_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
107
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ : List[str] = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = ['MaskFormerFeatureExtractor'] lowercase_ : Dict = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : str = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] lowercase_ : Optional[Any] = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys lowercase_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure)
107
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = { """configuration_xlm_roberta""": [ """XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaConfig""", """XLMRobertaOnnxConfig""", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""XLMRobertaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""XLMRobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaForCausalLM""", """XLMRobertaForMaskedLM""", """XLMRobertaForMultipleChoice""", """XLMRobertaForQuestionAnswering""", """XLMRobertaForSequenceClassification""", """XLMRobertaForTokenClassification""", """XLMRobertaModel""", """XLMRobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMRobertaForCausalLM""", """TFXLMRobertaForMaskedLM""", """TFXLMRobertaForMultipleChoice""", """TFXLMRobertaForQuestionAnswering""", """TFXLMRobertaForSequenceClassification""", """TFXLMRobertaForTokenClassification""", """TFXLMRobertaModel""", """TFXLMRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxXLMRobertaForMaskedLM""", """FlaxXLMRobertaForCausalLM""", """FlaxXLMRobertaForMultipleChoice""", """FlaxXLMRobertaForQuestionAnswering""", """FlaxXLMRobertaForSequenceClassification""", """FlaxXLMRobertaForTokenClassification""", """FlaxXLMRobertaModel""", """FlaxXLMRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
178
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> Optional[int]: assert isinstance(UpperCamelCase , UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[Any]: lowerCAmelCase__ : List[str] = tmp_path / '''cache''' lowerCAmelCase__ : Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase__ : List[Any] = ParquetDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase , keep_in_memory=UpperCamelCase ).read() _check_parquet_dataset(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[Any]: lowerCAmelCase__ : str = tmp_path / '''cache''' lowerCAmelCase__ : Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase__ : str = features.copy() if features else default_expected_features lowerCAmelCase__ : List[Any] = ( Features({feature: Value(UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase__ : Union[str, Any] = ParquetDatasetReader(UpperCamelCase , features=UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_parquet_dataset(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: lowerCAmelCase__ : str = tmp_path / '''cache''' lowerCAmelCase__ : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase__ : Union[str, Any] = ParquetDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase , split=UpperCamelCase ).read() _check_parquet_dataset(UpperCamelCase , UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> str: if issubclass(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : Any = parquet_path elif issubclass(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : Any = [parquet_path] lowerCAmelCase__ : int = tmp_path / '''cache''' lowerCAmelCase__ : str = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase__ : Union[str, Any] = ParquetDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_parquet_dataset(UpperCamelCase , UpperCamelCase ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase=("train",) ) -> str: assert isinstance(UpperCamelCase , UpperCamelCase ) for split in splits: lowerCAmelCase__ : str = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[int]: lowerCAmelCase__ : Any = tmp_path / '''cache''' lowerCAmelCase__ : Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase__ : Optional[Any] = ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=UpperCamelCase , keep_in_memory=UpperCamelCase ).read() _check_parquet_datasetdict(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: lowerCAmelCase__ : Any = tmp_path / '''cache''' lowerCAmelCase__ : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase__ : Tuple = features.copy() if features else default_expected_features lowerCAmelCase__ : Optional[int] = ( Features({feature: Value(UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase__ : List[str] = ParquetDatasetReader({'''train''': parquet_path} , features=UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_parquet_datasetdict(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: if split: lowerCAmelCase__ : Tuple = {split: parquet_path} else: lowerCAmelCase__ : int = '''train''' lowerCAmelCase__ : List[Any] = {'''train''': parquet_path, '''test''': parquet_path} lowerCAmelCase__ : Optional[int] = tmp_path / '''cache''' lowerCAmelCase__ : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase__ : List[str] = ParquetDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_parquet_datasetdict(UpperCamelCase , UpperCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> Tuple: lowerCAmelCase__ : Optional[Any] = ParquetDatasetWriter(UpperCamelCase , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 lowerCAmelCase__ : Union[str, Any] = pq.ParquetFile(tmp_path / '''foo.parquet''' ) lowerCAmelCase__ : int = pf.read() assert dataset.data.table == output_table def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> Tuple: lowerCAmelCase__ : List[str] = str(shared_datadir / '''test_image_rgb.jpg''' ) lowerCAmelCase__ : Dict = {'''image''': [image_path]} lowerCAmelCase__ : int = Features({'''image''': Image()} ) lowerCAmelCase__ : Dict = Dataset.from_dict(UpperCamelCase , features=UpperCamelCase ) lowerCAmelCase__ : List[str] = ParquetDatasetWriter(UpperCamelCase , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 lowerCAmelCase__ : Dict = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features lowerCAmelCase__ : int = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=UpperCamelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> Any: assert get_writer_batch_size(UpperCamelCase ) == expected
678
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCAmelCase : Union[str, Any] = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Tuple = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[str] = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
700
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __UpperCAmelCase = 'http://www.mocksite.com/file1.txt' __UpperCAmelCase = '"text": ["foo", "foo"]' __UpperCAmelCase = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class _a : """simple docstring""" A = 2_00 A = {'Content-Length': '100'} A = {} def __a ( self ,**__SCREAMING_SNAKE_CASE ): return [bytes(__SCREAMING_SNAKE_CASE ,'utf-8' )] def SCREAMING_SNAKE_CASE_ ( *snake_case_ : Optional[Any] , **snake_case_ : Optional[int] ) -> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def SCREAMING_SNAKE_CASE_ ( snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : int ) -> Any: import requests monkeypatch.setattr(snake_case_ , 'request' , snake_case_ ) SCREAMING_SNAKE_CASE : int = URL if issubclass(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE : Any = url elif issubclass(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = [url] elif issubclass(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE : List[Any] = {'train': url} SCREAMING_SNAKE_CASE : List[Any] = 'dummy' SCREAMING_SNAKE_CASE : str = 'downloads' SCREAMING_SNAKE_CASE : str = tmp_path SCREAMING_SNAKE_CASE : int = DownloadConfig( cache_dir=os.path.join(snake_case_ , snake_case_ ) , use_etag=snake_case_ , ) SCREAMING_SNAKE_CASE : Tuple = DownloadManager(dataset_name=snake_case_ , download_config=snake_case_ ) SCREAMING_SNAKE_CASE : Any = dl_manager.download(snake_case_ ) SCREAMING_SNAKE_CASE : List[str] = urls for downloaded_paths in [downloaded_paths]: if isinstance(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE : List[str] = [downloaded_paths] SCREAMING_SNAKE_CASE : List[str] = [urls] elif isinstance(snake_case_ , snake_case_ ): assert "train" in downloaded_paths.keys() SCREAMING_SNAKE_CASE : Optional[Any] = downloaded_paths.values() SCREAMING_SNAKE_CASE : Dict = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(snake_case_ , snake_case_ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] SCREAMING_SNAKE_CASE : List[Any] = Path(snake_case_ ) SCREAMING_SNAKE_CASE : List[Any] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() SCREAMING_SNAKE_CASE : List[Any] = downloaded_path.read_text() assert content == CONTENT SCREAMING_SNAKE_CASE : int = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() SCREAMING_SNAKE_CASE : Union[str, Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def SCREAMING_SNAKE_CASE_ ( snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : Tuple ) -> Any: SCREAMING_SNAKE_CASE : int = str(snake_case_ ) if issubclass(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE : Dict = filename elif issubclass(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE : List[str] = [filename] elif issubclass(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE : Any = {'train': filename} SCREAMING_SNAKE_CASE : Dict = 'dummy' SCREAMING_SNAKE_CASE : Tuple = xz_file.parent SCREAMING_SNAKE_CASE : Any = 'extracted' SCREAMING_SNAKE_CASE : Optional[int] = DownloadConfig( cache_dir=snake_case_ , use_etag=snake_case_ , ) SCREAMING_SNAKE_CASE : List[str] = DownloadManager(dataset_name=snake_case_ , download_config=snake_case_ ) SCREAMING_SNAKE_CASE : List[str] = dl_manager.extract(snake_case_ ) SCREAMING_SNAKE_CASE : Any = paths for extracted_paths in [extracted_paths]: if isinstance(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE : Any = [extracted_paths] SCREAMING_SNAKE_CASE : Tuple = [paths] elif isinstance(snake_case_ , snake_case_ ): assert "train" in extracted_paths.keys() SCREAMING_SNAKE_CASE : Dict = extracted_paths.values() SCREAMING_SNAKE_CASE : Union[str, Any] = paths.values() assert extracted_paths for extracted_path, input_path in zip(snake_case_ , snake_case_ ): assert extracted_path == dl_manager.extracted_paths[input_path] SCREAMING_SNAKE_CASE : Optional[int] = Path(snake_case_ ) SCREAMING_SNAKE_CASE : int = extracted_path.parts assert parts[-1] == hash_url_to_filename(snake_case_ , etag=snake_case_ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() SCREAMING_SNAKE_CASE : List[Any] = extracted_path.read_text() SCREAMING_SNAKE_CASE : Any = text_file.read_text() assert extracted_file_content == expected_file_content def SCREAMING_SNAKE_CASE_ ( snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ) -> List[str]: assert path.endswith('.jsonl' ) for num_items, line in enumerate(snake_case_ , start=1 ): SCREAMING_SNAKE_CASE : Optional[int] = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def SCREAMING_SNAKE_CASE_ ( snake_case_ : Tuple , snake_case_ : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE : int = request.getfixturevalue(snake_case_ ) SCREAMING_SNAKE_CASE : Optional[int] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(snake_case_ ) , start=1 ): _test_jsonl(snake_case_ , snake_case_ ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def SCREAMING_SNAKE_CASE_ ( snake_case_ : List[str] , snake_case_ : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE : str = request.getfixturevalue(snake_case_ ) SCREAMING_SNAKE_CASE : int = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(snake_case_ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(snake_case_ ) , start=1 ): _test_jsonl(snake_case_ , snake_case_ ) assert num_tar == 1 assert num_jsonl == 2 def SCREAMING_SNAKE_CASE_ ( snake_case_ : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(snake_case_ ) , start=1 ): assert os.path.basename(snake_case_ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
220
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowercase : """simple docstring""" _UpperCamelCase : CommonSchedulerState # setable values _UpperCamelCase : jnp.ndarray _UpperCamelCase : jnp.ndarray _UpperCamelCase : Optional[int] = None @classmethod def __UpperCAmelCase ( cls : Optional[Any] , lowerCamelCase_ : CommonSchedulerState , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray ): '''simple docstring''' return cls(common=lowerCamelCase_ , init_noise_sigma=lowerCamelCase_ , timesteps=lowerCamelCase_ ) @dataclass class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : DDPMSchedulerState class lowercase ( a_ , a_ ): """simple docstring""" _UpperCamelCase : List[str] = [e.name for e in FlaxKarrasDiffusionSchedulers] _UpperCamelCase : jnp.dtype @property def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return True @register_to_config def __init__( self : Union[str, Any] , lowerCamelCase_ : int = 10_00 , lowerCamelCase_ : float = 0.0001 , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : str = "linear" , lowerCamelCase_ : Optional[jnp.ndarray] = None , lowerCamelCase_ : str = "fixed_small" , lowerCamelCase_ : bool = True , lowerCamelCase_ : str = "epsilon" , lowerCamelCase_ : jnp.dtype = jnp.floataa , ): '''simple docstring''' _snake_case : Optional[int] = dtype def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : Optional[CommonSchedulerState] = None ): '''simple docstring''' if common is None: _snake_case : Union[str, Any] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution _snake_case : List[Any] = jnp.array(1.0 , dtype=self.dtype ) _snake_case : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=lowerCamelCase_ , init_noise_sigma=lowerCamelCase_ , timesteps=lowerCamelCase_ , ) def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : DDPMSchedulerState , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : Optional[int] = None ): '''simple docstring''' return sample def __UpperCAmelCase ( self : str , lowerCamelCase_ : DDPMSchedulerState , lowerCamelCase_ : int , lowerCamelCase_ : Tuple = () ): '''simple docstring''' _snake_case : Tuple = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _snake_case : Any = (jnp.arange(0 , lowerCamelCase_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=lowerCamelCase_ , timesteps=lowerCamelCase_ , ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : DDPMSchedulerState , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Optional[Any]=None ): '''simple docstring''' _snake_case : List[Any] = state.common.alphas_cumprod[t] _snake_case : Dict = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _snake_case : Optional[Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _snake_case : Optional[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _snake_case : Dict = jnp.clip(lowerCamelCase_ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _snake_case : Union[str, Any] = jnp.log(jnp.clip(lowerCamelCase_ , a_min=1e-20 ) ) elif variance_type == "fixed_large": _snake_case : Dict = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _snake_case : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _snake_case : str = variance _snake_case : Dict = state.common.betas[t] _snake_case : Union[str, Any] = (predicted_variance + 1) / 2 _snake_case : List[str] = frac * max_log + (1 - frac) * min_log return variance def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : DDPMSchedulerState , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : Optional[jax.random.KeyArray] = None , lowerCamelCase_ : bool = True , ): '''simple docstring''' _snake_case : Any = timestep if key is None: _snake_case : Union[str, Any] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _snake_case , _snake_case : Tuple = jnp.split(lowerCamelCase_ , sample.shape[1] , axis=1 ) else: _snake_case : Any = None # 1. compute alphas, betas _snake_case : Tuple = state.common.alphas_cumprod[t] _snake_case : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) _snake_case : List[str] = 1 - alpha_prod_t _snake_case : Tuple = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _snake_case : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _snake_case : int = model_output elif self.config.prediction_type == "v_prediction": _snake_case : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ' for the FlaxDDPMScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: _snake_case : Union[str, Any] = jnp.clip(lowerCamelCase_ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case : str = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _snake_case : List[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _snake_case : Optional[Any] = jax.random.split(lowerCamelCase_ , num=1 ) _snake_case : Tuple = jax.random.normal(lowerCamelCase_ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(lowerCamelCase_ , lowerCamelCase_ , predicted_variance=lowerCamelCase_ ) ** 0.5) * noise _snake_case : Optional[Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) _snake_case : Tuple = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=lowerCamelCase_ , state=lowerCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : DDPMSchedulerState , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , ): '''simple docstring''' return add_noise_common(state.common , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : DDPMSchedulerState , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , ): '''simple docstring''' return get_velocity_common(state.common , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __len__( self : List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
