code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def snake_case ( snake_case__ :int , snake_case__ :int) -> int: _A = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): _A = n - k # Calculate C(n,k) for i in range(snake_case__): result *= n - i result //= i + 1 return result def snake_case ( snake_case__ :int) -> int: return binomial_coefficient(2 * node_count , snake_case__) // (node_count + 1) def snake_case ( snake_case__ :int) -> int: if n < 0: raise ValueError("""factorial() not defined for negative values""") _A = 1 for i in range(1 , n + 1): result *= i return result def snake_case ( snake_case__ :int) -> int: return catalan_number(snake_case__) * factorial(snake_case__) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = int(input('Enter the number of nodes: ').strip() or 0) if node_count <= 0: raise ValueError('We need some nodes to work with.') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
180
def snake_case ( snake_case__ :str = "The quick brown fox jumps over the lazy dog" , ) -> bool: _A = set() # Replace all the whitespace in our sentence _A = input_str.replace(""" """ , """""") for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower()) return len(snake_case__) == 26 def snake_case ( snake_case__ :str = "The quick brown fox jumps over the lazy dog" , ) -> bool: _A = [False] * 26 for char in input_str: if char.islower(): _A = True elif char.isupper(): _A = True return all(snake_case__) def snake_case ( snake_case__ :str = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()}) == 26 def snake_case ( ) -> None: from timeit import timeit _A = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=snake_case__)) print(timeit("""is_pangram_faster()""" , setup=snake_case__)) print(timeit("""is_pangram_fastest()""" , setup=snake_case__)) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
180
1
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase ( lowercase : Optional[Any] ) -> List[Any]: """simple docstring""" snake_case : int = filter(lambda lowercase : p.requires_grad , model.parameters() ) snake_case : List[str] = sum([np.prod(p.size() ) for p in model_parameters] ) return params __snake_case = logging.getLogger(__name__) def __lowerCAmelCase ( lowercase : List[str] , lowercase : List[str] ) -> str: """simple docstring""" if metric == "rouge2": snake_case : Optional[Any] = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": snake_case : Union[str, Any] = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": snake_case : List[str] = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) snake_case : List[str] = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase ( lowercase : int , lowercase : int ) -> int: """simple docstring""" return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class _lowerCAmelCase ( pl.Callback ): def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = {F'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(UpperCamelCase__ ) @rank_zero_only def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True ) -> None: '''simple docstring''' logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) snake_case : Optional[int] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results snake_case : Tuple = Path(pl_module.hparams.output_dir ) if type_path == "test": snake_case : List[Any] = od / "test_results.txt" snake_case : Optional[Any] = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. snake_case : str = od / F'{type_path}_results/{trainer.global_step:05d}.txt' snake_case : List[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=UpperCamelCase__ ) generations_file.parent.mkdir(exist_ok=UpperCamelCase__ ) with open(UpperCamelCase__ , "a+" ) as writer: for key in sorted(UpperCamelCase__ ): if key in ["log", "progress_bar", "preds"]: continue snake_case : List[Any] = metrics[key] if isinstance(UpperCamelCase__ , torch.Tensor ): snake_case : Any = val.item() snake_case : Any = F'{key}: {val:.6f}\n' writer.write(UpperCamelCase__ ) if not save_generations: return if "preds" in metrics: snake_case : List[Any] = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(UpperCamelCase__ ) @rank_zero_only def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' try: snake_case : Optional[Any] = pl_module.model.model.num_parameters() except AttributeError: snake_case : Dict = pl_module.model.num_parameters() snake_case : Optional[int] = count_trainable_parameters(UpperCamelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(UpperCamelCase__ , UpperCamelCase__ , "test" ) @rank_zero_only def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
112
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : List[str] = ['''image_processor''', '''tokenizer'''] __UpperCAmelCase : str = '''LayoutLMv2ImageProcessor''' __UpperCAmelCase : Dict = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCamelCase__ , ) snake_case : Dict = kwargs.pop("feature_extractor" ) snake_case : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = 0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = True , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor snake_case : Any = self.image_processor(images=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case : Optional[int] = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case : Optional[Any] = features["words"] snake_case : Dict = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel values snake_case : Dict = features.pop("pixel_values" ) if return_overflowing_tokens is True: snake_case : Any = self.get_overflowing_images(UpperCamelCase__ , encoded_inputs["overflow_to_sample_mapping"] ) snake_case : str = images return encoded_inputs def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' snake_case : Union[str, Any] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F' {len(UpperCamelCase__ )} and {len(UpperCamelCase__ )}' ) return images_with_overflow def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def lowerCamelCase ( self ) -> Dict: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCamelCase__ , ) return self.image_processor_class @property def lowerCamelCase ( self ) -> Any: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCamelCase__ , ) return self.image_processor
112
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = KandinskyVaaImgaImgPipeline _lowerCamelCase: Tuple = ['''image_embeds''', '''negative_image_embeds''', '''image'''] _lowerCamelCase: Any = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _lowerCamelCase: int = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowerCamelCase: Dict = False @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: return 32 @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: return self.time_input_dim @property def _SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: return 100 @property def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: torch.manual_seed(0 ) A = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } A = UNetaDConditionModel(**A_ ) return model @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: torch.manual_seed(0 ) A = VQModel(**self.dummy_movq_kwargs ) return model def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: A = self.dummy_unet A = self.dummy_movq A = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } A = DDIMScheduler(**A_ ) A = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[str] ,A_ : Union[str, Any]=0 ) -> Optional[int]: A = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(A_ ) ).to(A_ ) A = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( A_ ) # create init_image A = floats_tensor((1, 3, 64, 64) ,rng=random.Random(A_ ) ).to(A_ ) A = image.cpu().permute(0 ,2 ,3 ,1 )[0] A = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) ) if str(A_ ).startswith('mps' ): A = torch.manual_seed(A_ ) else: A = torch.Generator(device=A_ ).manual_seed(A_ ) A = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: A = 'cpu' A = self.get_dummy_components() A = self.pipeline_class(**A_ ) A = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) A = pipe(**self.get_dummy_inputs(A_ ) ) A = output.images A = pipe( **self.get_dummy_inputs(A_ ) ,return_dict=A_ ,)[0] A = image[0, -3:, -3:, -1] A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) A = 'A red cartoon frog, 4k' A = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' ,torch_dtype=torch.floataa ) pipe_prior.to(A_ ) A = KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' ,torch_dtype=torch.floataa ) A = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) A = torch.Generator(device='cpu' ).manual_seed(0 ) A , A = pipe_prior( A_ ,generator=A_ ,num_inference_steps=5 ,negative_prompt='' ,).to_tuple() A = pipeline( image=A_ ,image_embeds=A_ ,negative_image_embeds=A_ ,generator=A_ ,num_inference_steps=100 ,height=768 ,width=768 ,strength=0.2 ,output_type='np' ,) A = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A_ ,A_ )
74
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _lowercase = NewType('''DataClass''', Any) _lowercase = NewType('''DataClassType''', Any) def _snake_case ( snake_case__ : Tuple ): if isinstance(snake_case__ , snake_case__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def _snake_case ( snake_case__ : list ): A = {str(snake_case__ ): choice for choice in choices} return lambda snake_case__ : str_to_choice.get(snake_case__ , snake_case__ ) def _snake_case ( *, snake_case__ : Union[str, List[str]] = None , snake_case__ : str = None , snake_case__ : Any = dataclasses.MISSING , snake_case__ : Callable[[], Any] = dataclasses.MISSING , snake_case__ : dict = None , **snake_case__ : Any , ): if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls A = {} if aliases is not None: A = aliases if help is not None: A = help return dataclasses.field(metadata=snake_case__ , default=snake_case__ , default_factory=snake_case__ , **snake_case__ ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Iterable[DataClassType] def __init__( self : List[str] ,A_ : Union[DataClassType, Iterable[DataClassType]] ,**A_ : Any ) -> Optional[int]: # To make the default appear when using --help if "formatter_class" not in kwargs: A = ArgumentDefaultsHelpFormatter super().__init__(**A_ ) if dataclasses.is_dataclass(A_ ): A = [dataclass_types] A = list(A_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(A_ ) @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ,A_ : dataclasses.Field ) -> Optional[Any]: A = F'--{field.name}' A = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type ,A_ ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) A = kwargs.pop('aliases' ,[] ) if isinstance(A_ ,A_ ): A = [aliases] A = getattr(field.type ,'__origin__' ,field.type ) if origin_type is Union or (hasattr(A_ ,'UnionType' ) and isinstance(A_ ,types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(A_ ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F' Problem encountered in field \'{field.name}\'.' ) if type(A_ ) not in field.type.__args__: # filter `str` in Union A = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] A = getattr(field.type ,'__origin__' ,field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) A = ( field.type.__args__[0] if isinstance(A_ ,field.type.__args__[1] ) else field.type.__args__[1] ) A = getattr(field.type ,'__origin__' ,field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) A = {} if origin_type is Literal or (isinstance(field.type ,A_ ) and issubclass(field.type ,A_ )): if origin_type is Literal: A = field.type.__args__ else: A = [x.value for x in field.type] A = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: A = field.default else: A = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument A = copy(A_ ) # Hack because type=bool in argparse does not behave as we want. A = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. A = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way A = default # This tells argparse we accept 0 or 1 value after --field_name A = '?' # This is the value that will get picked if we do --field_name (without value) A = True elif isclass(A_ ) and issubclass(A_ ,A_ ): A = field.type.__args__[0] A = '+' if field.default_factory is not dataclasses.MISSING: A = field.default_factory() elif field.default is dataclasses.MISSING: A = True else: A = field.type if field.default is not dataclasses.MISSING: A = field.default elif field.default_factory is not dataclasses.MISSING: A = field.default_factory() else: A = True parser.add_argument(A_ ,*A_ ,**A_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): A = False parser.add_argument(F'--no_{field.name}' ,action='store_false' ,dest=field.name ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : DataClassType ) -> List[Any]: if hasattr(A_ ,'_argument_group_name' ): A = self.add_argument_group(dtype._argument_group_name ) else: A = self try: A = get_type_hints(A_ ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(A_ ): A = '.'.join(map(A_ ,sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(A_ ): if not field.init: continue A = type_hints[field.name] self._parse_dataclass_field(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Any=None ,A_ : int=False ,A_ : Any=True ,A_ : List[str]=None ,A_ : Union[str, Any]=None ,) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): A = [] if args_filename: args_files.append(Path(A_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values A = ArgumentParser() args_file_parser.add_argument(A_ ,type=A_ ,action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) A , A = args_file_parser.parse_known_args(args=A_ ) A = vars(A_ ).get(args_file_flag.lstrip('-' ) ,A_ ) if cmd_args_file_paths: args_files.extend([Path(A_ ) for p in cmd_args_file_paths] ) A = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last A = file_args + args if args is not None else file_args + sys.argv[1:] A , A = self.parse_known_args(args=A_ ) A = [] for dtype in self.dataclass_types: A = {f.name for f in dataclasses.fields(A_ ) if f.init} A = {k: v for k, v in vars(A_ ).items() if k in keys} for k in keys: delattr(A_ ,A_ ) A = dtype(**A_ ) outputs.append(A_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(A_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Dict[str, Any] ,A_ : bool = False ) -> Tuple[DataClass, ...]: A = set(args.keys() ) A = [] for dtype in self.dataclass_types: A = {f.name for f in dataclasses.fields(A_ ) if f.init} A = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) A = dtype(**A_ ) outputs.append(A_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(A_ )}' ) return tuple(A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : bool = False ) -> Tuple[DataClass, ...]: with open(Path(A_ ) ,encoding='utf-8' ) as open_json_file: A = json.loads(open_json_file.read() ) A = self.parse_dict(A_ ,allow_extra_keys=A_ ) return tuple(A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : bool = False ) -> Tuple[DataClass, ...]: A = self.parse_dict(yaml.safe_load(Path(A_ ).read_text() ) ,allow_extra_keys=A_ ) return tuple(A_ )
74
1
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Dict=3 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Union[str, Any]=[10, 20, 30, 40] , _UpperCAmelCase : Optional[int]=[2, 2, 3, 2] , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Dict=10 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=["stage2", "stage3", "stage4"] , _UpperCAmelCase : List[Any]=[2, 3, 4] , _UpperCAmelCase : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = num_stages lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = is_training lowercase__ = use_labels lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = num_labels lowercase__ = initializer_range lowercase__ = out_features lowercase__ = out_indices lowercase__ = scope def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Any: """simple docstring""" lowercase__ = ConvNextVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase__ (self : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = ConvNextVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = ConvNextVaBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase__ = None lowercase__ = ConvNextVaBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) A__ = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) A__ = False A__ = False A__ = False A__ = False A__ = False def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" lowercase__ = ConvNextVaModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def lowerCamelCase__ (self : int ) -> str: """simple docstring""" pass def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_with_labels() lowercase__ = True if model_class.__name__ in [ *get_values(_UpperCAmelCase ), *get_values(_UpperCAmelCase ), ]: continue lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) lowercase__ = model(**_UpperCAmelCase ).loss loss.backward() def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_with_labels() lowercase__ = False lowercase__ = True if ( model_class.__name__ in [*get_values(_UpperCAmelCase ), *get_values(_UpperCAmelCase )] or not model_class.supports_gradient_checkpointing ): continue lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) lowercase__ = model(**_UpperCAmelCase ).loss loss.backward() def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" def check_hidden_states_output(_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ): lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = ConvNextVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCamelCase ( ) -> int: """simple docstring""" lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" lowercase__ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(_UpperCAmelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = preprocessor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase ) # verify the logits lowercase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
146
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = OpenAIGPTTokenizer A__ = OpenAIGPTTokenizerFast A__ = True A__ = False def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowercase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__ = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_UpperCAmelCase ) ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" return "lower newer", "lower newer" def lowerCamelCase__ (self : Dict ) -> Tuple: """simple docstring""" lowercase__ = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowercase__ = """lower""" lowercase__ = ["""low""", """er</w>"""] lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = tokens + ["""<unk>"""] lowercase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any]=15 ) -> Optional[int]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) # Simple input lowercase__ = """This is a simple input""" lowercase__ = ["""This is a simple input 1""", """This is a simple input 2"""] lowercase__ = ("""This is a simple input""", """This is a pair""") lowercase__ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" , ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" , ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class A ( UpperCAmelCase__ ): '''simple docstring''' pass
146
1
"""simple docstring""" import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowercase_ : int = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def lowerCamelCase_ ( self , snake_case_=0 ): """simple docstring""" A_ : Optional[int] = np.random.RandomState(snake_case_ ) A_ : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ): """simple docstring""" A_ : Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=snake_case_ ) A_ : List[str] = self.get_dummy_inputs() A_ : Union[str, Any] = pipe(**snake_case_ ).images A_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) A_ : List[str] = np.array([0.6_50_72, 0.5_84_92, 0.4_82_19, 0.5_55_21, 0.5_31_80, 0.5_59_39, 0.5_06_97, 0.3_98_00, 0.4_64_55] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) A_ : List[str] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) A_ : Optional[Any] = self.get_dummy_inputs() A_ : Optional[int] = pipe(**snake_case_ ).images A_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) A_ : Tuple = np.array([0.6_58_63, 0.5_94_25, 0.4_93_26, 0.5_63_13, 0.5_38_75, 0.5_66_27, 0.5_10_65, 0.3_97_77, 0.4_63_30] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self ): """simple docstring""" A_ : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) A_ : Union[str, Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) A_ : Optional[Any] = self.get_dummy_inputs() A_ : List[Any] = pipe(**snake_case_ ).images A_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) A_ : Optional[int] = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) A_ : Optional[int] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) A_ : Tuple = self.get_dummy_inputs() A_ : Optional[int] = pipe(**snake_case_ ).images A_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) A_ : Union[str, Any] = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self ): """simple docstring""" A_ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) A_ : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) A_ : int = self.get_dummy_inputs() A_ : Union[str, Any] = pipe(**snake_case_ ).images A_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) A_ : List[Any] = np.array([0.5_38_17, 0.6_08_12, 0.4_73_84, 0.4_95_30, 0.5_18_94, 0.4_98_14, 0.4_79_84, 0.3_89_58, 0.4_42_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) A_ : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) A_ : List[Any] = self.get_dummy_inputs() A_ : Union[str, Any] = pipe(**snake_case_ ).images A_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) A_ : Optional[int] = np.array([0.5_38_95, 0.6_08_08, 0.4_79_33, 0.4_96_08, 0.5_18_86, 0.4_99_50, 0.4_80_53, 0.3_89_57, 0.4_42_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=snake_case_ ) A_ : str = self.get_dummy_inputs() A_ : int = 3 * [inputs['prompt']] # forward A_ : Any = pipe(**snake_case_ ) A_ : Any = output.images[0, -3:, -3:, -1] A_ : Dict = self.get_dummy_inputs() A_ : Union[str, Any] = 3 * [inputs.pop('prompt' )] A_ : str = pipe.tokenizer( snake_case_ , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=snake_case_ , return_tensors='np' , ) A_ : Optional[int] = text_inputs['input_ids'] A_ : Dict = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] A_ : Optional[Any] = prompt_embeds # forward A_ : str = pipe(**snake_case_ ) A_ : Optional[Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def lowerCamelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=snake_case_ ) A_ : Union[str, Any] = self.get_dummy_inputs() A_ : List[str] = 3 * ['this is a negative prompt'] A_ : List[str] = negative_prompt A_ : Tuple = 3 * [inputs['prompt']] # forward A_ : Union[str, Any] = pipe(**snake_case_ ) A_ : Optional[int] = output.images[0, -3:, -3:, -1] A_ : List[str] = self.get_dummy_inputs() A_ : int = 3 * [inputs.pop('prompt' )] A_ : Optional[int] = [] for p in [prompt, negative_prompt]: A_ : Dict = pipe.tokenizer( snake_case_ , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=snake_case_ , return_tensors='np' , ) A_ : Any = text_inputs['input_ids'] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) A_ , A_ : Tuple = embeds # forward A_ : Optional[int] = pipe(**snake_case_ ) A_ : Dict = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCamelCase_ ( self ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = ort.SessionOptions() A_ : str = False return options def lowerCamelCase_ ( self ): """simple docstring""" A_ : Dict = OnnxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) A_ : List[Any] = 'A painting of a squirrel eating a burger' np.random.seed(0 ) A_ : Any = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=1_0 , output_type='np' ) A_ : List[Any] = output.images A_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) A_ : Any = np.array([0.04_52, 0.03_90, 0.00_87, 0.03_50, 0.06_17, 0.03_64, 0.05_44, 0.05_23, 0.07_20] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase_ ( self ): """simple docstring""" A_ : Optional[int] = DDIMScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) A_ : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=snake_case_ , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) A_ : Optional[int] = 'open neural network exchange' A_ : Any = np.random.RandomState(0 ) A_ : Any = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=1_0 , generator=snake_case_ , output_type='np' ) A_ : List[Any] = output.images A_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) A_ : Any = np.array([0.28_67, 0.19_74, 0.14_81, 0.72_94, 0.72_51, 0.66_67, 0.41_94, 0.56_42, 0.64_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[Any] = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) A_ : str = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=snake_case_ , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) A_ : List[str] = 'open neural network exchange' A_ : Tuple = np.random.RandomState(0 ) A_ : Optional[Any] = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=1_0 , generator=snake_case_ , output_type='np' ) A_ : Tuple = output.images A_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) A_ : Union[str, Any] = np.array([0.23_06, 0.19_59, 0.15_93, 0.65_49, 0.63_94, 0.54_08, 0.50_65, 0.60_10, 0.61_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = 0 def test_callback_fn(snake_case_ , snake_case_ , snake_case_ ) -> None: A_ : Optional[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 6_4, 6_4) A_ : Optional[int] = latents[0, -3:, -3:, -1] A_ : Optional[Any] = np.array( [-0.67_72, -0.38_35, -1.24_56, 0.19_05, -1.09_74, 0.69_67, -1.93_53, 0.01_78, 1.01_67] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 6_4, 6_4) A_ : Optional[Any] = latents[0, -3:, -3:, -1] A_ : Optional[int] = np.array( [-0.33_51, 0.22_41, -0.18_37, -0.23_25, -0.65_77, 0.33_93, -0.02_41, 0.58_99, 1.38_75] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 A_ : Any = False A_ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) A_ : Dict = 'Andromeda galaxy in a bottle' A_ : List[str] = np.random.RandomState(0 ) pipe( prompt=snake_case_ , num_inference_steps=5 , guidance_scale=7.5 , generator=snake_case_ , callback=snake_case_ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[str] = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(snake_case_ , snake_case_ ) assert pipe.safety_checker is None A_ : Any = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case_ ) A_ : int = OnnxStableDiffusionPipeline.from_pretrained(snake_case_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None A_ : Optional[int] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None
286
"""simple docstring""" import torch from diffusers import DiffusionPipeline class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): """simple docstring""" super().__init__() self.register_modules(unet=snake_case_ , scheduler=snake_case_ ) def __call__( self ): """simple docstring""" A_ : Optional[Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) A_ : List[str] = 1 A_ : List[str] = self.unet(snake_case_ , snake_case_ ).sample A_ : Optional[int] = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample A_ : List[Any] = scheduler_output - scheduler_output + torch.ones_like(snake_case_ ) return result
286
1
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class _a ( unittest.TestCase ): @property def __snake_case (self ) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __snake_case (self ) -> Any: UpperCAmelCase_: Dict = ort.SessionOptions() UpperCAmelCase_: Dict = False return options def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) UpperCAmelCase_: Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) UpperCAmelCase_: Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default UpperCAmelCase_: str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""", revision="""onnx""", safety_checker=_lowerCamelCase, feature_extractor=_lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCAmelCase_: Any = """A red cat sitting on a park bench""" UpperCAmelCase_: Dict = np.random.RandomState(0 ) UpperCAmelCase_: Any = pipe( prompt=_lowerCamelCase, image=_lowerCamelCase, mask_image=_lowerCamelCase, strength=0.7_5, guidance_scale=7.5, num_inference_steps=15, generator=_lowerCamelCase, output_type="""np""", ) UpperCAmelCase_: str = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
368
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer a : Optional[Any] = logging.get_logger(__name__) a : Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a : Dict = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } a : str = { 'squeezebert/squeezebert-uncased': 512, 'squeezebert/squeezebert-mnli': 512, 'squeezebert/squeezebert-mnli-headless': 512, } a : Optional[int] = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class _a ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_INIT_CONFIGURATION A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = SqueezeBertTokenizer def __init__(self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="[UNK]", SCREAMING_SNAKE_CASE_="[SEP]", SCREAMING_SNAKE_CASE_="[PAD]", SCREAMING_SNAKE_CASE_="[CLS]", SCREAMING_SNAKE_CASE_="[MASK]", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> int: super().__init__( SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, do_lower_case=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, tokenize_chinese_chars=SCREAMING_SNAKE_CASE_, strip_accents=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""", SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get("""strip_accents""", SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""", SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): UpperCAmelCase_: Optional[Any] = getattr(SCREAMING_SNAKE_CASE_, normalizer_state.pop("""type""" ) ) UpperCAmelCase_: Optional[Any] = do_lower_case UpperCAmelCase_: int = strip_accents UpperCAmelCase_: int = tokenize_chinese_chars UpperCAmelCase_: List[Any] = normalizer_class(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = do_lower_case def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Optional[Any]: UpperCAmelCase_: Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCAmelCase_: List[Any] = [self.sep_token_id] UpperCAmelCase_: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCAmelCase_: Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
82
0
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase__ = datasets.logging.get_logger(__name__) lowerCAmelCase__ = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCAmelCase__ = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCAmelCase__ = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__="dummy_doc" ): """simple docstring""" lowercase__ : Tuple = {doc: key_lines} lowercase__ : List[Any] = {doc: sys_lines} lowercase__ : List[Any] = {} lowercase__ : Optional[Any] = 0 lowercase__ : Union[str, Any] = 0 lowercase__ : Dict = 0 lowercase__ : Optional[Any] = 0 lowercase__ : int = 0 lowercase__ : Tuple = 0 lowercase__ , lowercase__ : Union[str, Any] = reader.get_doc_mentions(_snake_case , key_doc_lines[doc] , _snake_case ) key_singletons_num += singletons_num if NP_only or min_span: lowercase__ : int = reader.set_annotated_parse_trees(_snake_case , key_doc_lines[doc] , _snake_case , _snake_case ) lowercase__ , lowercase__ : Any = reader.get_doc_mentions(_snake_case , sys_doc_lines[doc] , _snake_case ) sys_singletons_num += singletons_num if NP_only or min_span: lowercase__ : List[Any] = reader.set_annotated_parse_trees(_snake_case , key_doc_lines[doc] , _snake_case , _snake_case ) if remove_nested: lowercase__ , lowercase__ : List[str] = reader.remove_nested_coref_mentions(_snake_case , _snake_case ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowercase__ , lowercase__ : int = reader.remove_nested_coref_mentions(_snake_case , _snake_case ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowercase__ : Union[str, Any] = reader.get_mention_assignments(_snake_case , _snake_case ) lowercase__ : Union[str, Any] = reader.get_mention_assignments(_snake_case , _snake_case ) lowercase__ : List[str] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( "Number of resulting singleton clusters in the key " F"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( F"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ "files, respectively" ) return doc_coref_infos def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[int] = get_coref_infos(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) lowercase__ : Dict = {} lowercase__ : Any = 0 lowercase__ : Optional[int] = 0 for name, metric in metrics: lowercase__ , lowercase__ , lowercase__ : List[Any] = evaluator.evaluate_documents(_snake_case , _snake_case , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"""{name}/recall""": recall, F"""{name}/precision""": precision, F"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , F"""Recall: {recall * 100:.2f}""" , F""" Precision: {precision * 100:.2f}""" , F""" F1: {fa * 100:.2f}""" , ) if conll_subparts_num == 3: lowercase__ : Union[str, Any] = (conll / 3) * 100 logger.info(F"""CoNLL score: {conll:.2f}""" ) output_scores.update({"conll_score": conll} ) return output_scores def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : int = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: lowercase__ : Optional[int] = line.split()[5] if not parse_col == "-": lowercase__ : Dict = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__(datasets.Metric ): """simple docstring""" def snake_case ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def snake_case ( self : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str=True , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Dict=False ): lowercase__ : Union[str, Any] = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: lowercase__ : List[str] = util.check_gold_parse_annotation(__snake_case ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use \'min_span\'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowercase__ : Union[str, Any] = evaluate( key_lines=__snake_case , sys_lines=__snake_case , metrics=__snake_case , NP_only=__snake_case , remove_nested=__snake_case , keep_singletons=__snake_case , min_span=__snake_case , ) return score
130
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowerCAmelCase : Optional[Any] = Lock() def UpperCamelCase_( _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : Dict , _snake_case : Any , _snake_case : List[str] , _snake_case : Tuple , _snake_case : List[str] ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_snake_case ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __a =rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __a =min(_snake_case , _snake_case ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_snake_case ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __a =lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __a =max(_snake_case , _snake_case ) # after all swaps are performed, send the values back to main result_pipe[1].send(_snake_case ) def UpperCamelCase_( _snake_case : List[str] ): """simple docstring""" __a =[] __a =[] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __a =Pipe() __a =Pipe() process_array_.append( Process( target=_snake_case , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __a =temp_rs __a =temp_rr for i in range(1 , len(_snake_case ) - 1 ): __a =Pipe() __a =Pipe() process_array_.append( Process( target=_snake_case , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __a =temp_rs __a =temp_rr process_array_.append( Process( target=_snake_case , args=( len(_snake_case ) - 1, arr[len(_snake_case ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_snake_case ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_snake_case ) ): __a =result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase_( ): """simple docstring""" __a =list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*_snake_case ) __a =odd_even_transposition(_snake_case ) print('Sorted List\n' ) print(*_snake_case ) if __name__ == "__main__": main()
218
0