304
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def A__( __lowerCAmelCase ): _snake_case : Dict = [ 'decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__( __lowerCAmelCase ): _snake_case , _snake_case : Any = emb.weight.shape _snake_case : List[str] = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) _snake_case : Optional[int] = emb.weight.data return lin_layer def A__( __lowerCAmelCase ): _snake_case : List[str] = torch.load(__lowerCAmelCase , map_location='cpu' ) _snake_case : List[Any] = Namespace(**checkpoint['cfg']['model'] ) _snake_case : Optional[Any] = checkpoint['model'] remove_ignore_keys_(__lowerCAmelCase ) _snake_case : List[Any] = state_dict['decoder.embed_tokens.weight'].shape[0] _snake_case : Dict = {key.replace('decoder' , 'model' ): val for key, val in state_dict.items()} _snake_case : Optional[Any] = XGLMConfig( vocab_size=__lowerCAmelCase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='gelu' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) _snake_case : Optional[Any] = XGLMForCausalLM(__lowerCAmelCase ) _snake_case : Any = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) print(__lowerCAmelCase ) _snake_case : Optional[Any] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowercase_ : Optional[Any] = parser.parse_args() lowercase_ : List[Any] = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
304
1
'''simple docstring''' import qiskit def __lowerCamelCase ( _lowercase , _lowercase ) -> qiskit.result.counts.Counts: UpperCAmelCase : Any = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register UpperCAmelCase : int = qiskit.QuantumCircuit(_lowercase , _lowercase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator UpperCAmelCase : Union[str, Any] = qiskit.execute(_lowercase , _lowercase , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_lowercase ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
707
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "imagegpt" lowerCamelCase_ = ["past_key_values"] lowerCamelCase_ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self :int , __A :int=512 + 1 , __A :int=32 * 32 , __A :Any=512 , __A :Any=24 , __A :Tuple=8 , __A :Tuple=None , __A :Optional[Any]="quick_gelu" , __A :List[str]=0.1 , __A :Union[str, Any]=0.1 , __A :int=0.1 , __A :Dict=1E-5 , __A :List[str]=0.0_2 , __A :Optional[int]=True , __A :str=True , __A :Union[str, Any]=False , __A :Dict=False , __A :List[Any]=False , **__A :str , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = n_positions SCREAMING_SNAKE_CASE__ = n_embd SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_inner SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = layer_norm_epsilon SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = scale_attn_weights SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE__ = reorder_and_upcast_attn SCREAMING_SNAKE_CASE__ = tie_word_embeddings super().__init__(tie_word_embeddings=__A , **__A ) class UpperCamelCase_ ( UpperCamelCase__ ): @property def _snake_case ( self :str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def _snake_case ( self :Dict , __A :"FeatureExtractionMixin" , __A :int = 1 , __A :int = -1 , __A :bool = False , __A :Optional["TensorType"] = None , __A :int = 3 , __A :int = 32 , __A :int = 32 , ) -> Mapping[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self._generate_dummy_images(__A , __A , __A , __A ) SCREAMING_SNAKE_CASE__ = dict(preprocessor(images=__A , return_tensors=__A ) ) return inputs
6
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE_ = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
465
0
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _snake_case ( a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE : Optional[int] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' lowerCAmelCase = np.random.RandomState(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**_SCREAMING_SNAKE_CASE ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCAmelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**_SCREAMING_SNAKE_CASE ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**_SCREAMING_SNAKE_CASE ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCAmelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**_SCREAMING_SNAKE_CASE ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCAmelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**_SCREAMING_SNAKE_CASE ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**_SCREAMING_SNAKE_CASE ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = 3 * [inputs['prompt']] # forward lowerCAmelCase = pipe(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = output.images[0, -3:, -3:, -1] lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = 3 * [inputs.pop('prompt' )] lowerCAmelCase = pipe.tokenizer( _SCREAMING_SNAKE_CASE , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=_SCREAMING_SNAKE_CASE , return_tensors='np' , ) lowerCAmelCase = text_inputs['input_ids'] lowerCAmelCase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] lowerCAmelCase = prompt_embeds # forward lowerCAmelCase = pipe(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = 3 * ['this is a negative prompt'] lowerCAmelCase = negative_prompt lowerCAmelCase = 3 * [inputs['prompt']] # forward lowerCAmelCase = pipe(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = output.images[0, -3:, -3:, -1] lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = 3 * [inputs.pop('prompt' )] lowerCAmelCase = [] for p in [prompt, negative_prompt]: lowerCAmelCase = pipe.tokenizer( _SCREAMING_SNAKE_CASE , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=_SCREAMING_SNAKE_CASE , return_tensors='np' , ) lowerCAmelCase = text_inputs['input_ids'] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) lowerCAmelCase , lowerCAmelCase = embeds # forward lowerCAmelCase = pipe(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class _snake_case ( unittest.TestCase ): @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = ort.SessionOptions() lowerCAmelCase = False return options def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = 'A painting of a squirrel eating a burger' np.random.seed(0 ) lowerCAmelCase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = DDIMScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = 'open neural network exchange' lowerCAmelCase = np.random.RandomState(0 ) lowerCAmelCase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_SCREAMING_SNAKE_CASE , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = 'open neural network exchange' lowerCAmelCase = np.random.RandomState(0 ) lowerCAmelCase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_SCREAMING_SNAKE_CASE , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = 0 def test_callback_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: lowerCAmelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) lowerCAmelCase = latents[0, -3:, -3:, -1] lowerCAmelCase = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) lowerCAmelCase = latents[0, -3:, -3:, -1] lowerCAmelCase = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 lowerCAmelCase = False lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = 'Andromeda galaxy in a bottle' lowerCAmelCase = np.random.RandomState(0 ) pipe( prompt=_SCREAMING_SNAKE_CASE , num_inference_steps=5 , guidance_scale=7.5 , generator=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert pipe.safety_checker is None lowerCAmelCase = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCAmelCase = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None
700
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=a_ ): SCREAMING_SNAKE_CASE : List[str] = ['''torch''', '''torchsde'''] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self , ['torch', 'torchsde'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls , ['torch', 'torchsde'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls , ['torch', 'torchsde'] )
514
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" snake_case_ = "nat" snake_case_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[Any] , __snake_case : Optional[Any]=4 , __snake_case : Union[str, Any]=3 , __snake_case : Union[str, Any]=64 , __snake_case : Dict=[3, 4, 6, 5] , __snake_case : Optional[int]=[2, 4, 8, 16] , __snake_case : str=7 , __snake_case : Dict=3.0 , __snake_case : Optional[Any]=True , __snake_case : Optional[int]=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Optional[Any]="gelu" , __snake_case : List[str]=0.02 , __snake_case : Tuple=1e-5 , __snake_case : Dict=0.0 , __snake_case : Optional[int]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] , )-> Optional[Any]: super().__init__(**__lowerCamelCase ) snake_case = patch_size snake_case = num_channels snake_case = embed_dim snake_case = depths snake_case = len(__lowerCamelCase ) snake_case = num_heads snake_case = kernel_size snake_case = mlp_ratio snake_case = qkv_bias snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = drop_path_rate snake_case = hidden_act snake_case = layer_norm_eps snake_case = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case = int(embed_dim * 2 ** (len(__lowerCamelCase ) - 1) ) snake_case = layer_scale_init_value snake_case = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(__lowerCamelCase ) + 1 )] snake_case = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
369
def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ : int = (boundary[1] - boundary[0]) / steps lowerCAmelCase__ : Optional[int] = boundary[0] lowerCAmelCase__ : int = boundary[1] lowerCAmelCase__ : Tuple = make_points(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ : str = 0.0 y += (h / 2.0) * f(lowerCamelCase_) for i in x_i: # print(i) y += h * f(lowerCamelCase_) y += (h / 2.0) * f(lowerCamelCase_) return y def lowerCAmelCase__ ( lowerCamelCase_ : List[Any] ,lowerCamelCase_ : Dict ,lowerCamelCase_ : Dict): '''simple docstring''' lowerCAmelCase__ : Dict = a + h while x < (b - h): yield x lowerCAmelCase__ : Any = x + h def lowerCAmelCase__ ( lowerCamelCase_ : str): # enter your function here '''simple docstring''' lowerCAmelCase__ : List[str] = (x - 0) * (x - 0) return y def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 0.0 # Lower bound of integration lowerCAmelCase__ : Optional[int] = 1.0 # Upper bound of integration lowerCAmelCase__ : List[str] = 10.0 # define number of steps or resolution lowerCAmelCase__ : Dict = [a, b] # define boundary of integration lowerCAmelCase__ : Any = method_a(lowerCamelCase_ ,lowerCamelCase_) print(f"""y = {y}""") if __name__ == "__main__": main()
647
0
UpperCAmelCase_ = 65_521 def __magic_name__ ( lowercase ) -> int: """simple docstring""" lowercase_ : Tuple = 1 lowercase_ : int = 0 for plain_chr in plain_text: lowercase_ : List[Any] = (a + ord(UpperCAmelCase__ )) % MOD_ADLER lowercase_ : int = (b + a) % MOD_ADLER return (b << 16) | a
715
import math def __magic_name__ ( lowercase ) -> bool: """simple docstring""" lowercase_ : Optional[Any] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(lowercase ) def __magic_name__ ( lowercase = 1 / 12345 ) -> int: """simple docstring""" lowercase_ : Dict = 0 lowercase_ : List[Any] = 0 lowercase_ : List[str] = 3 while True: lowercase_ : int = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(lowercase ): lowercase_ : Optional[int] = int(lowercase ) total_partitions += 1 if check_partition_perfect(lowercase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(lowercase ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
436
0
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
65
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class A ( UpperCAmelCase , UpperCAmelCase ): a_ = 1 @register_to_config def __init__( self : Tuple , __a : int = 1_0_0_0 , __a : Optional[Union[np.ndarray, List[float]]] = None ) -> int: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__a ) # standard deviation of the initial noise distribution __UpperCAmelCase = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. __UpperCAmelCase = 4 # running values __UpperCAmelCase = [] def snake_case__ ( self : str , __a : int , __a : Union[str, torch.device] = None ) -> str: __UpperCAmelCase = num_inference_steps __UpperCAmelCase = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] __UpperCAmelCase = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: __UpperCAmelCase = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: __UpperCAmelCase = torch.sin(steps * math.pi / 2 ) ** 2 __UpperCAmelCase = (1.0 - self.betas**2) ** 0.5 __UpperCAmelCase = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] __UpperCAmelCase = timesteps.to(__a ) __UpperCAmelCase = [] def snake_case__ ( self : List[Any] , __a : torch.FloatTensor , __a : int , __a : torch.FloatTensor , __a : bool = True , ) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) __UpperCAmelCase = (self.timesteps == timestep).nonzero().item() __UpperCAmelCase = timestep_index + 1 __UpperCAmelCase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__a ) if len(self.ets ) == 1: __UpperCAmelCase = self.ets[-1] elif len(self.ets ) == 2: __UpperCAmelCase = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: __UpperCAmelCase = (2_3 * self.ets[-1] - 1_6 * self.ets[-2] + 5 * self.ets[-3]) / 1_2 else: __UpperCAmelCase = (1 / 2_4) * (5_5 * self.ets[-1] - 5_9 * self.ets[-2] + 3_7 * self.ets[-3] - 9 * self.ets[-4]) __UpperCAmelCase = self._get_prev_sample(__a , __a , __a , __a ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a ) def snake_case__ ( self : List[Any] , __a : torch.FloatTensor , *__a : Any , **__a : Optional[int] ) -> torch.FloatTensor: return sample def snake_case__ ( self : int , __a : List[Any] , __a : Any , __a : int , __a : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase = self.alphas[timestep_index] __UpperCAmelCase = self.betas[timestep_index] __UpperCAmelCase = self.alphas[prev_timestep_index] __UpperCAmelCase = self.betas[prev_timestep_index] __UpperCAmelCase = (sample - sigma * ets) / max(__a , 1e-8 ) __UpperCAmelCase = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : Dict ) -> str: return self.config.num_train_timesteps
262
0
__lowerCamelCase = { '''meter''': '''m''', '''kilometer''': '''km''', '''megametre''': '''Mm''', '''gigametre''': '''Gm''', '''terametre''': '''Tm''', '''petametre''': '''Pm''', '''exametre''': '''Em''', '''zettametre''': '''Zm''', '''yottametre''': '''Ym''', } # Exponent of the factor(meter) __lowerCamelCase = { '''m''': 0, '''km''': 3, '''Mm''': 6, '''Gm''': 9, '''Tm''': 12, '''Pm''': 15, '''Em''': 18, '''Zm''': 21, '''Ym''': 24, } def _snake_case ( __snake_case , __snake_case , __snake_case ) -> float: '''simple docstring''' UpperCAmelCase_ : Dict = from_type.lower().strip("s" ) UpperCAmelCase_ : int = to_type.lower().strip("s" ) UpperCAmelCase_ : List[Any] = UNIT_SYMBOL.get(__snake_case , __snake_case ) UpperCAmelCase_ : int = UNIT_SYMBOL.get(__snake_case , __snake_case ) if from_sanitized not in METRIC_CONVERSION: UpperCAmelCase_ : List[Any] = ( F"""Invalid 'from_type' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(__snake_case )}""" ) raise ValueError(__snake_case ) if to_sanitized not in METRIC_CONVERSION: UpperCAmelCase_ : Optional[int] = ( F"""Invalid 'to_type' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(__snake_case )}""" ) raise ValueError(__snake_case ) UpperCAmelCase_ : Tuple = METRIC_CONVERSION[from_sanitized] UpperCAmelCase_ : Optional[int] = METRIC_CONVERSION[to_sanitized] UpperCAmelCase_ : List[str] = 1 if from_exponent > to_exponent: UpperCAmelCase_ : Tuple = from_exponent - to_exponent else: UpperCAmelCase_ : Union[str, Any] = -(to_exponent - from_exponent) return value * pow(1_0 , __snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
702
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case_ (lowercase__ ): """simple docstring""" _lowerCamelCase = """ClapFeatureExtractor""" _lowerCamelCase = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self ,lowercase ,lowercase): """simple docstring""" super().__init__(lowercase ,lowercase) def __call__( self ,lowercase=None ,lowercase=None ,lowercase=None ,**lowercase): """simple docstring""" UpperCAmelCase_ : Dict = kwargs.pop("sampling_rate" ,lowercase) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none.") if text is not None: UpperCAmelCase_ : List[str] = self.tokenizer(lowercase ,return_tensors=lowercase ,**lowercase) if audios is not None: UpperCAmelCase_ : str = self.feature_extractor( lowercase ,sampling_rate=lowercase ,return_tensors=lowercase ,**lowercase) if text is not None and audios is not None: UpperCAmelCase_ : Optional[int] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase) ,tensor_type=lowercase) def A_ ( self ,*lowercase ,**lowercase): """simple docstring""" return self.tokenizer.batch_decode(*lowercase ,**lowercase) def A_ ( self ,*lowercase ,**lowercase): """simple docstring""" return self.tokenizer.decode(*lowercase ,**lowercase) @property def A_ ( self): """simple docstring""" UpperCAmelCase_ : str = self.tokenizer.model_input_names UpperCAmelCase_ : str = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
455
0
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowerCAmelCase ( __snake_case ): def __init__( self :Dict , *__magic_name__ :Dict , __magic_name__ :Union[str, Any]=None , __magic_name__ :str=None , **__magic_name__ :Optional[int] ): '''simple docstring''' super().__init__(*__lowerCamelCase , **__lowerCamelCase ) a = eval_examples a = post_process_function def lowerCamelCase__ ( self :Any , __magic_name__ :int=None , __magic_name__ :int=None , __magic_name__ :Tuple=None , __magic_name__ :str = "eval" ): '''simple docstring''' a = self.eval_dataset if eval_dataset is None else eval_dataset a = self.get_eval_dataloader(__lowerCamelCase ) a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a = self.compute_metrics a = None a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a = time.time() try: a = eval_loop( __lowerCamelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , ) finally: a = compute_metrics a = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default a = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions ) a = self.compute_metrics(__lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): a = metrics.pop(__lowerCamelCase ) metrics.update(output.metrics ) else: a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCamelCase ) return metrics def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Union[str, Any] , __magic_name__ :Any , __magic_name__ :Dict=None , __magic_name__ :str = "test" ): '''simple docstring''' a = self.get_test_dataloader(__lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. a = self.compute_metrics a = None a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a = time.time() try: a = eval_loop( __lowerCamelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , ) finally: a = compute_metrics a = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output a = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions , """predict""" ) a = self.compute_metrics(__lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): a = metrics.pop(__lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCamelCase )
468
def _UpperCamelCase ( lowerCAmelCase_ ) ->Any: UpperCAmelCase = 0 UpperCAmelCase = len(lowerCAmelCase_ ) for i in range(n - 1 ): for j in range(i + 1 , lowerCAmelCase_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _UpperCamelCase ( lowerCAmelCase_ ) ->Any: if len(lowerCAmelCase_ ) <= 1: return arr, 0 UpperCAmelCase = len(lowerCAmelCase_ ) // 2 UpperCAmelCase = arr[0:mid] UpperCAmelCase = arr[mid:] UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase_ ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase_ ) UpperCAmelCase , UpperCAmelCase = _count_cross_inversions(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase = inversion_p + inversions_q + cross_inversions return c, num_inversions def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->int: UpperCAmelCase = [] UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = 0 while i < len(lowerCAmelCase_ ) and j < len(lowerCAmelCase_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(lowerCAmelCase_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(lowerCAmelCase_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _UpperCamelCase ( ) ->int: UpperCAmelCase = [1_0, 2, 1, 5, 5, 2, 1_1] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) UpperCAmelCase = count_inversions_bf(lowerCAmelCase_ ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , lowerCAmelCase_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() UpperCAmelCase = count_inversions_bf(lowerCAmelCase_ ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , lowerCAmelCase_ ) # an empty list should also have zero inversions UpperCAmelCase = [] UpperCAmelCase = count_inversions_bf(lowerCAmelCase_ ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(lowerCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , lowerCAmelCase_ ) if __name__ == "__main__": main()
377
0
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig _snake_case = logging.get_logger(__name__) _snake_case = '''T5Config''' def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Any = jnp.zeros_like(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : str = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCamelCase : Optional[Any] = shifted_input_ids.at[:, 0].set(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[str] = jnp.where(shifted_input_ids == -100 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return shifted_input_ids class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : List[Any] = "mt5" __A : Dict = MTaConfig class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Optional[Any] = "mt5" __A : List[str] = MTaConfig class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : str = "mt5" __A : Union[str, Any] = MTaConfig
231
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def lowercase_( SCREAMING_SNAKE_CASE_ = "isbn/0140328726" ): '''simple docstring''' lowerCamelCase : List[Any] = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: lowerCamelCase : Tuple = f"""{olid} is not a valid Open Library olid""" raise ValueError(SCREAMING_SNAKE_CASE_ ) return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json() def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : int = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } lowerCamelCase : Tuple = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} lowerCamelCase : Union[str, Any] = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] lowerCamelCase : str = data["First sentence"]["value"] for key, value in data.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Any = ", ".join(SCREAMING_SNAKE_CASE_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _snake_case = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: _snake_case = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('''\n'''.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
231
1
'''simple docstring''' import math def lowercase__ ( __lowercase : list , __lowercase : int = 0 , __lowercase : int = 0 ) -> list: """simple docstring""" __UpperCamelCase = end or len(__lowercase ) for i in range(__lowercase , __lowercase ): __UpperCamelCase = i __UpperCamelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __UpperCamelCase = array[temp_index - 1] temp_index -= 1 __UpperCamelCase = temp_index_value return array def lowercase__ ( __lowercase : list , __lowercase : int , __lowercase : int ) -> None: # Max Heap """simple docstring""" __UpperCamelCase = index __UpperCamelCase = 2 * index + 1 # Left Node __UpperCamelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __UpperCamelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: __UpperCamelCase = right_index if largest != index: __UpperCamelCase , __UpperCamelCase = array[largest], array[index] heapify(__lowercase , __lowercase , __lowercase ) def lowercase__ ( __lowercase : list ) -> list: """simple docstring""" __UpperCamelCase = len(__lowercase ) for i in range(n // 2 , -1 , -1 ): heapify(__lowercase , __lowercase , __lowercase ) for i in range(n - 1 , 0 , -1 ): __UpperCamelCase , __UpperCamelCase = array[0], array[i] heapify(__lowercase , 0 , __lowercase ) return array def lowercase__ ( __lowercase : list , __lowercase : int , __lowercase : int , __lowercase : int ) -> int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase__ ( __lowercase : list , __lowercase : int , __lowercase : int , __lowercase : int ) -> int: """simple docstring""" __UpperCamelCase = low __UpperCamelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __UpperCamelCase , __UpperCamelCase = array[j], array[i] i += 1 def lowercase__ ( __lowercase : list ) -> list: """simple docstring""" if len(__lowercase ) == 0: return array __UpperCamelCase = 2 * math.ceil(math.loga(len(__lowercase ) ) ) __UpperCamelCase = 16 return intro_sort(__lowercase , 0 , len(__lowercase ) , __lowercase , __lowercase ) def lowercase__ ( __lowercase : list , __lowercase : int , __lowercase : int , __lowercase : int , __lowercase : int ) -> list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(__lowercase ) max_depth -= 1 __UpperCamelCase = median_of_a(__lowercase , __lowercase , start + ((end - start) // 2) + 1 , end - 1 ) __UpperCamelCase = partition(__lowercase , __lowercase , __lowercase , __lowercase ) intro_sort(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) __UpperCamelCase = p return insertion_sort(__lowercase , __lowercase , __lowercase ) if __name__ == "__main__": import doctest doctest.testmod() a__ : Any =input('''Enter numbers separated by a comma : ''').strip() a__ : List[Any] =[float(item) for item in user_input.split(''',''')] print(sort(unsorted))
399
'''simple docstring''' def lowercase__ ( __lowercase : int , __lowercase : Tuple , __lowercase : Tuple ) -> Any: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__lowercase , n - 1 , __lowercase ) * a) % mod else: __UpperCamelCase = binary_exponentiation(__lowercase , n / 2 , __lowercase ) return (b * b) % mod # a prime number a__ : List[str] =701 a__ : Union[str, Any] =1_000_000_000 a__ : Union[str, Any] =10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
399
1
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) __A : str = logging.getLogger() def lowercase ( __snake_case : Path , __snake_case : list ): lowercase_ : Optional[int] = '''\n'''.join(__snake_case ) Path(__snake_case ).open('''w''' ).writelines(__snake_case ) __A : Tuple = '''patrickvonplaten/t5-tiny-random''' __A : Dict = '''sshleifer/bart-tiny-random''' __A : Dict = '''sshleifer/tiny-mbart''' __A : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _UpperCAmelCase ( _A ): def A ( self : List[Any] , A : str ) -> Any: lowercase_ : List[str] = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' lowercase_ : str = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() lowercase_ : List[Any] = [''' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'''] _dump_articles(A , A ) lowercase_ : Union[str, Any] = str(Path(self.get_auto_remove_tmp_dir() ) / '''scores.json''' ) lowercase_ : Tuple = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' lowercase_ : Union[str, Any] = F''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(A , '''argv''' , A ): run_generate() assert Path(A ).exists() # os.remove(Path(output_file_name)) def A ( self : Union[str, Any] ) -> List[str]: self.run_eval_tester(A ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def A ( self : str , A : str ) -> Dict: self.run_eval_tester(A ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def A ( self : Union[str, Any] , A : Optional[Any] ) -> Optional[Any]: lowercase_ : List[Any] = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' lowercase_ : Optional[int] = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() lowercase_ : List[Any] = { '''en''': ['''Machine learning is great, isn\'t it?''', '''I like to eat bananas''', '''Tomorrow is another great day!'''], '''de''': [ '''Maschinelles Lernen ist großartig, oder?''', '''Ich esse gerne Bananen''', '''Morgen ist wieder ein toller Tag!''', ], } lowercase_ : str = Path(self.get_auto_remove_tmp_dir() ) lowercase_ : List[str] = str(tmp_dir / '''scores.json''' ) lowercase_ : Optional[Any] = str(tmp_dir / '''val.target''' ) _dump_articles(A , text['''en'''] ) _dump_articles(A , text['''de'''] ) lowercase_ : Union[str, Any] = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' lowercase_ : int = F''' run_eval_search.py {model} {str(A )} {str(A )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0'''] ) with patch.object(A , '''argv''' , A ): with CaptureStdout() as cs: run_search() lowercase_ : Dict = [''' num_beams | length_penalty''', model, '''Best score args'''] lowercase_ : List[str] = ['''Info'''] if "translation" in task: expected_strings.append('''bleu''' ) else: expected_strings.extend(A ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(A ).exists() os.remove(Path(A ) )
141
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Any = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : str = "OwlViTImageProcessor" SCREAMING_SNAKE_CASE_ : Optional[int] = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : str , A : str=None , A : List[Any]=None , **A : Union[str, Any] ) -> Tuple: lowercase_ : Dict = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , A , ) lowercase_ : List[Any] = kwargs.pop('''feature_extractor''' ) lowercase_ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(A , A ) def __call__( self : List[Any] , A : List[Any]=None , A : Any=None , A : List[str]=None , A : int="max_length" , A : Optional[Any]="np" , **A : Tuple ) -> Optional[Any]: if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(A , A ) or (isinstance(A , A ) and not isinstance(text[0] , A )): lowercase_ : Any = [self.tokenizer(A , padding=A , return_tensors=A , **A )] elif isinstance(A , A ) and isinstance(text[0] , A ): lowercase_ : int = [] # Maximum number of queries across batch lowercase_ : str = max([len(A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A ) != max_num_queries: lowercase_ : Union[str, Any] = t + [''' '''] * (max_num_queries - len(A )) lowercase_ : List[Any] = self.tokenizer(A , padding=A , return_tensors=A , **A ) encodings.append(A ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": lowercase_ : Optional[Any] = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) lowercase_ : List[Any] = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowercase_ : Tuple = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) lowercase_ : str = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowercase_ : Any = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) lowercase_ : Optional[Any] = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowercase_ : Union[str, Any] = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) lowercase_ : str = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) lowercase_ : Tuple = BatchEncoding() lowercase_ : int = input_ids lowercase_ : Optional[Any] = attention_mask if query_images is not None: lowercase_ : Optional[Any] = BatchEncoding() lowercase_ : Union[str, Any] = self.image_processor( A , return_tensors=A , **A ).pixel_values lowercase_ : Union[str, Any] = query_pixel_values if images is not None: lowercase_ : Union[str, Any] = self.image_processor(A , return_tensors=A , **A ) if text is not None and images is not None: lowercase_ : List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowercase_ : Any = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A ) , tensor_type=A ) def A ( self : List[str] , *A : int , **A : Dict ) -> Optional[int]: return self.image_processor.post_process(*A , **A ) def A ( self : Tuple , *A : str , **A : List[str] ) -> Dict: return self.image_processor.post_process_object_detection(*A , **A ) def A ( self : Union[str, Any] , *A : List[str] , **A : str ) -> Any: return self.image_processor.post_process_image_guided_detection(*A , **A ) def A ( self : List[Any] , *A : Any , **A : Any ) -> List[str]: return self.tokenizer.batch_decode(*A , **A ) def A ( self : List[Any] , *A : List[Any] , **A : int ) -> Union[str, Any]: return self.tokenizer.decode(*A , **A ) @property def A ( self : Optional[int] ) -> Tuple: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , A , ) return self.image_processor_class @property def A ( self : List[Any] ) -> List[Any]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , A , ) return self.image_processor