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A__ : Optional[Any] = logging.get_logger(__name__) A__ : str = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} A__ : Optional[int] = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } A__ : str = { 'abeja/gpt-neox-japanese-2.7b': 2_048, } def _snake_case ( lowerCamelCase__ : int , lowerCamelCase__ : Any ) -> List[Any]: with open(lowerCamelCase__ , "r" , encoding="utf-8" ) as f: lowerCamelCase_ : List[str] =json.loads(f.read() ) lowerCamelCase_ : Union[str, Any] =collections.OrderedDict() lowerCamelCase_ : Union[str, Any] =collections.OrderedDict() lowerCamelCase_ : int =collections.OrderedDict() with open(lowerCamelCase__ , "r" , encoding="utf-8" ) as f: lowerCamelCase_ : Optional[Any] =f.readlines() lowerCamelCase_ : List[str] =[[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(lowerCamelCase__ ): lowerCamelCase_ : Union[str, Any] =b lowerCamelCase_ : Optional[int] =idx for wd in b: lowerCamelCase_ : int =idx return vocab, raw_vocab, ids_to_tokens, emoji class lowercase__ ( snake_case__ ): _UpperCAmelCase :Any = VOCAB_FILES_NAMES _UpperCAmelCase :Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Tuple = ["input_ids", "attention_mask"] def __init__( self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : List[Any]="<|endoftext|>" , snake_case__ : Tuple="<|endoftext|>" , snake_case__ : List[Any]="<|startoftext|>" , snake_case__ : List[str]="<|endoftext|>" , snake_case__ : Optional[Any]=False , **snake_case__ : int , ): super().__init__( unk_token=snake_case__ , pad_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , do_clean_text=snake_case__ , **snake_case__ , ) if not os.path.isfile(snake_case__ ): raise ValueError( F"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(snake_case__ ): raise ValueError( F"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) lowerCamelCase_ : str =do_clean_text lowerCamelCase_ : Optional[Any] =load_vocab_and_emoji(snake_case__ , snake_case__ ) lowerCamelCase_ : int =SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCAmelCase__ ( self : Any ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def UpperCAmelCase__ ( self : Optional[int] ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Optional[Any] ): return self.subword_tokenizer.tokenize(snake_case__ , clean=self.do_clean_text ) def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : int ): return self.vocab.get(snake_case__ , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self : int , snake_case__ : Optional[int] ): return self.subword_tokenizer.convert_id_to_token(snake_case__ ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Dict ): lowerCamelCase_ : List[str] ="".join(snake_case__ ).strip() return out_string def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : "Conversation" ): lowerCamelCase_ : Dict =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ , add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: lowerCamelCase_ : Any =input_ids[-self.model_max_length :] return input_ids def UpperCAmelCase__ ( self : Dict , snake_case__ : str , snake_case__ : Optional[str] = None ): lowerCamelCase_ : int =0 if os.path.isdir(snake_case__ ): lowerCamelCase_ : Optional[Any] =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ : Any =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: lowerCamelCase_ : Tuple =( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ : str =( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(snake_case__ , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) lowerCamelCase_ : Optional[int] =token_index writer.write(",".join(snake_case__ ) + "\n" ) index += 1 with open(snake_case__ , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , snake_case__ ) return vocab_file, emoji_file class lowercase__ ( snake_case__ ): def __init__( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : List[str] ): lowerCamelCase_ : str =vocab # same as swe lowerCamelCase_ : Dict =ids_to_tokens # same as bpe lowerCamelCase_ : List[Any] =emoji lowerCamelCase_ : List[str] =np.max([len(snake_case__ ) for w in self.vocab.keys()] ) lowerCamelCase_ : str =re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) lowerCamelCase_ : Dict =re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) lowerCamelCase_ : Optional[int] =re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) lowerCamelCase_ : List[str] =re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) lowerCamelCase_ : int =re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) lowerCamelCase_ : Optional[Any] =re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) lowerCamelCase_ : Union[str, Any] ="─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" lowerCamelCase_ : Any ="▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" lowerCamelCase_ : int =str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self : List[Any] ): return len(self.ids_to_tokens ) def UpperCAmelCase__ ( self : Dict , snake_case__ : List[str] ): lowerCamelCase_ : Union[str, Any] =self.content_repattera.sub("<URL>" , snake_case__ ) lowerCamelCase_ : int =self.content_repattera.sub("<EMAIL>" , snake_case__ ) lowerCamelCase_ : Union[str, Any] =self.content_repattera.sub("<TEL>" , snake_case__ ) lowerCamelCase_ : Any =self.content_repattera.sub("<DATE>" , snake_case__ ) lowerCamelCase_ : str =self.content_repattera.sub("<DATE>" , snake_case__ ) lowerCamelCase_ : Union[str, Any] =self.content_repattera.sub("<PRICE>" , snake_case__ ) lowerCamelCase_ : Optional[int] =content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowerCamelCase_ : List[str] =content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : List[str]=False ): lowerCamelCase_ : Dict =text.replace(" " , "<SP>" ) lowerCamelCase_ : List[Any] =text.replace(" " , "<SP>" ) lowerCamelCase_ : Union[str, Any] =text.replace("\r\n" , "<BR>" ) lowerCamelCase_ : int =text.replace("\n" , "<BR>" ) lowerCamelCase_ : Tuple =text.replace("\r" , "<BR>" ) lowerCamelCase_ : str =text.replace("\t" , "<TAB>" ) lowerCamelCase_ : List[str] =text.replace("—" , "ー" ) lowerCamelCase_ : List[str] =text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: lowerCamelCase_ : Any =text.replace(snake_case__ , snake_case__ ) if clean: lowerCamelCase_ : Optional[int] =self.clean_text(snake_case__ ) def check_simbol(snake_case__ : Any ): lowerCamelCase_ : str =x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 2: lowerCamelCase_ : str =(int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc_2a1 and c <= 0xc_2bf) or (c >= 0xc_780 and c <= 0xc_783) or (c >= 0xc_ab9 and c <= 0xc_bbf) or (c >= 0xc_c80 and c <= 0xc_da2) ): return True return False def checkuae(snake_case__ : Optional[Any] ): lowerCamelCase_ : Optional[Any] =x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 3: lowerCamelCase_ : Union[str, Any] =(int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe28_080 and c <= 0xe2b_07f: return True return False lowerCamelCase_ : Dict =0 lowerCamelCase_ : str =[] while pos < len(snake_case__ ): lowerCamelCase_ : Optional[Any] =min(len(snake_case__ ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 lowerCamelCase_ : Union[str, Any] =[] # (token_id, token, pos) for e in range(snake_case__ , snake_case__ , -1 ): lowerCamelCase_ : int =text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case__ ) > 2: lowerCamelCase_ : List[str] =[(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case__ ) > 0: # the smallest token_id is adopted lowerCamelCase_ : str =sorted(snake_case__ , key=lambda snake_case__ : x[0] )[0] result.append(snake_case__ ) lowerCamelCase_ : Any =e else: lowerCamelCase_ : int =pos + 1 lowerCamelCase_ : Union[str, Any] =text[pos:end] if check_simbol(snake_case__ ): result.append("<KIGOU>" ) elif checkuae(snake_case__ ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) lowerCamelCase_ : Any =end return result def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : int , snake_case__ : str="\n" ): lowerCamelCase_ : Any =[] lowerCamelCase_ : Any =[] lowerCamelCase_ : Optional[Any] =self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode("utf-8" , errors="replace" ) ) lowerCamelCase_ : int =[] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(snake_case__ ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(snake_case__ ) if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode("utf-8" , errors="replace" ) ) lowerCamelCase_ : str ="".join(snake_case__ ) return text
370
"""simple docstring""" def _snake_case ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : list[int] ) -> bool: # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def _snake_case ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: # Base Case if curr_ind == len(lowerCamelCase__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(lowerCamelCase__ ) ): if valid_connection(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): # Insert current vertex into path as next transition lowerCamelCase_ : Tuple =next_ver # Validate created path if util_hamilton_cycle(lowerCamelCase__ , lowerCamelCase__ , curr_ind + 1 ): return True # Backtrack lowerCamelCase_ : int =-1 return False def _snake_case ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int = 0 ) -> list[int]: lowerCamelCase_ : Optional[Any] =[-1] * (len(lowerCamelCase__ ) + 1) # initialize start and end of path with starting index lowerCamelCase_ : Optional[int] =start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(lowerCamelCase__ , lowerCamelCase__ , 1 ) else []
209
0
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class _UpperCamelCase : '''simple docstring''' def UpperCamelCase__ ( self : str , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" raise NotImplementedError() def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" raise NotImplementedError() class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase__ : "AutoTokenizer" , lowerCAmelCase__ : bool = False , **lowerCAmelCase__ : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer __SCREAMING_SNAKE_CASE : List[Any] = skip_prompt __SCREAMING_SNAKE_CASE : Optional[int] = decode_kwargs # variables used in the streaming process __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : List[str] = True def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : List[str] ): """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: __SCREAMING_SNAKE_CASE : List[Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: __SCREAMING_SNAKE_CASE : Tuple = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) __SCREAMING_SNAKE_CASE : Dict = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): __SCREAMING_SNAKE_CASE : Dict = text[self.print_len :] __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : Optional[int] = 0 # If the last token is a CJK character, we print the characters. elif len(lowerCAmelCase__ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): __SCREAMING_SNAKE_CASE : Tuple = text[self.print_len :] self.print_len += len(lowerCAmelCase__ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: __SCREAMING_SNAKE_CASE : Optional[int] = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(lowerCAmelCase__ ) self.on_finalized_text(lowerCAmelCase__ ) def UpperCamelCase__ ( self : str ): """simple docstring""" if len(self.token_cache ) > 0: __SCREAMING_SNAKE_CASE : Dict = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) __SCREAMING_SNAKE_CASE : Tuple = text[self.print_len :] __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Any = 0 else: __SCREAMING_SNAKE_CASE : Tuple = """""" __SCREAMING_SNAKE_CASE : int = True self.on_finalized_text(lowerCAmelCase__ , stream_end=lowerCAmelCase__ ) def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : bool = False ): """simple docstring""" print(lowerCAmelCase__ , flush=lowerCAmelCase__ , end="""""" if not stream_end else None ) def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Optional[int] ): """simple docstring""" if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase__ : "AutoTokenizer" , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[float] = None , **lowerCAmelCase__ : List[Any] ): """simple docstring""" super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = Queue() __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : List[Any] = timeout def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : bool = False ): """simple docstring""" self.text_queue.put(lowerCAmelCase__ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Optional[int] ): """simple docstring""" return self def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
112
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase__ : Optional[int] = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } UpperCamelCase__ : List[Any] = { '''facebook/bart-base''': 10_24, '''facebook/bart-large''': 10_24, '''facebook/bart-large-mnli''': 10_24, '''facebook/bart-large-cnn''': 10_24, '''facebook/bart-large-xsum''': 10_24, '''yjernite/bart_eli5''': 10_24, } @lru_cache() def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __SCREAMING_SNAKE_CASE : int = bs[:] __SCREAMING_SNAKE_CASE : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCamelCase ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE : Dict = [chr(_lowerCamelCase ) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase ) ) def lowerCAmelCase_ ( _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : List[str] = set() __SCREAMING_SNAKE_CASE : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE : Optional[int] = char return pairs class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : List[str] = VOCAB_FILES_NAMES _A : Tuple = PRETRAINED_VOCAB_FILES_MAP _A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : int = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple="replace" , lowerCAmelCase__ : str="<s>" , lowerCAmelCase__ : Dict="</s>" , lowerCAmelCase__ : Union[str, Any]="</s>" , lowerCAmelCase__ : Any="<s>" , lowerCAmelCase__ : str="<unk>" , lowerCAmelCase__ : Tuple="<pad>" , lowerCAmelCase__ : Union[str, Any]="<mask>" , lowerCAmelCase__ : Dict=False , **lowerCAmelCase__ : Optional[int] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __SCREAMING_SNAKE_CASE : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __SCREAMING_SNAKE_CASE : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __SCREAMING_SNAKE_CASE : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __SCREAMING_SNAKE_CASE : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE : int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __SCREAMING_SNAKE_CASE : Dict = json.load(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE : Dict = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE : Optional[int] = bytes_to_unicode() __SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __SCREAMING_SNAKE_CASE : Tuple = merges_handle.read().split("""\n""" )[1:-1] __SCREAMING_SNAKE_CASE : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] __SCREAMING_SNAKE_CASE : str = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : Optional[int] = {} __SCREAMING_SNAKE_CASE : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE : Tuple = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def UpperCamelCase__ ( self : List[str] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE : Optional[int] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __SCREAMING_SNAKE_CASE : Optional[int] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = bigram __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : List[str] = 0 while i < len(lowerCAmelCase__ ): try: __SCREAMING_SNAKE_CASE : Any = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE : Dict = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE : Optional[int] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __SCREAMING_SNAKE_CASE : Tuple = get_pairs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = """ """.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = word return word def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase__ ) def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = """""".join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __SCREAMING_SNAKE_CASE : str = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __SCREAMING_SNAKE_CASE : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] __SCREAMING_SNAKE_CASE : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict=False , **lowerCAmelCase__ : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE : List[str] = """ """ + text return (text, kwargs)
112
1
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __a = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : Dict , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : str=None , snake_case_ : Optional[int]=1 ): snake_case__ : int = tokenizer snake_case__ : Dict = dataset snake_case__ : Optional[int] = len(snake_case_ ) if n_tasks is None else n_tasks snake_case__ : List[str] = n_copies def __iter__( self : Union[str, Any] ): snake_case__ : Optional[int] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["""prompt"""].strip() ) snake_case__ : Optional[int] = self.tokenizer(snake_case_ , padding=snake_case_ , return_tensors="""pt""" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : List[str] , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : List[str] ): snake_case__ : Dict = start_length snake_case__ : Optional[Any] = eof_strings snake_case__ : List[str] = tokenizer def __call__( self : List[str] , snake_case_ : Tuple , snake_case_ : Optional[int] , **snake_case_ : Optional[Any] ): snake_case__ : int = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) snake_case__ : Optional[int] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(snake_case_ ) def __snake_case( _lowerCAmelCase ) -> Union[str, Any]: snake_case__ : List[Any] = re.split("""(%s)""" % """|""".join(_lowerCAmelCase ) , _lowerCAmelCase ) # last string should be "" return "".join(string_list[:-2] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=20 , **_lowerCAmelCase ) -> Union[str, Any]: snake_case__ : Optional[Any] = defaultdict(_lowerCAmelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCAmelCase ) ): with torch.no_grad(): snake_case__ : Optional[int] = batch["""ids"""].shape[-1] snake_case__ : List[Any] = accelerator.unwrap_model(_lowerCAmelCase ).generate( input_ids=batch["""ids"""][:, : batch["""input_len"""]] , num_return_sequences=_lowerCAmelCase , **_lowerCAmelCase ) # each task is generated batch_size times snake_case__ : Optional[int] = batch["""task_id"""].repeat(_lowerCAmelCase ) snake_case__ : List[Any] = accelerator.pad_across_processes( _lowerCAmelCase , dim=1 , pad_index=tokenizer.pad_token_id ) snake_case__ , snake_case__ : Optional[Any] = accelerator.gather((generated_tokens, generated_tasks) ) snake_case__ : Optional[Any] = generated_tokens.cpu().numpy() snake_case__ : Optional[int] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCAmelCase , _lowerCAmelCase ): gen_token_dict[task].append(_lowerCAmelCase ) snake_case__ : Optional[Any] = [[] for _ in range(_lowerCAmelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: snake_case__ : int = tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) code_gens[task].append(remove_last_block(_lowerCAmelCase ) ) return code_gens def __snake_case( ) -> Union[str, Any]: # Setup configuration snake_case__ : List[str] = HfArgumentParser(_lowerCAmelCase ) snake_case__ : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric snake_case__ : Union[str, Any] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing snake_case__ : Union[str, Any] = """false""" if args.num_workers is None: snake_case__ : int = multiprocessing.cpu_count() # Use dataset load to feed to accelerate snake_case__ : int = Accelerator() set_seed(args.seed , device_specific=_lowerCAmelCase ) # Load model and tokenizer snake_case__ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt ) snake_case__ : Dict = tokenizer.eos_token snake_case__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings snake_case__ : Any = { """do_sample""": args.do_sample, """temperature""": args.temperature, """max_new_tokens""": args.max_new_tokens, """top_p""": args.top_p, """top_k""": args.top_k, """stopping_criteria""": StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCAmelCase , _lowerCAmelCase )] ), } # Load evaluation dataset and metric snake_case__ : Optional[int] = load_dataset("""openai_humaneval""" ) snake_case__ : List[Any] = load_metric("""code_eval""" ) snake_case__ : Optional[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval["""test"""] ) snake_case__ : Dict = args.n_samples // args.batch_size snake_case__ : int = TokenizedDataset(_lowerCAmelCase , human_eval["""test"""] , n_copies=_lowerCAmelCase , n_tasks=_lowerCAmelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences snake_case__ : Optional[Any] = DataLoader(_lowerCAmelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: snake_case__ : List[Any] = code_eval_metric.compute(references=[""""""] , predictions=[[""""""]] ) except ValueError as exception: print( """Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`""" """ flag to enable code evaluation.""" ) raise exception snake_case__ , snake_case__ : Dict = accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ : str = complete_code( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , n_tasks=_lowerCAmelCase , batch_size=args.batch_size , **_lowerCAmelCase , ) if accelerator.is_main_process: snake_case__ : str = [] for task in tqdm(range(_lowerCAmelCase ) ): snake_case__ : Any = human_eval["""test"""][task]["""test"""] snake_case__ : int = f"check({human_eval['test'][task]['entry_point']})" references.append("""\n""" + test_func + """\n""" + entry_point ) # Evaluate completions with "code_eval" metric snake_case__ , snake_case__ : Optional[Any] = code_eval_metric.compute( references=_lowerCAmelCase , predictions=_lowerCAmelCase , num_workers=args.num_workers ) print(f"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , """w""" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
43
'''simple docstring''' import unittest from transformers import DonutProcessor __a = "naver-clova-ix/donut-base" class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : List[str] ): snake_case__ : Optional[Any] = DonutProcessor.from_pretrained(snake_case_ ) def lowerCamelCase ( self : List[Any] ): snake_case__ : Any = { """name""": """John Doe""", """age""": """99""", """city""": """Atlanta""", """state""": """GA""", """zip""": """30301""", """phone""": """123-4567""", """nicknames""": [{"""nickname""": """Johnny"""}, {"""nickname""": """JD"""}], } snake_case__ : str = ( """<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>""" """<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>""" """<s_nicknames><s_nickname>Johnny</s_nickname>""" """<sep/><s_nickname>JD</s_nickname></s_nicknames>""" ) snake_case__ : Optional[Any] = self.processor.tokenajson(snake_case_ ) self.assertDictEqual(snake_case_ , snake_case_ )
43
1
def _a ( ): """simple docstring""" UpperCamelCase__ : Optional[Any] = 0 for i in range(1 , 1001 ): total += i**i return str(SCREAMING_SNAKE_CASE )[-10:] if __name__ == "__main__": print(solution())
146
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowerCAmelCase) , "Tatoeba directory does not exist.") class __magic_name__ ( unittest.TestCase): @cached_property def UpperCAmelCase__ ( self : str ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = tempfile.mkdtemp() return TatoebaConverter(save_dir=lowerCamelCase__ ) @slow def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Dict = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=lowerCamelCase__ ) assert mmeta["long_pair"] == "heb-eng"
146
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction def __a ( _UpperCamelCase: int , _UpperCamelCase: int ) -> bool: """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def __a ( _UpperCamelCase: int ) -> list[str]: """simple docstring""" _snake_case = [] _snake_case = 11 _snake_case = int("1" + "0" * digit_len ) for num in range(_UpperCamelCase , _UpperCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_UpperCamelCase , _UpperCamelCase ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 _snake_case = 10 return solutions def __a ( _UpperCamelCase: int = 2 ) -> int: """simple docstring""" _snake_case = 1.0 for fraction in fraction_list(_UpperCamelCase ): _snake_case = Fraction(_UpperCamelCase ) result *= frac.denominator / frac.numerator return int(_UpperCamelCase ) if __name__ == "__main__": print(solution())
142
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ : List[str] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCamelCase_ : Optional[Any] = 250004 UpperCamelCase_ : Union[str, Any] = 250020 @require_sentencepiece @require_tokenizers class _a ( __lowerCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = MBartTokenizer SCREAMING_SNAKE_CASE_ : List[str] = MBartTokenizerFast SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : List[Any] = True def _lowercase ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _snake_case = MBartTokenizer(_SCREAMING_SNAKE_CASE ,keep_accents=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self ) -> Dict: _snake_case = MBartTokenizer(_SCREAMING_SNAKE_CASE ,keep_accents=_SCREAMING_SNAKE_CASE ) _snake_case = tokenizer.tokenize("This is a test" ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) _snake_case = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _SCREAMING_SNAKE_CASE ,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] ,) _snake_case = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] ,) _snake_case = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE ,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] ,) def _lowercase ( self ) -> List[str]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _snake_case = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) _snake_case = self.tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) _snake_case = tempfile.mkdtemp() _snake_case = tokenizer_r.save_pretrained(_SCREAMING_SNAKE_CASE ) _snake_case = tokenizer_p.save_pretrained(_SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) _snake_case = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way _snake_case = tokenizer_r.from_pretrained(_SCREAMING_SNAKE_CASE ) _snake_case = tokenizer_p.from_pretrained(_SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True _snake_case = tempfile.mkdtemp() _snake_case = tokenizer_r.save_pretrained(_SCREAMING_SNAKE_CASE ,legacy_format=_SCREAMING_SNAKE_CASE ) _snake_case = tokenizer_p.save_pretrained(_SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way _snake_case = tokenizer_r.from_pretrained(_SCREAMING_SNAKE_CASE ) _snake_case = tokenizer_p.from_pretrained(_SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) shutil.rmtree(_SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False _snake_case = tempfile.mkdtemp() _snake_case = tokenizer_r.save_pretrained(_SCREAMING_SNAKE_CASE ,legacy_format=_SCREAMING_SNAKE_CASE ) _snake_case = tokenizer_p.save_pretrained(_SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _snake_case = tokenizer_r.from_pretrained(_SCREAMING_SNAKE_CASE ) _snake_case = tokenizer_p.from_pretrained(_SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) shutil.rmtree(_SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = """facebook/mbart-large-en-ro""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] SCREAMING_SNAKE_CASE_ : Dict = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] SCREAMING_SNAKE_CASE_ : Optional[int] = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def _lowercase ( cls ) -> List[str]: _snake_case = MBartTokenizer.from_pretrained( cls.checkpoint_name ,src_lang="en_XX" ,tgt_lang="ro_RO" ) _snake_case = 1 return cls def _lowercase ( self ) -> Dict: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] ,250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] ,250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] ,250_020 ) def _lowercase ( self ) -> Tuple: _snake_case = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,_SCREAMING_SNAKE_CASE ) def _lowercase ( self ) -> Optional[int]: self.assertIn(_SCREAMING_SNAKE_CASE ,self.tokenizer.all_special_ids ) _snake_case = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] _snake_case = self.tokenizer.decode(_SCREAMING_SNAKE_CASE ,skip_special_tokens=_SCREAMING_SNAKE_CASE ) _snake_case = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertNotIn(self.tokenizer.eos_token ,_SCREAMING_SNAKE_CASE ) def _lowercase ( self ) -> List[Any]: _snake_case = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] ,_SCREAMING_SNAKE_CASE ) _snake_case = 10 _snake_case = self.tokenizer(_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ).input_ids[0] self.assertEqual(ids[-2] ,2 ) self.assertEqual(ids[-1] ,_SCREAMING_SNAKE_CASE ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) def _lowercase ( self ) -> Optional[int]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) ,[250_026, 250_001] ) def _lowercase ( self ) -> str: _snake_case = tempfile.mkdtemp() _snake_case = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) _snake_case = MBartTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,_SCREAMING_SNAKE_CASE ) @require_torch def _lowercase ( self ) -> Dict: _snake_case = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=_SCREAMING_SNAKE_CASE ,return_tensors="pt" ) _snake_case = shift_tokens_right(batch["labels"] ,self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _lowercase ( self ) -> Optional[int]: _snake_case = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,max_length=len(self.expected_src_tokens ) ,return_tensors="pt" ,) _snake_case = shift_tokens_right(batch["labels"] ,self.tokenizer.pad_token_id ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual((2, 14) ,batch.input_ids.shape ) self.assertEqual((2, 14) ,batch.attention_mask.shape ) _snake_case = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,_SCREAMING_SNAKE_CASE ) self.assertEqual(2 ,batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id, EN_CODE] ) def _lowercase ( self ) -> str: _snake_case = self.tokenizer(self.src_text ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,max_length=3 ,return_tensors="pt" ) _snake_case = self.tokenizer( text_target=self.tgt_text ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,max_length=10 ,return_tensors="pt" ) _snake_case = targets["input_ids"] _snake_case = shift_tokens_right(_SCREAMING_SNAKE_CASE ,self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def _lowercase ( self ) -> Any: _snake_case = self.tokenizer._build_translation_inputs( "A test" ,return_tensors="pt" ,src_lang="en_XX" ,tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) ,{ # A, test, EOS, en_XX "input_ids": [[62, 3_034, 2, 250_004]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250_001, } ,)
142
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase :str = botoa.client("""iam""" ) UpperCamelCase :Dict = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=__magic_name__ , AssumeRolePolicyDocument=json.dumps(__magic_name__ , indent=2 ) ) UpperCamelCase :Optional[Any] = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=__magic_name__ , PolicyName=f"""{role_name}_policy_permission""" , PolicyDocument=json.dumps(__magic_name__ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"""role {role_name} already exists. Using existing one""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[int] ) -> int: """simple docstring""" UpperCamelCase :Any = botoa.client("""iam""" ) return iam_client.get_role(RoleName=__magic_name__ )["Role"]["Arn"] def SCREAMING_SNAKE_CASE_ ( ) -> Any: """simple docstring""" UpperCamelCase :Optional[Any] = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , __magic_name__ , ) UpperCamelCase :List[str] = None if credentials_configuration == 0: UpperCamelCase :Union[str, Any] = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) UpperCamelCase :List[str] = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) UpperCamelCase :int = _ask_field("""AWS Access Key ID: """ ) UpperCamelCase :str = aws_access_key_id UpperCamelCase :Optional[Any] = _ask_field("""AWS Secret Access Key: """ ) UpperCamelCase :Dict = aws_secret_access_key UpperCamelCase :Any = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) UpperCamelCase :Tuple = aws_region UpperCamelCase :List[Any] = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , __magic_name__ , ) if role_management == 0: UpperCamelCase :str = _ask_field("""Enter your IAM role name: """ ) else: UpperCamelCase :List[Any] = """accelerate_sagemaker_execution_role""" print(f"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(__magic_name__ ) UpperCamelCase :Any = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) UpperCamelCase :List[Any] = None if is_custom_docker_image: UpperCamelCase :Tuple = _ask_field("""Enter your Docker image: """ , lambda __magic_name__ : str(__magic_name__ ).lower() ) UpperCamelCase :Tuple = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) UpperCamelCase :Optional[int] = None if is_sagemaker_inputs_enabled: UpperCamelCase :Dict = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , ) UpperCamelCase :List[str] = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) UpperCamelCase :List[Any] = None if is_sagemaker_metrics_enabled: UpperCamelCase :Dict = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , ) UpperCamelCase :Tuple = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) UpperCamelCase :List[str] = {} UpperCamelCase :Union[str, Any] = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) if use_dynamo: UpperCamelCase :Optional[Any] = """dynamo_""" UpperCamelCase :str = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) UpperCamelCase :Optional[int] = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) if use_custom_options: UpperCamelCase :Union[str, Any] = _ask_options( """Which mode do you want to use?""" , __magic_name__ , lambda __magic_name__ : TORCH_DYNAMO_MODES[int(__magic_name__ )] , default="""default""" , ) UpperCamelCase :List[str] = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) UpperCamelCase :Union[str, Any] = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) UpperCamelCase :Optional[int] = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: UpperCamelCase :Union[str, Any] = _ask_options( __magic_name__ , __magic_name__ , lambda __magic_name__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__magic_name__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" UpperCamelCase :Any = _ask_field(__magic_name__ , lambda __magic_name__ : str(__magic_name__ ).lower() , default="""ml.p3.2xlarge""" ) UpperCamelCase :Any = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): UpperCamelCase :int = _ask_field( """How many machines do you want use? [1]: """ , __magic_name__ , default=1 , ) UpperCamelCase :List[Any] = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=__magic_name__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__magic_name__ , use_cpu=__magic_name__ , dynamo_config=__magic_name__ , eca_instance_type=__magic_name__ , profile=__magic_name__ , region=__magic_name__ , iam_role_name=__magic_name__ , mixed_precision=__magic_name__ , num_machines=__magic_name__ , sagemaker_inputs_file=__magic_name__ , sagemaker_metrics_file=__magic_name__ , )
38
from __future__ import annotations def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = str(snake_case ) return n == n[::-1] def _UpperCAmelCase ( snake_case = 1_00_00_00 ): """simple docstring""" _lowerCAmelCase = 0 for i in range(1 , snake_case ): if is_palindrome(snake_case ) and is_palindrome(bin(snake_case ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
82
0
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def snake_case_ ( A_ : Dict ): '''simple docstring''' _lowerCamelCase : int = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def snake_case_ ( A_ : List[str], A_ : int ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def snake_case_ ( A_ : Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', '''stage2.cls_token''') ) return token def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Dict = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def snake_case_ ( A_ : List[str], A_ : Union[str, Any], A_ : List[Any], A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : Any = '''imagenet-1k-id2label.json''' _lowerCamelCase : Dict = 10_00 _lowerCamelCase : Tuple = '''huggingface/label-files''' _lowerCamelCase : Any = num_labels _lowerCamelCase : str = json.load(open(cached_download(hf_hub_url(A_, A_, repo_type='''dataset''' ) ), '''r''' ) ) _lowerCamelCase : Optional[Any] = {int(A_ ): v for k, v in idalabel.items()} _lowerCamelCase : List[str] = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : Dict = CvtConfig(num_labels=A_, idalabel=A_, labelaid=A_ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''', 1 )[-1][4:6] == "13": _lowerCamelCase : Tuple = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''', 1 )[-1][4:6] == "21": _lowerCamelCase : int = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: _lowerCamelCase : Dict = [2, 2, 20] _lowerCamelCase : Tuple = [3, 12, 16] _lowerCamelCase : List[Any] = [1_92, 7_68, 10_24] _lowerCamelCase : str = CvtForImageClassification(A_ ) _lowerCamelCase : Dict = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) _lowerCamelCase : Any = image_size _lowerCamelCase : Any = torch.load(A_, map_location=torch.device('''cpu''' ) ) _lowerCamelCase : List[str] = OrderedDict() _lowerCamelCase : str = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: _lowerCamelCase : Tuple = list_of_state_dict + cls_token(A_ ) _lowerCamelCase : Dict = list_of_state_dict + embeddings(A_ ) for cnt in range(config.depth[idx] ): _lowerCamelCase : List[str] = list_of_state_dict + attention(A_, A_ ) _lowerCamelCase : Any = list_of_state_dict + final() for gg in list_of_state_dict: print(A_ ) for i in range(len(A_ ) ): _lowerCamelCase : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A_ ) model.save_pretrained(A_ ) image_processor.save_pretrained(A_ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase__ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
175
"""simple docstring""" from maths.prime_factors import prime_factors def snake_case_ ( A_ : int ): '''simple docstring''' if not isinstance(A_, A_ ): _lowerCamelCase : str = F'''Input value of [number={number}] must be an integer''' raise TypeError(A_ ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(A_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
175
1
def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' if not head: return True # split the list to two parts __lowerCamelCase, __lowerCamelCase = head.next, head while fast and fast.next: __lowerCamelCase = fast.next.next __lowerCamelCase = slow.next __lowerCamelCase = slow.next __lowerCamelCase = None # Don't forget here! But forget still works! # reverse the second part __lowerCamelCase = None while second: __lowerCamelCase = second.next __lowerCamelCase = node __lowerCamelCase = second __lowerCamelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False __lowerCamelCase = node.next __lowerCamelCase = head.next return True def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) __lowerCamelCase = __lowerCamelCase = __lowerCamelCase = head while fast and fast.next: __lowerCamelCase, __lowerCamelCase = fast.next.next, slow.next # 2. Push the second half into the stack __lowerCamelCase = [slow.val] while slow.next: __lowerCamelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False __lowerCamelCase = cur.next return True def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' if not head or not head.next: return True __lowerCamelCase = {} __lowerCamelCase = 0 while head: if head.val in d: d[head.val].append(__snake_case ) else: __lowerCamelCase = [pos] __lowerCamelCase = head.next pos += 1 __lowerCamelCase = pos - 1 __lowerCamelCase = 0 for v in d.values(): if len(__snake_case ) % 2 != 0: middle += 1 else: __lowerCamelCase = 0 for i in range(0 , len(__snake_case ) ): if v[i] + v[len(__snake_case ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
12
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """yolos""" def __init__( self , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=1_2 , __lowerCAmelCase=1_2 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=[5_1_2, 8_6_4] , __lowerCAmelCase=1_6 , __lowerCAmelCase=3 , __lowerCAmelCase=True , __lowerCAmelCase=1_0_0 , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=1 , __lowerCAmelCase=5 , __lowerCAmelCase=2 , __lowerCAmelCase=5 , __lowerCAmelCase=2 , __lowerCAmelCase=0.1 , **__lowerCAmelCase , ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = qkv_bias lowerCamelCase__ = num_detection_tokens lowerCamelCase__ = use_mid_position_embeddings lowerCamelCase__ = auxiliary_loss # Hungarian matcher lowerCamelCase__ = class_cost lowerCamelCase__ = bbox_cost lowerCamelCase__ = giou_cost # Loss coefficients lowerCamelCase__ = bbox_loss_coefficient lowerCamelCase__ = giou_loss_coefficient lowerCamelCase__ = eos_coefficient class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = version.parse("""1.11""" ) @property def __lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCamelCase ( self ): '''simple docstring''' return 1E-4 @property def __lowerCamelCase ( self ): '''simple docstring''' return 1_2
209
0
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=True , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> str: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_multiple_size _a = hidden_act _a = hidden_dropout _a = attention_dropout _a = weight_tying _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def _UpperCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self ) -> Optional[int]: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a , _a , _a , _a = self.prepare_config_and_inputs() _a = True return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: _a = GPTNeoXJapaneseModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: _a = True _a = GPTNeoXJapaneseModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: _a = GPTNeoXJapaneseForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: _a = True _a = GPTNeoXJapaneseForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase ) _a = output_from_no_past['''hidden_states'''][0] _a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def _UpperCAmelCase ( self ) -> List[str]: _a = self.prepare_config_and_inputs() _a , _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : str = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () A_ : Tuple = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () A_ : List[str] = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) A_ : Any = False A_ : Optional[Any] = False A_ : Tuple = False A_ : Optional[int] = False def _UpperCAmelCase ( self ) -> Optional[Any]: _a = GPTNeoXJapaneseModelTester(self ) _a = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> str: _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: # This regression test was failing with PyTorch < 1.3 _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs_for_decoder() _a = None self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[str]: _a , _a , _a , _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Optional[int]: _a = '''abeja/gpt-neox-japanese-2.7b''' _a = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] _a = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] _a = GPTNeoXJapaneseTokenizer.from_pretrained(__UpperCAmelCase ) _a = GPTNeoXJapaneseForCausalLM.from_pretrained(__UpperCAmelCase ) _a = [] for prompt in prompts: _a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' ).input_ids _a = model.generate(__UpperCAmelCase , max_length=50 ) _a = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