141
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) a = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house a = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim a = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): a = model(__lowerCamelCase )['''last_hidden_state'''].detach() self.assertEqual(output.shape ,__lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,__lowerCamelCase ,atol=1e-3 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) a = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house a = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim a = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): a = model(__lowerCamelCase )['''last_hidden_state'''].detach() self.assertEqual(output.shape ,__lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,__lowerCamelCase ,atol=1e-3 ) )
387
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> float: """simple docstring""" return sum(c * (x**i) for i, c in enumerate(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> float: """simple docstring""" a = 0.0 for coeff in reversed(snake_case_ ): a = result * x + coeff return result if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase__ : int = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
387
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): snake_case : Union[str, Any] = 'markuplm' def __init__( self , __lowerCAmelCase=30522 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase=256 , __lowerCAmelCase=1024 , __lowerCAmelCase=216 , __lowerCAmelCase=1001 , __lowerCAmelCase=32 , __lowerCAmelCase=50 , __lowerCAmelCase="absolute" , __lowerCAmelCase=True , __lowerCAmelCase=None , **__lowerCAmelCase , ): super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = use_cache UpperCamelCase__ = classifier_dropout # additional properties UpperCamelCase__ = max_depth UpperCamelCase__ = max_xpath_tag_unit_embeddings UpperCamelCase__ = max_xpath_subs_unit_embeddings UpperCamelCase__ = tag_pad_id UpperCamelCase__ = subs_pad_id UpperCamelCase__ = xpath_unit_hidden_size
714
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Optional[int] = """luke""" def __init__( self , __lowerCAmelCase=50267 , __lowerCAmelCase=500000 , __lowerCAmelCase=768 , __lowerCAmelCase=256 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , **__lowerCAmelCase , ): super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) UpperCamelCase__ = vocab_size UpperCamelCase__ = entity_vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = entity_emb_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = use_entity_aware_attention UpperCamelCase__ = classifier_dropout
548
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_lowercase ) class lowerCamelCase_ ( _lowercase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _lowercase : str = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowercase : ClassVar[Features] = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) _lowercase : ClassVar[Features] = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) _lowercase : str = "question" _lowercase : str = "context" _lowercase : str = "answers" @property def lowerCAmelCase_ ( self : Union[str, Any] ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
17
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> int: if not isinstance(a__ ,a__ ): raise TypeError("""Input value must be an 'int' type""" ) __A : Union[str, Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
17
1
"""simple docstring""" import numpy as np def UpperCamelCase_ ( lowerCamelCase : np.ndarray ) -> np.ndarray: """simple docstring""" return 1 / (1 + np.exp(-vector )) def UpperCamelCase_ ( lowerCamelCase : np.ndarray ) -> np.ndarray: """simple docstring""" return vector * sigmoid(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
719
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow A = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self : Dict , snake_case : Path , snake_case : Union[str, None] = None , snake_case : Union[List[str], None] = None , snake_case : Union[str, List[str], None] = None , snake_case : bool = True , ) -> int: '''simple docstring''' __magic_name__ : List[str] = [file for file in os.listdir(snake_case ) if os.path.isfile(os.path.join(snake_case , snake_case ) )] if identifier is not None: __magic_name__ : Tuple = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(snake_case , snake_case ): for n_ in n_identifier: __magic_name__ : int = [file for file in files if n_ not in file] else: __magic_name__ : Tuple = [file for file in files if n_identifier not in file] __magic_name__ : Tuple = ignore_files or [] ignore_files.append('''__init__.py''' ) __magic_name__ : Any = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , snake_case ) if only_modules: __magic_name__ : List[Any] = file.split('''.''' )[0] try: __magic_name__ : Dict = getattr(snake_case , snake_case ) __magic_name__ : List[str] = doctest.DocTestSuite(snake_case ) __magic_name__ : Dict = unittest.TextTestRunner().run(snake_case ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f"""{module_identifier} is not a module.""" ) else: __magic_name__ : Tuple = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _UpperCAmelCase ( self : str ) -> Optional[int]: '''simple docstring''' __magic_name__ : int = Path('''src/transformers''' ) __magic_name__ : str = '''modeling''' __magic_name__ : str = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(snake_case , identifier=snake_case , ignore_files=snake_case ) def _UpperCAmelCase ( self : Any ) -> Optional[Any]: '''simple docstring''' __magic_name__ : Dict = Path('''src/transformers''' ) __magic_name__ : Union[str, Any] = '''tokenization''' self.analyze_directory(snake_case , identifier=snake_case ) def _UpperCAmelCase ( self : Any ) -> Dict: '''simple docstring''' __magic_name__ : Any = Path('''src/transformers''' ) __magic_name__ : int = '''configuration''' self.analyze_directory(snake_case , identifier=snake_case ) def _UpperCAmelCase ( self : str ) -> List[str]: '''simple docstring''' __magic_name__ : List[str] = Path('''src/transformers''' ) __magic_name__ : str = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(snake_case , n_identifier=snake_case ) def _UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' __magic_name__ : Any = Path('''docs/source''' ) __magic_name__ : str = ['''favicon.ico'''] self.analyze_directory(snake_case , ignore_files=snake_case , only_modules=snake_case )
147
0
def _snake_case (_snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Dict , _snake_case : Dict , _snake_case : Tuple , _snake_case : str) -> Dict: if index == r: for j in range(_snake_case): print(data[j] , end=' ') print(' ') return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location _lowercase =arr[i] combination_util(_snake_case , _snake_case , _snake_case , index + 1 , _snake_case , i + 1) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , i + 1) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _snake_case (_snake_case : Any , _snake_case : List[str] , _snake_case : List[Any]) -> int: # A temporary array to store all combination one by one _lowercase =[0] * r # Print all combination using temporary array 'data[]' combination_util(_snake_case , _snake_case , _snake_case , 0 , _snake_case , 0) if __name__ == "__main__": # Driver code to check the function above _SCREAMING_SNAKE_CASE = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
181
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @property def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" torch.manual_seed(0) _lowercase =UNetaDModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=('DownBlock2D', 'AttnDownBlock2D'), up_block_types=('AttnUpBlock2D', 'UpBlock2D'), ) return model def UpperCamelCase__ ( self :str): """simple docstring""" _lowercase =self.dummy_uncond_unet _lowercase =ScoreSdeVeScheduler() _lowercase =ScoreSdeVePipeline(unet=snake_case, scheduler=snake_case) sde_ve.to(snake_case) sde_ve.set_progress_bar_config(disable=snake_case) _lowercase =torch.manual_seed(0) _lowercase =sde_ve(num_inference_steps=2, output_type='numpy', generator=snake_case).images _lowercase =torch.manual_seed(0) _lowercase =sde_ve(num_inference_steps=2, output_type='numpy', generator=snake_case, return_dict=snake_case)[ 0 ] _lowercase =image[0, -3:, -3:, -1] _lowercase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self :int): """simple docstring""" _lowercase ='google/ncsnpp-church-256' _lowercase =UNetaDModel.from_pretrained(snake_case) _lowercase =ScoreSdeVeScheduler.from_pretrained(snake_case) _lowercase =ScoreSdeVePipeline(unet=snake_case, scheduler=snake_case) sde_ve.to(snake_case) sde_ve.set_progress_bar_config(disable=snake_case) _lowercase =torch.manual_seed(0) _lowercase =sde_ve(num_inference_steps=10, output_type='numpy', generator=snake_case).images _lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowercase =np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
181
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Optional[int] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Optional[int] = { "moussaKam/mbarthez": 1_024, "moussaKam/barthez": 1_024, "moussaKam/barthez-orangesum-title": 1_024, } SCREAMING_SNAKE_CASE : Union[str, Any] = "▁" class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : List[str] =VOCAB_FILES_NAMES lowercase : List[Any] =PRETRAINED_VOCAB_FILES_MAP lowercase : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[Any] =["""input_ids""", """attention_mask"""] lowercase : Union[str, Any] =BarthezTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it lowercase_ :Optional[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase_ :Optional[Any] = vocab_file lowercase_ :List[Any] = False if not self.vocab_file else True def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ :Optional[int] = [self.cls_token_id] lowercase_ :Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ): lowercase_ :Optional[int] = [self.sep_token_id] lowercase_ :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase_ :str = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
441
from __future__ import annotations def UpperCamelCase ( _a , _a = None , _a = None ) -> None: '''simple docstring''' if start is None: lowercase_ :str = 0 if end is None: lowercase_ :str = len(_a ) - 1 if start >= end: return lowercase_ :Dict = (start + end) // 2 slowsort(_a , _a , _a ) slowsort(_a , mid + 1 , _a ) if sequence[end] < sequence[mid]: lowercase_ , lowercase_ :List[Any] = sequence[mid], sequence[end] slowsort(_a , _a , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
441
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 6_50, """eval_accuracy""": 0.6, """eval_loss""": 0.9}, }, { """framework""": """tensorflow""", """script""": """run_tf.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 6_00, """eval_accuracy""": 0.3, """eval_loss""": 0.9}, }, ] ) class a__( unittest.TestCase ): def lowercase_ ( self : List[Any] ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='utf-8' , check=__snake_case , ) assert hasattr(self , 'env' ) def lowercase_ ( self : List[Any] , __snake_case : Union[str, Any]=1 ): # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='py36' , ) def lowercase_ ( self : int , __snake_case : Any ): TrainingJobAnalytics(__snake_case ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) def lowercase_ ( self : List[Any] ): # create estimator a : Optional[Any] = self.create_estimator() # run training estimator.fit() # result dataframe a : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis a : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) a : List[str] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping a : Any = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __snake_case )
526
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a__( lowerCamelCase__ ): lowercase__ = ["""image_processor""", """tokenizer"""] lowercase__ = """BridgeTowerImageProcessor""" lowercase__ = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : int , __snake_case : str , __snake_case : List[str] ): super().__init__(__snake_case , __snake_case ) def __call__( self : int , __snake_case : Optional[Any] , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : List[Any] , ): a : Optional[int] = self.tokenizer( text=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel_values + pixel_mask a : List[str] = self.image_processor( __snake_case , return_tensors=__snake_case , do_normalize=__snake_case , do_center_crop=__snake_case , **__snake_case ) encoding.update(__snake_case ) return encoding def lowercase_ ( self : int , *__snake_case : List[str] , **__snake_case : List[str] ): return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowercase_ ( self : List[str] , *__snake_case : Tuple , **__snake_case : Union[str, Any] ): return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def lowercase_ ( self : Optional[Any] ): a : Optional[Any] = self.tokenizer.model_input_names a : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
526
1
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase__ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : List[str], lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = TextaTextGenerationPipeline(model=lowerCamelCase, tokenizer=lowerCamelCase ) return generator, ["Something to write", "Something else"] def lowercase__ ( self : int, lowerCamelCase : Tuple, lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = generator('''Something there''' ) self.assertEqual(lowerCamelCase, [{'''generated_text''': ANY(lowerCamelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) lowercase__ = generator(['''This is great !''', '''Something else'''], num_return_sequences=2, do_sample=lowerCamelCase ) self.assertEqual( lowerCamelCase, [ [{'''generated_text''': ANY(lowerCamelCase )}, {'''generated_text''': ANY(lowerCamelCase )}], [{'''generated_text''': ANY(lowerCamelCase )}, {'''generated_text''': ANY(lowerCamelCase )}], ], ) lowercase__ = generator( ['''This is great !''', '''Something else'''], num_return_sequences=2, batch_size=2, do_sample=lowerCamelCase ) self.assertEqual( lowerCamelCase, [ [{'''generated_text''': ANY(lowerCamelCase )}, {'''generated_text''': ANY(lowerCamelCase )}], [{'''generated_text''': ANY(lowerCamelCase )}, {'''generated_text''': ANY(lowerCamelCase )}], ], ) with self.assertRaises(lowerCamelCase ): generator(4 ) @require_torch def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = pipeline('''text2text-generation''', model='''patrickvonplaten/t5-tiny-random''', framework='''pt''' ) # do_sample=False necessary for reproducibility lowercase__ = generator('''Something there''', do_sample=lowerCamelCase ) self.assertEqual(lowerCamelCase, [{'''generated_text''': ''''''}] ) lowercase__ = 3 lowercase__ = generator( '''Something there''', num_return_sequences=lowerCamelCase, num_beams=lowerCamelCase, ) lowercase__ = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(lowerCamelCase, lowerCamelCase ) lowercase__ = generator('''This is a test''', do_sample=lowerCamelCase, num_return_sequences=2, return_tensors=lowerCamelCase ) self.assertEqual( lowerCamelCase, [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ) lowercase__ = generator.model.config.eos_token_id lowercase__ = '''<pad>''' lowercase__ = generator( ['''This is a test''', '''This is a second test'''], do_sample=lowerCamelCase, num_return_sequences=2, batch_size=2, return_tensors=lowerCamelCase, ) self.assertEqual( lowerCamelCase, [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ], ) @require_tf def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = pipeline('''text2text-generation''', model='''patrickvonplaten/t5-tiny-random''', framework='''tf''' ) # do_sample=False necessary for reproducibility lowercase__ = generator('''Something there''', do_sample=lowerCamelCase ) self.assertEqual(lowerCamelCase, [{'''generated_text''': ''''''}] )