153
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = RobertaTokenizer A_ : Any = RobertaTokenizerFast A_ : Dict = True A_ : Tuple = {'cls_token': '<s>'} def _UpperCAmelCase ( self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _a = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCAmelCase ) ) def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: _a = '''lower newer''' _a = '''lower newer''' return input_text, output_text def _UpperCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''lower newer''' _a = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _a = tokenizer.tokenize(__UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__UpperCAmelCase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__UpperCAmelCase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def _UpperCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained('''roberta-base''' ) _a = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCAmelCase ) _a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCAmelCase ) _a = tokenizer.encode( '''sequence builders''' , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) _a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.get_tokenizer() _a = '''Encode this sequence.''' _a = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) # Testing spaces after special tokens _a = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase )} ) # mask token has a left space _a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) _a = '''Encode <mask> sequence''' _a = '''Encode <mask>sequence''' _a = tokenizer.encode(__UpperCAmelCase ) _a = encoded.index(__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = tokenizer.encode(__UpperCAmelCase ) _a = encoded.index(__UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) _a = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) _a = '''A, <mask> AllenNLP sentence.''' _a = tokenizer_r.encode_plus(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) _a = tokenizer_p.encode_plus(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _a = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _a = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def _UpperCAmelCase ( self ) -> Any: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _a = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _a = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __UpperCAmelCase ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __UpperCAmelCase ) self.assertEqual(post_processor_state['''trim_offsets'''] , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` _a = F'{text_of_1_token} {text_of_1_token}' _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ), len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ), len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ) + 1, 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ), 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) _a = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase ) _a = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ), 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , )
153
1
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 ): '''simple docstring''' __UpperCamelCase :List[Any] = right or len(SCREAMING_SNAKE_CASE ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
43
from __future__ import annotations from PIL import Image # Define glider example __lowercase = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example __lowercase = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :int = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCamelCase :Dict = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __UpperCamelCase :List[str] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(SCREAMING_SNAKE_CASE ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(SCREAMING_SNAKE_CASE ) - 1: neighbour_count += cells[i + 1][j] if i < len(SCREAMING_SNAKE_CASE ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __UpperCamelCase :List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(SCREAMING_SNAKE_CASE ) return next_generation def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[Any] = [] for _ in range(SCREAMING_SNAKE_CASE ): # Create output image __UpperCamelCase :Dict = Image.new('''RGB''' , (len(cells[0] ), len(SCREAMING_SNAKE_CASE )) ) __UpperCamelCase :Any = img.load() # Save cells to image for x in range(len(SCREAMING_SNAKE_CASE ) ): for y in range(len(cells[0] ) ): __UpperCamelCase :Optional[Any] = 255 - cells[y][x] * 255 __UpperCamelCase :int = (colour, colour, colour) # Save image images.append(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[int] = new_generation(SCREAMING_SNAKE_CASE ) return images if __name__ == "__main__": __lowercase = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
43
1
import numpy as np from PIL import Image def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> np.ndarray: lowerCAmelCase__ : Optional[Any] = np.array(SCREAMING_SNAKE_CASE_ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) lowerCAmelCase__ : Any = 0 lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : Union[str, Any] = 0 # compute the shape of the output matrix lowerCAmelCase__ : Optional[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase__ : Tuple = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase__ : int = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : Union[str, Any] = 0 return updated_arr def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> np.ndarray: lowerCAmelCase__ : List[str] = np.array(SCREAMING_SNAKE_CASE_ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) lowerCAmelCase__ : str = 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Optional[int] = 0 # compute the shape of the output matrix lowerCAmelCase__ : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase__ : Optional[Any] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase__ : int = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : int = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image lowerCamelCase__ = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
307
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ): return x return (x, x) @require_tf class A__ : def _lowerCamelCase ( self : List[Any] , a : List[str] , a : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict , a : int , a : str , a : List[Any] , a : Dict , a : List[str]=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(a , a ) lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel(a ) lowerCAmelCase__ : Tuple = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowerCamelCase ( self : Union[str, Any] , a : Dict , a : Tuple , a : Dict , a : Union[str, Any] , a : List[Any]=None , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.get_vision_text_model(a , a ) lowerCAmelCase__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Optional[int] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : List[str] , a : Optional[int] , a : Optional[int] , a : Union[str, Any] , a : List[Any] , a : Any=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[Any] = {'vision_model': vision_model, 'text_model': text_model} lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a ) lowerCAmelCase__ : Union[str, Any] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : Any , a : Optional[int] , a : Optional[int] , a : Dict , a : Optional[int] , a : Optional[int]=None , **a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : int = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Dict = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : List[str] = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : int = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = after_output[0].numpy() lowerCAmelCase__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) def _lowerCamelCase ( self : List[str] , a : Dict , a : Optional[int] , a : List[Any] , a : str , a : int=None , **a : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : str = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Optional[int] = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : str = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : List[Any] , a : np.ndarray , a : np.ndarray , a : float ): '''simple docstring''' lowerCAmelCase__ : int = np.abs((a - b) ).max() self.assertLessEqual(a , a , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a ) @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.get_pretrained_model_and_inputs() lowerCAmelCase__ : List[Any] = model_a(**a ) lowerCAmelCase__ : Optional[int] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a ) lowerCAmelCase__ : str = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : List[str] = model_a(**a ) lowerCAmelCase__ : int = after_outputs[0].numpy() lowerCAmelCase__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : int = 13 lowerCAmelCase__ : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Optional[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , a : Dict , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFViTModel(a , name='vision_model' ) lowerCAmelCase__ : str = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFViTModelTester(self ) lowerCAmelCase__ : Tuple = TFBertModelTester(self ) lowerCAmelCase__ : Optional[int] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) lowerCAmelCase__ : Tuple = 13 lowerCAmelCase__ : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Any = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : Optional[Any] , a : Dict , a : Dict , a : Any , a : Any=None , **a : int ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Any = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase__ : str = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Union[str, Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : List[str] = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : int , a : Optional[int] , a : int ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModel(a , name='vision_model' ) lowerCAmelCase__ : List[Any] = TFRobertaModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModelTester(self ) lowerCAmelCase__ : List[str] = TFRobertaModelTester(self ) lowerCAmelCase__ : str = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : Dict = 13 lowerCAmelCase__ : str = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Union[str, Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Optional[int] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : int , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFCLIPVisionModel(a , name='vision_model' ) lowerCAmelCase__ : List[str] = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = TFCLIPVisionModelTester(self ) lowerCAmelCase__ : Union[str, Any] = TFBertModelTester(self ) lowerCAmelCase__ : Any = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Any = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=a ) lowerCAmelCase__ : List[Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) lowerCAmelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase__ : Any = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=a , padding=a , return_tensors='np' ) lowerCAmelCase__ : Union[str, Any] = model(**a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase__ : List[str] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , a , atol=1E-3 ) )
307
1
from functools import lru_cache def _a ( UpperCAmelCase ) -> set: """simple docstring""" lowerCamelCase__ : Optional[int] = 2 lowerCamelCase__ : str = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCAmelCase ) if n > 1: factors.add(UpperCAmelCase ) return factors @lru_cache def _a ( UpperCAmelCase ) -> int: """simple docstring""" return len(unique_prime_factors(UpperCAmelCase ) ) def _a ( UpperCAmelCase ) -> bool: """simple docstring""" return len(set(UpperCAmelCase ) ) in (0, 1) def _a ( UpperCAmelCase ) -> list: """simple docstring""" lowerCamelCase__ : int = 2 while True: # Increment each value of a generated range lowerCamelCase__ : List[str] = [base + i for i in range(UpperCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowerCamelCase__ : List[str] = [upf_len(UpperCAmelCase ) for x in group] checker.append(UpperCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(UpperCAmelCase ): return group # Increment our base variable by 1 base += 1 def _a ( UpperCAmelCase = 4 ) -> int: """simple docstring""" lowerCamelCase__ : Any = run(UpperCAmelCase ) return results[0] if len(UpperCAmelCase ) else None if __name__ == "__main__": print(solution())
142
def _a ( UpperCAmelCase , UpperCAmelCase ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) lowerCamelCase__ : List[str] = str(bin(UpperCAmelCase ) )[2:] # remove the leading "0b" lowerCamelCase__ : List[Any] = str(bin(UpperCAmelCase ) )[2:] lowerCamelCase__ : Dict = max(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase ) , b_binary.zfill(UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
142
1
"""simple docstring""" import string from math import logaa def lowerCAmelCase_( lowercase_ : str , lowercase_ : str ) -> int: _lowerCamelCase = document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) _lowerCamelCase = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCAmelCase_( lowercase_ : str , lowercase_ : str ) -> tuple[int, int]: _lowerCamelCase = corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' _lowerCamelCase = corpus_without_punctuation.split('''\n''' ) _lowerCamelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowercase_ )) def lowerCAmelCase_( lowercase_ : int , lowercase_ : int , lowercase_ : List[str]=False ) -> float: if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def lowerCAmelCase_( lowercase_ : int , lowercase_ : int ) -> float: return round(tf * idf , 3 )
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
73
0
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _lowercase ( snake_case_ ): lowercase = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **snake_case : Dict ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**snake_case ) return config def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Dict: """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case , beta_end=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Tuple: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[Any]: """simple docstring""" self.check_over_configs(thresholding=snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case , prediction_type=snake_case , sample_max_value=snake_case , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Dict: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Tuple: """simple docstring""" UpperCamelCase_ : List[Any] = self.scheduler_classes[0] UpperCamelCase_ : str = self.get_scheduler_config() UpperCamelCase_ : Optional[Any] = scheduler_class(**snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = self.scheduler_classes[0] UpperCamelCase_ : Tuple = self.get_scheduler_config() UpperCamelCase_ : Optional[int] = scheduler_class(**snake_case ) UpperCamelCase_ : str = len(snake_case ) UpperCamelCase_ : List[str] = self.dummy_model() UpperCamelCase_ : List[str] = self.dummy_sample_deter UpperCamelCase_ : Union[str, Any] = self.dummy_sample_deter + 0.1 UpperCamelCase_ : int = self.dummy_sample_deter - 0.1 UpperCamelCase_ : Dict = samplea.shape[0] UpperCamelCase_ : List[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase_ : Tuple = torch.arange(snake_case )[0:3, None].repeat(1 , snake_case ) UpperCamelCase_ : List[str] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase_ : Any = scheduler.batch_step_no_noise(snake_case , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) UpperCamelCase_ : int = torch.sum(torch.abs(snake_case ) ) UpperCamelCase_ : Dict = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Dict = self.scheduler_classes[0] UpperCamelCase_ : Any = self.get_scheduler_config() UpperCamelCase_ : Tuple = scheduler_class(**snake_case ) UpperCamelCase_ : Optional[Any] = len(snake_case ) UpperCamelCase_ : str = self.dummy_model() UpperCamelCase_ : List[Any] = self.dummy_sample_deter UpperCamelCase_ : Optional[int] = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual UpperCamelCase_ : List[str] = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 UpperCamelCase_ : List[Any] = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample UpperCamelCase_ : Any = pred_prev_sample UpperCamelCase_ : Any = torch.sum(torch.abs(snake_case ) ) UpperCamelCase_ : Any = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = self.scheduler_classes[0] UpperCamelCase_ : Optional[Any] = self.get_scheduler_config(prediction_type='v_prediction' ) UpperCamelCase_ : Optional[int] = scheduler_class(**snake_case ) UpperCamelCase_ : Union[str, Any] = len(snake_case ) UpperCamelCase_ : int = self.dummy_model() UpperCamelCase_ : List[Any] = self.dummy_sample_deter UpperCamelCase_ : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual UpperCamelCase_ : Any = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 UpperCamelCase_ : Optional[Any] = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample UpperCamelCase_ : Any = pred_prev_sample UpperCamelCase_ : Any = torch.sum(torch.abs(snake_case ) ) UpperCamelCase_ : int = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Dict: """simple docstring""" UpperCamelCase_ : Optional[Any] = self.scheduler_classes[0] UpperCamelCase_ : Any = self.get_scheduler_config() UpperCamelCase_ : Any = scheduler_class(**snake_case ) UpperCamelCase_ : str = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=snake_case ) UpperCamelCase_ : Union[str, Any] = scheduler.timesteps for i, timestep in enumerate(snake_case ): if i == len(snake_case ) - 1: UpperCamelCase_ : Dict = -1 else: UpperCamelCase_ : int = timesteps[i + 1] UpperCamelCase_ : Optional[int] = scheduler.previous_timestep(snake_case ) UpperCamelCase_ : Optional[Any] = prev_t.item() self.assertEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Dict = self.scheduler_classes[0] UpperCamelCase_ : List[str] = self.get_scheduler_config() UpperCamelCase_ : Optional[Any] = scheduler_class(**snake_case ) UpperCamelCase_ : List[Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(snake_case , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Any = self.scheduler_classes[0] UpperCamelCase_ : int = self.get_scheduler_config() UpperCamelCase_ : Optional[Any] = scheduler_class(**snake_case ) UpperCamelCase_ : Optional[Any] = [1_0_0, 8_7, 5_0, 1, 0] UpperCamelCase_ : str = len(snake_case ) with self.assertRaises(snake_case , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=snake_case , timesteps=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = self.scheduler_classes[0] UpperCamelCase_ : str = self.get_scheduler_config() UpperCamelCase_ : Optional[int] = scheduler_class(**snake_case ) UpperCamelCase_ : Any = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=snake_case )
175
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def __lowercase ( lowerCamelCase : Any ): UpperCamelCase_ : Union[str, Any] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F"{test_file} instead." ) UpperCamelCase_ : str = components[-1] if not test_fn.endswith('py' ): raise ValueError(F"`test_file` should be a python file. Got {test_fn} instead." ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead." ) UpperCamelCase_ : Union[str, Any] = components[:-1] + [test_fn.replace('.py' , '' )] UpperCamelCase_ : List[Any] = '.'.join(lowerCamelCase ) return test_module_path def __lowercase ( lowerCamelCase : Optional[Any] ): UpperCamelCase_ : List[Any] = get_module_path(lowerCamelCase ) UpperCamelCase_ : Union[str, Any] = importlib.import_module(lowerCamelCase ) return test_module def __lowercase ( lowerCamelCase : List[str] ): UpperCamelCase_ : int = [] UpperCamelCase_ : Tuple = get_test_module(lowerCamelCase ) for attr in dir(lowerCamelCase ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(lowerCamelCase , lowerCamelCase ) ) # sort with class names return sorted(lowerCamelCase , key=lambda lowerCamelCase : x.__name__ ) def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : List[str] = [] UpperCamelCase_ : Union[str, Any] = get_test_module(lowerCamelCase ) for attr in dir(lowerCamelCase ): UpperCamelCase_ : Dict = getattr(lowerCamelCase , lowerCamelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). UpperCamelCase_ : Optional[int] = getattr(lowerCamelCase , 'all_model_classes' , [] ) if len(lowerCamelCase ) > 0: test_classes.append(lowerCamelCase ) # sort with class names return sorted(lowerCamelCase , key=lambda lowerCamelCase : x.__name__ ) def __lowercase ( lowerCamelCase : Dict ): UpperCamelCase_ : int = get_test_classes(lowerCamelCase ) UpperCamelCase_ : List[Any] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowerCamelCase , key=lambda lowerCamelCase : x.__name__ ) def __lowercase ( lowerCamelCase : Tuple ): UpperCamelCase_ : int = test_class() if hasattr(lowerCamelCase , 'setUp' ): test.setUp() UpperCamelCase_ : List[Any] = None if hasattr(lowerCamelCase , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: UpperCamelCase_ : Optional[Any] = test.model_tester.__class__ return model_tester def __lowercase ( lowerCamelCase : Tuple , lowerCamelCase : Dict ): UpperCamelCase_ : Optional[Any] = get_test_classes(lowerCamelCase ) UpperCamelCase_ : Tuple = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowerCamelCase ) # sort with class names return sorted(lowerCamelCase , key=lambda lowerCamelCase : x.__name__ ) def __lowercase ( lowerCamelCase : Any , lowerCamelCase : Tuple ): UpperCamelCase_ : List[Any] = get_test_classes_for_model(lowerCamelCase , lowerCamelCase ) UpperCamelCase_ : int = [] for test_class in test_classes: UpperCamelCase_ : Tuple = get_model_tester_from_test_class(lowerCamelCase ) if tester_class is not None: tester_classes.append(lowerCamelCase ) # sort with class names return sorted(lowerCamelCase , key=lambda lowerCamelCase : x.__name__ ) def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : Tuple = get_test_classes(lowerCamelCase ) UpperCamelCase_ : Tuple = {test_class: get_model_tester_from_test_class(lowerCamelCase ) for test_class in test_classes} return test_tester_mapping def __lowercase ( lowerCamelCase : Any ): UpperCamelCase_ : List[str] = get_model_classes(lowerCamelCase ) UpperCamelCase_ : int = { model_class: get_test_classes_for_model(lowerCamelCase , lowerCamelCase ) for model_class in model_classes } return model_test_mapping def __lowercase ( lowerCamelCase : Tuple ): UpperCamelCase_ : Tuple = get_model_classes(lowerCamelCase ) UpperCamelCase_ : Optional[Any] = { model_class: get_tester_classes_for_model(lowerCamelCase , lowerCamelCase ) for model_class in model_classes } return model_to_tester_mapping def __lowercase ( lowerCamelCase : Any ): if isinstance(lowerCamelCase , lowerCamelCase ): return o elif isinstance(lowerCamelCase , lowerCamelCase ): return o.__name__ elif isinstance(lowerCamelCase , (list, tuple) ): return [to_json(lowerCamelCase ) for x in o] elif isinstance(lowerCamelCase , lowerCamelCase ): return {to_json(lowerCamelCase ): to_json(lowerCamelCase ) for k, v in o.items()} else: return o
175
1
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = 1_3 , lowerCAmelCase__ = 6_4 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 3 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = 1_2_8 , lowerCAmelCase__=[1_6, 3_2, 6_4, 1_2_8] , lowerCAmelCase__ = 7 , lowerCAmelCase__ = 4 , lowerCAmelCase__ = 3_7 , lowerCAmelCase__ = "gelu" , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 1_0 , lowerCAmelCase__ = 0.02 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 1_2_8 , lowerCAmelCase__ = [2, 2, 2, 2] , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 2 , ) -> Optional[Any]: '''simple docstring''' a__ : Union[str, Any] =parent a__ : Optional[int] =batch_size a__ : str =image_size a__ : Any =patch_size a__ : Any =num_channels a__ : int =is_training a__ : Tuple =use_labels a__ : Optional[int] =hidden_size a__ : Optional[Any] =num_hidden_layers a__ : List[str] =num_attention_heads a__ : Optional[Any] =intermediate_size a__ : Union[str, Any] =hidden_act a__ : List[Any] =hidden_dropout_prob a__ : int =attention_probs_dropout_prob a__ : List[str] =type_sequence_label_size a__ : Union[str, Any] =initializer_range a__ : Optional[int] =encoder_stride a__ : Optional[Any] =num_attention_outputs a__ : Dict =embed_dim a__ : int =embed_dim + 1 a__ : List[Any] =resolution a__ : Optional[int] =depths a__ : Optional[Any] =hidden_sizes a__ : List[str] =dim a__ : Optional[Any] =mlp_expansion_ratio def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : Union[str, Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : Union[str, Any] =None if self.use_labels: a__ : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : Optional[int] =self.get_config() return config, pixel_values, labels def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' a__ : Tuple =TFEfficientFormerModel(config=lowerCAmelCase__ ) a__ : Optional[Any] =model(lowerCAmelCase__ , training=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : List[Any] =self.type_sequence_label_size a__ : str =TFEfficientFormerForImageClassification(lowerCAmelCase__ ) a__ : List[Any] =model(lowerCAmelCase__ , labels=lowerCAmelCase__ , training=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a__ : Union[str, Any] =1 a__ : Tuple =TFEfficientFormerForImageClassification(lowerCAmelCase__ ) a__ : str =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ : Any =model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : List[str] =self.prepare_config_and_inputs() a__ , a__ , a__ : Any =config_and_inputs a__ : Dict ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): _lowercase : Tuple = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _lowercase : Dict = ( { """feature-extraction""": TFEfficientFormerModel, """image-classification""": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Dict = False _lowercase : str = False _lowercase : Optional[Any] = False _lowercase : Optional[Any] = False def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : List[str] =TFEfficientFormerModelTester(self ) a__ : Union[str, Any] =ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=3_7 ) def _lowercase ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def _lowercase ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def _lowercase ( self ) -> int: '''simple docstring''' pass def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ , a__ : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Any =model_class(lowerCAmelCase__ ) a__ : str =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Any =[*signature.parameters.keys()] a__ : Union[str, Any] =["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _lowercase ( self ) -> int: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): a__ : List[Any] =model_class(lowerCAmelCase__ ) a__ : Dict =model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) , training=lowerCAmelCase__ ) a__ : Any =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a__ : Optional[int] =getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) if hasattr(self.model_tester , "encoder_seq_length" ): a__ : str =self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: a__ : List[Any] =seq_length * self.model_tester.chunk_length else: a__ : str =self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: a__ : List[Any] =outputs.decoder_hidden_states self.asseretIsInstance(lowerCAmelCase__ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) a__ : Dict =getattr(self.model_tester , "seq_length" , lowerCAmelCase__ ) a__ : str =getattr(self.model_tester , "decoder_seq_length" , lowerCAmelCase__ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) a__ , a__ : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Any =True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ : Any =True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Tuple: '''simple docstring''' a__ : List[str] =super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _lowercase ( self ) -> str: '''simple docstring''' a__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : List[Any] =TFEfficientFormerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ , a__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() a__ : List[Any] =True a__ : Tuple =getattr(self.model_tester , "seq_length" , lowerCAmelCase__ ) a__ : Any =getattr(self.model_tester , "encoder_seq_length" , lowerCAmelCase__ ) a__ : str =getattr(self.model_tester , "key_length" , lowerCAmelCase__ ) a__ : Union[str, Any] =getattr(self.model_tester , "chunk_length" , lowerCAmelCase__ ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): a__ : Optional[int] =encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: a__ : str =True a__ : Dict =False a__ : str =True a__ : Tuple =model_class(lowerCAmelCase__ ) a__ : Tuple =model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) , training=lowerCAmelCase__ ) a__ : List[Any] =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a__ : List[Any] =True a__ : List[Any] =model_class(lowerCAmelCase__ ) a__ : Union[str, Any] =model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) , training=lowerCAmelCase__ ) a__ : Union[str, Any] =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _lowercase ( self ) -> int: '''simple docstring''' a__ , a__ : Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model a__ : List[Any] =model_class(lowerCAmelCase__ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes a__ : Any ={ key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCAmelCase__ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } a__ : str =model(lowerCAmelCase__ ) self.assertTrue(outputs_dict is not None ) def _A ( ): """simple docstring""" a__ : int =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class __lowerCAmelCase ( unittest.TestCase): @cached_property def _lowercase ( self ) -> Tuple: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def _lowercase ( self ) -> Any: '''simple docstring''' a__ : List[Any] =TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) a__ : Union[str, Any] =self.default_image_processor a__ : str =prepare_img() a__ : str =image_processor(images=lowerCAmelCase__ , return_tensors="tf" ) # forward pass a__ : Any =model(**lowerCAmelCase__ , training=lowerCAmelCase__ ) # verify the logits a__ : List[str] =tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) a__ : Tuple =tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : List[Any] =TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) a__ : List[str] =self.default_image_processor a__ : Any =prepare_img() a__ : str =image_processor(images=lowerCAmelCase__ , return_tensors="tf" ) # forward pass a__ : Any =model(**lowerCAmelCase__ , training=lowerCAmelCase__ ) # verify the logits a__ : int =tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) a__ : Tuple =tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
148
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Dict = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : List[Any] = """mvp""" _lowercase : Tuple = ["""past_key_values"""] _lowercase : Dict = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowerCAmelCase__=5_0_2_6_7 , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=1_2 , lowerCAmelCase__=4_0_9_6 , lowerCAmelCase__=1_6 , lowerCAmelCase__=1_2 , lowerCAmelCase__=4_0_9_6 , lowerCAmelCase__=1_6 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__="gelu" , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=0.0 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=1_0_0 , lowerCAmelCase__=8_0_0 , **lowerCAmelCase__ , ) -> str: '''simple docstring''' a__ : Dict =vocab_size a__ : List[str] =max_position_embeddings a__ : List[str] =d_model a__ : Optional[Any] =encoder_ffn_dim a__ : Dict =encoder_layers a__ : List[str] =encoder_attention_heads a__ : List[str] =decoder_ffn_dim a__ : Tuple =decoder_layers a__ : Tuple =decoder_attention_heads a__ : Any =dropout a__ : str =attention_dropout a__ : str =activation_dropout a__ : Optional[int] =activation_function a__ : Union[str, Any] =init_std a__ : Dict =encoder_layerdrop a__ : List[str] =decoder_layerdrop a__ : Union[str, Any] =classifier_dropout a__ : Union[str, Any] =use_cache a__ : Optional[Any] =encoder_layers a__ : List[str] =scale_embedding # scale factor will be sqrt(d_model) if True a__ : int =use_prompt a__ : Union[str, Any] =prompt_length a__ : Dict =prompt_mid_dim super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , forced_eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , lowerCAmelCase__ ): a__ : Tuple =self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' "The config can simply be saved and uploaded again to be fixed." )
148
1
"""simple docstring""" import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors UpperCamelCase = load_file(_SCREAMING_SNAKE_CASE ) UpperCamelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: UpperCamelCase = key.split("." )[0].split(LORA_PREFIX_TEXT_ENCODER + "_" )[-1].split("_" ) UpperCamelCase = pipeline.text_encoder else: UpperCamelCase = key.split("." )[0].split(LORA_PREFIX_UNET + "_" )[-1].split("_" ) UpperCamelCase = pipeline.unet # find the target layer UpperCamelCase = layer_infos.pop(0 ) while len(_SCREAMING_SNAKE_CASE ) > -1: try: UpperCamelCase = curr_layer.__getattr__(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase = layer_infos.pop(0 ) elif len(_SCREAMING_SNAKE_CASE ) == 0: break except Exception: if len(_SCREAMING_SNAKE_CASE ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: UpperCamelCase = layer_infos.pop(0 ) UpperCamelCase = [] if "lora_down" in key: pair_keys.append(key.replace("lora_down" , "lora_up" ) ) pair_keys.append(_SCREAMING_SNAKE_CASE ) else: pair_keys.append(_SCREAMING_SNAKE_CASE ) pair_keys.append(key.replace("lora_up" , "lora_down" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: UpperCamelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) UpperCamelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).unsqueeze(2 ).unsqueeze(3 ) else: UpperCamelCase = state_dict[pair_keys[0]].to(torch.floataa ) UpperCamelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # update visited list for item in pair_keys: visited.append(_SCREAMING_SNAKE_CASE ) return pipeline if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = args.base_model_path lowerCAmelCase__ = args.checkpoint_path lowerCAmelCase__ = args.dump_path lowerCAmelCase__ = args.lora_prefix_unet lowerCAmelCase__ = args.lora_prefix_text_encoder lowerCAmelCase__ = args.alpha lowerCAmelCase__ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowerCAmelCase__ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
153
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class _lowerCamelCase : def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=50 , __a=0.02 , __a=True , __a=None , ) -> Union[str, Any]: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = initializer_range UpperCamelCase = use_labels UpperCamelCase = scope def snake_case_ (self ) -> Union[str, Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = self.get_config() return config, input_ids, input_mask, token_labels def snake_case_ (self ) -> List[str]: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__a , initializer_range=self.initializer_range , ) def snake_case_ (self ) -> List[str]: ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = self.prepare_config_and_inputs() UpperCamelCase = True UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case_ (self , __a , __a , __a , __a , **__a , ) -> Dict: UpperCamelCase = BertGenerationEncoder(config=__a ) model.to(__a ) model.eval() UpperCamelCase = model(__a , attention_mask=__a ) UpperCamelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ (self , __a , __a , __a , __a , __a , __a , **__a , ) -> str: UpperCamelCase = True UpperCamelCase = BertGenerationEncoder(config=__a ) model.to(__a ) model.eval() UpperCamelCase = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , ) UpperCamelCase = model( __a , attention_mask=__a , encoder_hidden_states=__a , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ (self , __a , __a , __a , __a , __a , __a , **__a , ) -> Optional[int]: UpperCamelCase = True UpperCamelCase = True UpperCamelCase = BertGenerationDecoder(config=__a ).to(__a ).eval() # first forward pass UpperCamelCase = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , use_cache=__a , ) UpperCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , output_hidden_states=__a , )["hidden_states"][0] UpperCamelCase = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , past_key_values=__a , output_hidden_states=__a , )["hidden_states"][0] # select random slice UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3 ) ) def snake_case_ (self , __a , __a , __a , __a , *__a , ) -> Optional[Any]: UpperCamelCase = BertGenerationDecoder(__a ) model.to(__a ) model.eval() UpperCamelCase = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ (self ) -> Dict: UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): UpperCAmelCase_ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () UpperCAmelCase_ = (BertGenerationDecoder,) if is_torch_available() else () UpperCAmelCase_ = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def snake_case_ (self ) -> Any: UpperCamelCase = BertGenerationEncoderTester(self ) UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37 ) def snake_case_ (self ) -> Tuple: self.config_tester.run_common_tests() def snake_case_ (self ) -> List[str]: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def snake_case_ (self ) -> Any: UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs() UpperCamelCase = "bert" self.model_tester.create_and_check_model(__a , __a , __a , __a ) def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__a ) def snake_case_ (self ) -> List[str]: UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__a ) def snake_case_ (self ) -> Union[str, Any]: # This regression test was failing with PyTorch < 1.3 ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase = None self.model_tester.create_and_check_model_as_decoder( __a , __a , __a , __a , __a , __a , ) def snake_case_ (self ) -> str: UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__a ) @slow def snake_case_ (self ) -> List[str]: UpperCamelCase = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) self.assertIsNotNone(__a ) @require_torch class _lowerCamelCase ( unittest.TestCase ): @slow def snake_case_ (self ) -> int: UpperCamelCase = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) UpperCamelCase = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] ) with torch.no_grad(): UpperCamelCase = model(__a )[0] UpperCamelCase = torch.Size([1, 8, 10_24] ) self.assertEqual(output.shape , __a ) UpperCamelCase = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) ) @require_torch class _lowerCamelCase ( unittest.TestCase ): @slow def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) UpperCamelCase = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] ) with torch.no_grad(): UpperCamelCase = model(__a )[0] UpperCamelCase = torch.Size([1, 8, 5_03_58] ) self.assertEqual(output.shape , __a ) UpperCamelCase = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