716
import argparse import os import re A__ : Optional[int] = 'src/transformers' # Pattern that looks at the indentation in a line. A__ : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. A__ : List[str] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A__ : List[Any] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. A__ : int = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A__ : Tuple = re.compile(r'\[([^\]]+)\]') def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = _re_indent.search(lowerCamelCase_ ) return "" if search is None else search.groups()[0] def a ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None ): '''simple docstring''' lowercase__ = 0 lowercase__ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCamelCase_ ): index += 1 lowercase__ = ['''\n'''.join(lines[:index] )] else: lowercase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase__ = [lines[index]] index += 1 while index < len(lowerCamelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCamelCase_ ) ) if index < len(lowerCamelCase_ ) - 1: lowercase__ = [lines[index + 1]] index += 1 else: lowercase__ = [] else: blocks.append('''\n'''.join(lowerCamelCase_ ) ) lowercase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase_ ) > 0: blocks.append('''\n'''.join(lowerCamelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def a ( lowerCamelCase_ ): '''simple docstring''' def _inner(lowerCamelCase_ ): return key(lowerCamelCase_ ).lower().replace('''_''' , '''''' ) return _inner def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(lowerCamelCase_ ): return x if key is None: lowercase__ = noop # Constants are all uppercase, they go first. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase__ = [obj for obj in objects if key(lowerCamelCase_ )[0].isupper() and not key(lowerCamelCase_ ).isupper()] # Functions begin with a lowercase, they go last. lowercase__ = [obj for obj in objects if not key(lowerCamelCase_ )[0].isupper()] lowercase__ = ignore_underscore(lowerCamelCase_ ) return sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) + sorted(lowerCamelCase_ , key=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(lowerCamelCase_ ): lowercase__ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) + "]" lowercase__ = import_statement.split('''\n''' ) if len(lowerCamelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase__ = 2 if lines[1].strip() == '''[''' else 1 lowercase__ = [(i, _re_strip_line.search(lowerCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase__ = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] ) lowercase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCamelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase__ = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ = keys[:-1] lowercase__ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase_ )] ) return "\n".join(lowerCamelCase_ ) else: # Finally we have to deal with imports fitting on one line lowercase__ = _re_bracket_content.sub(_replace , lowerCamelCase_ ) return import_statement def a ( lowerCamelCase_ , lowerCamelCase_=True ): '''simple docstring''' with open(lowerCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase__ = split_code_in_indented_blocks( lowerCamelCase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase__ = main_blocks[block_idx] lowercase__ = block.split('''\n''' ) # Get to the start of the imports. lowercase__ = 0 while line_idx < len(lowerCamelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase__ = len(lowerCamelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCamelCase_ ): continue # Ignore beginning and last line: they don't contain anything. lowercase__ = '''\n'''.join(block_lines[line_idx:-1] ) lowercase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase__ = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase__ = [(pattern.search(lowerCamelCase_ ).groups()[0] if pattern.search(lowerCamelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase__ = [(i, key) for i, key in enumerate(lowerCamelCase_ ) if key is not None] lowercase__ = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase__ = 0 lowercase__ = [] for i in range(len(lowerCamelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCamelCase_ ) count += 1 # And we put our main block back together with its first and last line. lowercase__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCamelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCamelCase_ ) ) def a ( lowerCamelCase_=True ): '''simple docstring''' lowercase__ = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: lowercase__ = sort_imports(os.path.join(lowerCamelCase_ , '''__init__.py''' ) , check_only=lowerCamelCase_ ) if result: lowercase__ = [os.path.join(lowerCamelCase_ , '''__init__.py''' )] if len(lowerCamelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A__ : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
671
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = '▁' a_ = {'vocab_file': 'sentencepiece.bpe.model'} a_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } a_ = { 'facebook/xglm-564M': 2_048, } class _lowercase ( snake_case_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self : str , snake_case : Any , snake_case : int="<s>" , snake_case : List[Any]="</s>" , snake_case : Optional[int]="</s>" , snake_case : Tuple="<s>" , snake_case : Union[str, Any]="<unk>" , snake_case : List[Any]="<pad>" , snake_case : Optional[Dict[str, Any]] = None , **snake_case : List[str] , ) -> None: """simple docstring""" UpperCamelCase_ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCamelCase_ : str = 7 UpperCamelCase_ : str = [f"<madeupword{i}>" for i in range(self.num_madeup_words )] UpperCamelCase_ : List[Any] = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , cls_token=snake_case , pad_token=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) UpperCamelCase_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case ) ) UpperCamelCase_ : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase_ : Any = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase_ : List[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} UpperCamelCase_ : Optional[Any] = len(self.sp_model ) UpperCamelCase_ : Any = {f"<madeupword{i}>": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(snake_case ) UpperCamelCase_ : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[str] ) -> int: """simple docstring""" UpperCamelCase_ : List[Any] = self.__dict__.copy() UpperCamelCase_ : str = None UpperCamelCase_ : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , snake_case : Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Optional[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase_ : Dict = {} UpperCamelCase_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCamelCase_ : Union[str, Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is None: return [1] + ([0] * len(snake_case )) return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case )) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCamelCase_ : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Dict: """simple docstring""" UpperCamelCase_ : int = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(snake_case , out_type=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase_ : Optional[int] = self.sp_model.PieceToId(snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : List[Any] ) -> int: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : int ) -> str: """simple docstring""" UpperCamelCase_ : int = ''.join(snake_case ).replace(snake_case , ' ' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase_ : Dict = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , 'wb' ) as fi: UpperCamelCase_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
417
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['ConvNextFeatureExtractor'] a_ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
417
1
import os from datetime import datetime as dt from github import Github _SCREAMING_SNAKE_CASE = [ '''good first issue''', '''feature request''', '''wip''', ] def _lowerCAmelCase ( ): __lowercase = Github(os.environ['''GITHUB_TOKEN'''] ) __lowercase = g.get_repo('''huggingface/accelerate''' ) __lowercase = repo.get_issues(state='''open''' ) for issue in open_issues: __lowercase = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCamelCase_ : i.created_at , reverse=lowerCamelCase_ ) __lowercase = comments[0] if len(lowerCamelCase_ ) > 0 else None __lowercase = dt.utcnow() __lowercase = (current_time - issue.updated_at).days __lowercase = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 2_3 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
704
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ): __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase_ ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
56
0
"""simple docstring""" def lowercase_ ( _snake_case ): if edge <= 0 or not isinstance(_snake_case ,_snake_case ): raise ValueError("""Length must be a positive.""" ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def lowercase_ ( _snake_case ): if edge <= 0 or not isinstance(_snake_case ,_snake_case ): raise ValueError("""Length must be a positive.""" ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
223
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase_ (a__ ): """simple docstring""" def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """tf_padding""" ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """depth_multiplier""" ) ) class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=0.25 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=10_24 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__="relu6" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=None , ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : Dict = num_channels SCREAMING_SNAKE_CASE__ : str = image_size SCREAMING_SNAKE_CASE__ : Any = depth_multiplier SCREAMING_SNAKE_CASE__ : int = min_depth SCREAMING_SNAKE_CASE__ : Any = tf_padding SCREAMING_SNAKE_CASE__ : int = int(last_hidden_size * depth_multiplier ) SCREAMING_SNAKE_CASE__ : Any = output_stride SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE__ : int = classifier_dropout_prob SCREAMING_SNAKE_CASE__ : str = use_labels SCREAMING_SNAKE_CASE__ : Any = is_training SCREAMING_SNAKE_CASE__ : Dict = num_labels SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : Tuple = scope def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : List[Any] = None SCREAMING_SNAKE_CASE__ : str = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ : int = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ (self ) -> List[Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = MobileNetVaModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE__ : int = MobileNetVaForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = config_and_inputs SCREAMING_SNAKE_CASE__ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ (a__ , a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () __UpperCamelCase : Dict = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) __UpperCamelCase : Tuple = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Tuple = False def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = MobileNetVaModelTester(self ) SCREAMING_SNAKE_CASE__ : Optional[Any] = MobileNetVaConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" ) def __magic_name__ (self ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" ) def __magic_name__ (self ) -> Any: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not output attentions""" ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" pass def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Dict = model_class(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Tuple: """simple docstring""" def check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : str = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[str] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : List[str] = outputs.hidden_states SCREAMING_SNAKE_CASE__ : Tuple = 26 self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : int = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : str = MobileNetVaModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def __magic_name__ (self ) -> str: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None ) @slow def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = self.default_image_processor SCREAMING_SNAKE_CASE__ : int = prepare_img() SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits SCREAMING_SNAKE_CASE__ : List[Any] = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
223
1
import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _lowerCamelCase : Optional[int] = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def __lowerCamelCase(): SCREAMING_SNAKE_CASE = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: SCREAMING_SNAKE_CASE = get_sagemaker_input() else: SCREAMING_SNAKE_CASE = get_cluster_input() return config def __lowerCamelCase(UpperCAmelCase__ : int=None ): if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser("config" , description=UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate config command" , description=UpperCAmelCase__ ) parser.add_argument( "--config_file" , default=UpperCAmelCase__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def __lowerCamelCase(UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE = get_user_input() if args.config_file is not None: SCREAMING_SNAKE_CASE = args.config_file else: if not os.path.isdir(UpperCAmelCase__ ): os.makedirs(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(UpperCAmelCase__ ) else: config.to_yaml_file(UpperCAmelCase__ ) print(F"accelerate configuration saved at {config_file}" ) def __lowerCamelCase(): SCREAMING_SNAKE_CASE = config_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() config_command(UpperCAmelCase__ ) if __name__ == "__main__": main()
721
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : List[Any] = '''▁''' _lowerCamelCase : Optional[int] = {'''vocab_file''': '''prophetnet.tokenizer'''} _lowerCamelCase : str = { '''vocab_file''': { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer''' ), } } _lowerCamelCase : Optional[Any] = { '''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False}, } _lowerCamelCase : Optional[Any] = { '''microsoft/xprophetnet-large-wiki100-cased''': 5_12, } def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE = collections.OrderedDict() with open(UpperCAmelCase__ , "r" , encoding="utf-8" ) as reader: SCREAMING_SNAKE_CASE = reader.readlines() for index, token in enumerate(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = token.rstrip("\n" ) SCREAMING_SNAKE_CASE = index return vocab class lowercase ( a ): lowercase__ : Optional[int] = VOCAB_FILES_NAMES lowercase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Any = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : str="[SEP]" , _UpperCamelCase : str="[SEP]" , _UpperCamelCase : Dict="[SEP]" , _UpperCamelCase : Tuple="[UNK]" , _UpperCamelCase : Dict="[PAD]" , _UpperCamelCase : Any="[CLS]" , _UpperCamelCase : Optional[Any]="[MASK]" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , sep_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab SCREAMING_SNAKE_CASE = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): SCREAMING_SNAKE_CASE = F"[unused{i}]" SCREAMING_SNAKE_CASE = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(_UpperCamelCase ) def __getstate__( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self : List[Any] , _UpperCamelCase : Union[str, Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __snake_case( self : Dict , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def __snake_case( self : str , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __snake_case( self : Dict ) -> Optional[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def __snake_case( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __snake_case( self : Union[str, Any] , _UpperCamelCase : str ) -> str: '''simple docstring''' return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def __snake_case( self : Optional[Any] , _UpperCamelCase : List[Any] ) -> List[str]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __snake_case( self : str , _UpperCamelCase : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __snake_case( self : List[str] , _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = "".join(_UpperCamelCase ).replace(_UpperCamelCase , " " ).strip() return out_string def __snake_case( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_UpperCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( _UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , "wb" ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def __snake_case( self : Optional[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
647
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __lowercase ( snake_case, snake_case ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __magic_name__ :Optional[Any] = flax_key_tuple[:-1] + ('''weight''',) __magic_name__ :Tuple = torch.permute(snake_case, (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case ): # linear layer __magic_name__ :Dict = flax_key_tuple[:-1] + ('''weight''',) __magic_name__ :Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __magic_name__ :List[str] = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" if "metadata" in layer: __magic_name__ :List[str] = layer.split('''metadata''' ) __magic_name__ :int = ''''''.join(split_layer[0] )[:-1] __magic_name__ :Optional[Any] = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: __magic_name__ :Union[str, Any] = layer.split('''kvstore''' ) __magic_name__ :int = ''''''.join(split_layer[0] )[:-1] __magic_name__ :List[str] = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: __magic_name__ :Dict = layer.split('''/''' ) __magic_name__ :Union[str, Any] = '''/'''.join(split_layer[:-1] ) __magic_name__ :Dict = (split_layer[-1],) if "kvstore/path" in layer: __magic_name__ :Optional[Any] = f'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: __magic_name__ :Optional[Any] = '''file''' else: __magic_name__ :Union[str, Any] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __lowercase ( snake_case, snake_case ): """simple docstring""" __magic_name__ :Tuple = rename_keys(snake_case ) __magic_name__ :List[str] = {} for k, v in current_block.items(): __magic_name__ :Union[str, Any] = v __magic_name__ :List[str] = new_current_block torch.save(snake_case, snake_case ) def __lowercase ( snake_case, snake_case, snake_case, snake_case, snake_case = WEIGHTS_NAME ): """simple docstring""" __magic_name__ :Union[str, Any] = convert_file_size_to_int(snake_case ) __magic_name__ :Union[str, Any] = [] __magic_name__ :Optional[Any] = {} __magic_name__ :Optional[int] = 0 __magic_name__ :Optional[int] = 0 os.makedirs(snake_case, exist_ok=snake_case ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''', '''rb''' ) as fp: __magic_name__ :List[Any] = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] __magic_name__ :List[Any] = flatten_dict(snake_case, sep='''/''' ) __magic_name__ :Any = {} for layer in checkpoint_info.keys(): __magic_name__ , __magic_name__ , __magic_name__ :Optional[Any] = get_key_and_tensorstore_dict( snake_case, snake_case, snake_case ) if curr_real_layer_name in all_layers: __magic_name__ :str = content else: __magic_name__ :Union[str, Any] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __magic_name__ :Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __magic_name__ :str = torch.tensor(snake_case ) __magic_name__ :List[str] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __magic_name__ , __magic_name__ :Optional[Any] = rename_base_flax_keys(tuple(key.split('''/''' ) ), snake_case ) __magic_name__ :Optional[Any] = '''/'''.join(snake_case ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __magic_name__ :Union[str, Any] = os.path.join( snake_case, weights_name.replace('''.bin''', f'''-{len(snake_case )+1:05d}-of-???.bin''' ) ) rename_and_save_block(snake_case, snake_case ) sharded_state_dicts.append(current_block.keys() ) del current_block __magic_name__ :Union[str, Any] = {} __magic_name__ :List[str] = 0 __magic_name__ :int = raw_weights.to(getattr(snake_case, snake_case ) ) current_block_size += weight_size total_size += weight_size # Add the last block __magic_name__ :int = os.path.join(snake_case, weights_name.replace('''.bin''', f'''-{len(snake_case )+1:05d}-of-???.bin''' ) ) rename_and_save_block(snake_case, snake_case ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(snake_case ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __magic_name__ :Union[str, Any] = {} __magic_name__ :Union[str, Any] = {} for idx, shard in enumerate(snake_case ): __magic_name__ :Union[str, Any] = weights_name.replace( '''.bin''', f'''-{idx+1:05d}-of-{len(snake_case ):05d}.bin''' ) # len(sharded_state_dicts):05d} __magic_name__ :Dict = os.path.join(snake_case, weights_name.replace('''.bin''', f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(snake_case, os.path.join(snake_case, snake_case ) ) __magic_name__ :str = shard for key in shard: __magic_name__ :List[str] = shard_file # Add the metadata __magic_name__ :List[Any] = {'''total_size''': total_size} __magic_name__ :int = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(snake_case, snake_case ), '''w''', encoding='''utf-8''' ) as f: __magic_name__ :Any = json.dumps(snake_case, indent=2, sort_keys=snake_case ) + '''\n''' f.write(snake_case ) return metadata, index if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) SCREAMING_SNAKE_CASE__ : Optional[int] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __lowercase ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __magic_name__ :int = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) __magic_name__ :List[Any] = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''', device_map='''auto''' ) __magic_name__ :int = TaTokenizer.from_pretrained('''t5-small''' ) __magic_name__ :List[Any] = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' __magic_name__ :Optional[Any] = tokenizer(snake_case, return_tensors='''pt''' ).input_ids __magic_name__ :Any = model.generate(snake_case, decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
0
import torch from torch import nn class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self: int , __lowerCAmelCase: List[Any] , __lowerCAmelCase: str , __lowerCAmelCase: int , __lowerCAmelCase: List[Any] , __lowerCAmelCase: Dict=1 , __lowerCAmelCase: Union[str, Any]=False ) -> int: '''simple docstring''' super().__init__() __UpperCAmelCase = n_token __UpperCAmelCase = d_embed __UpperCAmelCase = d_proj __UpperCAmelCase = cutoffs + [n_token] __UpperCAmelCase = [0] + self.cutoffs __UpperCAmelCase = div_val __UpperCAmelCase = self.cutoffs[0] __UpperCAmelCase = len(self.cutoffs ) - 1 __UpperCAmelCase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: __UpperCAmelCase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) __UpperCAmelCase = nn.Parameter(torch.zeros(self.n_clusters ) ) __UpperCAmelCase = nn.ModuleList() __UpperCAmelCase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCAmelCase , __lowerCAmelCase ) ) ) else: self.out_projs.append(__lowerCAmelCase ) self.out_layers.append(nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): __UpperCAmelCase , __UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __UpperCAmelCase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCAmelCase , __lowerCAmelCase ) ) ) self.out_layers.append(nn.Linear(__lowerCAmelCase , r_idx - l_idx ) ) __UpperCAmelCase = keep_order def _UpperCAmelCase ( self: str , __lowerCAmelCase: int , __lowerCAmelCase: Optional[Any] , __lowerCAmelCase: Optional[Any] , __lowerCAmelCase: Dict ) -> Dict: '''simple docstring''' if proj is None: __UpperCAmelCase = nn.functional.linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: __UpperCAmelCase = nn.functional.linear(__lowerCAmelCase , proj.t().contiguous() ) __UpperCAmelCase = nn.functional.linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _UpperCAmelCase ( self: Optional[int] , __lowerCAmelCase: Optional[Any] , __lowerCAmelCase: Optional[Any]=None , __lowerCAmelCase: Union[str, Any]=False ) -> Tuple: '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n __UpperCAmelCase = hidden[..., :-1, :].contiguous() __UpperCAmelCase = labels[..., 1:].contiguous() __UpperCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) __UpperCAmelCase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: __UpperCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: __UpperCAmelCase = self._compute_logit(__lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: __UpperCAmelCase = labels != -100 __UpperCAmelCase = torch.zeros_like(__lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) __UpperCAmelCase = ( -nn.functional.log_softmax(__lowerCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: __UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) else: # construct weights and biases __UpperCAmelCase , __UpperCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __UpperCAmelCase , __UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __UpperCAmelCase = self.out_layers[0].weight[l_idx:r_idx] __UpperCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: __UpperCAmelCase = self.out_layers[i].weight __UpperCAmelCase = self.out_layers[i].bias if i == 0: __UpperCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __UpperCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCAmelCase ) biases.append(__lowerCAmelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = weights[0], biases[0], self.out_projs[0] __UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) if labels is None: __UpperCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: __UpperCAmelCase = torch.zeros_like(__lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) __UpperCAmelCase = 0 __UpperCAmelCase = [0] + self.cutoffs for i in range(len(__lowerCAmelCase ) - 1 ): __UpperCAmelCase , __UpperCAmelCase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: __UpperCAmelCase = (labels >= l_idx) & (labels < r_idx) __UpperCAmelCase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue __UpperCAmelCase = labels.index_select(0 , __lowerCAmelCase ) - l_idx __UpperCAmelCase = head_logprob.index_select(0 , __lowerCAmelCase ) __UpperCAmelCase = hidden.index_select(0 , __lowerCAmelCase ) else: __UpperCAmelCase = hidden if i == 0: if labels is not None: __UpperCAmelCase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: __UpperCAmelCase = head_logprob[:, : self.cutoffs[0]] else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = weights[i], biases[i], self.out_projs[i] __UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) __UpperCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: __UpperCAmelCase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: __UpperCAmelCase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i __UpperCAmelCase = logprob_i if labels is not None: if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0 , __lowerCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _UpperCAmelCase ( self: int , __lowerCAmelCase: Optional[Any] ) -> List[Any]: '''simple docstring''' if self.n_clusters == 0: __UpperCAmelCase = self._compute_logit(__lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) else: # construct weights and biases __UpperCAmelCase , __UpperCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __UpperCAmelCase , __UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __UpperCAmelCase = self.out_layers[0].weight[l_idx:r_idx] __UpperCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: __UpperCAmelCase = self.out_layers[i].weight __UpperCAmelCase = self.out_layers[i].bias if i == 0: __UpperCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __UpperCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCAmelCase ) biases.append(__lowerCAmelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = weights[0], biases[0], self.out_projs[0] __UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) __UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) __UpperCAmelCase = [0] + self.cutoffs for i in range(len(__lowerCAmelCase ) - 1 ): __UpperCAmelCase , __UpperCAmelCase = cutoff_values[i], cutoff_values[i + 1] if i == 0: __UpperCAmelCase = head_logprob[:, : self.cutoffs[0]] else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = weights[i], biases[i], self.out_projs[i] __UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) __UpperCAmelCase = head_logprob[:, -i] + tail_logprob_i __UpperCAmelCase = logprob_i return out
221
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCamelCase = 16 _UpperCamelCase = 32 def _lowerCAmelCase( UpperCAmelCase_ : Accelerator , UpperCAmelCase_ : int = 16 ) -> Union[str, Any]: lowerCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCAmelCase_ : Dict ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ = datasets.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCAmelCase_ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ = 8 else: lowerCAmelCase__ = None return tokenizer.pad( UpperCAmelCase_ , padding="""longest""" , max_length=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) lowerCAmelCase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _UpperCamelCase = mocked_dataloaders # noqa: F811 def _lowerCAmelCase( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int ) -> str: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCAmelCase_ ) == "1": lowerCAmelCase__ = 2 # New Code # lowerCAmelCase__ = int(args.gradient_accumulation_steps ) lowerCAmelCase__ = int(args.local_sgd_steps ) # Initialize accelerator lowerCAmelCase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=UpperCAmelCase_ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ = config["""lr"""] lowerCAmelCase__ = int(config["""num_epochs"""] ) lowerCAmelCase__ = int(config["""seed"""] ) lowerCAmelCase__ = int(config["""batch_size"""] ) lowerCAmelCase__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(UpperCAmelCase_ ) lowerCAmelCase__ ,lowerCAmelCase__ = get_dataloaders(UpperCAmelCase_ , UpperCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ = AdamW(params=model.parameters() , lr=UpperCAmelCase_ ) # Instantiate scheduler lowerCAmelCase__ = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(UpperCAmelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = accelerator.prepare( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Now we train the model for epoch in range(UpperCAmelCase_ ): model.train() with LocalSGD( accelerator=UpperCAmelCase_ , model=UpperCAmelCase_ , local_sgd_steps=UpperCAmelCase_ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(UpperCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(UpperCAmelCase_ ): lowerCAmelCase__ = model(**UpperCAmelCase_ ) lowerCAmelCase__ = output.loss accelerator.backward(UpperCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(UpperCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ = model(**UpperCAmelCase_ ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ ,lowerCAmelCase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCAmelCase_ , references=UpperCAmelCase_ , ) lowerCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase_ ) def _lowerCAmelCase( ) -> Optional[Any]: lowerCAmelCase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=UpperCAmelCase_ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=UpperCAmelCase_ , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
211
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": _UpperCamelCase = input("""Enter image url: """).strip() print(f'Downloading image from {url} ...') _UpperCamelCase = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image _UpperCamelCase = soup.find("""meta""", {"""property""": """og:image"""})["""content"""] _UpperCamelCase = requests.get(image_url).content _UpperCamelCase = f'{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg' with open(file_name, """wb""") as fp: fp.write(image_data) print(f'Done. Image saved to disk as {file_name}.')