153
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ): def get_matched_characters(__lowerCamelCase , __lowerCamelCase ) -> str: lowercase__ : List[str] = [] lowercase__ : Union[str, Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase__ : Any = int(max(0 , i - limit ) ) lowercase__ : List[Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__lowerCamelCase ) lowercase__ : Tuple = f"""{_stra[0:_stra.index(__lowerCamelCase )]} {_stra[_stra.index(__lowerCamelCase ) + 1:]}""" return "".join(__lowerCamelCase ) # matching characters lowercase__ : str = get_matched_characters(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = get_matched_characters(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Union[str, Any] = len(__lowerCamelCase ) # transposition lowercase__ : List[Any] = ( len([(ca, ca) for ca, ca in zip(__lowerCamelCase , __lowerCamelCase ) if ca != ca] ) // 2 ) if not match_count: lowercase__ : Union[str, Any] = 0.0 else: lowercase__ : Any = ( 1 / 3 * ( match_count / len(__lowerCamelCase ) + match_count / len(__lowerCamelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase__ : Union[str, Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
353
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) lowercase__ : List[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) lowercase__ : int = convert_pytorch_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowercase__ : Dict = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) return flax_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(__lowerCamelCase ) -> bool: return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowercase__ : int = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowercase__ : Any = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding lowercase__ : Tuple = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer lowercase__ : str = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): lowercase__ : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase__ : Optional[int] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase__ : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowercase__ : List[str] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowercase__ : List[str] = pt_tuple_key[-2] + '''_v''' if name is not None: lowercase__ : Optional[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: # convert pytorch tensor to numpy lowercase__ : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowercase__ : str = flax_model.params['''params'''] else: lowercase__ : Optional[int] = flax_model.params lowercase__ : Optional[Any] = flatten_dict(__lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Tuple = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(__lowerCamelCase ) lowercase__ : int = {} lowercase__ : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : Union[str, Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : Optional[Any] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : List[str] = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowercase__ : int = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : Tuple = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Any = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: import torch # Load the index lowercase__ : Dict = {} for shard_file in shard_filenames: # load using msgpack utils lowercase__ : Optional[int] = torch.load(__lowerCamelCase ) lowercase__ : str = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase__ : Dict = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase__ : Optional[Any] = flax_model.params['''params'''] lowercase__ : List[Any] = flatten_dict(__lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: lowercase__ : Union[str, Any] = flax_model.params lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowercase__ : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : List[str] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowercase__ : Tuple = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : List[str] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase__ , lowercase__ : str = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary lowercase__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) continue if "var" in flax_key[-1]: lowercase__ : str = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase__ : List[str] = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase__ : Union[str, Any] = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class lowercase__ : Optional[int] = getattr(__lowerCamelCase , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(__lowerCamelCase , '''rb''' ) as state_f: try: lowercase__ : str = from_bytes(__lowerCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase__ : Any = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa , __lowerCamelCase ) ).values() if any(__lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase__ : Union[str, Any] = jax.tree_util.tree_map( lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCamelCase ) lowercase__ : Tuple = flatten_dict(__lowerCamelCase ) lowercase__ : List[str] = pt_model.state_dict() lowercase__ : int = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) lowercase__ : int = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowercase__ : List[str] = [] lowercase__ : Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix lowercase__ : Optional[int] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowercase__ : Tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowercase__ : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict: # conv layer lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : List[str] = jnp.transpose(__lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict: # linear layer lowercase__ : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) lowercase__ : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowercase__ : Any = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: lowercase__ : Dict = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: lowercase__ : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowercase__ : Dict = '''.'''.join(__lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowercase__ : Optional[int] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowercase__ : str = key.split('''.''' ) lowercase__ : Optional[Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: lowercase__ : List[str] = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: lowercase__ : str = key_components[-2] + '''_v''' if name is not None: lowercase__ : Optional[int] = key_components[:-3] + [name] lowercase__ : List[str] = '''.'''.join(__lowerCamelCase ) lowercase__ : List[Any] = key if flax_key in special_pt_names: lowercase__ : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowercase__ : List[str] = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase , np.ndarray ) else flax_tensor lowercase__ : List[str] = torch.from_numpy(__lowerCamelCase ) # remove from missing keys missing_keys.remove(__lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCamelCase ) pt_model.load_state_dict(__lowerCamelCase ) # re-transform missing_keys to list lowercase__ : Optional[Any] = list(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(__lowerCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" '''If your task is similar to the task the model of the checkpoint was trained on, ''' f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
302
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Any = { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/config.json""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/config.json""", """funnel-transformer/medium-base""": """https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json""", """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/config.json""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json""", """funnel-transformer/xlarge-base""": """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json""", } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "funnel" _UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self: List[str] , UpperCamelCase: Optional[int]=3_05_22 , UpperCamelCase: Dict=[4, 4, 4] , UpperCamelCase: Any=None , UpperCamelCase: Tuple=2 , UpperCamelCase: List[Any]=7_68 , UpperCamelCase: Any=12 , UpperCamelCase: List[Any]=64 , UpperCamelCase: Any=30_72 , UpperCamelCase: Union[str, Any]="gelu_new" , UpperCamelCase: int=0.1 , UpperCamelCase: Any=0.1 , UpperCamelCase: Optional[Any]=0.0 , UpperCamelCase: Any=0.1 , UpperCamelCase: List[Any]=None , UpperCamelCase: Tuple=1e-9 , UpperCamelCase: Dict="mean" , UpperCamelCase: Optional[int]="relative_shift" , UpperCamelCase: Optional[Any]=True , UpperCamelCase: Tuple=True , UpperCamelCase: Dict=True , **UpperCamelCase: List[str] , ) -> List[str]: snake_case__ = vocab_size snake_case__ = block_sizes snake_case__ = [1] * len(UpperCamelCase ) if block_repeats is None else block_repeats assert len(UpperCamelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." snake_case__ = num_decoder_layers snake_case__ = d_model snake_case__ = n_head snake_case__ = d_head snake_case__ = d_inner snake_case__ = hidden_act snake_case__ = hidden_dropout snake_case__ = attention_dropout snake_case__ = activation_dropout snake_case__ = initializer_range snake_case__ = initializer_std snake_case__ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' snake_case__ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' snake_case__ = attention_type snake_case__ = separate_cls snake_case__ = truncate_seq snake_case__ = pool_q_only super().__init__(**UpperCamelCase ) @property def lowerCAmelCase_ ( self: Optional[Any] ) -> str: return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase_ ( self: int , UpperCamelCase: str ) -> Dict: raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def lowerCAmelCase_ ( self: Optional[int] ) -> Dict: return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase_ ( self: int , UpperCamelCase: Tuple ) -> Optional[int]: raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
307
def a_ ( _A , _A ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def a_ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
307
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : str = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
0
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = ProphetNetTokenizer A__ = False def A_ ( self : Optional[int] ) -> Dict: '''simple docstring''' super().setUp() __snake_case : Dict = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self : int , __a : Union[str, Any] ) -> List[str]: '''simple docstring''' __snake_case : Optional[int] = 'UNwant\u00E9d,running' __snake_case : List[str] = 'unwanted, running' return input_text, output_text def A_ ( self : Union[str, Any] ) -> str: '''simple docstring''' __snake_case : Dict = self.tokenizer_class(self.vocab_file ) __snake_case : List[str] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(__a , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [9, 6, 7, 12, 10, 11] ) def A_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' __snake_case : List[str] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def A_ ( self : Union[str, Any] ) -> str: '''simple docstring''' __snake_case : Optional[int] = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A_ ( self : Dict ) -> Optional[int]: '''simple docstring''' __snake_case : List[Any] = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def A_ ( self : int ) -> Any: '''simple docstring''' __snake_case : int = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A_ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Union[str, Any] = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Dict = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A_ ( self : Any ) -> List[str]: '''simple docstring''' __snake_case : str = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' __snake_case : List[Any] = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' __snake_case : Optional[Any] = BasicTokenizer(do_lower_case=__a , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def A_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' __snake_case : Any = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __snake_case : List[Any] = {} for i, token in enumerate(__a ): __snake_case : List[str] = i __snake_case : Any = WordpieceTokenizer(vocab=__a , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def A_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' __snake_case : Optional[Any] = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __snake_case : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case : str = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] __snake_case : Union[str, Any] = tokenizer(__a , padding=__a , return_tensors='pt' ) self.assertIsInstance(__a , __a ) __snake_case : int = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__a , __a ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def A_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def A_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def A_ ( self : List[Any] ) -> int: '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def A_ ( self : str ) -> Optional[int]: '''simple docstring''' __snake_case : str = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __snake_case : Optional[int] = tokenizer.encode('sequence builders' , add_special_tokens=__a ) __snake_case : Optional[int] = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) __snake_case : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __snake_case : List[Any] = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
0
1
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets __lowerCAmelCase : str = '\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' __lowerCAmelCase : Any = '\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' __lowerCAmelCase : Union[str, Any] = '\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def __magic_name__ ( A : Optional[Any], A : List[Any] ): '''simple docstring''' return float((preds == labels).mean() ) def __magic_name__ ( A : Tuple, A : Optional[int] ): '''simple docstring''' a = simple_accuracy(lowerCamelCase__, lowerCamelCase__ ) a = float(fa_score(y_true=lowerCamelCase__, y_pred=lowerCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def __magic_name__ ( A : Tuple, A : Any ): '''simple docstring''' a = np.array(lowerCamelCase__ ) a = np.array(lowerCamelCase__ ) a = en_sentvecs.shape[0] # mean centering a = en_sentvecs - np.mean(lowerCamelCase__, axis=0 ) a = in_sentvecs - np.mean(lowerCamelCase__, axis=0 ) a = cdist(lowerCamelCase__, lowerCamelCase__, "cosine" ) a = np.array(range(lowerCamelCase__ ) ) a = sim.argsort(axis=1 )[:, :10] a = np.any(preds == actual[:, None], axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__ (datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ) -> int: if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] ) -> Union[str, Any]: if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
107
from __future__ import annotations from scipy.special import comb # type: ignore class A_ : def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : list[tuple[float, float]]): __lowerCamelCase : Union[str, Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowerCamelCase : int = len(SCREAMING_SNAKE_CASE__) - 1 def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : float): assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points)): # basis function for each i output_values.append( comb(self.degree ,SCREAMING_SNAKE_CASE__) * ((1 - t) ** (self.degree - i)) * (t**i)) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(SCREAMING_SNAKE_CASE__) ,5) == 1 return output_values def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : float): assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowerCamelCase : Tuple = self.basis_function(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = 0.0 __lowerCamelCase : Optional[Any] = 0.0 for i in range(len(self.list_of_points)): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : float = 0.01): from matplotlib import pyplot as plt # type: ignore __lowerCamelCase : list[float] = [] # x coordinates of points to plot __lowerCamelCase : list[float] = [] # y coordinates of points to plot __lowerCamelCase : Any = 0.0 while t <= 1: __lowerCamelCase : List[Any] = self.bezier_curve_function(SCREAMING_SNAKE_CASE__) to_plot_x.append(value[0]) to_plot_y.append(value[1]) t += step_size __lowerCamelCase : Optional[Any] = [i[0] for i in self.list_of_points] __lowerCamelCase : List[str] = [i[1] for i in self.list_of_points] plt.plot( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,color='blue' ,label='Curve of Degree ' + str(self.degree) ,) plt.scatter(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,color='red' ,label='Control Points') plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
73
0
'''simple docstring''' import numpy as np def lowerCamelCase ( UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float = 1e-12 , UpperCAmelCase__ : int = 100 , ) -> tuple[float, np.ndarray]: assert np.shape(_UpperCAmelCase )[0] == np.shape(_UpperCAmelCase )[1] # Ensure proper dimensionality. assert np.shape(_UpperCAmelCase )[0] == np.shape(_UpperCAmelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_UpperCAmelCase ) == np.iscomplexobj(_UpperCAmelCase ) lowercase_ : Dict = np.iscomplexobj(_UpperCAmelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_UpperCAmelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. lowercase_ : Union[str, Any] = False lowercase_ : Dict = 0 lowercase_ : Any = 0 lowercase_ : List[str] = 1e12 while not convergence: # Multiple matrix by the vector. lowercase_ : Union[str, Any] = np.dot(_UpperCAmelCase , _UpperCAmelCase ) # Normalize the resulting output vector. lowercase_ : int = w / np.linalg.norm(_UpperCAmelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) lowercase_ : Dict = vector.conj().T if is_complex else vector.T lowercase_ : Optional[Any] = np.dot(_UpperCAmelCase , np.dot(_UpperCAmelCase , _UpperCAmelCase ) ) # Check convergence. lowercase_ : Any = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: lowercase_ : str = True lowercase_ : List[Any] = lambda_ if is_complex: lowercase_ : List[Any] = np.real(lambda_ ) return lambda_, vector def lowerCamelCase ( ) -> None: lowercase_ : Optional[int] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) lowercase_ : List[Any] = np.array([41, 4, 20] ) lowercase_ : str = real_input_matrix.astype(np.complexaaa ) lowercase_ : Optional[int] = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T lowercase_ : int = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": lowercase_ : List[Any] = real_input_matrix lowercase_ : Optional[int] = real_vector elif problem_type == "complex": lowercase_ : Dict = complex_input_matrix lowercase_ : Dict = complex_vector # Our implementation. lowercase_ : Any = power_iteration(_UpperCAmelCase , _UpperCAmelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). lowercase_ : List[Any] = np.linalg.eigh(_UpperCAmelCase ) # Last eigenvalue is the maximum one. lowercase_ : str = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. lowercase_ : str = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_UpperCAmelCase ) - np.abs(_UpperCAmelCase ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
350
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> List[Any]: # Initialise PyTorch model lowercase_ : List[str] = FunnelConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase_ : Dict = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _lowercase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
21
0
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase__ ( lowerCamelCase_ ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() self.register_modules(vqvae=SCREAMING_SNAKE_CASE , unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , **SCREAMING_SNAKE_CASE , ): """simple docstring""" snake_case : int = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=SCREAMING_SNAKE_CASE , ) snake_case : int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler snake_case : Any = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature snake_case : Union[str, Any] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case : str = {} if accepts_eta: snake_case : Any = eta for t in self.progress_bar(self.scheduler.timesteps ): snake_case : List[Any] = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # predict the noise residual snake_case : Any = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample # compute the previous noisy sample x_t -> x_t-1 snake_case : Tuple = self.scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample # decode the image latents with the VAE snake_case : int = self.vqvae.decode(SCREAMING_SNAKE_CASE ).sample snake_case : str = (image / 2 + 0.5).clamp(0 , 1 ) snake_case : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case : Optional[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE )
148
"""simple docstring""" import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( lowercase__ : int , lowercase__ : List[str] , lowercase__ : List[str] ): # Initialise PyTorch model snake_case : Optional[Any] = TaConfig.from_json_file(lowercase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case : Tuple = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
148
1
"""simple docstring""" from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : Union[str, Any] = hf_hub_url(repo_id=A_ , path=A_ , revision=A_ ) assert url == f'https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(A_ )}'
74
"""simple docstring""" from __future__ import annotations import math __UpperCamelCase : Dict = '''2020.9.26''' __UpperCamelCase : Tuple = '''xcodz-dot, cclaus, dhruvmanila''' def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ , A_ ): if not all(isinstance(A_ , (float, int) ) for val in locals().values() ): lowerCAmelCase__ : Optional[Any] = f'Input values must either be float or int: {list(locals().values() )}' raise TypeError(A_ ) lowerCAmelCase__ : Optional[Any] = ((x * distance) / (z + distance)) * scale lowerCAmelCase__ : Optional[int] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ , A_ ): if not isinstance(A_ , A_ ): raise TypeError('''Axis must be a str''' ) lowerCAmelCase__ : str = locals() del input_variables["axis"] if not all(isinstance(A_ , (float, int) ) for val in input_variables.values() ): lowerCAmelCase__ : int = ( '''Input values except axis must either be float or int: ''' f'{list(input_variables.values() )}' ) raise TypeError(A_ ) lowerCAmelCase__ : Any = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": lowerCAmelCase__ : Tuple = x * math.cos(A_ ) - y * math.sin(A_ ) lowerCAmelCase__ : List[str] = y * math.cos(A_ ) + x * math.sin(A_ ) lowerCAmelCase__ : Optional[Any] = z elif axis == "x": lowerCAmelCase__ : List[str] = y * math.cos(A_ ) - z * math.sin(A_ ) lowerCAmelCase__ : str = z * math.cos(A_ ) + y * math.sin(A_ ) lowerCAmelCase__ : Union[str, Any] = x elif axis == "y": lowerCAmelCase__ : Optional[int] = x * math.cos(A_ ) - z * math.sin(A_ ) lowerCAmelCase__ : Tuple = z * math.cos(A_ ) + x * math.sin(A_ ) lowerCAmelCase__ : Optional[int] = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'''{convert_to_ad(1.0, 2.0, 3.0, 1_0.0, 1_0.0) = }''') print(F'''{rotate(1.0, 2.0, 3.0, 'y', 9_0.0) = }''')
74
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Any = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "xlm-roberta" def __init__( self : Tuple ,lowercase_ : Optional[int]=3_0_5_2_2 ,lowercase_ : List[Any]=7_6_8 ,lowercase_ : Optional[Any]=1_2 ,lowercase_ : Dict=1_2 ,lowercase_ : List[str]=3_0_7_2 ,lowercase_ : Optional[int]="gelu" ,lowercase_ : Optional[Any]=0.1 ,lowercase_ : Optional[Any]=0.1 ,lowercase_ : List[Any]=5_1_2 ,lowercase_ : List[str]=2 ,lowercase_ : List[str]=0.02 ,lowercase_ : List[str]=1E-12 ,lowercase_ : List[str]=1 ,lowercase_ : Optional[Any]=0 ,lowercase_ : Any=2 ,lowercase_ : Tuple="absolute" ,lowercase_ : Optional[int]=True ,lowercase_ : Optional[int]=None ,**lowercase_ : Tuple ,): super().__init__(pad_token_id=lowercase_ ,bos_token_id=lowercase_ ,eos_token_id=lowercase_ ,**lowercase_ ) lowerCAmelCase__ : Union[str, Any] = vocab_size lowerCAmelCase__ : str = hidden_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Any = intermediate_size lowerCAmelCase__ : int = hidden_dropout_prob lowerCAmelCase__ : Dict = attention_probs_dropout_prob lowerCAmelCase__ : Optional[Any] = max_position_embeddings lowerCAmelCase__ : List[Any] = type_vocab_size lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : Union[str, Any] = layer_norm_eps lowerCAmelCase__ : Tuple = position_embedding_type lowerCAmelCase__ : Any = use_cache lowerCAmelCase__ : int = classifier_dropout class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" @property def __lowerCAmelCase ( self : Any ): if self.task == "multiple-choice": lowerCAmelCase__ : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase__ : List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
106
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = Dict[str, Any] lowerCamelCase__ = List[Prediction] @add_end_docstrings(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : Tuple , *__lowercase : Tuple , **__lowercase : Optional[int] ): '''simple docstring''' super().__init__(*__lowercase , **__lowercase ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCamelCase_ ( self : Optional[int] , **__lowercase : List[str] ): '''simple docstring''' __a = {} if "threshold" in kwargs: __a = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : List[Any] , *__lowercase : Any , **__lowercase : Tuple ): '''simple docstring''' return super().__call__(*__lowercase , **__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : Tuple ): '''simple docstring''' __a = load_image(__lowercase ) __a = torch.IntTensor([[image.height, image.width]] ) __a = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: __a = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) __a = target_size return inputs def UpperCamelCase_ ( self : Dict , __lowercase : List[str] ): '''simple docstring''' __a = model_inputs.pop("""target_size""" ) __a = self.model(**__lowercase ) __a = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: __a = model_inputs["""bbox"""] return model_outputs def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : List[Any]=0.9 ): '''simple docstring''' __a = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __a , __a = target_size[0].tolist() def unnormalize(__lowercase : Optional[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) __a , __a = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __a = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __a = [unnormalize(__lowercase ) for bbox in model_outputs["""bbox"""].squeeze(0 )] __a = ["""score""", """label""", """box"""] __a = [dict(zip(__lowercase , __lowercase ) ) for vals in zip(scores.tolist() , __lowercase , __lowercase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __a = self.image_processor.post_process_object_detection(__lowercase , __lowercase , __lowercase ) __a = raw_annotations[0] __a = raw_annotation["""scores"""] __a = raw_annotation["""labels"""] __a = raw_annotation["""boxes"""] __a = scores.tolist() __a = [self.model.config.idalabel[label.item()] for label in labels] __a = [self._get_bounding_box(__lowercase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __a = ["""score""", """label""", """box"""] __a = [ dict(zip(__lowercase , __lowercase ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def UpperCamelCase_ ( self : Optional[int] , __lowercase : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) __a , __a , __a , __a = box.int().tolist() __a = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
302
0
"""simple docstring""" from __future__ import annotations def _a ( _snake_case ): """simple docstring""" if len(_snake_case ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) UpperCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
354
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = """▁""" _UpperCamelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} _UpperCamelCase = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } _UpperCamelCase = {"""vinai/bartpho-syllable""": 1024} class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] def __init__( self ,A ,A ,A="<s>" ,A="</s>" ,A="</s>" ,A="<s>" ,A="<unk>" ,A="<pad>" ,A="<mask>" ,A = None ,**A ,): # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) UpperCAmelCase = vocab_file UpperCAmelCase = monolingual_vocab_file UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility UpperCAmelCase = {} UpperCAmelCase = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(A ) not in self.fairseq_tokens_to_ids: UpperCAmelCase = cnt cnt += 1 with open(A ,"""r""" ,encoding="""utf-8""" ) as f: for line in f.readlines(): UpperCAmelCase = line.strip().split()[0] UpperCAmelCase = len(self.fairseq_tokens_to_ids ) if str(A ) not in self.fairseq_tokens_to_ids: UpperCAmelCase = len(self.fairseq_tokens_to_ids ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self ,A ): UpperCAmelCase = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCamelCase ( self ,A ,A = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCamelCase ( self ,A ,A = None ,A = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def _UpperCamelCase ( self ,A ,A = None ): UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCamelCase ( self ): return len(self.fairseq_ids_to_tokens ) def _UpperCamelCase ( self ): UpperCAmelCase = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self ,A ): return self.sp_model.encode(A ,out_type=A ) def _UpperCamelCase ( self ,A ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _UpperCamelCase ( self ,A ): return self.fairseq_ids_to_tokens[index] def _UpperCamelCase ( self ,A ): UpperCAmelCase = """""".join(A ).replace(A ,""" """ ).strip() return out_string def _UpperCamelCase ( self ,A ,A = None ): if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ,) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"""wb""" ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(A ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( A ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file ,A ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(A ,"""w""" ,encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(A )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
234
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_xlm_roberta": [ "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig", "XLMRobertaOnnxConfig", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["XLMRobertaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["XLMRobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ProphetNetTokenizer __snake_case = False def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" super().setUp() a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str ) ->Dict: """simple docstring""" a = '''UNwant\u00E9d,running''' a = '''unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" a = self.tokenizer_class(self.vocab_file ) a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def __lowerCAmelCase ( self : int ) ->Any: """simple docstring""" a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __lowerCAmelCase ( self : Any ) ->int: """simple docstring""" a = BasicTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" a = BasicTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" a = BasicTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" a = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCAmelCase ( self : Any ) ->int: """simple docstring""" a = BasicTokenizer(do_lower_case=__UpperCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] a = {} for i, token in enumerate(__UpperCAmelCase ): a = i a = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) @require_torch def __lowerCAmelCase ( self : int ) ->int: """simple docstring""" a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] a = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102] a = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __lowerCAmelCase ( self : Any ) ->List[str]: """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) @slow def __lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) a = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCAmelCase ) a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCAmelCase ) a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
0
1
'''simple docstring''' import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem _lowercase : str = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 _lowercase : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" if "://" in dataset_path: lowercase_ : Dict = dataset_path.split('''://''' )[1] return dataset_path def snake_case_ ( __SCREAMING_SNAKE_CASE : fsspec.AbstractFileSystem ): """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def snake_case_ ( __SCREAMING_SNAKE_CASE : fsspec.AbstractFileSystem , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : Optional[Any] = not is_remote_filesystem(__SCREAMING_SNAKE_CASE ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__SCREAMING_SNAKE_CASE ) , fs._strip_protocol(__SCREAMING_SNAKE_CASE ) ) else: fs.mv(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , recursive=__SCREAMING_SNAKE_CASE ) def snake_case_ ( ): """simple docstring""" if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowercase_ : Optional[int] = None lowercase_ : Optional[int] = None lowercase_ : Union[str, Any] = threading.Lock()
358
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : str = num_of_nodes lowercase_ : list[list[int]] = [] lowercase_ : dict[int, int] = {} def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: lowercase_ : Optional[int] = self.find_component(__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if component_size[u_node] <= component_size[v_node]: lowercase_ : Any = v_node component_size[v_node] += component_size[u_node] self.set_component(__SCREAMING_SNAKE_CASE ) elif component_size[u_node] >= component_size[v_node]: lowercase_ : int = self.find_component(__SCREAMING_SNAKE_CASE ) component_size[u_node] += component_size[v_node] self.set_component(__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = [] lowercase_ : Optional[Any] = 0 lowercase_ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowercase_ : Union[str, Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowercase_ , lowercase_ , lowercase_ : List[Any] = edge lowercase_ : Dict = self.m_component[u] lowercase_ : Any = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowercase_ : Union[str, Any] = [u, v, w] for edge in minimum_weight_edge: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ , lowercase_ , lowercase_ : str = edge lowercase_ : Tuple = self.m_component[u] lowercase_ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 lowercase_ : str = [-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def snake_case_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
264
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowerCamelCase( _a ): def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Tuple = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowerCamelCase, 'width_multiplier')) class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=64, lowerCamelCase=2, lowerCamelCase=3, lowerCamelCase="swish", lowerCamelCase=3, lowerCamelCase=32, lowerCamelCase=0.1, lowerCamelCase=0.0_2, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=10, lowerCamelCase=None, lowerCamelCase=0.2_5, lowerCamelCase=0.0, lowerCamelCase=0.0, ) -> Any: """simple docstring""" _lowercase : Any = parent _lowercase : Optional[int] = batch_size _lowercase : Dict = image_size _lowercase : str = patch_size _lowercase : Optional[int] = num_channels _lowercase : Optional[Any] = make_divisible(5_12 * width_multiplier, divisor=8) _lowercase : str = hidden_act _lowercase : Dict = conv_kernel_size _lowercase : int = output_stride _lowercase : Optional[Any] = classifier_dropout_prob _lowercase : Tuple = use_labels _lowercase : int = is_training _lowercase : Optional[Any] = num_labels _lowercase : Dict = initializer_range _lowercase : List[str] = scope _lowercase : Tuple = width_multiplier _lowercase : List[str] = ffn_dropout _lowercase : Dict = attn_dropout def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowercase : Dict = None _lowercase : Optional[int] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels) _lowercase : str = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) _lowercase : Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : Optional[int] = MobileViTVaModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : int = self.num_labels _lowercase : Optional[int] = MobileViTVaForImageClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Any = self.num_labels _lowercase : Union[str, Any] = MobileViTVaForSemanticSegmentation(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) _lowercase : List[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : int = config_and_inputs _lowercase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowercase_ : Dict = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ : List[Any] = False lowercase_ : Optional[int] = False lowercase_ : List[Any] = False lowercase_ : Tuple = False def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = MobileViTVaModelTester(self) _lowercase : Tuple = MobileViTVaConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not output attentions') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.') def UpperCamelCase ( self) -> int: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[Any] = model_class(lowerCamelCase) _lowercase : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Any = [*signature.parameters.keys()] _lowercase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" def check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase): _lowercase : Optional[Any] = model_class(lowerCamelCase) model.to(lowerCamelCase) model.eval() with torch.no_grad(): _lowercase : Optional[int] = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase)) _lowercase : List[Any] = outputs.hidden_states _lowercase : Tuple = 5 self.assertEqual(len(lowerCamelCase), lowerCamelCase) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _lowercase : Optional[int] = 2 for i in range(len(lowerCamelCase)): self.assertListEqual( list(hidden_states[i].shape[-2:]), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2) _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Tuple = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Optional[Any] = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : str = MobileViTVaModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) def UpperCamelCase_( ) -> Dict: _lowercase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCamelCase( unittest.TestCase ): @cached_property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256') if is_vision_available() else None ) @slow def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256').to( lowerCamelCase) _lowercase : Dict = self.default_image_processor _lowercase : Union[str, Any] = prepare_img() _lowercase : Dict = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Tuple = model(**lowerCamelCase) # verify the logits _lowercase : Optional[int] = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01]).to(lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Optional[int] = model.to(lowerCamelCase) _lowercase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Union[str, Any] = prepare_img() _lowercase : Tuple = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : List[Any] = model(**lowerCamelCase) _lowercase : str = outputs.logits # verify the logits _lowercase : Tuple = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ], device=lowerCamelCase, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Tuple = model.to(lowerCamelCase) _lowercase : str = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : int = prepare_img() _lowercase : Dict = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Union[str, Any] = model(**lowerCamelCase) _lowercase : Any = outputs.logits.detach().cpu() _lowercase : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase, target_sizes=[(50, 60)]) _lowercase : Any = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape, lowerCamelCase) _lowercase : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase) _lowercase : Optional[int] = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape, lowerCamelCase)