211
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase__ = logging.get_logger(__name__) if is_vision_available(): import PIL class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = ['''pixel_values'''] def __init__( self : Union[str, Any] , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = True , **lowercase_ : Any , ) -> None: """simple docstring""" super().__init__(**lowercase_) _UpperCamelCase = size if size is not None else {"shortest_edge": 224} _UpperCamelCase = get_size_dict(lowercase_ , default_to_square=lowercase_) _UpperCamelCase = crop_size if crop_size is not None else {"height": 224, "width": 224} _UpperCamelCase = get_size_dict(lowercase_ , default_to_square=lowercase_ , param_name="crop_size") _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCamelCase = do_convert_rgb def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Dict , ) -> np.ndarray: """simple docstring""" _UpperCamelCase = get_size_dict(lowercase_ , default_to_square=lowercase_) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}') _UpperCamelCase = get_resize_output_image_size(lowercase_ , size=size["shortest_edge"] , default_to_square=lowercase_) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCAmelCase ( self : int , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[Any] , ) -> np.ndarray: """simple docstring""" _UpperCamelCase = get_size_dict(lowercase_) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}') return center_crop(lowercase_ , size=(size["height"], size["width"]) , data_format=lowercase_ , **lowercase_) def __UpperCAmelCase ( self : Any , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : List[Any] , ) -> Optional[int]: """simple docstring""" return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCAmelCase ( self : Union[str, Any] , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCAmelCase ( self : Dict , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : int = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowercase_ : int , ) -> PIL.Image.Image: """simple docstring""" _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(lowercase_ , param_name="size" , default_to_square=lowercase_) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(lowercase_ , param_name="crop_size" , default_to_square=lowercase_) _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCamelCase = make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCamelCase = [convert_to_rgb(lowercase_) for image in images] # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(lowercase_) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=lowercase_ , size=lowercase_) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=lowercase_ , scale=lowercase_) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) for image in images] _UpperCamelCase = [to_channel_dimension_format(lowercase_ , lowercase_) for image in images] _UpperCamelCase = {"pixel_values": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_)
547
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
547
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _lowercase: List[Any] = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Any , *lowercase__ : int , **lowercase__ : int ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__ )
716
def _lowerCamelCase ( snake_case = 50_000_000 ): _lowerCAmelCase = set() _lowerCAmelCase = int((limit - 24) ** (1 / 2) ) _lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , snake_case ) ) ) for primea in primes: _lowerCAmelCase = primea * primea for primea in primes: _lowerCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: _lowerCAmelCase = primea * primea * primea * primea _lowerCAmelCase = square + cube + tetr if total >= limit: break ret.add(snake_case ) return len(snake_case ) if __name__ == "__main__": print(f"""{solution() = }""")
225
0
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class a ( lowercase__ , lowercase__ ): """simple docstring""" a : Dict = 1 @register_to_config def __init__( self : int , __lowercase : int = 1000 , __lowercase : Optional[Union[np.ndarray, List[float]]] = None ) -> Union[str, Any]: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__lowercase ) # standard deviation of the initial noise distribution __UpperCAmelCase : List[Any] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. __UpperCAmelCase : List[Any] = 4 # running values __UpperCAmelCase : str = [] def UpperCAmelCase ( self : Union[str, Any] , __lowercase : int , __lowercase : Union[str, torch.device] = None ) -> int: __UpperCAmelCase : int = num_inference_steps __UpperCAmelCase : Union[str, Any] = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] __UpperCAmelCase : Union[str, Any] = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: __UpperCAmelCase : Dict = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: __UpperCAmelCase : Dict = torch.sin(steps * math.pi / 2 ) ** 2 __UpperCAmelCase : List[Any] = (1.0 - self.betas**2) ** 0.5 __UpperCAmelCase : Tuple = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] __UpperCAmelCase : Dict = timesteps.to(__lowercase ) __UpperCAmelCase : Optional[Any] = [] def UpperCAmelCase ( self : Optional[int] , __lowercase : torch.FloatTensor , __lowercase : int , __lowercase : torch.FloatTensor , __lowercase : bool = True , ) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) __UpperCAmelCase : List[str] = (self.timesteps == timestep).nonzero().item() __UpperCAmelCase : Optional[Any] = timestep_index + 1 __UpperCAmelCase : List[str] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__lowercase ) if len(self.ets ) == 1: __UpperCAmelCase : Tuple = self.ets[-1] elif len(self.ets ) == 2: __UpperCAmelCase : Union[str, Any] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: __UpperCAmelCase : Union[str, Any] = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: __UpperCAmelCase : List[Any] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) __UpperCAmelCase : Union[str, Any] = self._get_prev_sample(__lowercase , __lowercase , __lowercase , __lowercase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowercase ) def UpperCAmelCase ( self : Optional[Any] , __lowercase : torch.FloatTensor , *__lowercase : Optional[Any] , **__lowercase : Any ) -> torch.FloatTensor: return sample def UpperCAmelCase ( self : Tuple , __lowercase : Tuple , __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Dict ) -> str: __UpperCAmelCase : int = self.alphas[timestep_index] __UpperCAmelCase : Tuple = self.betas[timestep_index] __UpperCAmelCase : Any = self.alphas[prev_timestep_index] __UpperCAmelCase : List[str] = self.betas[prev_timestep_index] __UpperCAmelCase : List[str] = (sample - sigma * ets) / max(__lowercase , 1e-8 ) __UpperCAmelCase : List[Any] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : Tuple ) -> str: return self.config.num_train_timesteps
63
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase : List[str] = tempfile.mkdtemp() __UpperCamelCase : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] __UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __UpperCamelCase : Optional[Any] = { "do_resize": True, "size": {"height": 2_24, "width": 2_24}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], "do_convert_rgb": True, } __UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , __UpperCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self , **__UpperCamelCase ) -> Dict: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self , **__UpperCamelCase ) -> Any: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self , **__UpperCamelCase ) -> Dict: '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' __UpperCamelCase : Optional[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __UpperCamelCase : Dict = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' __UpperCamelCase : str = self.get_tokenizer() __UpperCamelCase : Union[str, Any] = self.get_rust_tokenizer() __UpperCamelCase : Any = self.get_image_processor() __UpperCamelCase : str = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) __UpperCamelCase : Optional[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCamelCase ) __UpperCamelCase : Union[str, Any] = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) __UpperCamelCase : Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer , __UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor , __UpperCamelCase ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Any = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase : Optional[Any] = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)" ) __UpperCamelCase : Tuple = self.get_image_processor(do_normalize=__UpperCamelCase ) __UpperCamelCase : List[Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=__UpperCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCamelCase ) def __lowerCamelCase ( self ) -> str: '''simple docstring''' __UpperCamelCase : List[str] = self.get_image_processor() __UpperCamelCase : List[str] = self.get_tokenizer() __UpperCamelCase : Tuple = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : Optional[Any] = self.prepare_image_inputs() __UpperCamelCase : List[str] = image_processor(__UpperCamelCase , return_tensors="np" ) __UpperCamelCase : List[Any] = processor(images=__UpperCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = self.get_image_processor() __UpperCamelCase : Union[str, Any] = self.get_tokenizer() __UpperCamelCase : int = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : int = "Alexandra,T-shirt的价格是15便士。" __UpperCamelCase : int = processor(text=__UpperCamelCase ) __UpperCamelCase : int = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : List[str] = self.get_image_processor() __UpperCamelCase : List[str] = self.get_tokenizer() __UpperCamelCase : Optional[int] = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : str = "Alexandra,T-shirt的价格是15便士。" __UpperCamelCase : List[Any] = self.prepare_image_inputs() __UpperCamelCase : Union[str, Any] = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' __UpperCamelCase : Tuple = self.get_image_processor() __UpperCamelCase : Any = self.get_tokenizer() __UpperCamelCase : Dict = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase : str = processor.batch_decode(__UpperCamelCase ) __UpperCamelCase : Dict = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : Optional[int] = self.get_image_processor() __UpperCamelCase : Tuple = self.get_tokenizer() __UpperCamelCase : Dict = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : Tuple = "Alexandra,T-shirt的价格是15便士。" __UpperCamelCase : Optional[int] = self.prepare_image_inputs() __UpperCamelCase : Tuple = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
327
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a_ ( unittest.TestCase ): def lowerCAmelCase__ ( self ): a_ = tempfile.mkdtemp() # fmt: off a_ = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on a_ = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) a_ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] a_ = {"""unk_token""": """<unk>"""} a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase ) ) a_ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], """image_std""": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } a_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def lowerCAmelCase__ ( self , **UpperCAmelCase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **UpperCAmelCase ) def lowerCAmelCase__ ( self , **UpperCAmelCase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **UpperCAmelCase ) def lowerCAmelCase__ ( self , **UpperCAmelCase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowerCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self ): a_ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] a_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self ): a_ = self.get_tokenizer() a_ = self.get_rust_tokenizer() a_ = self.get_image_processor() a_ = OwlViTProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) a_ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) a_ = OwlViTProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) a_ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a_ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) a_ = self.get_image_processor(do_normalize=UpperCAmelCase ) a_ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = self.get_image_processor() a_ = self.get_tokenizer() a_ = OwlViTProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) a_ = self.prepare_image_inputs() a_ = image_processor(UpperCAmelCase , return_tensors="""np""" ) a_ = processor(images=UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self ): a_ = self.get_image_processor() a_ = self.get_tokenizer() a_ = OwlViTProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) a_ = """lower newer""" a_ = processor(text=UpperCAmelCase , return_tensors="""np""" ) a_ = tokenizer(UpperCAmelCase , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def lowerCAmelCase__ ( self ): a_ = self.get_image_processor() a_ = self.get_tokenizer() a_ = OwlViTProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) a_ = """lower newer""" a_ = self.prepare_image_inputs() a_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def lowerCAmelCase__ ( self ): a_ = """google/owlvit-base-patch32""" a_ = OwlViTProcessor.from_pretrained(UpperCAmelCase ) a_ = ["""cat""", """nasa badge"""] a_ = processor(text=UpperCAmelCase ) a_ = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def lowerCAmelCase__ ( self ): a_ = """google/owlvit-base-patch32""" a_ = OwlViTProcessor.from_pretrained(UpperCAmelCase ) a_ = [["""cat""", """nasa badge"""], ["""person"""]] a_ = processor(text=UpperCAmelCase ) a_ = 16 a_ = len(UpperCAmelCase ) a_ = max([len(UpperCAmelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def lowerCAmelCase__ ( self ): a_ = """google/owlvit-base-patch32""" a_ = OwlViTProcessor.from_pretrained(UpperCAmelCase ) a_ = ["""cat""", """nasa badge"""] a_ = processor(text=UpperCAmelCase ) a_ = 16 a_ = inputs["""input_ids"""] a_ = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def lowerCAmelCase__ ( self ): a_ = self.get_image_processor() a_ = self.get_tokenizer() a_ = OwlViTProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) a_ = self.prepare_image_inputs() a_ = self.prepare_image_inputs() a_ = processor(images=UpperCAmelCase , query_images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def lowerCAmelCase__ ( self ): a_ = self.get_image_processor() a_ = self.get_tokenizer() a_ = OwlViTProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) a_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a_ = processor.batch_decode(UpperCAmelCase ) a_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
713
'''simple docstring''' def UpperCamelCase_ ( A__ = 50 ): a_ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
511
0
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __a = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __snake_case( _lowerCAmelCase=None ) -> Tuple: if subparsers is not None: snake_case__ : Union[str, Any] = subparsers.add_parser("""tpu-config""" , description=_description ) else: snake_case__ : Dict = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments snake_case__ : List[Any] = parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=_lowerCAmelCase , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=_lowerCAmelCase , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) snake_case__ : int = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=_lowerCAmelCase , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=_lowerCAmelCase ) return parser def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Dict = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_lowerCAmelCase ): snake_case__ : Optional[Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: snake_case__ : Tuple = defaults.command_file if not args.command and defaults.commands is not None: snake_case__ : List[Any] = defaults.commands if not args.tpu_name: snake_case__ : Any = defaults.tpu_name if not args.tpu_zone: snake_case__ : Tuple = defaults.tpu_zone if args.accelerate_version == "dev": snake_case__ : str = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": snake_case__ : int = """accelerate -U""" elif isinstance(parse(args.accelerate_version ) , _lowerCAmelCase ): snake_case__ : Dict = f"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: snake_case__ : List[str] = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _lowerCAmelCase ): snake_case__ : str = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate snake_case__ : Optional[int] = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [f"pip install {args.accelerate_version}"] new_cmd += args.command snake_case__ : Any = """; """.join(_lowerCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess snake_case__ : int = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f"Running {' '.join(_lowerCAmelCase )}" ) return subprocess.run(_lowerCAmelCase ) print("""Successfully setup pod.""" ) def __snake_case( ) -> Optional[int]: snake_case__ : List[Any] = tpu_command_parser() snake_case__ : Tuple = parser.parse_args() tpu_command_launcher(_lowerCAmelCase )
374
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __a = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def __snake_case( _lowerCAmelCase=True ) -> Dict: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_a ) ) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = None lowercase = None def lowerCamelCase ( self : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ): with TemporaryDirectory() as tmp_dir: snake_case__ : Dict = dataset_module_factory(snake_case_ , cache_dir=snake_case_ ) snake_case__ : Optional[int] = import_main_class(dataset_module.module_path , dataset=snake_case_ ) snake_case__ : DatasetBuilder = builder_cls( cache_dir=snake_case_ , config_name=snake_case_ , hash=dataset_module.hash , ) snake_case__ : Dict = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=snake_case_ ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) snake_case__ : List[str] = cached_path(snake_case_ , cache_dir=snake_case_ ) self.assertTrue(os.path.exists(snake_case_ ) ) @pytest.mark.integration def __snake_case( _lowerCAmelCase ) -> Tuple: snake_case__ : Optional[int] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" snake_case__ : Dict = dataset_module_factory("""wikipedia""" , cache_dir=_lowerCAmelCase ) snake_case__ : Dict = import_main_class(dataset_module.module_path ) snake_case__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam snake_case__ : Any = None builder_instance.download_and_prepare() snake_case__ : Union[str, Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ : Optional[int] = dataset_module_factory("""wikipedia""" , cache_dir=_lowerCAmelCase ) snake_case__ : List[str] = import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) snake_case__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) snake_case__ : Any = builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert "train" in ds assert isinstance(ds["""train"""] , _lowerCAmelCase ) assert next(iter(ds["""train"""] ) )
374
1