21
def UpperCamelCase_( lowerCamelCase_ ) -> int: if not numbers: return 0 if not isinstance(lowerCamelCase_ , (list, tuple) ) or not all( isinstance(lowerCamelCase_ , lowerCamelCase_ ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) _lowercase : int = numbers[0] for i in range(1 , len(lowerCamelCase_ ) ): # update the maximum and minimum subarray products _lowercase : Union[str, Any] = numbers[i] if number < 0: _lowercase , _lowercase : Any = min_till_now, max_till_now _lowercase : Union[str, Any] = max(lowerCamelCase_ , max_till_now * number ) _lowercase : Union[str, Any] = min(lowerCamelCase_ , min_till_now * number ) # update the maximum product found till now _lowercase : Optional[Any] = max(lowerCamelCase_ , lowerCamelCase_ ) return max_prod
21
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class SCREAMING_SNAKE_CASE ( a__ ): """simple docstring""" A_ = """canine""" def __init__( self: Tuple , __A: Any=7_68 , __A: List[str]=12 , __A: Any=12 , __A: Optional[int]=30_72 , __A: str="gelu" , __A: List[Any]=0.1 , __A: str=0.1 , __A: Union[str, Any]=1_63_84 , __A: Optional[Any]=16 , __A: Optional[Any]=0.02 , __A: Tuple=1e-12 , __A: List[str]=0 , __A: List[str]=0Xe_0_0_0 , __A: Optional[Any]=0Xe_0_0_1 , __A: Optional[Any]=4 , __A: Optional[Any]=4 , __A: List[str]=8 , __A: str=1_63_84 , __A: Optional[Any]=1_28 , **__A: Optional[int] , ) -> List[str]: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _A = max_position_embeddings _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = type_vocab_size _A = layer_norm_eps # Character config: _A = downsampling_rate _A = upsampling_kernel_size _A = num_hash_functions _A = num_hash_buckets _A = local_transformer_stride
362
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __A ( self: Union[str, Any] ) -> Union[str, Any]: _A = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _A = dict(zip(__A , range(len(__A ) ) ) ) _A = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _A = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _A = tempfile.mkdtemp() _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join(self.tmpdirname , __A ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__A ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__A ) + '''\n''' ) # load decoder from hub _A = '''hf-internal-testing/ngram-beam-search-decoder''' def __A ( self: Tuple , **__A: str ) -> str: _A = self.add_kwargs_tokens_map.copy() kwargs.update(__A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__A ) def __A ( self: Any , **__A: List[Any] ) -> Union[str, Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__A ) def __A ( self: List[Any] , **__A: Union[str, Any] ) -> int: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__A ) def __A ( self: List[str] ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __A ( self: List[str] ) -> Optional[Any]: _A = self.get_tokenizer() _A = self.get_feature_extractor() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) processor.save_pretrained(self.tmpdirname ) _A = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __A ) def __A ( self: Optional[int] ) -> Union[str, Any]: _A = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _A = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __A ( self: str ) -> Any: _A = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(__A , '''include''' ): WavaVecaProcessorWithLM( tokenizer=__A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __A ( self: List[str] ) -> str: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = floats_list((3, 10_00) ) _A = feature_extractor(__A , return_tensors='''np''' ) _A = processor(__A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self: Union[str, Any] ) -> Optional[Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = '''This is a test string''' _A = processor(text=__A ) _A = tokenizer(__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self: List[str] , __A: Optional[int]=(2, 10, 16) , __A: Optional[int]=77 ) -> List[Any]: np.random.seed(__A ) return np.random.rand(*__A ) def __A ( self: List[Any] ) -> Optional[Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _A = processor.decode(__A ) _A = decoder.decode_beams(__A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def __A ( self: str , __A: Any ) -> int: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _A = processor.batch_decode(__A ) else: with get_context(__A ).Pool() as pool: _A = processor.batch_decode(__A , __A ) _A = list(__A ) with get_context('''fork''' ).Pool() as p: _A = decoder.decode_beams_batch(__A , __A ) _A ,_A ,_A = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__A , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(__A , decoded_processor.logit_score ) self.assertListEqual(__A , decoded_processor.lm_score ) def __A ( self: Optional[Any] ) -> int: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits() _A = 15 _A = -20.0 _A = -4.0 _A = processor.batch_decode( __A , beam_width=__A , beam_prune_logp=__A , token_min_logp=__A , ) _A = decoded_processor_out.text _A = list(__A ) with get_context('''fork''' ).Pool() as pool: _A = decoder.decode_beams_batch( __A , __A , beam_width=__A , beam_prune_logp=__A , token_min_logp=__A , ) _A = [d[0][0] for d in decoded_decoder_out] _A = [d[0][2] for d in decoded_decoder_out] _A = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__A , __A ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , __A ) self.assertTrue(np.array_equal(__A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __A , atol=1e-3 ) ) self.assertTrue(np.array_equal(__A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , __A , atol=1e-3 ) ) def __A ( self: Optional[int] ) -> Dict: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits() _A = 2.0 _A = 5.0 _A = -20.0 _A = True _A = processor.batch_decode( __A , alpha=__A , beta=__A , unk_score_offset=__A , lm_score_boundary=__A , ) _A = decoded_processor_out.text _A = list(__A ) decoder.reset_params( alpha=__A , beta=__A , unk_score_offset=__A , lm_score_boundary=__A , ) with get_context('''fork''' ).Pool() as pool: _A = decoder.decode_beams_batch( __A , __A , ) _A = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__A , __A ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , __A ) _A = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __A ) def __A ( self: int ) -> Optional[Any]: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _A = os.listdir(__A ) _A = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__A , __A ) def __A ( self: Tuple ) -> Any: _A = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _A = WavaVecaProcessorWithLM.from_pretrained(__A ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _A = os.listdir(__A ) _A = os.listdir(__A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__A , __A ) def __A ( self: List[str] ) -> Tuple: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = floats_list((3, 10_00) ) _A = processor_wavaveca(__A , return_tensors='''np''' ) _A = processor_auto(__A , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) _A = self._get_dummy_logits() _A = processor_wavaveca.batch_decode(__A ) _A = processor_auto.batch_decode(__A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __A ( self: Optional[int] ) -> Any: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def __A ( __A: int , __A: List[str] ) -> Union[str, Any]: _A = [d[key] for d in offsets] return retrieved_list def __A ( self: Optional[Any] ) -> int: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = self._get_dummy_logits()[0] _A = processor.decode(__A , output_word_offsets=__A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__A , __A ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def __A ( self: Optional[Any] ) -> Tuple: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = self._get_dummy_logits() _A = processor.batch_decode(__A , output_word_offsets=__A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__A , __A ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(__A , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __A ( self: Optional[Any] ) -> Optional[Any]: import torch _A = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=__A ) _A = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _A = iter(__A ) _A = next(__A ) _A = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _A = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _A = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _A = model(__A ).logits.cpu().numpy() _A = processor.decode(logits[0] , output_word_offsets=__A ) _A = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _A = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _A = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(__A , '''word''' ) ) , __A ) self.assertEqual(''' '''.join(self.get_from_offsets(__A , '''word''' ) ) , output.text ) # output times _A = torch.tensor(self.get_from_offsets(__A , '''start_time''' ) ) _A = torch.tensor(self.get_from_offsets(__A , '''end_time''' ) ) # fmt: off _A = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) _A = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__A , __A , atol=0.01 ) ) self.assertTrue(torch.allclose(__A , __A , atol=0.01 ) )
75
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter _lowercase = '''Create a default config file for Accelerate with only a few flags set.''' def _snake_case ( snake_case__ : str="no" , snake_case__ : str = default_json_config_file , snake_case__ : bool = False ): A = Path(snake_case__ ) path.parent.mkdir(parents=snake_case__ , exist_ok=snake_case__ ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False A = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) A = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): A = torch.cuda.device_count() A = num_gpus A = False if num_gpus > 1: A = 'MULTI_GPU' else: A = 'NO' elif is_xpu_available() and use_xpu: A = torch.xpu.device_count() A = num_xpus A = False if num_xpus > 1: A = 'MULTI_XPU' else: A = 'NO' elif is_npu_available(): A = torch.npu.device_count() A = num_npus A = False if num_npus > 1: A = 'MULTI_NPU' else: A = 'NO' else: A = 0 A = True A = 1 A = 'NO' A = ClusterConfig(**snake_case__ ) config.to_json_file(snake_case__ ) return path def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Union[str, Any] ): A = parser.add_parser('default' , parents=snake_case__ , help=snake_case__ , formatter_class=snake_case__ ) parser.add_argument( '--config_file' , default=snake_case__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=snake_case__ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=snake_case__ ) return parser def _snake_case ( snake_case__ : Any ): A = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
74
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowercase = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''DeiTFeatureExtractor'''] _lowercase = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
74
1
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _A = logging.get_logger(__name__) class _lowerCamelCase ( a_ ): _lowerCamelCase :Any = "vision-encoder-decoder" _lowerCamelCase :Any = True def __init__( self : Any , **UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" super().__init__(**UpperCamelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) lowerCAmelCase__ : Tuple = kwargs.pop("""encoder""" ) lowerCAmelCase__ : Optional[Any] = encoder_config.pop("""model_type""" ) lowerCAmelCase__ : Tuple = kwargs.pop("""decoder""" ) lowerCAmelCase__ : Optional[Any] = decoder_config.pop("""model_type""" ) lowerCAmelCase__ : Union[str, Any] = AutoConfig.for_model(UpperCamelCase , **UpperCamelCase ) lowerCAmelCase__ : str = AutoConfig.for_model(UpperCamelCase , **UpperCamelCase ) lowerCAmelCase__ : Tuple = True @classmethod def _lowerCAmelCase ( cls : Any , UpperCamelCase : PretrainedConfig , UpperCamelCase : PretrainedConfig , **UpperCamelCase : Any ) -> PretrainedConfig: """simple docstring""" logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) lowerCAmelCase__ : Dict = True lowerCAmelCase__ : Optional[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCamelCase ) def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" lowerCAmelCase__ : Dict = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ : List[Any] = self.encoder.to_dict() lowerCAmelCase__ : Optional[Any] = self.decoder.to_dict() lowerCAmelCase__ : Union[str, Any] = self.__class__.model_type return output class _lowerCamelCase ( a_ ): _lowerCamelCase :List[Any] = version.parse("1.11" ) @property def _lowerCAmelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowerCAmelCase ( self : Optional[Any] ) -> float: """simple docstring""" return 1E-4 @property def _lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class _lowerCamelCase ( a_ ): @property def _lowerCAmelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowerCAmelCase__ : str = OrderedDict() lowerCAmelCase__ : Optional[int] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} lowerCAmelCase__ : Union[str, Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} lowerCAmelCase__ : Optional[int] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : "PreTrainedTokenizerBase" , UpperCamelCase : int = -1 , UpperCamelCase : int = -1 , UpperCamelCase : bool = False , UpperCamelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: """simple docstring""" import torch lowerCAmelCase__ : Any = OrderedDict() lowerCAmelCase__ : Tuple = super().generate_dummy_inputs( UpperCamelCase , batch_size=UpperCamelCase , seq_length=UpperCamelCase , is_pair=UpperCamelCase , framework=UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Any = dummy_input["""input_ids"""].shape lowerCAmelCase__ : List[Any] = (batch, encoder_sequence, self._config.encoder_hidden_size) lowerCAmelCase__ : Dict = dummy_input.pop("""input_ids""" ) lowerCAmelCase__ : Any = dummy_input.pop("""attention_mask""" ) lowerCAmelCase__ : Any = torch.zeros(UpperCamelCase ) return common_inputs class _lowerCamelCase ( a_ ): @property def _lowerCAmelCase ( self : int ) -> None: """simple docstring""" pass def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : PretrainedConfig ) -> OnnxConfig: """simple docstring""" return VisionEncoderDecoderEncoderOnnxConfig(UpperCamelCase ) def _lowerCAmelCase ( self : Dict , UpperCamelCase : PretrainedConfig , UpperCamelCase : PretrainedConfig , UpperCamelCase : str = "default" ) -> OnnxConfig: """simple docstring""" lowerCAmelCase__ : List[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(UpperCamelCase , UpperCamelCase )
212
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor _A = logging.get_logger(__name__) class _lowerCamelCase ( a_ ): def __init__( self : Union[str, Any] , *UpperCamelCase : int , **UpperCamelCase : List[Any] ) -> None: """simple docstring""" warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
212
1
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") lowerCamelCase__ = int(input("""Enter number: """).strip()) print(f'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
86
'''simple docstring''' import math def __lowerCAmelCase (__lowerCAmelCase ): return math.sqrt(__lowerCAmelCase ) * math.sqrt(__lowerCAmelCase ) == num def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = 0 _UpperCAmelCase : Tuple = n while left <= right: _UpperCAmelCase : int = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: _UpperCAmelCase : str = mid - 1 else: _UpperCAmelCase : List[str] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
234
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A : Any = logging.get_logger(__name__) class lowerCamelCase ( _UpperCAmelCase ): lowercase : Union[str, Any] = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = size if size is not None else {"""height""": 384, """width""": 384} UpperCamelCase : Any = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = do_resize UpperCamelCase : Optional[int] = size UpperCamelCase : List[str] = resample UpperCamelCase : str = do_rescale UpperCamelCase : Any = rescale_factor UpperCamelCase : Tuple = do_normalize UpperCamelCase : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCamelCase : str = image_std if image_std is not None else OPENAI_CLIP_STD UpperCamelCase : Any = do_convert_rgb def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) UpperCamelCase : Any = (size["""height"""], size["""width"""]) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Any = do_resize if do_resize is not None else self.do_resize UpperCamelCase : str = resample if resample is not None else self.resample UpperCamelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase : Any = image_mean if image_mean is not None else self.image_mean UpperCamelCase : Any = image_std if image_std is not None else self.image_std UpperCamelCase : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase : Optional[int] = size if size is not None else self.size UpperCamelCase : Any = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase : Optional[Any] = [convert_to_rgb(SCREAMING_SNAKE_CASE_ ) for image in images] # All transformations expect numpy arrays. UpperCamelCase : Any = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: UpperCamelCase : Optional[int] = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: UpperCamelCase : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: UpperCamelCase : int = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase : List[str] = BatchFeature(data={"""pixel_values""": images} , tensor_type=SCREAMING_SNAKE_CASE_ ) return encoded_outputs
27
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCamelCase ( _UpperCAmelCase ): lowercase : Union[str, Any] = 'EncodecFeatureExtractor' lowercase : List[Any] = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = self.feature_extractor UpperCamelCase : Any = False def a_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True ): return self.tokenizer.get_decoder_prompt_ids(task=SCREAMING_SNAKE_CASE_ , language=SCREAMING_SNAKE_CASE_ , no_timestamps=SCREAMING_SNAKE_CASE_ ) def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = kwargs.pop("""sampling_rate""" , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = kwargs.pop("""text""" , SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: UpperCamelCase : Any = args[0] UpperCamelCase : str = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: UpperCamelCase : Optional[int] = self.tokenizer(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if audio is not None: UpperCamelCase : str = self.feature_extractor(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if audio is None: return inputs elif text is None: return audio_inputs else: UpperCamelCase : int = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: UpperCamelCase : Optional[Any] = audio_inputs["""padding_mask"""] return inputs def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = kwargs.pop("""padding_mask""" , SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: UpperCamelCase : Optional[int] = args[0] UpperCamelCase : Any = args[1:] if audio_values is not None: return self._decode_audio(SCREAMING_SNAKE_CASE_ , padding_mask=SCREAMING_SNAKE_CASE_ ) else: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase : Dict = to_numpy(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase : int = audio_values.shape if padding_mask is None: return list(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = to_numpy(SCREAMING_SNAKE_CASE_ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) UpperCamelCase : List[str] = seq_len - padding_mask.shape[-1] UpperCamelCase : Optional[int] = 1 - self.feature_extractor.padding_value UpperCamelCase : Any = np.pad(SCREAMING_SNAKE_CASE_ , ((0, 0), (0, difference)) , """constant""" , constant_values=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = audio_values.tolist() for i in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] UpperCamelCase : Optional[Any] = sliced_audio.reshape(SCREAMING_SNAKE_CASE_ , -1 ) return audio_values
27
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase__ : Any = '''▁''' lowerCAmelCase__ : List[str] = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase__ : Dict = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } lowerCAmelCase__ : List[Any] = { '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off lowerCAmelCase__ : int = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class snake_case ( lowerCAmelCase__ ): """simple docstring""" snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = ["""input_ids""", """attention_mask"""] snake_case__ = [] snake_case__ = [] def __init__( self : Tuple ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Tuple="<s>" ,lowerCamelCase__ : Optional[int]="</s>" ,lowerCamelCase__ : Optional[int]="</s>" ,lowerCamelCase__ : str="<s>" ,lowerCamelCase__ : List[str]="<unk>" ,lowerCamelCase__ : int="<pad>" ,lowerCamelCase__ : List[Any]="<mask>" ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : Any=None ,lowerCamelCase__ : Any=None ,lowerCamelCase__ : Optional[Dict[str, Any]] = None ,lowerCamelCase__ : Any=None ,lowerCamelCase__ : List[Any]=False ,**lowerCamelCase__ : int ,): # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ = AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else mask_token UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase__ = legacy_behaviour super().__init__( bos_token=lowercase_ ,eos_token=lowercase_ ,unk_token=lowercase_ ,sep_token=lowercase_ ,cls_token=lowercase_ ,pad_token=lowercase_ ,mask_token=lowercase_ ,tokenizer_file=lowercase_ ,src_lang=lowercase_ ,tgt_lang=lowercase_ ,additional_special_tokens=lowercase_ ,sp_model_kwargs=self.sp_model_kwargs ,legacy_behaviour=lowercase_ ,**lowercase_ ,) UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase_ ) ) UpperCAmelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase__ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase__ = 1 UpperCAmelCase__ = len(self.sp_model ) UpperCAmelCase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowercase_ ) } UpperCAmelCase__ = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase__ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCAmelCase__ = src_lang if src_lang is not None else '''eng_Latn''' UpperCAmelCase__ = self.lang_code_to_id[self._src_lang] UpperCAmelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[Any] ): UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None UpperCAmelCase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict ,lowerCamelCase__ : Tuple ): UpperCAmelCase__ = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __lowerCAmelCase ( self : Optional[Any] ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __lowerCAmelCase ( self : Optional[int] ): return self._src_lang @src_lang.setter def __lowerCAmelCase ( self : Any ,lowerCamelCase__ : str ): UpperCAmelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ ,token_ids_a=lowercase_ ,already_has_special_tokens=lowercase_ ) UpperCAmelCase__ = [1] * len(self.prefix_tokens ) UpperCAmelCase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase_ )) + suffix_ones return prefix_ones + ([0] * len(lowercase_ )) + ([0] * len(lowercase_ )) + suffix_ones def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self : str ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] ,lowerCamelCase__ : Optional[str] ,**lowerCamelCase__ : Tuple ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) UpperCAmelCase__ = src_lang UpperCAmelCase__ = self(lowercase_ ,add_special_tokens=lowercase_ ,return_tensors=lowercase_ ,**lowercase_ ) UpperCAmelCase__ = self.convert_tokens_to_ids(lowercase_ ) UpperCAmelCase__ = tgt_lang_id return inputs def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : str ): return self.sp_model.encode(lowercase_ ,out_type=lowercase_ ) def __lowerCAmelCase ( self : int ,lowerCamelCase__ : List[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase__ = self.sp_model.PieceToId(lowercase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : Optional[Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Optional[int] ): UpperCAmelCase__ = ''''''.join(lowercase_ ).replace(lowercase_ ,' ' ).strip() return out_string def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): if not os.path.isdir(lowercase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase__ = os.path.join( lowercase_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ ,'wb' ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,) def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : str = "eng_Latn" ,lowerCamelCase__ : Optional[List[str]] = None ,lowerCamelCase__ : str = "fra_Latn" ,**lowerCamelCase__ : Dict ,): UpperCAmelCase__ = src_lang UpperCAmelCase__ = tgt_lang return super().prepare_seqaseq_batch(lowercase_ ,lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : str ): return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self : List[str] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : int ): UpperCAmelCase__ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: UpperCAmelCase__ = [] UpperCAmelCase__ = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase__ = [self.cur_lang_code] UpperCAmelCase__ = [self.eos_token_id] def __lowerCAmelCase ( self : Any ,lowerCamelCase__ : str ): UpperCAmelCase__ = self.lang_code_to_id[lang] if self.legacy_behaviour: UpperCAmelCase__ = [] UpperCAmelCase__ = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase__ = [self.cur_lang_code] UpperCAmelCase__ = [self.eos_token_id]
98
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _UpperCAmelCase : def __init__( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : int=13 , lowercase_ : Optional[int]=7 , lowercase_ : Any=True , lowercase_ : Dict=True , lowercase_ : Dict=True , lowercase_ : Optional[Any]=99 , lowercase_ : Union[str, Any]=32 , lowercase_ : str=5 , lowercase_ : Union[str, Any]=4 , lowercase_ : Any=37 , lowercase_ : Tuple="gelu" , lowercase_ : Dict=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : Optional[Any]=16 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.02 , lowercase_ : List[Any]=3 , lowercase_ : Union[str, Any]=4 , lowercase_ : List[Any]=None , ): snake_case_ : Any = parent snake_case_ : List[str] = batch_size snake_case_ : List[Any] = seq_length snake_case_ : Optional[int] = is_training snake_case_ : Union[str, Any] = use_token_type_ids snake_case_ : Optional[Any] = use_labels snake_case_ : Union[str, Any] = vocab_size snake_case_ : Any = hidden_size snake_case_ : List[Any] = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : Optional[int] = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : Tuple = max_position_embeddings snake_case_ : int = type_vocab_size snake_case_ : Tuple = type_sequence_label_size snake_case_ : str = initializer_range snake_case_ : Tuple = num_labels snake_case_ : str = num_choices snake_case_ : Any = scope snake_case_ : Dict = self.vocab_size - 1 def _snake_case ( self : int ): snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Optional[Any] = None if self.use_token_type_ids: snake_case_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : str = None snake_case_ : Dict = None snake_case_ : str = None if self.use_labels: snake_case_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : int = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) snake_case_ : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _snake_case ( self : Tuple , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , *lowercase_ : Dict ): snake_case_ : List[Any] = OpenAIGPTModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Any = model(lowercase_ , token_type_ids=lowercase_ , head_mask=lowercase_ ) snake_case_ : Optional[Any] = model(lowercase_ , token_type_ids=lowercase_ ) snake_case_ : Optional[Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Tuple , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : List[Any] , *lowercase_ : Optional[Any] ): snake_case_ : Union[str, Any] = OpenAIGPTLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Union[str, Any] = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : List[str] , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Dict , *lowercase_ : Union[str, Any] ): snake_case_ : Tuple = OpenAIGPTDoubleHeadsModel(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Dict = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : Any , lowercase_ : str , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , *lowercase_ : Any ): snake_case_ : int = self.num_labels snake_case_ : Any = OpenAIGPTForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Optional[Any] = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : int ): snake_case_ : Dict = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) : str = config_and_inputs snake_case_ : str = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : Dict = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _lowerCAmelCase : int = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _lowerCAmelCase : Union[str, Any] = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self : Tuple , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _snake_case ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : List[str]=False ): snake_case_ : Dict = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": snake_case_ : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowercase_ , ) snake_case_ : int = inputs_dict['''labels'''] snake_case_ : Optional[Any] = inputs_dict['''labels'''] snake_case_ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowercase_ , ) snake_case_ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def _snake_case ( self : Any ): snake_case_ : List[str] = OpenAIGPTModelTester(self ) snake_case_ : Dict = ConfigTester(self , config_class=lowercase_ , n_embd=37 ) def _snake_case ( self : List[str] ): self.config_tester.run_common_tests() def _snake_case ( self : Optional[Any] ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowercase_ ) def _snake_case ( self : List[str] ): snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase_ ) def _snake_case ( self : int ): snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowercase_ ) def _snake_case ( self : List[str] ): snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowercase_ ) @slow def _snake_case ( self : Dict ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Optional[Any] = OpenAIGPTModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch class _UpperCAmelCase ( unittest.TestCase): @slow def _snake_case ( self : Optional[int] ): snake_case_ : Optional[Any] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowercase_ ) snake_case_ : List[str] = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=lowercase_ ) # the president is snake_case_ : List[Any] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the snake_case_ : Optional[Any] = model.generate(lowercase_ , do_sample=lowercase_ ) self.assertListEqual(output_ids[0].tolist() , lowercase_ )
264
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """SCUT-DLVCLab/lilt-roberta-en-base""": ( """https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json""" ), } class lowerCAmelCase_ ( __snake_case ): '''simple docstring''' lowerCAmelCase_ : Dict = """lilt""" def __init__( self : Any , _UpperCAmelCase : Optional[Any]=3_05_22 , _UpperCAmelCase : Dict=7_68 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : List[Any]=5_12 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : Optional[Any]=1E-12 , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : Any="absolute" , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=4 , _UpperCAmelCase : List[str]=10_24 , **_UpperCAmelCase : Dict , ): """simple docstring""" super().__init__(pad_token_id=a_ , **a_ ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = classifier_dropout UpperCAmelCase__ = channel_shrink_ratio UpperCAmelCase__ = max_ad_position_embeddings
352
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : str = """dpt""" def __init__( self : Optional[Any] , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : List[Any]=30_72 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : List[Any]=1E-12 , _UpperCAmelCase : int=3_84 , _UpperCAmelCase : int=16 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Any=True , _UpperCAmelCase : List[str]=[2, 5, 8, 11] , _UpperCAmelCase : Any="project" , _UpperCAmelCase : Optional[Any]=[4, 2, 1, 0.5] , _UpperCAmelCase : Tuple=[96, 1_92, 3_84, 7_68] , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Any=False , _UpperCAmelCase : str=True , _UpperCAmelCase : List[str]=0.4 , _UpperCAmelCase : Union[str, Any]=2_55 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Tuple=[1, 10_24, 24, 24] , _UpperCAmelCase : Union[str, Any]=[0, 1] , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : List[Any] , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) UpperCAmelCase__ = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } UpperCAmelCase__ = BitConfig(**_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): logger.info("""Initializing the config with a `BiT` backbone.""" ) UpperCAmelCase__ = BitConfig(**_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) UpperCAmelCase__ = backbone_featmap_shape UpperCAmelCase__ = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = [] UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) UpperCAmelCase__ = readout_type UpperCAmelCase__ = reassemble_factors UpperCAmelCase__ = neck_hidden_sizes UpperCAmelCase__ = fusion_hidden_size UpperCAmelCase__ = head_in_index UpperCAmelCase__ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) UpperCAmelCase__ = use_auxiliary_head UpperCAmelCase__ = auxiliary_loss_weight UpperCAmelCase__ = semantic_loss_ignore_index UpperCAmelCase__ = semantic_classifier_dropout def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase__ = self.backbone_config.to_dict() UpperCAmelCase__ = self.__class__.model_type return output
61
0
"""simple docstring""" def a_ ( _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : Optional[int] = [0] * len(_lowerCAmelCase ) lowercase__ : Tuple = [] lowercase__ : Tuple = [] lowercase__ : str = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_lowerCAmelCase ) ): if indegree[i] == 0: queue.append(_lowerCAmelCase ) while queue: lowercase__ : Any = queue.pop(0 ) cnt += 1 topo.append(_lowerCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_lowerCAmelCase ) if cnt != len(_lowerCAmelCase ): print('Cycle exists' ) else: print(_lowerCAmelCase ) # Adjacency List of Graph _UpperCamelCase : Optional[Any] = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
77
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ : Union[str, Any] = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys a_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
75
0
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 A__ : Union[str, Any] ={ '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_28, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class UpperCAmelCase ( unittest.TestCase ): @classmethod def lowercase__ ( cls : Dict ) -> Optional[int]: _lowerCAmelCase = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def lowercase__ ( cls : Dict ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id="""test-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-config-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-config""" ) except HTTPError: pass def lowercase__ ( self : str ) -> List[str]: _lowerCAmelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""test-config""" , use_auth_token=self._token ) _lowerCAmelCase = BertConfig.from_pretrained(f"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , repo_id="""test-config""" , push_to_hub=snake_case__ , use_auth_token=self._token ) _lowerCAmelCase = BertConfig.from_pretrained(f"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def lowercase__ ( self : Optional[int] ) -> Dict: _lowerCAmelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""valid_org/test-config-org""" , use_auth_token=self._token ) _lowerCAmelCase = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id="""valid_org/test-config-org""" , push_to_hub=snake_case__ , use_auth_token=self._token ) _lowerCAmelCase = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def lowercase__ ( self : Tuple ) -> Dict: CustomConfig.register_for_auto_class() _lowerCAmelCase = CustomConfig(attribute=42 ) config.push_to_hub("""test-dynamic-config""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"""AutoConfig""": """custom_configuration.CustomConfig"""} ) _lowerCAmelCase = AutoConfig.from_pretrained(f"{USER}/test-dynamic-config" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , """CustomConfig""" ) self.assertEqual(new_config.attribute , 42 ) class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : Optional[Any] ) -> Dict: _lowerCAmelCase = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase = c.n_embd + 1 # int _lowerCAmelCase = c.resid_pdrop + 1.0 # float _lowerCAmelCase = not c.scale_attn_weights # bool _lowerCAmelCase = c.summary_type + "foo" # str c.update_from_string( f"n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}" ) self.assertEqual(snake_case__ , c.n_embd , """mismatch for key: n_embd""" ) self.assertEqual(snake_case__ , c.resid_pdrop , """mismatch for key: resid_pdrop""" ) self.assertEqual(snake_case__ , c.scale_attn_weights , """mismatch for key: scale_attn_weights""" ) self.assertEqual(snake_case__ , c.summary_type , """mismatch for key: summary_type""" ) def lowercase__ ( self : int ) -> List[str]: _lowerCAmelCase = PretrainedConfig() _lowerCAmelCase = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case__ , ["""is_encoder_decoder""", """_name_or_path""", """_commit_hash""", """transformers_version"""] ) _lowerCAmelCase = [key for key, value in config_common_kwargs.items() if value == getattr(snake_case__ , snake_case__ )] if len(snake_case__ ) > 0: raise ValueError( """The following keys are set with the default values in""" """ `test_configuration_common.config_common_kwargs` pick another value for them:""" f" {', '.join(snake_case__ )}." ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: with self.assertRaises(snake_case__ ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" ) _lowerCAmelCase = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" , subfolder="""bert""" ) self.assertIsNotNone(snake_case__ ) def lowercase__ ( self : List[str] ) -> Optional[Any]: _lowerCAmelCase = mock.Mock() _lowerCAmelCase = 5_00 _lowerCAmelCase = {} _lowerCAmelCase = HTTPError _lowerCAmelCase = {} # Download this model to make sure it's in the cache. _lowerCAmelCase = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=snake_case__ ) as mock_head: _lowerCAmelCase = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() def lowercase__ ( self : Any ) -> List[Any]: _lowerCAmelCase = BertConfig.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json""" ) def lowercase__ ( self : int ) -> str: _lowerCAmelCase = AutoConfig.from_pretrained("""bert-base-cased""" ) _lowerCAmelCase = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case__ ) _lowerCAmelCase = 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case__ , """config.4.0.0.json""" ) , """w""" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase = ["config.42.0.0.json"] _lowerCAmelCase = 7_68 configuration.save_pretrained(snake_case__ ) shutil.move(os.path.join(snake_case__ , """config.4.0.0.json""" ) , os.path.join(snake_case__ , """config.42.0.0.json""" ) ) _lowerCAmelCase = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def lowercase__ ( self : List[str] ) -> Tuple: _lowerCAmelCase = "hf-internal-testing/test-two-configs" import transformers as new_transformers _lowerCAmelCase = "v4.0.0" _lowerCAmelCase = new_transformers.models.auto.AutoConfig.from_pretrained( snake_case__ , return_unused_kwargs=snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase = "v3.0.0" _lowerCAmelCase = old_transformers.models.auto.AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
360
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase = 4_00_00_00 ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase , _lowerCAmelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = b, a + b return sum(lowerCAmelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
220
0
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: lowerCAmelCase__ : List[str] = tmp_path / 'cache' lowerCAmelCase__ : Union[str, Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase__ : str = SqlDatasetReader( 'dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @require_sqlalchemy @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: lowerCAmelCase__ : Any = tmp_path / 'cache' lowerCAmelCase__ : Dict = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCAmelCase__ : Any = features.copy() if features else default_expected_features lowerCAmelCase__ : str = ( Features({feature: Value(SCREAMING_SNAKE_CASE_ ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase__ : Optional[Any] = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE_ ) ) as con: lowerCAmelCase__ : str = con.cursor() cur.execute('SELECT * FROM dataset' ) for row in cur: yield row @require_sqlalchemy def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : List[Any] = tmp_path / 'cache' lowerCAmelCase__ : List[Any] = os.path.join(SCREAMING_SNAKE_CASE_ , 'tmp.sql' ) lowerCAmelCase__ : List[Any] = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE_ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE_ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=1 ).write() lowerCAmelCase__ : List[str] = iter_sql_file(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = iter_sql_file(SCREAMING_SNAKE_CASE_ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert rowa == rowa @require_sqlalchemy def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: lowerCAmelCase__ : Dict = tmp_path / 'cache' lowerCAmelCase__ : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE_ , 'tmp.sql' ) lowerCAmelCase__ : Union[str, Any] = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE_ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE_ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=2 ).write() lowerCAmelCase__ : Union[str, Any] = iter_sql_file(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : int = iter_sql_file(SCREAMING_SNAKE_CASE_ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert rowa == rowa @require_sqlalchemy def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: lowerCAmelCase__ : Tuple = tmp_path / 'cache' lowerCAmelCase__ : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE_ , 'tmp.sql' ) lowerCAmelCase__ : Union[str, Any] = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE_ ).read() with pytest.raises(SCREAMING_SNAKE_CASE_ ): SqlDatasetWriter(SCREAMING_SNAKE_CASE_ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=0 ).write()
212
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class A__ ( __magic_name__ , unittest.TestCase ): lowercase = AlbertTokenizer lowercase = AlbertTokenizerFast lowercase = True lowercase = True lowercase = True def _lowerCamelCase ( self : int ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ : int = AlbertTokenizer(a ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self : List[str] , a : int ): '''simple docstring''' lowerCAmelCase__ : Any = 'this is a test' lowerCAmelCase__ : List[Any] = 'this is a test' return input_text, output_text def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = '<pad>' lowerCAmelCase__ : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '▁eloquent' ) self.assertEqual(len(a ) , 30_000 ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase__ : str = self.get_tokenizer() lowerCAmelCase__ : str = self.get_rust_tokenizer() lowerCAmelCase__ : List[Any] = 'I was born in 92000, and this is falsé.' lowerCAmelCase__ : str = tokenizer.tokenize(a ) lowerCAmelCase__ : Optional[int] = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) lowerCAmelCase__ : Tuple = tokenizer.encode(a , add_special_tokens=a ) lowerCAmelCase__ : Union[str, Any] = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) lowerCAmelCase__ : Optional[Any] = self.get_rust_tokenizer() lowerCAmelCase__ : Dict = tokenizer.encode(a ) lowerCAmelCase__ : List[Any] = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = AlbertTokenizer(a , keep_accents=a ) lowerCAmelCase__ : Union[str, Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(a , ['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , [48, 25, 21, 1_289] ) lowerCAmelCase__ : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( a , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) lowerCAmelCase__ : Any = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual(a , [31, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] ) lowerCAmelCase__ : Any = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : List[str] = AlbertTokenizer(a ) lowerCAmelCase__ : Tuple = tokenizer.encode('sequence builders' ) lowerCAmelCase__ : Any = tokenizer.encode('multi-sequence build' ) lowerCAmelCase__ : Dict = tokenizer.build_inputs_with_special_tokens(a ) lowerCAmelCase__ : Tuple = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 21_970, 13, 5, 6_092, 167, 28, 7_103, 2_153, 673, 8, 7_028, 12_051, 18, 17, 7_103, 2_153, 673, 8, 3_515, 18_684, 8, 4_461, 6, 1_927, 297, 8, 12_060, 2_607, 18, 13, 5, 4_461, 15, 10_538, 38, 8, 135, 15, 822, 58, 15, 993, 10_363, 15, 1_460, 8_005, 4_461, 15, 993, 255, 2_328, 9, 9, 9, 6, 26, 1_112, 816, 3_260, 13, 5, 103, 2_377, 6, 17, 1_112, 816, 2_782, 13, 5, 103, 10_641, 6, 29, 84, 2_512, 2_430, 782, 18_684, 2_761, 19, 808, 2_430, 2_556, 17, 855, 1_480, 9_477, 4_091, 128, 11_712, 15, 7_103, 2_153, 673, 17, 24_883, 9_990, 9, 3], [2, 11_502, 25, 1_006, 20, 782, 8, 11_809, 855, 1_732, 19_393, 18_667, 37, 367, 21_018, 69, 1_854, 34, 11_860, 19_124, 27, 156, 225, 17, 193, 4_141, 19, 65, 9_124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2_231, 886, 2_385, 17_659, 84, 14, 16_792, 1_952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
212
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _UpperCamelCase = logging.get_logger(__name__) @dataclass class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self ,**A ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase = deprecated_arg[3:] setattr(self ,A ,not kwargs.pop(A ) ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) UpperCAmelCase = kwargs.pop("""torchscript""" ,self.torchscript ) UpperCAmelCase = kwargs.pop("""torch_xla_tpu_print_metrics""" ,self.torch_xla_tpu_print_metrics ) UpperCAmelCase = kwargs.pop("""fp16_opt_level""" ,self.fpaa_opt_level ) super().__init__(**A ) SCREAMING_SNAKE_CASE = field(default=snake_case , metadata={'''help''': '''Trace the models using torchscript'''} ) SCREAMING_SNAKE_CASE = field(default=snake_case , metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''} ) SCREAMING_SNAKE_CASE = field( default='''O1''' , metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) } , ) @cached_property def _UpperCamelCase ( self ): requires_backends(self ,["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: UpperCAmelCase = torch.device("""cpu""" ) UpperCAmelCase = 0 elif is_torch_tpu_available(): UpperCAmelCase = xm.xla_device() UpperCAmelCase = 0 else: UpperCAmelCase = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) UpperCAmelCase = torch.cuda.device_count() return device, n_gpu @property def _UpperCamelCase ( self ): return is_torch_tpu_available() and self.tpu @property def _UpperCamelCase ( self ): requires_backends(self ,["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def _UpperCamelCase ( self ): requires_backends(self ,["""torch"""] ) return self._setup_devices[0] @property def _UpperCamelCase ( self ): requires_backends(self ,["""torch"""] ) return self._setup_devices[1] @property def _UpperCamelCase ( self ): return self.n_gpu > 0
234
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _UpperCamelCase = {"""UserAgent""": UserAgent().random} def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = script.contents[0] UpperCAmelCase = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowerCamelCase__ : def __init__( self ,A ): UpperCAmelCase = F'''https://www.instagram.com/{username}/''' UpperCAmelCase = self.get_json() def _UpperCamelCase ( self ): UpperCAmelCase = requests.get(self.url ,headers=A ).text UpperCAmelCase = BeautifulSoup(A ,"""html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def _UpperCamelCase ( self ): return self.user_data["username"] @property def _UpperCamelCase ( self ): return self.user_data["full_name"] @property def _UpperCamelCase ( self ): return self.user_data["biography"] @property def _UpperCamelCase ( self ): return self.user_data["business_email"] @property def _UpperCamelCase ( self ): return self.user_data["external_url"] @property def _UpperCamelCase ( self ): return self.user_data["edge_followed_by"]["count"] @property def _UpperCamelCase ( self ): return self.user_data["edge_follow"]["count"] @property def _UpperCamelCase ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _UpperCamelCase ( self ): return self.user_data["profile_pic_url_hd"] @property def _UpperCamelCase ( self ): return self.user_data["is_verified"] @property def _UpperCamelCase ( self ): return self.user_data["is_private"] def _a ( _snake_case = "github" ): """simple docstring""" import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions UpperCAmelCase = InstagramUser(_snake_case ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _snake_case ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = InstagramUser("""github""") print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
234
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): __a : int = int(number**0.5 ) return number == sq * sq def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): __a : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __a : int = x_den * y_den * z_den __a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowerCamelCase (_SCREAMING_SNAKE_CASE : int = 35 ): __a : set = set() __a : int __a : Fraction = Fraction(0 ) __a : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 __a : Union[str, Any] = x_num * y_den + x_den * y_num __a : Optional[Any] = x_den * y_den __a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : Any = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 __a : Optional[int] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __a : Union[str, Any] = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): __a : List[Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : Any = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : Optional[int] = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : List[Any] = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 __a : int = x_num * y_num __a : Optional[Any] = x_den * y_num + x_num * y_den __a : Tuple = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : Any = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 __a : List[Any] = x_num * x_num * y_num * y_num __a : List[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): __a : Optional[Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : Union[str, Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : List[str] = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
27
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def __UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __a : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__a , ) __a : str = PNDMScheduler(skip_prk_steps=__a ) torch.manual_seed(0 ) __a : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) __a : Dict = CLIPTextModel(__a ) __a : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __UpperCAmelCase ( self , __a , __a=0 ): '''simple docstring''' __a : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) __a : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a : Tuple = Image.fromarray(np.uinta(__a ) ).convert('RGB' ).resize((64, 64) ) __a : Tuple = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((64, 64) ) if str(__a ).startswith('mps' ): __a : Any = torch.manual_seed(__a ) else: __a : str = torch.Generator(device=__a ).manual_seed(__a ) __a : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator __a : str = self.get_dummy_components() __a : Union[str, Any] = StableDiffusionInpaintPipeline(**__a ) __a : List[Any] = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __a : List[Any] = self.get_dummy_inputs(__a ) __a : Dict = sd_pipe(**__a ).images __a : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a : List[Any] = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) __a : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) __a : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) __a : Optional[int] = 'stabilityai/stable-diffusion-2-inpainting' __a : Optional[int] = StableDiffusionInpaintPipeline.from_pretrained(__a , safety_checker=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __a : Dict = 'Face of a yellow cat, high resolution, sitting on a park bench' __a : Tuple = torch.manual_seed(0 ) __a : int = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , output_type='np' , ) __a : Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) __a : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) __a : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) __a : str = 'stabilityai/stable-diffusion-2-inpainting' __a : List[str] = StableDiffusionInpaintPipeline.from_pretrained( __a , torch_dtype=torch.floataa , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __a : Union[str, Any] = 'Face of a yellow cat, high resolution, sitting on a park bench' __a : int = torch.manual_seed(0 ) __a : Optional[Any] = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , output_type='np' , ) __a : int = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) __a : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) __a : str = 'stabilityai/stable-diffusion-2-inpainting' __a : Any = PNDMScheduler.from_pretrained(__a , subfolder='scheduler' ) __a : str = StableDiffusionInpaintPipeline.from_pretrained( __a , safety_checker=__a , scheduler=__a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a : str = 'Face of a yellow cat, high resolution, sitting on a park bench' __a : Tuple = torch.manual_seed(0 ) __a : str = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , num_inference_steps=2 , output_type='np' , ) __a : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
27
1
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __A = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_6 , __UpperCAmelCase=1_3 , __UpperCAmelCase=7 , __UpperCAmelCase=1_4 , __UpperCAmelCase=1_0 , __UpperCAmelCase=1_9 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=True , __UpperCAmelCase=1_6 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=[1, 2, 3, 4, 5] , __UpperCAmelCase=2_5 , __UpperCAmelCase=5 , ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = d_model lowerCAmelCase__ :Optional[int] = parent lowerCAmelCase__ :Any = batch_size lowerCAmelCase__ :Any = prediction_length lowerCAmelCase__ :int = context_length lowerCAmelCase__ :List[Any] = cardinality lowerCAmelCase__ :Any = num_time_features lowerCAmelCase__ :Optional[Any] = lags_sequence lowerCAmelCase__ :List[Any] = embedding_dimension lowerCAmelCase__ :str = is_training lowerCAmelCase__ :Union[str, Any] = hidden_size lowerCAmelCase__ :Optional[Any] = num_hidden_layers lowerCAmelCase__ :Optional[Any] = num_attention_heads lowerCAmelCase__ :str = intermediate_size lowerCAmelCase__ :List[Any] = hidden_act lowerCAmelCase__ :List[str] = hidden_dropout_prob lowerCAmelCase__ :List[str] = attention_probs_dropout_prob lowerCAmelCase__ :Tuple = context_length lowerCAmelCase__ :Union[str, Any] = prediction_length + label_length lowerCAmelCase__ :List[str] = label_length lowerCAmelCase__ :Union[str, Any] = moving_average lowerCAmelCase__ :str = autocorrelation_factor def snake_case ( self ): '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :int = config.context_length + max(config.lags_sequence ) lowerCAmelCase__ :List[str] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowerCAmelCase__ :Tuple = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCAmelCase__ :List[Any] = floats_tensor([self.batch_size, _past_length] ) lowerCAmelCase__ :Dict = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCAmelCase__ :Union[str, Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCAmelCase__ :Optional[Any] = floats_tensor([self.batch_size, config.prediction_length] ) lowerCAmelCase__ :Dict = { 'past_values': past_values, 'static_categorical_features': static_categorical_features, 'past_time_features': past_time_features, 'past_observed_mask': past_observed_mask, 'future_time_features': future_time_features, 'future_values': future_values, } return inputs_dict def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.get_config() lowerCAmelCase__ :List[Any] = self.prepare_autoformer_inputs_dict(__UpperCAmelCase ) return config, inputs_dict def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.prepare_config_and_inputs() return config, inputs_dict def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = AutoformerModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval() lowerCAmelCase__ :Optional[Any] = model(**__UpperCAmelCase ) lowerCAmelCase__ :Any = outputs.encoder_last_hidden_state lowerCAmelCase__ :List[Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ :Optional[Any] = model.get_encoder() encoder.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = AutoformerEncoder.from_pretrained(__UpperCAmelCase ).to(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = model.create_network_inputs(**__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCAmelCase__ :Union[str, Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowerCAmelCase__ :List[str] = encoder(inputs_embeds=__UpperCAmelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) lowerCAmelCase__ :Dict = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowerCAmelCase__ :int = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowerCAmelCase__ :int = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowerCAmelCase__ :Tuple = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ :int = model.get_decoder() decoder.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Any = AutoformerDecoder.from_pretrained(__UpperCAmelCase ).to(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = decoder( trend=__UpperCAmelCase , inputs_embeds=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Optional[int] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __magic_name__ :Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () __magic_name__ :Optional[int] = {"""feature-extraction""": AutoformerModel} if is_torch_available() else {} __magic_name__ :Optional[int] = False __magic_name__ :Optional[int] = False __magic_name__ :Optional[Any] = False __magic_name__ :Optional[Any] = False __magic_name__ :Optional[int] = False __magic_name__ :Dict = False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = AutoformerModelTester(self ) lowerCAmelCase__ :Any = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = model_class.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertEqual(info['missing_keys'] , [] ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__UpperCAmelCase ) @unittest.skip(reason='Model has no tokens embeddings' ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = inspect.signature(getattr(__UpperCAmelCase , 'forward' ) ) # The main input is the name of the argument after `self` lowerCAmelCase__ :List[str] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ :Tuple = model_class(__UpperCAmelCase ) lowerCAmelCase__ :int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ :str = [*signature.parameters.keys()] lowerCAmelCase__ :Any = [ 'past_values', 'past_time_features', 'past_observed_mask', 'static_categorical_features', 'static_real_features', 'future_values', 'future_time_features', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('future_observed_mask' ) expected_arg_names.extend( [ 'decoder_attention_mask', 'head_mask', 'decoder_head_mask', 'cross_attn_head_mask', 'encoder_outputs', 'past_key_values', 'output_hidden_states', 'output_attentions', 'use_cache', 'return_dict', ] ) self.assertListEqual(arg_names[: len(__UpperCAmelCase )] , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ :List[str] = True lowerCAmelCase__ :List[str] = getattr(self.model_tester , 'seq_length' , __UpperCAmelCase ) lowerCAmelCase__ :Dict = getattr(self.model_tester , 'decoder_seq_length' , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = getattr(self.model_tester , 'encoder_seq_length' , __UpperCAmelCase ) lowerCAmelCase__ :str = getattr(self.model_tester , 'd_model' , __UpperCAmelCase ) lowerCAmelCase__ :Any = getattr(self.model_tester , 'num_attention_heads' , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = d_model // num_attention_heads for model_class in self.all_model_classes: lowerCAmelCase__ :Optional[Any] = True lowerCAmelCase__ :Tuple = False lowerCAmelCase__ :List[str] = True lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ :Dict = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ :int = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ :Dict = True lowerCAmelCase__ :List[Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ :List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ :Optional[Any] = outputs.encoder_attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowerCAmelCase__ :int = len(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) # decoder attentions lowerCAmelCase__ :List[Any] = outputs.decoder_attentions self.assertIsInstance(__UpperCAmelCase , (list, tuple) ) self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowerCAmelCase__ :str = outputs.cross_attentions self.assertIsInstance(__UpperCAmelCase , (list, tuple) ) self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowerCAmelCase__ :Dict = True lowerCAmelCase__ :Optional[Any] = True lowerCAmelCase__ :int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ :Union[str, Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(out_len + 2 , len(__UpperCAmelCase ) ) lowerCAmelCase__ :List[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def snake_case ( self ): '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def __A (_SCREAMING_SNAKE_CASE="train-batch.pt" ): """simple docstring""" lowerCAmelCase__ :Any = hf_hub_download(repo_id='hf-internal-testing/tourism-monthly-batch' , filename=_SCREAMING_SNAKE_CASE , repo_type='dataset' ) lowerCAmelCase__ :str = torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE ) return batch @require_torch @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = AutoformerModel.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(__UpperCAmelCase ) lowerCAmelCase__ :Any = prepare_batch() with torch.no_grad(): lowerCAmelCase__ :Optional[int] = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , future_values=batch['future_values'] , future_time_features=batch['future_time_features'] , )[0] lowerCAmelCase__ :Tuple = torch.Size( (6_4, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) lowerCAmelCase__ :Any = torch.tensor( [[0.35_93, -1.33_98, 0.63_30], [0.22_79, 1.53_96, -0.17_92], [0.04_50, 1.32_25, -0.23_35]] , device=__UpperCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = prepare_batch('val-batch.pt' ) with torch.no_grad(): lowerCAmelCase__ :Optional[int] = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , ).encoder_last_hidden_state lowerCAmelCase__ :Dict = torch.Size((6_4, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = torch.tensor( [[-0.07_34, -0.90_36, 0.83_58], [4.71_86, 2.41_13, 1.95_81], [1.79_53, 2.35_58, 1.29_70]] , device=__UpperCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = prepare_batch('val-batch.pt' ) with torch.no_grad(): lowerCAmelCase__ :List[Any] = model.generate( static_categorical_features=batch['static_categorical_features'] , past_time_features=batch['past_time_features'] , past_values=batch['past_values'] , future_time_features=batch['future_time_features'] , past_observed_mask=batch['past_observed_mask'] , ) lowerCAmelCase__ :Optional[int] = torch.Size((6_4, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __UpperCAmelCase ) lowerCAmelCase__ :Dict = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __UpperCAmelCase , rtol=1E-1 ) )
365
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __A = random.Random() def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->Union[str, Any]: """simple docstring""" if rng is None: lowerCAmelCase__ :int = global_rng lowerCAmelCase__ :str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=4_0_0 , __UpperCAmelCase=2_0_0_0 , __UpperCAmelCase=1_0 , __UpperCAmelCase=1_6_0 , __UpperCAmelCase=8 , __UpperCAmelCase=0.0 , __UpperCAmelCase=4_0_0_0 , __UpperCAmelCase=False , __UpperCAmelCase=True , ): '''simple docstring''' lowerCAmelCase__ :int = parent lowerCAmelCase__ :Optional[int] = batch_size lowerCAmelCase__ :Optional[Any] = min_seq_length lowerCAmelCase__ :Optional[int] = max_seq_length lowerCAmelCase__ :Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase__ :Union[str, Any] = padding_value lowerCAmelCase__ :Optional[int] = sampling_rate lowerCAmelCase__ :Optional[int] = return_attention_mask lowerCAmelCase__ :Union[str, Any] = do_normalize lowerCAmelCase__ :Any = feature_size lowerCAmelCase__ :Union[str, Any] = chunk_length lowerCAmelCase__ :List[Any] = hop_length def snake_case ( self ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case ( self , __UpperCAmelCase=False , __UpperCAmelCase=False ): '''simple docstring''' def _flatten(__UpperCAmelCase ): return list(itertools.chain(*__UpperCAmelCase ) ) if equal_length: lowerCAmelCase__ :Any = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase__ :Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase__ :Optional[int] = [np.asarray(__UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :Union[str, Any] = WhisperFeatureExtractor if is_speech_available() else None def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = WhisperFeatureExtractionTester(self ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ :Optional[Any] = feat_extract_first.save_pretrained(__UpperCAmelCase )[0] check_json_file_has_correct_format(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = self.feature_extraction_class.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :str = feat_extract_first.to_dict() lowerCAmelCase__ :List[Any] = feat_extract_second.to_dict() lowerCAmelCase__ :int = feat_extract_first.mel_filters lowerCAmelCase__ :Optional[int] = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ :Optional[int] = os.path.join(__UpperCAmelCase , 'feat_extract.json' ) feat_extract_first.to_json_file(__UpperCAmelCase ) lowerCAmelCase__ :str = self.feature_extraction_class.from_json_file(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = feat_extract_first.to_dict() lowerCAmelCase__ :List[Any] = feat_extract_second.to_dict() lowerCAmelCase__ :str = feat_extract_first.mel_filters lowerCAmelCase__ :Optional[int] = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase__ :List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase__ :int = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size lowerCAmelCase__ :int = feature_extractor(__UpperCAmelCase , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input lowerCAmelCase__ :Tuple = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features lowerCAmelCase__ :Dict = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) # Test batched lowerCAmelCase__ :Optional[Any] = feature_extractor(__UpperCAmelCase , return_tensors='np' ).input_features lowerCAmelCase__ :Dict = feature_extractor(__UpperCAmelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase__ :List[str] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase__ :Optional[Any] = np.asarray(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = feature_extractor(__UpperCAmelCase , return_tensors='np' ).input_features lowerCAmelCase__ :List[Any] = feature_extractor(__UpperCAmelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) # Test truncation required lowerCAmelCase__ :Any = [floats_list((1, x) )[0] for x in range(2_0_0 , (feature_extractor.n_samples + 5_0_0) , 2_0_0 )] lowerCAmelCase__ :Any = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] lowerCAmelCase__ :str = [x[: feature_extractor.n_samples] for x in speech_inputs] lowerCAmelCase__ :Union[str, Any] = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs_truncated] lowerCAmelCase__ :Any = feature_extractor(__UpperCAmelCase , return_tensors='np' ).input_features lowerCAmelCase__ :int = feature_extractor(__UpperCAmelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def snake_case ( self ): '''simple docstring''' import torch lowerCAmelCase__ :str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ :Dict = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) lowerCAmelCase__ :Union[str, Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase__ :List[str] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCAmelCase__ :List[str] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase__ :str = ds.sort('id' ).select(range(__UpperCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on lowerCAmelCase__ :Tuple = self._load_datasamples(1 ) lowerCAmelCase__ :Any = WhisperFeatureExtractor() lowerCAmelCase__ :List[str] = feature_extractor(__UpperCAmelCase , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0] , __UpperCAmelCase , atol=1E-4 ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ :int = self._load_datasamples(1 )[0] lowerCAmelCase__ :Any = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue lowerCAmelCase__ :Any = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__UpperCAmelCase )[0] self.assertTrue(np.all(np.mean(__UpperCAmelCase ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCAmelCase ) - 1 ) < 1E-3 ) )
254
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Optional[Any] = {'''vocab_file''': '''vocab.json'''} __SCREAMING_SNAKE_CASE :Tuple = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } __SCREAMING_SNAKE_CASE :List[str] = {'''mgp-str''': 27} class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Any = VOCAB_FILES_NAMES _lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , snake_case_ : List[str] , snake_case_ : List[Any]="[GO]" , snake_case_ : Optional[Any]="[GO]" , snake_case_ : Union[str, Any]="[s]" , snake_case_ : Any="[GO]" , **snake_case_ : Dict ): super().__init__( unk_token=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , pad_token=snake_case_ , **snake_case_ , ) with open(snake_case_ , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase = json.load(snake_case_ ) _UpperCAmelCase = {v: k for k, v in self.vocab.items()} @property def lowercase ( self : str ): return len(self.vocab ) def lowercase ( self : int ): return dict(self.vocab , **self.added_tokens_encoder ) def lowercase ( self : Optional[Any] , snake_case_ : int ): _UpperCAmelCase = [] for s in text: char_tokens.extend(snake_case_ ) return char_tokens def lowercase ( self : Union[str, Any] , snake_case_ : Union[str, Any] ): return self.vocab.get(snake_case_ , self.vocab.get(self.unk_token ) ) def lowercase ( self : int , snake_case_ : int ): return self.decoder.get(snake_case_ ) def lowercase ( self : int , snake_case_ : str , snake_case_ : Optional[str] = None ): if not os.path.isdir(snake_case_ ): logger.error("Vocabulary path ({}) should be a directory".format(snake_case_ ) ) return _UpperCAmelCase = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(snake_case_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=snake_case_ , ensure_ascii=snake_case_ ) + "\n" ) return (vocab_file,)
22
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : int = tau * frequency / samplerate UpperCAmelCase_ : List[str] = sin(__lowerCamelCase ) UpperCAmelCase_ : int = cos(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : int = (1 - _cos) / 2 UpperCAmelCase_ : Optional[Any] = 1 - _cos UpperCAmelCase_ : int = 1 + alpha UpperCAmelCase_ : Dict = -2 * _cos UpperCAmelCase_ : Tuple = 1 - alpha UpperCAmelCase_ : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : Dict = tau * frequency / samplerate UpperCAmelCase_ : Tuple = sin(__lowerCamelCase ) UpperCAmelCase_ : Any = cos(__lowerCamelCase ) UpperCAmelCase_ : List[str] = _sin / (2 * q_factor) UpperCAmelCase_ : List[Any] = (1 + _cos) / 2 UpperCAmelCase_ : Optional[int] = -1 - _cos UpperCAmelCase_ : Union[str, Any] = 1 + alpha UpperCAmelCase_ : Optional[int] = -2 * _cos UpperCAmelCase_ : Tuple = 1 - alpha UpperCAmelCase_ : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : Union[str, Any] = tau * frequency / samplerate UpperCAmelCase_ : str = sin(__lowerCamelCase ) UpperCAmelCase_ : Tuple = cos(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : Any = _sin / 2 UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Tuple = -ba UpperCAmelCase_ : Optional[Any] = 1 + alpha UpperCAmelCase_ : Dict = -2 * _cos UpperCAmelCase_ : Optional[int] = 1 - alpha UpperCAmelCase_ : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : Any = tau * frequency / samplerate UpperCAmelCase_ : Any = sin(__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = cos(__lowerCamelCase ) UpperCAmelCase_ : str = _sin / (2 * q_factor) UpperCAmelCase_ : List[str] = 1 - alpha UpperCAmelCase_ : str = -2 * _cos UpperCAmelCase_ : Any = 1 + alpha UpperCAmelCase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ), ): UpperCAmelCase_ : Dict = tau * frequency / samplerate UpperCAmelCase_ : Union[str, Any] = sin(__lowerCamelCase ) UpperCAmelCase_ : int = cos(__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = _sin / (2 * q_factor) UpperCAmelCase_ : List[str] = 10 ** (gain_db / 40) UpperCAmelCase_ : List[Any] = 1 + alpha * big_a UpperCAmelCase_ : Tuple = -2 * _cos UpperCAmelCase_ : Tuple = 1 - alpha * big_a UpperCAmelCase_ : str = 1 + alpha / big_a UpperCAmelCase_ : List[str] = -2 * _cos UpperCAmelCase_ : List[str] = 1 - alpha / big_a UpperCAmelCase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ), ): UpperCAmelCase_ : str = tau * frequency / samplerate UpperCAmelCase_ : int = sin(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = cos(__lowerCamelCase ) UpperCAmelCase_ : Tuple = _sin / (2 * q_factor) UpperCAmelCase_ : List[Any] = 10 ** (gain_db / 40) UpperCAmelCase_ : Tuple = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ : int = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ : Optional[int] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ : Dict = 2 * sqrt(__lowerCamelCase ) * alpha UpperCAmelCase_ : List[str] = big_a * (pmc + aaa) UpperCAmelCase_ : int = 2 * big_a * mpc UpperCAmelCase_ : int = big_a * (pmc - aaa) UpperCAmelCase_ : Dict = ppmc + aaa UpperCAmelCase_ : Any = -2 * pmpc UpperCAmelCase_ : List[str] = ppmc - aaa UpperCAmelCase_ : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ), ): UpperCAmelCase_ : int = tau * frequency / samplerate UpperCAmelCase_ : Optional[Any] = sin(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = cos(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : Tuple = 10 ** (gain_db / 40) UpperCAmelCase_ : Tuple = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ : Optional[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ : List[Any] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ : Any = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ : Dict = 2 * sqrt(__lowerCamelCase ) * alpha UpperCAmelCase_ : Any = big_a * (ppmc + aaa) UpperCAmelCase_ : Union[str, Any] = -2 * big_a * pmpc UpperCAmelCase_ : Dict = big_a * (ppmc - aaa) UpperCAmelCase_ : Optional[int] = pmc + aaa UpperCAmelCase_ : Union[str, Any] = 2 * mpc UpperCAmelCase_ : int = pmc - aaa UpperCAmelCase_ : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt
61
0