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets lowerCAmelCase_ : Tuple = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" lowerCAmelCase_ : List[Any] = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" lowerCAmelCase_ : List[str] = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def __UpperCAmelCase ( self : List[Any]) -> str: if version.parse(scb.__version__) < version.parse("1.4.12"): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`.") return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence"), "references": datasets.Sequence(datasets.Value("string" , id="sequence") , id="references"), }) , codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"] , reference_urls=[ "https://github.com/m-popovic/chrF", ] , ) def __UpperCAmelCase ( self : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int = CHRF.CHAR_ORDER , __lowerCAmelCase : int = CHRF.WORD_ORDER , __lowerCAmelCase : int = CHRF.BETA , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , ) -> Any: lowercase_ = len(references[0]) if any(len(__lowerCAmelCase) != references_per_prediction for refs in references): raise ValueError("Sacrebleu requires the same number of references for each prediction") lowercase_ = [[refs[i] for refs in references] for i in range(__lowerCAmelCase)] lowercase_ = CHRF(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) lowercase_ = sb_chrf.corpus_score(__lowerCAmelCase , __lowerCAmelCase) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
461
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ : Tuple = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } lowerCAmelCase_ : Dict = { "gpt2": 1_024, "gpt2-medium": 1_024, "gpt2-large": 1_024, "gpt2-xl": 1_024, "distilgpt2": 1_024, } class lowercase ( __lowerCamelCase ): lowerCamelCase_ =VOCAB_FILES_NAMES lowerCamelCase_ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ =['input_ids', 'attention_mask'] lowerCamelCase_ =GPTaTokenizer def __init__( self : Dict , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Any="<|endoftext|>" , __lowerCAmelCase : Union[str, Any]="<|endoftext|>" , __lowerCAmelCase : List[Any]="<|endoftext|>" , __lowerCAmelCase : Optional[Any]=False , **__lowerCAmelCase : Dict , ) -> int: super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase_ = kwargs.pop("add_bos_token" , __lowerCAmelCase) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , __lowerCAmelCase) != add_prefix_space: lowercase_ = getattr(__lowerCAmelCase , pre_tok_state.pop("type")) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**__lowerCAmelCase) lowercase_ = add_prefix_space def __UpperCAmelCase ( self : List[str] , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : str) -> BatchEncoding: lowercase_ = kwargs.get("is_split_into_words" , __lowerCAmelCase) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowerCAmelCase , **__lowerCAmelCase) def __UpperCAmelCase ( self : List[Any] , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Union[str, Any]) -> BatchEncoding: lowercase_ = kwargs.get("is_split_into_words" , __lowerCAmelCase) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowerCAmelCase , **__lowerCAmelCase) def __UpperCAmelCase ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None) -> Tuple[str]: lowercase_ = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase) return tuple(__lowerCAmelCase) def __UpperCAmelCase ( self : Tuple , __lowerCAmelCase : "Conversation") -> List[int]: lowercase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase) + [self.eos_token_id]) if len(__lowerCAmelCase) > self.model_max_length: lowercase_ = input_ids[-self.model_max_length :] return input_ids
461
1
def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = len(a ) SCREAMING_SNAKE_CASE_ : Tuple = len(matrix[0] ) SCREAMING_SNAKE_CASE_ : int = min(a , a ) for row in range(a ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , a ): SCREAMING_SNAKE_CASE_ : Any = matrix[col][row] / matrix[row][row] for i in range(a , a ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows SCREAMING_SNAKE_CASE_ : Union[str, Any] = True for i in range(row + 1 , a ): if matrix[i][row] != 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = matrix[i], matrix[row] SCREAMING_SNAKE_CASE_ : Union[str, Any] = False break if reduce: rank -= 1 for i in range(a ): SCREAMING_SNAKE_CASE_ : Any = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
511
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class _A ( __magic_name__): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
511
1
"""simple docstring""" _a : List[str] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def SCREAMING_SNAKE_CASE ( _lowerCamelCase : dict ,_lowerCamelCase : Any ,_lowerCamelCase : Tuple ) -> list[str]: _lowerCAmelCase : str = set() # keep track of all the paths to be checked _lowerCAmelCase : int = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _lowerCAmelCase : Optional[int] = queue.pop(0 ) # get the last node from the path _lowerCAmelCase : Union[str, Any] = path[-1] if node not in explored: _lowerCAmelCase : Union[str, Any] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _lowerCAmelCase : Optional[int] = list(_lowerCamelCase ) new_path.append(_lowerCamelCase ) queue.append(_lowerCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_lowerCamelCase ) # in case there's no path between the 2 nodes return [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : dict ,_lowerCamelCase : int ,_lowerCamelCase : List[str] ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _lowerCAmelCase : Tuple = [start] _lowerCAmelCase : Any = set(_lowerCamelCase ) # Keep tab on distances from `start` node. _lowerCAmelCase : int = {start: 0, target: -1} while queue: _lowerCAmelCase : Dict = queue.pop(0 ) if node == target: _lowerCAmelCase : Optional[int] = ( dist[node] if dist[target] == -1 else min(dist[target] ,dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_lowerCamelCase ) queue.append(_lowerCamelCase ) _lowerCAmelCase : List[str] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
663
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
663
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase_ : Optional[int] = { """configuration_chinese_clip""": [ """CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ChineseCLIPConfig""", """ChineseCLIPOnnxConfig""", """ChineseCLIPTextConfig""", """ChineseCLIPVisionConfig""", ], """processing_chinese_clip""": ["""ChineseCLIPProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""ChineseCLIPFeatureExtractor"""] lowerCamelCase_ : Dict = ["""ChineseCLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : int = [ """CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ChineseCLIPModel""", """ChineseCLIPPreTrainedModel""", """ChineseCLIPTextModel""", """ChineseCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys lowerCamelCase_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
548
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
155
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowercase__ : int = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : str = ['''ViTFeatureExtractor'''] lowercase__ : Optional[int] = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[Any] = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Any = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowercase__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
485
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Tuple = """linear""" _lowerCAmelCase : Optional[int] = """cosine""" _lowerCAmelCase : Optional[int] = """cosine_with_restarts""" _lowerCAmelCase : Union[str, Any] = """polynomial""" _lowerCAmelCase : Optional[Any] = """constant""" _lowerCAmelCase : Optional[Any] = """constant_with_warmup""" _lowerCAmelCase : Union[str, Any] = """piecewise_constant""" def __lowercase ( _a , _a = -1 ): return LambdaLR(_a , lambda _a : 1 , last_epoch=_a ) def __lowercase ( _a , _a , _a = -1 ): def lr_lambda(_a ): if current_step < num_warmup_steps: return float(_a ) / float(max(1.0 , _a ) ) return 1.0 return LambdaLR(_a , _a , last_epoch=_a ) def __lowercase ( _a , _a , _a = -1 ): snake_case_ : Dict = {} snake_case_ : Optional[Any] = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: snake_case_, snake_case_ : Union[str, Any] = rule_str.split(''':''' ) snake_case_ : Dict = int(_a ) snake_case_ : int = float(_a ) snake_case_ : Any = value snake_case_ : Any = float(rule_list[-1] ) def create_rules_function(_a , _a ): def rule_func(_a ) -> float: snake_case_ : Union[str, Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_a ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func snake_case_ : List[str] = create_rules_function(_a , _a ) return LambdaLR(_a , _a , last_epoch=_a ) def __lowercase ( _a , _a , _a , _a=-1 ): def lr_lambda(_a ): if current_step < num_warmup_steps: return float(_a ) / float(max(1 , _a ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_a , _a , _a ) def __lowercase ( _a , _a , _a , _a = 0.5 , _a = -1 ): def lr_lambda(_a ): if current_step < num_warmup_steps: return float(_a ) / float(max(1 , _a ) ) snake_case_ : str = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_a ) * 2.0 * progress )) ) return LambdaLR(_a , _a , _a ) def __lowercase ( _a , _a , _a , _a = 1 , _a = -1 ): def lr_lambda(_a ): if current_step < num_warmup_steps: return float(_a ) / float(max(1 , _a ) ) snake_case_ : int = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_a ) * progress) % 1.0) )) ) return LambdaLR(_a , _a , _a ) def __lowercase ( _a , _a , _a , _a=1E-7 , _a=1.0 , _a=-1 ): snake_case_ : List[str] = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(_a ): if current_step < num_warmup_steps: return float(_a ) / float(max(1 , _a ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: snake_case_ : Tuple = lr_init - lr_end snake_case_ : List[str] = num_training_steps - num_warmup_steps snake_case_ : str = 1 - (current_step - num_warmup_steps) / decay_steps snake_case_ : Optional[int] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_a , _a , _a ) lowercase__ : Dict = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowercase ( _a , _a , _a = None , _a = None , _a = None , _a = 1 , _a = 1.0 , _a = -1 , ): snake_case_ : Union[str, Any] = SchedulerType(_a ) snake_case_ : Any = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_a , last_epoch=_a ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_a , step_rules=_a , last_epoch=_a ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_a , num_warmup_steps=_a , last_epoch=_a ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _a , num_warmup_steps=_a , num_training_steps=_a , num_cycles=_a , last_epoch=_a , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _a , num_warmup_steps=_a , num_training_steps=_a , power=_a , last_epoch=_a , ) return schedule_func( _a , num_warmup_steps=_a , num_training_steps=_a , last_epoch=_a )
485
1
"""simple docstring""" import functools def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->int: # Validation if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not all(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(SCREAMING_SNAKE_CASE_ ) != 3 or not all(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return 0 if min(SCREAMING_SNAKE_CASE_ ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(SCREAMING_SNAKE_CASE_ ) >= 366: raise ValueError('''All days elements should be less than 366''' ) _lowerCamelCase : Optional[Any] = set(SCREAMING_SNAKE_CASE_ ) @functools.cache def dynamic_programming(SCREAMING_SNAKE_CASE_ ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
434
"""simple docstring""" SCREAMING_SNAKE_CASE__ : int =6_5521 def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->int: _lowerCamelCase : Union[str, Any] = 1 _lowerCamelCase : List[str] = 0 for plain_chr in plain_text: _lowerCamelCase : Dict = (a + ord(SCREAMING_SNAKE_CASE_ )) % MOD_ADLER _lowerCamelCase : Tuple = (b + a) % MOD_ADLER return (b << 16) | a
434
1
'''simple docstring''' import argparse import os import re _lowerCAmelCase = '''src/transformers''' # Pattern that looks at the indentation in a line. _lowerCAmelCase = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase = re.compile(R'''\[([^\]]+)\]''') def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Union[str, Any] = _re_indent.search(snake_case__ ) return "" if search is None else search.groups()[0] def __lowerCAmelCase ( snake_case__ , snake_case__="" , snake_case__=None , snake_case__=None ): __UpperCamelCase : int = 0 __UpperCamelCase : int = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(snake_case__ ): index += 1 __UpperCamelCase : Tuple = ["\n".join(lines[:index] )] else: __UpperCamelCase : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __UpperCamelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(snake_case__ ) and (end_prompt is None or not lines[index].startswith(snake_case__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(snake_case__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(snake_case__ ) ) if index < len(snake_case__ ) - 1: __UpperCamelCase : Any = [lines[index + 1]] index += 1 else: __UpperCamelCase : Union[str, Any] = [] else: blocks.append("\n".join(snake_case__ ) ) __UpperCamelCase : Union[str, Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(snake_case__ ) > 0: blocks.append("\n".join(snake_case__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(snake_case__ ): blocks.append("\n".join(lines[index:] ) ) return blocks def __lowerCAmelCase ( snake_case__ ): def _inner(snake_case__ ): return key(snake_case__ ).lower().replace("_" , "" ) return _inner def __lowerCAmelCase ( snake_case__ , snake_case__=None ): # If no key is provided, we use a noop. def noop(snake_case__ ): return x if key is None: __UpperCamelCase : Dict = noop # Constants are all uppercase, they go first. __UpperCamelCase : List[str] = [obj for obj in objects if key(snake_case__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __UpperCamelCase : Optional[Any] = [obj for obj in objects if key(snake_case__ )[0].isupper() and not key(snake_case__ ).isupper()] # Functions begin with a lowercase, they go last. __UpperCamelCase : List[Any] = [obj for obj in objects if not key(snake_case__ )[0].isupper()] __UpperCamelCase : List[Any] = ignore_underscore(snake_case__ ) return sorted(snake_case__ , key=snake_case__ ) + sorted(snake_case__ , key=snake_case__ ) + sorted(snake_case__ , key=snake_case__ ) def __lowerCAmelCase ( snake_case__ ): # This inner function sort imports between [ ]. def _replace(snake_case__ ): __UpperCamelCase : List[str] = match.groups()[0] if "," not in imports: return F"[{imports}]" __UpperCamelCase : Optional[Any] = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __UpperCamelCase : Optional[int] = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(snake_case__ )] ) + "]" __UpperCamelCase : Optional[int] = import_statement.split("\n" ) if len(snake_case__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __UpperCamelCase : Optional[int] = 2 if lines[1].strip() == "[" else 1 __UpperCamelCase : Union[str, Any] = [(i, _re_strip_line.search(snake_case__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __UpperCamelCase : Optional[Any] = sort_objects(snake_case__ , key=lambda snake_case__ : x[1] ) __UpperCamelCase : int = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(snake_case__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __UpperCamelCase : int = _re_bracket_content.sub(_replace , lines[1] ) else: __UpperCamelCase : List[str] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __UpperCamelCase : List[Any] = keys[:-1] __UpperCamelCase : Optional[Any] = get_indent(lines[1] ) + ", ".join([F"\"{k}\"" for k in sort_objects(snake_case__ )] ) return "\n".join(snake_case__ ) else: # Finally we have to deal with imports fitting on one line __UpperCamelCase : Any = _re_bracket_content.sub(_replace , snake_case__ ) return import_statement def __lowerCAmelCase ( snake_case__ , snake_case__=True ): with open(snake_case__ , encoding="utf-8" ) as f: __UpperCamelCase : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __UpperCamelCase : Dict = split_code_in_indented_blocks( snake_case__ , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(snake_case__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __UpperCamelCase : Optional[Any] = main_blocks[block_idx] __UpperCamelCase : int = block.split("\n" ) # Get to the start of the imports. __UpperCamelCase : Union[str, Any] = 0 while line_idx < len(snake_case__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __UpperCamelCase : str = len(snake_case__ ) else: line_idx += 1 if line_idx >= len(snake_case__ ): continue # Ignore beginning and last line: they don't contain anything. __UpperCamelCase : List[str] = "\n".join(block_lines[line_idx:-1] ) __UpperCamelCase : List[Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __UpperCamelCase : Optional[int] = split_code_in_indented_blocks(snake_case__ , indent_level=snake_case__ ) # We have two categories of import key: list or _import_structure[key].append/extend __UpperCamelCase : int = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __UpperCamelCase : str = [(pattern.search(snake_case__ ).groups()[0] if pattern.search(snake_case__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __UpperCamelCase : Any = [(i, key) for i, key in enumerate(snake_case__ ) if key is not None] __UpperCamelCase : Optional[Any] = [x[0] for x in sorted(snake_case__ , key=lambda snake_case__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __UpperCamelCase : Optional[int] = 0 __UpperCamelCase : List[str] = [] for i in range(len(snake_case__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: __UpperCamelCase : Optional[int] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(snake_case__ ) count += 1 # And we put our main block back together with its first and last line. __UpperCamelCase : int = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(snake_case__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(snake_case__ , "w" , encoding="utf-8" ) as f: f.write("\n".join(snake_case__ ) ) def __lowerCAmelCase ( snake_case__=True ): __UpperCamelCase : Dict = [] for root, _, files in os.walk(snake_case__ ): if "__init__.py" in files: __UpperCamelCase : Tuple = sort_imports(os.path.join(snake_case__ , "__init__.py" ) , check_only=snake_case__ ) if result: __UpperCamelCase : Tuple = [os.path.join(snake_case__ , "__init__.py" )] if len(snake_case__ ) > 0: raise ValueError(F"Would overwrite {len(snake_case__ )} files, run `make style`." ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') _lowerCAmelCase = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
399
'''simple docstring''' from collections import deque from .hash_table import HashTable class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__(self , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[str]: super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: __UpperCamelCase : str = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = self.values[key] def a_ (self ) -> Any: return ( sum(self.charge_factor - len(_UpperCAmelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase=None ) -> Tuple: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCAmelCase ) == 0 ): return key return super()._collision_resolution(_UpperCAmelCase , _UpperCAmelCase )
399
1