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _A ( A__ ): # picklable for multiprocessing """simple docstring""" return x.sum() def _A ( A__ ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : str class lowercase_ (lowerCamelCase__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = {} __lowercase = [] __lowercase = 1 __lowercase = [1, 2] __lowercase = {'''a''': 1, '''b''': 2} __lowercase = {'''a''': [1, 2], '''b''': [3, 4]} __lowercase = {'''a''': {'''1''': 1}, '''b''': 2} __lowercase = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} __lowercase = {} __lowercase = [] __lowercase = 2 __lowercase = [2, 3] __lowercase = {'''a''': 2, '''b''': 3} __lowercase = {'''a''': [2, 3], '''b''': [4, 5]} __lowercase = {'''a''': {'''1''': 2}, '''b''': 3} __lowercase = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} self.assertEqual(map_nested(lowercase__ ,lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ) ,lowercase__ ) __lowercase = 2 self.assertEqual(map_nested(lowercase__ ,lowercase__ ,num_proc=lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ,num_proc=lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ,num_proc=lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ,num_proc=lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ,num_proc=lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ,num_proc=lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ,num_proc=lowercase__ ) ,lowercase__ ) self.assertEqual(map_nested(lowercase__ ,lowercase__ ,num_proc=lowercase__ ) ,lowercase__ ) __lowercase = {'''a''': np.eye(2 ), '''b''': np.zeros(3 ), '''c''': np.ones(2 )} __lowercase = {'''a''': 2, '''b''': 0, '''c''': 2} __lowercase = { '''a''': np.eye(2 ).astype(lowercase__ ), '''b''': np.zeros(3 ).astype(lowercase__ ), '''c''': np.ones(2 ).astype(lowercase__ ), } self.assertEqual(map_nested(lowercase__ ,lowercase__ ,map_numpy=lowercase__ ) ,lowercase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowercase__ ,lowercase__ ,map_numpy=lowercase__ ).items()} ,{k: v.tolist() for k, v in expected_map_nested_sna_int.items()} ,) self.assertEqual(map_nested(lowercase__ ,lowercase__ ,map_numpy=lowercase__ ,num_proc=lowercase__ ) ,lowercase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowercase__ ,lowercase__ ,map_numpy=lowercase__ ,num_proc=lowercase__ ).items()} ,{k: v.tolist() for k, v in expected_map_nested_sna_int.items()} ,) with self.assertRaises(lowercase__ ): # can't pickle a local lambda map_nested(lambda lowercase__ : x + 1 ,lowercase__ ,num_proc=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = {'''a''': 1, '''b''': 2} __lowercase = {'''a''': 3, '''b''': 4} __lowercase = {'''a''': 5, '''b''': 6} __lowercase = sorted([('''a''', (1, 3, 5)), ('''b''', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(lowercase__ ,lowercase__ ,lowercase__ ) ) ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : str = 'bar' __lowercase = Foo() self.assertEqual(foo.my_attr ,'''bar''' ) with temporary_assignment(lowercase__ ,'''my_attr''' ,'''BAR''' ): self.assertEqual(foo.my_attr ,'''BAR''' ) self.assertEqual(foo.my_attr ,'''bar''' ) @pytest.mark.parametrize( '''iterable_length, num_proc, expected_num_proc''' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def _A ( A__ , A__ , A__ ): """simple docstring""" with patch('''datasets.utils.py_utils._single_map_nested''' ) as mock_single_map_nested, patch( '''datasets.parallel.parallel.Pool''' ) as mock_multiprocessing_pool: __lowercase = {F"{i}": i for i in range(A__ )} __lowercase = map_nested(lambda A__ : x + 10 , A__ , num_proc=A__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class lowercase_ (lowerCamelCase__ ): """simple docstring""" @require_tf def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): import tensorflow as tf from tensorflow.keras import layers __lowercase = layers.Dense(2 ) def gen_random_output(): __lowercase = tf.random.uniform((1, 3) ) return model(lowercase__ ).numpy() with temp_seed(4_2 ,set_tensorflow=lowercase__ ): __lowercase = gen_random_output() with temp_seed(4_2 ,set_tensorflow=lowercase__ ): __lowercase = gen_random_output() __lowercase = gen_random_output() np.testing.assert_equal(lowercase__ ,lowercase__ ) self.assertGreater(np.abs(outa - outa ).sum() ,0 ) @require_torch def SCREAMING_SNAKE_CASE ( self : str ): import torch def gen_random_output(): __lowercase = torch.nn.Linear(3 ,2 ) __lowercase = torch.rand(1 ,3 ) return model(lowercase__ ).detach().numpy() with temp_seed(4_2 ,set_pytorch=lowercase__ ): __lowercase = gen_random_output() with temp_seed(4_2 ,set_pytorch=lowercase__ ): __lowercase = gen_random_output() __lowercase = gen_random_output() np.testing.assert_equal(lowercase__ ,lowercase__ ) self.assertGreater(np.abs(outa - outa ).sum() ,0 ) def SCREAMING_SNAKE_CASE ( self : int ): def gen_random_output(): return np.random.rand(1 ,3 ) with temp_seed(4_2 ): __lowercase = gen_random_output() with temp_seed(4_2 ): __lowercase = gen_random_output() __lowercase = gen_random_output() np.testing.assert_equal(lowercase__ ,lowercase__ ) self.assertGreater(np.abs(outa - outa ).sum() ,0 ) @pytest.mark.parametrize('''input_data''' , [{}] ) def _A ( A__ ): """simple docstring""" __lowercase = NestedDataStructure(A__ ).data assert output_data == input_data @pytest.mark.parametrize( '''data, expected_output''' , [ ({}, []), ([], []), ('''foo''', ['''foo''']), (['''foo''', '''bar'''], ['''foo''', '''bar''']), ([['''foo''', '''bar''']], ['''foo''', '''bar''']), ([[['''foo'''], ['''bar''']]], ['''foo''', '''bar''']), ([[['''foo'''], '''bar''']], ['''foo''', '''bar''']), ({'''a''': 1, '''b''': 2}, [1, 2]), ({'''a''': [1, 2], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[[3], [4]]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, [4]]}, [1, 2, 3, 4]), ({'''a''': {'''1''': 1}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': [2]}, [1, 2]), ] , ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = NestedDataStructure(A__ ).flatten() assert output == expected_output def _A ( ): """simple docstring""" __lowercase = A(x=1 , y='''foobar''' ) __lowercase = {'''x''': 1, '''y''': '''foobar'''} assert asdict(A__ ) == expected_output __lowercase = {'''a''': {'''b''': A(x=10 , y='''foo''' )}, '''c''': [A(x=20 , y='''bar''' )]} __lowercase = {'''a''': {'''b''': {'''x''': 10, '''y''': '''foo'''}}, '''c''': [{'''x''': 20, '''y''': '''bar'''}]} assert asdict(A__ ) == expected_output with pytest.raises(A__ ): asdict([1, A(x=10 , y='''foo''' )] ) def _A ( A__ ): """simple docstring""" return text.split() def _A ( A__ ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _A ( ): """simple docstring""" with Pool(2 ) as pool: __lowercase = list(iflatmap_unordered(A__ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(A__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: __lowercase = list(iflatmap_unordered(A__ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(A__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: __lowercase = [] for yield_time, content in iflatmap_unordered( A__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'''content''': '''a'''}, {'''content''': '''b'''}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(A__ ) assert out.count('''a''' ) == 2 assert out.count('''b''' ) == 2 assert len(A__ ) == 4
52
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() # fmt: off __lowercase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowercase = dict(zip(lowercase__ ,range(len(lowercase__ ) ) ) ) __lowercase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowercase = {'''unk_token''': '''<unk>'''} __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) __lowercase = { '''do_resize''': True, '''size''': 2_0, '''do_center_crop''': True, '''crop_size''': 1_8, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowercase = os.path.join(self.tmpdirname ,lowercase__ ) with open(self.image_processor_file ,'''w''' ,encoding='''utf-8''' ) as fp: json.dump(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ,**lowercase__ : Optional[int] ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,pad_token='''!''' ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,**lowercase__ : Union[str, Any] ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,pad_token='''!''' ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : int ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = [np.random.randint(2_5_5 ,size=(3, 3_0, 4_0_0) ,dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(lowercase__ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = self.get_image_processor() __lowercase = OwlViTProcessor(tokenizer=lowercase__ ,image_processor=lowercase__ ) processor_slow.save_pretrained(self.tmpdirname ) __lowercase = OwlViTProcessor.from_pretrained(self.tmpdirname ,use_fast=lowercase__ ) __lowercase = OwlViTProcessor(tokenizer=lowercase__ ,image_processor=lowercase__ ) processor_fast.save_pretrained(self.tmpdirname ) __lowercase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,lowercase__ ) self.assertIsInstance(processor_fast.tokenizer ,lowercase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,lowercase__ ) self.assertIsInstance(processor_fast.image_processor ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = OwlViTProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_tokenizer(bos_token='''(BOS)''' ,eos_token='''(EOS)''' ) __lowercase = self.get_image_processor(do_normalize=lowercase__ ) __lowercase = OwlViTProcessor.from_pretrained( self.tmpdirname ,bos_token='''(BOS)''' ,eos_token='''(EOS)''' ,do_normalize=lowercase__ ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,lowercase__ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = OwlViTProcessor(tokenizer=lowercase__ ,image_processor=lowercase__ ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(lowercase__ ,return_tensors='''np''' ) __lowercase = processor(images=lowercase__ ,return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = OwlViTProcessor(tokenizer=lowercase__ ,image_processor=lowercase__ ) __lowercase = '''lower newer''' __lowercase = processor(text=lowercase__ ,return_tensors='''np''' ) __lowercase = tokenizer(lowercase__ ,return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() ,encoded_processor[key][0].tolist() ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = OwlViTProcessor(tokenizer=lowercase__ ,image_processor=lowercase__ ) __lowercase = '''lower newer''' __lowercase = self.prepare_image_inputs() __lowercase = processor(text=lowercase__ ,images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) ,['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowercase__ ): processor() def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''google/owlvit-base-patch32''' __lowercase = OwlViTProcessor.from_pretrained(lowercase__ ) __lowercase = ['''cat''', '''nasa badge'''] __lowercase = processor(text=lowercase__ ) __lowercase = 1_6 self.assertListEqual(list(inputs.keys() ) ,['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape ,(2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase__ ): processor() def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = '''google/owlvit-base-patch32''' __lowercase = OwlViTProcessor.from_pretrained(lowercase__ ) __lowercase = [['''cat''', '''nasa badge'''], ['''person''']] __lowercase = processor(text=lowercase__ ) __lowercase = 1_6 __lowercase = len(lowercase__ ) __lowercase = max([len(lowercase__ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) ,['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape ,(batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase__ ): processor() def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = '''google/owlvit-base-patch32''' __lowercase = OwlViTProcessor.from_pretrained(lowercase__ ) __lowercase = ['''cat''', '''nasa badge'''] __lowercase = processor(text=lowercase__ ) __lowercase = 1_6 __lowercase = inputs['''input_ids'''] __lowercase = [ [4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) ,['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape ,(2, seq_length) ) self.assertListEqual(list(input_ids[0] ) ,predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) ,predicted_ids[1] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = OwlViTProcessor(tokenizer=lowercase__ ,image_processor=lowercase__ ) __lowercase = self.prepare_image_inputs() __lowercase = self.prepare_image_inputs() __lowercase = processor(images=lowercase__ ,query_images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) ,['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowercase__ ): processor() def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = OwlViTProcessor(tokenizer=lowercase__ ,image_processor=lowercase__ ) __lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase = processor.batch_decode(lowercase__ ) __lowercase = tokenizer.batch_decode(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ )
52
1
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase_ ( __snake_case , __snake_case=1 ) -> Any: """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def UpperCAmelCase_ ( __snake_case , __snake_case=0 ) -> str: """simple docstring""" _lowercase =[] for old_item in old_list: _lowercase =old_item.replace('''in_layers.0''' , '''norm1''' ) _lowercase =new_item.replace('''in_layers.2''' , '''conv1''' ) _lowercase =new_item.replace('''out_layers.0''' , '''norm2''' ) _lowercase =new_item.replace('''out_layers.3''' , '''conv2''' ) _lowercase =new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) _lowercase =new_item.replace('''skip_connection''' , '''conv_shortcut''' ) _lowercase =shave_segments(__snake_case , n_shave_prefix_segments=__snake_case ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def UpperCAmelCase_ ( __snake_case , __snake_case=0 ) -> Tuple: """simple docstring""" _lowercase =[] for old_item in old_list: _lowercase =old_item _lowercase =new_item.replace('''norm.weight''' , '''group_norm.weight''' ) _lowercase =new_item.replace('''norm.bias''' , '''group_norm.bias''' ) _lowercase =new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) _lowercase =new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) _lowercase =shave_segments(__snake_case , n_shave_prefix_segments=__snake_case ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=None , __snake_case=None , __snake_case=None ) -> Any: """simple docstring""" assert isinstance(__snake_case , __snake_case ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _lowercase =old_checkpoint[path] _lowercase =old_tensor.shape[0] // 3 _lowercase =(-1, channels) if len(old_tensor.shape ) == 3 else (-1) _lowercase =old_tensor.shape[0] // config['''num_head_channels'''] // 3 _lowercase =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _lowercase , _lowercase , _lowercase =old_tensor.split(channels // num_heads , dim=1 ) _lowercase =query.reshape(__snake_case ) _lowercase =key.reshape(__snake_case ) _lowercase =value.reshape(__snake_case ) for path in paths: _lowercase =path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _lowercase =new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) _lowercase =new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) _lowercase =new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: _lowercase =new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _lowercase =old_checkpoint[path['''old''']][:, :, 0] else: _lowercase =old_checkpoint[path['''old''']] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> str: """simple docstring""" _lowercase ={} _lowercase =checkpoint['''time_embed.0.weight'''] _lowercase =checkpoint['''time_embed.0.bias'''] _lowercase =checkpoint['''time_embed.2.weight'''] _lowercase =checkpoint['''time_embed.2.bias'''] _lowercase =checkpoint['''input_blocks.0.0.weight'''] _lowercase =checkpoint['''input_blocks.0.0.bias'''] _lowercase =checkpoint['''out.0.weight'''] _lowercase =checkpoint['''out.0.bias'''] _lowercase =checkpoint['''out.2.weight'''] _lowercase =checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only _lowercase =len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) _lowercase ={ layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(__snake_case ) } # Retrieves the keys for the middle blocks only _lowercase =len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) _lowercase ={ layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(__snake_case ) } # Retrieves the keys for the output blocks only _lowercase =len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) _lowercase ={ layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(__snake_case ) } for i in range(1 , __snake_case ): _lowercase =(i - 1) // (config['''num_res_blocks'''] + 1) _lowercase =(i - 1) % (config['''num_res_blocks'''] + 1) _lowercase =[key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] _lowercase =[key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: _lowercase =checkpoint[ F"input_blocks.{i}.0.op.weight" ] _lowercase =checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue _lowercase =renew_resnet_paths(__snake_case ) _lowercase ={'''old''': F"input_blocks.{i}.0", '''new''': F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} _lowercase ={'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( __snake_case , __snake_case , __snake_case , additional_replacements=[meta_path, resnet_op] , config=__snake_case ) if len(__snake_case ): _lowercase =renew_attention_paths(__snake_case ) _lowercase ={ '''old''': F"input_blocks.{i}.1", '''new''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } _lowercase ={ F"input_blocks.{i}.1.qkv.bias": { '''key''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", '''query''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", '''value''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { '''key''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", '''query''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", '''value''': F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( __snake_case , __snake_case , __snake_case , additional_replacements=[meta_path] , attention_paths_to_split=__snake_case , config=__snake_case , ) _lowercase =middle_blocks[0] _lowercase =middle_blocks[1] _lowercase =middle_blocks[2] _lowercase =renew_resnet_paths(__snake_case ) assign_to_checkpoint(__snake_case , __snake_case , __snake_case , config=__snake_case ) _lowercase =renew_resnet_paths(__snake_case ) assign_to_checkpoint(__snake_case , __snake_case , __snake_case , config=__snake_case ) _lowercase =renew_attention_paths(__snake_case ) _lowercase ={ '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( __snake_case , __snake_case , __snake_case , attention_paths_to_split=__snake_case , config=__snake_case ) for i in range(__snake_case ): _lowercase =i // (config['''num_res_blocks'''] + 1) _lowercase =i % (config['''num_res_blocks'''] + 1) _lowercase =[shave_segments(__snake_case , 2 ) for name in output_blocks[i]] _lowercase ={} for layer in output_block_layers: _lowercase , _lowercase =layer.split('''.''' )[0], shave_segments(__snake_case , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__snake_case ) else: _lowercase =[layer_name] if len(__snake_case ) > 1: _lowercase =[key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] _lowercase =[key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] _lowercase =renew_resnet_paths(__snake_case ) _lowercase =renew_resnet_paths(__snake_case ) _lowercase ={'''old''': F"output_blocks.{i}.0", '''new''': F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(__snake_case , __snake_case , __snake_case , additional_replacements=[meta_path] , config=__snake_case ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _lowercase =list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) _lowercase =checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] _lowercase =checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(__snake_case ) == 2: _lowercase =[] if len(__snake_case ): _lowercase =renew_attention_paths(__snake_case ) _lowercase ={ '''old''': F"output_blocks.{i}.1", '''new''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } _lowercase ={ F"output_blocks.{i}.1.qkv.bias": { '''key''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", '''query''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", '''value''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { '''key''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", '''query''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", '''value''': F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( __snake_case , __snake_case , __snake_case , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=__snake_case , ) else: _lowercase =renew_resnet_paths(__snake_case , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _lowercase ='''.'''.join(['''output_blocks''', str(__snake_case ), path['''old''']] ) _lowercase ='''.'''.join(['''up_blocks''', str(__snake_case ), '''resnets''', str(__snake_case ), path['''new''']] ) _lowercase =checkpoint[old_path] return new_checkpoint if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = torch.load(args.checkpoint_path) with open(args.config_file) as f: UpperCAmelCase__ = json.loads(f.read()) UpperCAmelCase__ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] UpperCAmelCase__ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: UpperCAmelCase__ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) UpperCAmelCase__ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) UpperCAmelCase__ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
5
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] ): '''simple docstring''' lowercase = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : List[str] ): '''simple docstring''' lowercase = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] ): '''simple docstring''' lowercase = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', 'stage2.cls_token') ) return token def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' lowercase = 'imagenet-1k-id2label.json' lowercase = 10_00 lowercase = 'huggingface/label-files' lowercase = num_labels lowercase = json.load(open(cached_download(hf_hub_url(__snake_case , __snake_case , repo_type='dataset' ) ) , 'r' ) ) lowercase = {int(__snake_case ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} lowercase = lowercase = CvtConfig(num_labels=__snake_case , idalabel=__snake_case , labelaid=__snake_case ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowercase = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowercase = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase = [2, 2, 20] lowercase = [3, 12, 16] lowercase = [1_92, 7_68, 10_24] lowercase = CvtForImageClassification(__snake_case ) lowercase = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowercase = image_size lowercase = torch.load(__snake_case , map_location=torch.device('cpu' ) ) lowercase = OrderedDict() lowercase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase = list_of_state_dict + cls_token(__snake_case ) lowercase = list_of_state_dict + embeddings(__snake_case ) for cnt in range(config.depth[idx] ): lowercase = list_of_state_dict + attention(__snake_case , __snake_case ) lowercase = list_of_state_dict + final() for gg in list_of_state_dict: print(__snake_case ) for i in range(len(__snake_case ) ): lowercase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__snake_case ) model.save_pretrained(__snake_case ) image_processor.save_pretrained(__snake_case ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=3_8_4, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _UpperCamelCase : Tuple = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
220
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): _SCREAMING_SNAKE_CASE : Any = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = (images / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE__ = numpy_to_pil(_A ) return images def UpperCAmelCase_ ( _A ): '''simple docstring''' if images.ndim == 3: SCREAMING_SNAKE_CASE__ = images[None, ...] SCREAMING_SNAKE_CASE__ = (images * 2_55).round().astype('''uint8''' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images SCREAMING_SNAKE_CASE__ = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images] else: SCREAMING_SNAKE_CASE__ = [Image.fromarray(_A ) for image in images] return pil_images
218
from __future__ import annotations def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = len(_A ) // 2 # choose the middle 3 elements SCREAMING_SNAKE_CASE__ = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
218
1
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir('fixtures/test_sentencepiece.model') if is_sentencepiece_available(): import sentencepiece as sp lowerCamelCase__ = 5 lowerCamelCase__ = 10 @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Tuple = SpeechaTextTokenizer lowerCAmelCase : int = False lowerCAmelCase : Union[str, Any] = True def lowerCAmelCase__ ( self : Dict ) ->List[Any]: '''simple docstring''' super().setUp() _UpperCAmelCase : List[Any] = sp.SentencePieceProcessor() spm_model.Load(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = ["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(lowerCamelCase__ ) )] _UpperCAmelCase : Any = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) _UpperCAmelCase : Union[str, Any] = Path(self.tmpdirname ) save_json(lowerCamelCase__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCamelCase__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) _UpperCAmelCase : Tuple = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = "<pad>" _UpperCAmelCase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple ) ->Tuple: '''simple docstring''' _UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowerCamelCase__ ) , 10_01 ) def lowerCAmelCase__ ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def lowerCAmelCase__ ( self : Dict ) ->Any: '''simple docstring''' _UpperCAmelCase : Dict = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) _UpperCAmelCase : Any = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [2_89, 50, 14, 1_74, 3_86] , ) _UpperCAmelCase : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) _UpperCAmelCase : Any = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) _UpperCAmelCase : str = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def lowerCAmelCase__ ( self : str ) ->int: '''simple docstring''' _UpperCAmelCase : List[str] = {"input_ids": [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class lowerCAmelCase__ ( unittest.TestCase ): lowerCAmelCase : List[str] = "valhalla/s2t_mustc_multilinguial_medium" lowerCAmelCase : List[Any] = "C'est trop cool" lowerCAmelCase : Dict = "Esto es genial" @classmethod def lowerCAmelCase__ ( cls : Optional[Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def lowerCAmelCase__ ( self : Any ) ->int: '''simple docstring''' self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def lowerCAmelCase__ ( self : Dict ) ->Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def lowerCAmelCase__ ( self : str ) ->str: '''simple docstring''' self.assertIn(lowerCamelCase__ , self.tokenizer.all_special_ids ) _UpperCAmelCase : List[Any] = [ES_CODE, 4, 16_01, 47, 76_47, 2] _UpperCAmelCase : str = self.tokenizer.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = "fr" _UpperCAmelCase : str = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , lowerCamelCase__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def lowerCAmelCase__ ( self : List[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Dict = "fr" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) _UpperCAmelCase : Tuple = "es" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
234
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tmp_path / "cache" _UpperCAmelCase : int = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase : Union[str, Any] = TextDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read() _check_text_dataset(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[Any] = tmp_path / "cache" _UpperCAmelCase : Any = {"text": "string"} _UpperCAmelCase : Optional[Any] = features.copy() if features else default_expected_features _UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : Union[str, Any] = TextDatasetReader(__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_text_dataset(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Any = tmp_path / "cache" _UpperCAmelCase : Dict = {"text": "string"} _UpperCAmelCase : Union[str, Any] = TextDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase , split=__lowerCAmelCase ).read() _check_text_dataset(__lowerCAmelCase , __lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if issubclass(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = text_path elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = [text_path] _UpperCAmelCase : List[Any] = tmp_path / "cache" _UpperCAmelCase : Union[str, Any] = {"text": "string"} _UpperCAmelCase : Optional[int] = TextDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_text_dataset(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=("train",) ): assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) for split in splits: _UpperCAmelCase : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[Any] = tmp_path / "cache" _UpperCAmelCase : Tuple = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase : Any = TextDatasetReader({"train": text_path} , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read() _check_text_datasetdict(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" _UpperCAmelCase : List[Any] = {"text": "string"} _UpperCAmelCase : List[str] = features.copy() if features else default_expected_features _UpperCAmelCase : Optional[int] = ( Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : Tuple = TextDatasetReader({"train": text_path} , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_text_datasetdict(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if split: _UpperCAmelCase : int = {split: text_path} else: _UpperCAmelCase : Tuple = "train" _UpperCAmelCase : List[str] = {"train": text_path, "test": text_path} _UpperCAmelCase : Optional[Any] = tmp_path / "cache" _UpperCAmelCase : Optional[int] = {"text": "string"} _UpperCAmelCase : int = TextDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_text_datasetdict(__lowerCAmelCase , __lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
234
1
def UpperCAmelCase ( a_ , a_ ) -> float: """simple docstring""" def get_matched_characters(a_ , a_ ) -> str: __A = [] __A = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __A = int(max(0 , i - limit ) ) __A = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_UpperCamelCase ) __A = F'''{_stra[0:_stra.index(_UpperCamelCase )]} {_stra[_stra.index(_UpperCamelCase ) + 1:]}''' return "".join(_UpperCamelCase ) # matching characters __A = get_matched_characters(_UpperCamelCase , _UpperCamelCase ) __A = get_matched_characters(_UpperCamelCase , _UpperCamelCase ) __A = len(_UpperCamelCase ) # transposition __A = ( len([(ca, ca) for ca, ca in zip(_UpperCamelCase , _UpperCamelCase ) if ca != ca] ) // 2 ) if not match_count: __A = 0.0 else: __A = ( 1 / 3 * ( match_count / len(_UpperCamelCase ) + match_count / len(_UpperCamelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __A = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
359
import copy import re class UpperCAmelCase : '''simple docstring''' snake_case_ = "hp" snake_case_ = {} snake_case_ = None @classmethod def UpperCamelCase_ ( cls : Dict ,A : Dict ,A : Any ): __A = prefix __A = defaults cls.build_naming_info() @staticmethod def UpperCamelCase_ ( A : Dict ,A : int ): if len(A ) == 0: return "" __A = None if any(char.isdigit() for char in word ): raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 ,len(A ) + 1 ): __A = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: __A = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(A : str ): __A = "" while integer != 0: __A = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s __A = 0 while True: __A = word + "#" + int_to_alphabetic(A ) if sword in info["reverse_short_word"]: continue else: __A = sword break __A = short_word __A = word return short_word @staticmethod def UpperCamelCase_ ( A : int ,A : Tuple ): __A = param_name.split("_" ) __A = [TrialShortNamer.shortname_for_word(A ,A ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name __A = ["", "_"] for separator in separators: __A = separator.join(A ) if shortname not in info["reverse_short_param"]: __A = shortname __A = param_name return shortname return param_name @staticmethod def UpperCamelCase_ ( A : Optional[Any] ,A : Tuple ): __A = TrialShortNamer.shortname_for_key(A ,A ) __A = short_name __A = param_name @classmethod def UpperCamelCase_ ( cls : Dict ): if cls.NAMING_INFO is not None: return __A = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } __A = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(A ,A ) __A = info @classmethod def UpperCamelCase_ ( cls : Dict ,A : List[str] ): cls.build_naming_info() assert cls.PREFIX is not None __A = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue __A = cls.NAMING_INFO["short_param"][k] if isinstance(A ,A ): __A = 1 if v else 0 __A = "" if isinstance(A ,(int, float) ) else "-" __A = f'''{key}{sep}{v}''' name.append(A ) return "_".join(A ) @classmethod def UpperCamelCase_ ( cls : Tuple ,A : Tuple ): __A = repr[len(cls.PREFIX ) + 1 :] if repr == "": __A = [] else: __A = repr.split("_" ) __A = {} for value in values: if "-" in value: __A , __A = value.split("-" ) else: __A = re.sub("[0-9.]" ,"" ,A ) __A = float(re.sub("[^0-9.]" ,"" ,A ) ) __A = cls.NAMING_INFO["reverse_short_param"][p_k] __A = p_v for k in cls.DEFAULTS: if k not in parameters: __A = cls.DEFAULTS[k] return parameters
124
0
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCamelCase : Optional[Any] = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __lowerCamelCase : int = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __lowerCamelCase : int = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : int ): """simple docstring""" return float((preds == labels).mean() ) def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Dict , lowerCAmelCase : Any="binary" ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = float(fa_score(y_true=lowerCAmelCase__ , y_pred=lowerCAmelCase__ , average=lowerCAmelCase__ ) ) return { "accuracy": acc, "f1": fa, } def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = {} for id_pred, label in zip(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Dict = f'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' SCREAMING_SNAKE_CASE_ : Optional[int] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: SCREAMING_SNAKE_CASE_ : Dict = [(pred, label)] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [], [] for question, preds_labels in question_map.items(): SCREAMING_SNAKE_CASE_ : Dict = zip(*lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = fa_score(y_true=lowerCAmelCase__ , y_pred=lowerCAmelCase__ , average="macro" ) fas.append(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCAmelCase__ ) ) ems.append(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = float(sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = float(fa_score(y_true=lowerCAmelCase__ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def __UpperCamelCase ( self : int ): """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(self._get_feature_types() ),codebase_urls=[],reference_urls=[],format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None,) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def __UpperCamelCase ( self : Optional[int],_A : Union[str, Any],_A : Optional[int] ): """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__UpperCAmelCase,__UpperCAmelCase )} elif self.config_name == "cb": return acc_and_fa(__UpperCAmelCase,__UpperCAmelCase,fa_avg="macro" ) elif self.config_name == "record": SCREAMING_SNAKE_CASE_ : Tuple = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] SCREAMING_SNAKE_CASE_ : Optional[int] = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(__UpperCAmelCase,__UpperCAmelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(__UpperCAmelCase,__UpperCAmelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__UpperCAmelCase,__UpperCAmelCase )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
18
'''simple docstring''' import qiskit def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register __UpperCAmelCase : Any = qiskit.QuantumCircuit(lowerCAmelCase__ , lowerCAmelCase__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __UpperCAmelCase : int = qiskit.execute(lowerCAmelCase__ , lowerCAmelCase__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCAmelCase__ ) if __name__ == "__main__": print(F'Total count for various states are: {single_qubit_measure(1, 1)}')
254
0
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class SCREAMING_SNAKE_CASE__ ( yaml.SafeLoader ): '''simple docstring''' def A ( self : Optional[int] , lowercase : List[Any] ): '''simple docstring''' _snake_case = [self.constructed_objects[key_node] for key_node, _ in node.value] _snake_case = [tuple(lowercase ) if isinstance(lowercase , lowercase ) else key for key in keys] _snake_case = Counter(lowercase ) _snake_case = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' ) def A ( self : Dict , lowercase : List[str] , lowercase : Dict=False ): '''simple docstring''' _snake_case = super().construct_mapping(lowercase , deep=lowercase ) self._check_no_duplicates_on_constructed_node(lowercase ) return mapping def a_ ( __lowercase : str ) -> Tuple[Optional[str], str]: """simple docstring""" _snake_case = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: _snake_case = full_content[1:].index('---' ) + 1 _snake_case = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : str = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def A ( cls : Tuple , lowercase : Path ): '''simple docstring''' with open(lowercase , encoding='utf-8' ) as readme_file: _snake_case , _snake_case = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowercase ) else: return cls() def A ( self : Optional[int] , lowercase : Path ): '''simple docstring''' if path.exists(): with open(lowercase , encoding='utf-8' ) as readme_file: _snake_case = readme_file.read() else: _snake_case = None _snake_case = self._to_readme(lowercase ) with open(lowercase , 'w' , encoding='utf-8' ) as readme_file: readme_file.write(lowercase ) def A ( self : Tuple , lowercase : Optional[str] = None ): '''simple docstring''' if readme_content is not None: _snake_case , _snake_case = _split_yaml_from_readme(lowercase ) _snake_case = '---\n' + self.to_yaml_string() + '---\n' + content else: _snake_case = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def A ( cls : int , lowercase : str ): '''simple docstring''' _snake_case = yaml.load(lowercase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields _snake_case = { (key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowercase ) def A ( self : str ): '''simple docstring''' return yaml.safe_dump( { (key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowercase , allow_unicode=lowercase , encoding='utf-8' , ).decode('utf-8' ) _lowerCamelCase : List[Any] = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser _lowerCamelCase : List[str] = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') _lowerCamelCase : int = ap.parse_args() _lowerCamelCase : Tuple = Path(args.readme_filepath) _lowerCamelCase : Union[str, Any] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
357
from __future__ import annotations import requests _lowerCamelCase : List[str] = set( '''approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports'''.split() ) def a_ ( __lowercase : str , __lowercase : int = 1 , __lowercase : str = "new" , __lowercase : list | None = None ) -> dict: _snake_case = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__lowercase ) - valid_terms ) ): _snake_case = f'''Invalid search term: {invalid_search_terms}''' raise ValueError(__lowercase ) _snake_case = requests.get( f'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={'User-agent': 'A random string'} , ) if response.status_code == 429: raise requests.HTTPError _snake_case = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__lowercase )} _snake_case = {} for id_ in range(__lowercase ): _snake_case = { item: data['data']['children'][id_]['data'][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
130
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A__ ( __snake_case ): _UpperCAmelCase :List[Any] = (DDIMParallelScheduler,) _UpperCAmelCase :Any = (('eta', 0.0), ('num_inference_steps', 5_0)) def __UpperCamelCase( self , **A_ ): '''simple docstring''' UpperCamelCase : List[str] = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**A_ ) return config def __UpperCamelCase( self , **A_ ): '''simple docstring''' UpperCamelCase : Tuple = self.scheduler_classes[0] UpperCamelCase : List[Any] = self.get_scheduler_config(**A_ ) UpperCamelCase : Dict = scheduler_class(**A_ ) UpperCamelCase , UpperCamelCase : Tuple = 10, 0.0 UpperCamelCase : List[Any] = self.dummy_model() UpperCamelCase : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(A_ ) for t in scheduler.timesteps: UpperCamelCase : Any = model(A_ , A_ ) UpperCamelCase : Any = scheduler.step(A_ , A_ , A_ , A_ ).prev_sample return sample def __UpperCamelCase( self ): '''simple docstring''' for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=A_ ) def __UpperCamelCase( self ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=A_ ) UpperCamelCase : Optional[Any] = self.scheduler_classes[0] UpperCamelCase : Dict = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase : List[str] = scheduler_class(**A_ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def __UpperCamelCase( self ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def __UpperCamelCase( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A_ ) def __UpperCamelCase( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def __UpperCamelCase( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=A_ ) def __UpperCamelCase( self ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=A_ ) def __UpperCamelCase( self ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=A_ ) def __UpperCamelCase( self ): '''simple docstring''' self.check_over_configs(thresholding=A_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=A_ , prediction_type=A_ , sample_max_value=A_ , ) def __UpperCamelCase( self ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=A_ ) def __UpperCamelCase( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=A_ , num_inference_steps=A_ ) def __UpperCamelCase( self ): '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=A_ , eta=A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.scheduler_classes[0] UpperCamelCase : Union[str, Any] = self.get_scheduler_config() UpperCamelCase : List[Any] = scheduler_class(**A_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = self.scheduler_classes[0] UpperCamelCase : Any = self.get_scheduler_config() UpperCamelCase : List[Any] = scheduler_class(**A_ ) UpperCamelCase , UpperCamelCase : Tuple = 10, 0.0 scheduler.set_timesteps(A_ ) UpperCamelCase : Tuple = self.dummy_model() UpperCamelCase : List[str] = self.dummy_sample_deter UpperCamelCase : Optional[int] = self.dummy_sample_deter + 0.1 UpperCamelCase : Optional[int] = self.dummy_sample_deter - 0.1 UpperCamelCase : Optional[Any] = samplea.shape[0] UpperCamelCase : Dict = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase : int = torch.arange(A_ )[0:3, None].repeat(1 , A_ ) UpperCamelCase : Tuple = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase : Optional[int] = scheduler.batch_step_no_noise(A_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , A_ ) UpperCamelCase : Optional[Any] = torch.sum(torch.abs(A_ ) ) UpperCamelCase : Any = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = self.full_loop() UpperCamelCase : Dict = torch.sum(torch.abs(A_ ) ) UpperCamelCase : Dict = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.full_loop(prediction_type="v_prediction" ) UpperCamelCase : List[str] = torch.sum(torch.abs(A_ ) ) UpperCamelCase : Optional[int] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = self.full_loop(set_alpha_to_one=A_ , beta_start=0.01 ) UpperCamelCase : Dict = torch.sum(torch.abs(A_ ) ) UpperCamelCase : Union[str, Any] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = self.full_loop(set_alpha_to_one=A_ , beta_start=0.01 ) UpperCamelCase : Union[str, Any] = torch.sum(torch.abs(A_ ) ) UpperCamelCase : Dict = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
52
from sklearn.metrics import fa_score import datasets __lowerCamelCase : List[Any] = """ The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) """ __lowerCamelCase : List[Any] = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'f1': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['f1'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results['f1'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\") >>> print(round(results['f1'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'f1': array([0.8, 0. , 0. ])} """ __lowerCamelCase : str = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCamelCase( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , ) def __UpperCamelCase( self , A_ , A_ , A_=None , A_=1 , A_="binary" , A_=None ): '''simple docstring''' UpperCamelCase : List[str] = fa_score( A_ , A_ , labels=A_ , pos_label=A_ , average=A_ , sample_weight=A_ ) return {"f1": float(A_ ) if score.size == 1 else score}
52
1
def lowerCamelCase ( a_ ) -> Tuple: lowerCAmelCase_ = [] lowerCAmelCase_ = set({'(', '[', '{'} ) lowerCAmelCase_ = set({')', ']', '}'} ) lowerCAmelCase_ = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(__a ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(__a ) == 0 or (len(__a ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(__a ) == 0 def lowerCamelCase ( ) -> Union[str, Any]: lowerCAmelCase_ = input('Enter sequence of brackets: ' ) if is_balanced(__a ): print(__a , 'is balanced' ) else: print(__a , 'is not balanced' ) if __name__ == "__main__": main()
364
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: int = StableDiffusionInpaintPipeline __a: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __a: Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __a: int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __a: List[str] = frozenset([] ) def _lowercase ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , ) lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=lowercase_ ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) lowerCAmelCase_ = CLIPTextModel(lowercase_ ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowercase ( self , lowercase_ , lowercase_=0 ) -> int: '''simple docstring''' lowerCAmelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((6_4, 6_4) ) lowerCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((6_4, 6_4) ) if str(lowercase_ ).startswith('mps' ): lowerCAmelCase_ = torch.manual_seed(lowercase_ ) else: lowerCAmelCase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionInpaintPipeline(**lowercase_ ) lowerCAmelCase_ = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase_ = sd_pipe(**lowercase_ ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase_ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ) -> Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9e-3 def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='np' , ) lowerCAmelCase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowercase ( self ) -> List[str]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase_ = 'stabilityai/stable-diffusion-2-inpainting' lowerCAmelCase_ = PNDMScheduler.from_pretrained(lowercase_ , subfolder='scheduler' ) lowerCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase_ = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
14
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _lowerCAmelCase : Union[str, Any] = get_logger(__name__) def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : int=0 ): """simple docstring""" os.makedirs(_snake_case , exist_ok=_snake_case ) with FSDP.state_dict_type( _snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __a =model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __a =F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' __a =os.path.join(_snake_case , _snake_case ) if accelerator.process_index == 0: logger.info(F'Saving model to {output_model_file}' ) torch.save(_snake_case , _snake_case ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __a =( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __a =os.path.join(_snake_case , _snake_case ) logger.info(F'Saving model to {output_model_file}' ) torch.save(_snake_case , _snake_case ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __a =os.path.join(_snake_case , F'{MODEL_NAME}_{model_index}' ) os.makedirs(_snake_case , exist_ok=_snake_case ) logger.info(F'Saving model to {ckpt_dir}' ) __a ={'model': state_dict} dist_cp.save_state_dict( state_dict=_snake_case , storage_writer=dist_cp.FileSystemWriter(_snake_case ) , planner=DefaultSavePlanner() , ) logger.info(F'Model saved to {ckpt_dir}' ) def UpperCamelCase_( _snake_case : Any , _snake_case : Tuple , _snake_case : Dict , _snake_case : Optional[Any] , _snake_case : Any=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( _snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_snake_case ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return __a =F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' __a =os.path.join(_snake_case , _snake_case ) logger.info(F'Loading model from {input_model_file}' ) __a =torch.load(_snake_case ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __a =( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __a =os.path.join(_snake_case , _snake_case ) logger.info(F'Loading model from {input_model_file}' ) __a =torch.load(_snake_case ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __a =( os.path.join(_snake_case , F'{MODEL_NAME}_{model_index}' ) if F'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(F'Loading model from {ckpt_dir}' ) __a ={'model': model.state_dict()} dist_cp.load_state_dict( state_dict=_snake_case , storage_reader=dist_cp.FileSystemReader(_snake_case ) , planner=DefaultLoadPlanner() , ) __a =state_dict['model'] logger.info(F'Model loaded from {ckpt_dir}' ) model.load_state_dict(_snake_case ) def UpperCamelCase_( _snake_case : str , _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Any , _snake_case : str=0 ): """simple docstring""" os.makedirs(_snake_case , exist_ok=_snake_case ) with FSDP.state_dict_type( _snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __a =FSDP.optim_state_dict(_snake_case , _snake_case ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __a =( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __a =os.path.join(_snake_case , _snake_case ) logger.info(F'Saving Optimizer state to {output_optimizer_file}' ) torch.save(_snake_case , _snake_case ) logger.info(F'Optimizer state saved in {output_optimizer_file}' ) else: __a =os.path.join(_snake_case , F'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(_snake_case , exist_ok=_snake_case ) logger.info(F'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(_snake_case ) , planner=DefaultSavePlanner() , ) logger.info(F'Optimizer state saved in {ckpt_dir}' ) def UpperCamelCase_( _snake_case : List[str] , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Tuple , _snake_case : str=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( _snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __a =None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __a =( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __a =os.path.join(_snake_case , _snake_case ) logger.info(F'Loading Optimizer state from {input_optimizer_file}' ) __a =torch.load(_snake_case ) logger.info(F'Optimizer state loaded from {input_optimizer_file}' ) else: __a =( os.path.join(_snake_case , F'{OPTIMIZER_NAME}_{optimizer_index}' ) if F'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(F'Loading Optimizer from {ckpt_dir}' ) __a =load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(_snake_case ) , ) __a =optim_state['optimizer'] logger.info(F'Optimizer loaded from {ckpt_dir}' ) __a =FSDP.optim_state_dict_to_load(_snake_case , _snake_case , _snake_case ) optimizer.load_state_dict(_snake_case )
218
from manim import * class __magic_name__ ( lowerCAmelCase_ ): def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =Rectangle(height=0.5 , width=0.5 ) __a =Rectangle(height=0.25 , width=0.25 ) __a =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __a =[mem.copy() for i in range(6 )] __a =[mem.copy() for i in range(6 )] __a =VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) __a =VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) __a =VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) __a =Text('CPU' , font_size=24 ) __a =Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) __a =[mem.copy() for i in range(4 )] __a =VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) __a =Text('GPU' , font_size=24 ) __a =Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) __a =[mem.copy() for i in range(6 )] __a =VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) __a =Text('Model' , font_size=24 ) __a =Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) __a =[] __a =[] __a =[] for i, rect in enumerate(__snake_case ): rect.set_stroke(__snake_case ) __a =Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__snake_case , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__snake_case , buff=0.0 ) self.add(__snake_case ) model_cpu_arr.append(__snake_case ) self.add(*__snake_case , *__snake_case , *__snake_case ) __a =[mem.copy() for i in range(6 )] __a =VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) __a =Text('Loaded Checkpoint' , font_size=24 ) __a =Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) checkpoint.move_to([3, 0.5, 0] ) self.add(__snake_case ) __a =[] __a =[] for i, rect in enumerate(__snake_case ): __a =fill.copy().set_fill(__snake_case , opacity=0.7 ) target.move_to(__snake_case ) ckpt_arr.append(__snake_case ) __a =target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__snake_case ) self.add(*__snake_case , *__snake_case ) __a =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __a =MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case , __snake_case ) __a =MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__snake_case ) __a =MarkupText( f'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) __a =[meta_mem.copy() for i in range(6 )] __a =[meta_mem.copy() for i in range(6 )] __a =VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) __a =VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) __a =VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) __a =Text('Disk' , font_size=24 ) __a =Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(__snake_case , run_time=3 ) , Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) ) __a =[] for i, rect in enumerate(__snake_case ): __a =rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__snake_case , run_time=1.5 ) ) self.play(*__snake_case ) self.play(FadeOut(__snake_case ) ) __a =MarkupText(f'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case , run_time=3 ) ) self.play( FadeOut(__snake_case , __snake_case , *__snake_case , *__snake_case ) , ) self.wait()
218
1
"""simple docstring""" import re def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : List[Any] = re.compile( r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' ) return bool(re.search(A_ , A_ ) ) if __name__ == "__main__": __UpperCamelCase : Tuple = "0094702343221" print(is_sri_lankan_phone_number(phone))
355
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __UpperCamelCase : Any = NewType('''DataClass''', Any) __UpperCamelCase : List[str] = NewType('''DataClassType''', Any) def __SCREAMING_SNAKE_CASE ( A_ ): if isinstance(A_ , A_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : int = {str(A_ ): choice for choice in choices} return lambda A_ : str_to_choice.get(A_ , A_ ) def __SCREAMING_SNAKE_CASE ( *, A_ = None , A_ = None , A_ = dataclasses.MISSING , A_ = dataclasses.MISSING , A_ = None , **A_ , ): if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls lowerCAmelCase__ : Dict = {} if aliases is not None: lowerCAmelCase__ : int = aliases if help is not None: lowerCAmelCase__ : Optional[int] = help return dataclasses.field(metadata=A_ , default=A_ , default_factory=A_ , **A_ ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = 42 def __init__( self : Dict ,lowercase_ : Union[DataClassType, Iterable[DataClassType]] ,**lowercase_ : str ): # To make the default appear when using --help if "formatter_class" not in kwargs: lowerCAmelCase__ : Tuple = ArgumentDefaultsHelpFormatter super().__init__(**lowercase_ ) if dataclasses.is_dataclass(lowercase_ ): lowerCAmelCase__ : Tuple = [dataclass_types] lowerCAmelCase__ : List[str] = list(lowercase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowercase_ ) @staticmethod def __lowerCAmelCase ( lowercase_ : ArgumentParser ,lowercase_ : dataclasses.Field ): lowerCAmelCase__ : Dict = F'--{field.name}' lowerCAmelCase__ : List[str] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type ,lowercase_ ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) lowerCAmelCase__ : List[str] = kwargs.pop('''aliases''' ,[] ) if isinstance(lowercase_ ,lowercase_ ): lowerCAmelCase__ : Optional[Any] = [aliases] lowerCAmelCase__ : Union[str, Any] = getattr(field.type ,'''__origin__''' ,field.type ) if origin_type is Union or (hasattr(lowercase_ ,'''UnionType''' ) and isinstance(lowercase_ ,types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowercase_ ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F' Problem encountered in field \'{field.name}\'.' ) if type(lowercase_ ) not in field.type.__args__: # filter `str` in Union lowerCAmelCase__ : int = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] lowerCAmelCase__ : List[str] = getattr(field.type ,'''__origin__''' ,field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) lowerCAmelCase__ : Optional[int] = ( field.type.__args__[0] if isinstance(lowercase_ ,field.type.__args__[1] ) else field.type.__args__[1] ) lowerCAmelCase__ : Optional[Any] = getattr(field.type ,'''__origin__''' ,field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) lowerCAmelCase__ : List[Any] = {} if origin_type is Literal or (isinstance(field.type ,lowercase_ ) and issubclass(field.type ,lowercase_ )): if origin_type is Literal: lowerCAmelCase__ : Union[str, Any] = field.type.__args__ else: lowerCAmelCase__ : Optional[Any] = [x.value for x in field.type] lowerCAmelCase__ : List[str] = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: lowerCAmelCase__ : int = field.default else: lowerCAmelCase__ : Any = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument lowerCAmelCase__ : List[Any] = copy(lowercase_ ) # Hack because type=bool in argparse does not behave as we want. lowerCAmelCase__ : Tuple = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. lowerCAmelCase__ : List[Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way lowerCAmelCase__ : Tuple = default # This tells argparse we accept 0 or 1 value after --field_name lowerCAmelCase__ : Union[str, Any] = '''?''' # This is the value that will get picked if we do --field_name (without value) lowerCAmelCase__ : Any = True elif isclass(lowercase_ ) and issubclass(lowercase_ ,lowercase_ ): lowerCAmelCase__ : List[str] = field.type.__args__[0] lowerCAmelCase__ : str = '''+''' if field.default_factory is not dataclasses.MISSING: lowerCAmelCase__ : Dict = field.default_factory() elif field.default is dataclasses.MISSING: lowerCAmelCase__ : str = True else: lowerCAmelCase__ : List[Any] = field.type if field.default is not dataclasses.MISSING: lowerCAmelCase__ : str = field.default elif field.default_factory is not dataclasses.MISSING: lowerCAmelCase__ : Any = field.default_factory() else: lowerCAmelCase__ : Optional[Any] = True parser.add_argument(lowercase_ ,*lowercase_ ,**lowercase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): lowerCAmelCase__ : Optional[Any] = False parser.add_argument(F'--no_{field.name}' ,action='''store_false''' ,dest=field.name ,**lowercase_ ) def __lowerCAmelCase ( self : str ,lowercase_ : DataClassType ): if hasattr(lowercase_ ,'''_argument_group_name''' ): lowerCAmelCase__ : Optional[int] = self.add_argument_group(dtype._argument_group_name ) else: lowerCAmelCase__ : List[str] = self try: lowerCAmelCase__ : Dict[str, type] = get_type_hints(lowercase_ ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(lowercase_ ): lowerCAmelCase__ : int = '''.'''.join(map(lowercase_ ,sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(lowercase_ ): if not field.init: continue lowerCAmelCase__ : Any = type_hints[field.name] self._parse_dataclass_field(lowercase_ ,lowercase_ ) def __lowerCAmelCase ( self : Any ,lowercase_ : Optional[Any]=None ,lowercase_ : str=False ,lowercase_ : str=True ,lowercase_ : Any=None ,lowercase_ : List[str]=None ,): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): lowerCAmelCase__ : int = [] if args_filename: args_files.append(Path(lowercase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values lowerCAmelCase__ : List[str] = ArgumentParser() args_file_parser.add_argument(lowercase_ ,type=lowercase_ ,action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = args_file_parser.parse_known_args(args=lowercase_ ) lowerCAmelCase__ : int = vars(lowercase_ ).get(args_file_flag.lstrip('''-''' ) ,lowercase_ ) if cmd_args_file_paths: args_files.extend([Path(lowercase_ ) for p in cmd_args_file_paths] ) lowerCAmelCase__ : Tuple = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last lowerCAmelCase__ : Dict = file_args + args if args is not None else file_args + sys.argv[1:] lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = self.parse_known_args(args=lowercase_ ) lowerCAmelCase__ : Optional[Any] = [] for dtype in self.dataclass_types: lowerCAmelCase__ : int = {f.name for f in dataclasses.fields(lowercase_ ) if f.init} lowerCAmelCase__ : int = {k: v for k, v in vars(lowercase_ ).items() if k in keys} for k in keys: delattr(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Optional[Any] = dtype(**lowercase_ ) outputs.append(lowercase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowercase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def __lowerCAmelCase ( self : Any ,lowercase_ : Dict[str, Any] ,lowercase_ : bool = False ): lowerCAmelCase__ : List[Any] = set(args.keys() ) lowerCAmelCase__ : Any = [] for dtype in self.dataclass_types: lowerCAmelCase__ : Optional[Any] = {f.name for f in dataclasses.fields(lowercase_ ) if f.init} lowerCAmelCase__ : Union[str, Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) lowerCAmelCase__ : Union[str, Any] = dtype(**lowercase_ ) outputs.append(lowercase_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(lowercase_ )}' ) return tuple(lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : str ,lowercase_ : bool = False ): with open(Path(lowercase_ ) ,encoding='''utf-8''' ) as open_json_file: lowerCAmelCase__ : Union[str, Any] = json.loads(open_json_file.read() ) lowerCAmelCase__ : List[str] = self.parse_dict(lowercase_ ,allow_extra_keys=lowercase_ ) return tuple(lowercase_ ) def __lowerCAmelCase ( self : Dict ,lowercase_ : str ,lowercase_ : bool = False ): lowerCAmelCase__ : Tuple = self.parse_dict(yaml.safe_load(Path(lowercase_ ).read_text() ) ,allow_extra_keys=lowercase_ ) return tuple(lowercase_ )
74
0
'''simple docstring''' import warnings from functools import wraps from typing import Callable def __lowerCamelCase ( A__ ) -> Callable: """simple docstring""" @wraps(A__ ) def _inner_fn(*A__ , **A__ ): warnings.warn( (F"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , A__ , ) return fn(*A__ , **A__ ) return _inner_fn
28
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCamelCase : Any = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') lowerCamelCase : int = parser.parse_args() if args.check_lib: lowerCamelCase : Optional[int] = importlib.import_module('transformers') lowerCamelCase : List[str] = Path(transformers_module.__file__).parent else: lowerCamelCase : Optional[int] = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
124
0
import itertools import math def __UpperCamelCase ( lowerCAmelCase__ : str ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCamelCase ( ): __a : Union[str, Any] = 2 while True: if is_prime(_lowercase ): yield num num += 1 def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] = 1_0_0_0_1 ): return next(itertools.islice(prime_generator() , nth - 1 , _lowercase ) ) if __name__ == "__main__": print(F"""{solution() = }""")
359
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase__ ={ 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] lowercase__ =[ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] lowercase__ =[ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): lowercase__ =[ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys lowercase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
90
0
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
194
# flake8: noqa # Lint as: python3 lowerCAmelCase__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
130
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class __A ( _UpperCamelCase ): '''simple docstring''' lowerCAmelCase : List[Any] = 'roberta' def __init__( self : Optional[Any] ,_snake_case : Tuple=50_265 ,_snake_case : int=768 ,_snake_case : Optional[Any]=12 ,_snake_case : List[Any]=12 ,_snake_case : Tuple=3_072 ,_snake_case : List[Any]="gelu" ,_snake_case : Optional[int]=0.1 ,_snake_case : str=0.1 ,_snake_case : Dict=512 ,_snake_case : str=2 ,_snake_case : Dict=0.02 ,_snake_case : List[str]=1e-12 ,_snake_case : Any=1 ,_snake_case : Optional[int]=0 ,_snake_case : Tuple=2 ,_snake_case : Optional[int]="absolute" ,_snake_case : Tuple=True ,_snake_case : str=None ,**_snake_case : Optional[Any] ,) -> Dict: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase ,bos_token_id=_UpperCAmelCase ,eos_token_id=_UpperCAmelCase ,**_UpperCAmelCase ) lowercase__ : Optional[int] = vocab_size lowercase__ : Tuple = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : Dict = hidden_act lowercase__ : Any = intermediate_size lowercase__ : Tuple = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Optional[int] = max_position_embeddings lowercase__ : List[str] = type_vocab_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Any = layer_norm_eps lowercase__ : Optional[Any] = position_embedding_type lowercase__ : List[str] = use_cache lowercase__ : str = classifier_dropout class __A ( _UpperCamelCase ): '''simple docstring''' @property def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" if self.task == "multiple-choice": lowercase__ : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase__ : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
369
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ : Dict = [3, 3, 3, 3] lowercase__ : str = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ : List[str] = [4, 4, 4, 4] lowercase__ : Any = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] else: lowercase__ : Optional[Any] = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ : Optional[int] = 96 elif "small" in model_name: lowercase__ : Union[str, Any] = 96 elif "base" in model_name: lowercase__ : Tuple = 1_28 elif "large" in model_name: lowercase__ : Any = 1_92 elif "xlarge" in model_name: lowercase__ : Any = 2_56 elif "huge" in model_name: lowercase__ : Union[str, Any] = 3_52 # set label information lowercase__ : List[Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ : Optional[int] = '''imagenet-22k-id2label.json''' else: lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase__ : int = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def __UpperCAmelCase ( __lowerCamelCase ) -> Any: if "patch_embed.proj" in name: lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ : Dict = '''encoder.''' + name if "encoder.layers" in name: lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ : Dict = '''layernorm.weight''' if name == "norm.bias": lowercase__ : Dict = '''layernorm.bias''' if "head" in name: lowercase__ : Dict = name.replace('''head''' , '''classifier''' ) else: lowercase__ : List[Any] = '''focalnet.''' + name return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]: # fmt: off lowercase__ : Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ : Optional[int] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __lowerCamelCase ) lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ : int = state_dict.pop(__lowerCamelCase ) lowercase__ : Any = val lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase ) lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : int = BitImageProcessor( do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : List[str] = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) lowercase__ : Optional[Any] = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCAmelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__) @add_end_docstrings( __SCREAMING_SNAKE_CASE , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : str ,A : GenericTensor ): if self.framework == "tf": __A = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __A = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=A ) else: raise ValueError("Unsupported framework" ) return masked_index def UpperCamelCase_ ( self : int ,A : GenericTensor ): __A = self.get_masked_index(A ) __A = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" ,self.model.base_model_prefix ,f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' ,) def UpperCamelCase_ ( self : int ,A : GenericTensor ): if isinstance(A ,A ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(A ) def UpperCamelCase_ ( self : List[str] ,A : Optional[Any] ,A : Dict=None ,**A : Dict ): if return_tensors is None: __A = self.framework __A = self.tokenizer(A ,return_tensors=A ) self.ensure_exactly_one_mask_token(A ) return model_inputs def UpperCamelCase_ ( self : Union[str, Any] ,A : int ): __A = self.model(**A ) __A = model_inputs["input_ids"] return model_outputs def UpperCamelCase_ ( self : Any ,A : int ,A : Any=5 ,A : Any=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __A = target_ids.shape[0] __A = model_outputs["input_ids"][0] __A = model_outputs["logits"] if self.framework == "tf": __A = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __A = outputs.numpy() __A = outputs[0, masked_index, :] __A = stable_softmax(A ,axis=-1 ) if target_ids is not None: __A = tf.gather_nd(tf.squeeze(A ,0 ) ,target_ids.reshape(-1 ,1 ) ) __A = tf.expand_dims(A ,0 ) __A = tf.math.top_k(A ,k=A ) __A , __A = topk.values.numpy(), topk.indices.numpy() else: __A = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=A ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __A = outputs[0, masked_index, :] __A = logits.softmax(dim=-1 ) if target_ids is not None: __A = probs[..., target_ids] __A , __A = probs.topk(A ) __A = [] __A = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): __A = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place __A = input_ids.numpy().copy() if target_ids is not None: __A = target_ids[p].tolist() __A = p # Filter padding out: __A = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __A = self.tokenizer.decode(A ,skip_special_tokens=A ) __A = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(A ) result.append(A ) if single_mask: return result[0] return result def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : Any=None ): if isinstance(A ,A ): __A = [targets] try: __A = self.tokenizer.get_vocab() except Exception: __A = {} __A = [] for target in targets: __A = vocab.get(A ,A ) if id_ is None: __A = self.tokenizer( A ,add_special_tokens=A ,return_attention_mask=A ,return_token_type_ids=A ,max_length=1 ,truncation=A ,)["input_ids"] if len(A ) == 0: logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' "We cannot replace it with anything meaningful, ignoring it" ) continue __A = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) __A = list(set(A ) ) if len(A ) == 0: raise ValueError("At least one target must be provided when passed." ) __A = np.array(A ) return target_ids def UpperCamelCase_ ( self : Dict ,A : Union[str, Any]=None ,A : int=None ): __A = {} if targets is not None: __A = self.get_target_ids(A ,A ) __A = target_ids if top_k is not None: __A = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" ,self.model.base_model_prefix ,"The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__( self : Optional[Any] ,A : Optional[int] ,*A : Dict ,**A : Tuple ): __A = super().__call__(A ,**A ) if isinstance(A ,A ) and len(A ) == 1: return outputs[0] return outputs
15
import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCamelCase : Any = """ import os """ _lowerCamelCase : Optional[int] = """ def foo(): import os return False """ _lowerCamelCase : List[Any] = """ def foo(): def bar(): if True: import os return False return bar() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : Union[str, Any] = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError as e: raise ValueError() """ _lowerCamelCase : str = """ import os try: import bar except: raise ValueError() """ _lowerCamelCase : Optional[Any] = """ import os try: import bar import baz except ImportError: raise ValueError() """ _lowerCamelCase : Any = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _lowerCamelCase : Dict = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = os.path.join(lowercase_ , '''test_file.py''' ) with open(lowercase_ , '''w''' ) as _tmp_file: _tmp_file.write(lowercase_ ) A__ = get_imports(lowercase_ ) assert parsed_imports == ["os"]
14
0
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): a__ : Any = DebertaTokenizer a__ : List[Any] = True a__ : Dict = DebertaTokenizerFast def __A ( self : List[str] ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowerCamelCase = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) __lowerCamelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCamelCase = {'''unk_token''': '''[UNK]'''} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) def __A ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Dict: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: __lowerCamelCase = '''lower newer''' __lowerCamelCase = '''lower newer''' return input_text, output_text def __A ( self : Union[str, Any] ) -> List[Any]: __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = '''lower newer''' __lowerCamelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCamelCase = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def __A ( self : Optional[Any] ) -> str: __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tokenizer('''Hello''' , '''World''' ) __lowerCamelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , UpperCamelCase__ ) @slow def __A ( self : Optional[Any] ) -> Dict: __lowerCamelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase__ ) __lowerCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase__ ) __lowerCamelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __lowerCamelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __A ( self : Union[str, Any] ) -> str: __lowerCamelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCamelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCamelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowerCamelCase = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ ) __lowerCamelCase = [tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) for seq in encoding['''input_ids''']] # fmt: off __lowerCamelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCamelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , UpperCamelCase__ ) for expected, decoded in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
367
import glob import os import random from string import ascii_lowercase, digits import cva SCREAMING_SNAKE_CASE__ : str = "" SCREAMING_SNAKE_CASE__ : Any = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def __magic_name__ ( ) -> None: __lowerCamelCase , __lowerCamelCase = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) print('''Processing...''' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowerCamelCase = random_chars(32 ) __lowerCamelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __lowerCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' ) __lowerCamelCase = [] for anno in new_annos[index]: __lowerCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__lowerCAmelCase ) with open(f'''/{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]: __lowerCamelCase = [] __lowerCamelCase = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , '''*.txt''' ) ): __lowerCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__lowerCAmelCase ) as in_file: __lowerCamelCase = in_file.readlines() __lowerCamelCase = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''' ) __lowerCamelCase = [] for obj_list in obj_lists: __lowerCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ) -> tuple[list, list, list]: __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for idx in range(len(__lowerCAmelCase ) ): __lowerCamelCase = [] __lowerCamelCase = img_list[idx] path_list.append(__lowerCAmelCase ) __lowerCamelCase = anno_list[idx] __lowerCamelCase = cva.imread(__lowerCAmelCase ) if flip_type == 1: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def __magic_name__ ( __lowerCAmelCase : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" __lowerCamelCase = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
339
0
"""simple docstring""" import math import sys def UpperCAmelCase ( UpperCAmelCase ) -> int: if number != int(UpperCAmelCase ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 snake_case_ = [-1] * (number + 1) snake_case_ = 0 for i in range(1 , number + 1 ): snake_case_ = sys.maxsize snake_case_ = int(math.sqrt(UpperCAmelCase ) ) for j in range(1 , root + 1 ): snake_case_ = 1 + answers[i - (j**2)] snake_case_ = min(UpperCAmelCase , UpperCAmelCase ) snake_case_ = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
69
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _lowercase = logging.get_logger(__name__) _lowercase = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Tuple = '''dpt''' def __init__( self : str ,A_ : Tuple=768 ,A_ : int=12 ,A_ : Optional[int]=12 ,A_ : Optional[int]=3072 ,A_ : List[str]="gelu" ,A_ : str=0.0 ,A_ : int=0.0 ,A_ : str=0.02 ,A_ : str=1e-12 ,A_ : str=384 ,A_ : Dict=16 ,A_ : Union[str, Any]=3 ,A_ : Dict=False ,A_ : Any=True ,A_ : Optional[int]=[2, 5, 8, 11] ,A_ : Optional[Any]="project" ,A_ : Tuple=[4, 2, 1, 0.5] ,A_ : int=[96, 192, 384, 768] ,A_ : int=256 ,A_ : str=-1 ,A_ : Optional[int]=False ,A_ : Optional[int]=True ,A_ : Union[str, Any]=0.4 ,A_ : Union[str, Any]=255 ,A_ : Union[str, Any]=0.1 ,A_ : List[str]=[1, 1024, 24, 24] ,A_ : List[str]=[0, 1] ,A_ : List[Any]=None ,**A_ : Tuple ,) -> Union[str, Any]: super().__init__(**A_ ) A = hidden_size A = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) A = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } A = BitConfig(**A_ ) elif isinstance(A_ ,A_ ): logger.info('Initializing the config with a `BiT` backbone.' ) A = BitConfig(**A_ ) elif isinstance(A_ ,A_ ): A = backbone_config else: raise ValueError( F'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) A = backbone_featmap_shape A = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: A = None A = None A = [] A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) A = readout_type A = reassemble_factors A = neck_hidden_sizes A = fusion_hidden_size A = head_in_index A = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) A = use_auxiliary_head A = auxiliary_loss_weight A = semantic_loss_ignore_index A = semantic_classifier_dropout def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: A = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: A = self.backbone_config.to_dict() A = self.__class__.model_type return output
74
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowerCamelCase__ = datasets.utils.logging.get_logger(__name__) lowerCamelCase__ = ["names", "prefix"] lowerCamelCase__ = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] lowerCamelCase__ = ["encoding_errors", "on_bad_lines"] lowerCamelCase__ = ["date_format"] @dataclass class __SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = "," SCREAMING_SNAKE_CASE__ :Optional[str] = None SCREAMING_SNAKE_CASE__ :Optional[Union[int, List[int], str]] = "infer" SCREAMING_SNAKE_CASE__ :Optional[List[str]] = None SCREAMING_SNAKE_CASE__ :Optional[List[str]] = None SCREAMING_SNAKE_CASE__ :Optional[Union[int, str, List[int], List[str]]] = None SCREAMING_SNAKE_CASE__ :Optional[Union[List[int], List[str]]] = None SCREAMING_SNAKE_CASE__ :Optional[str] = None SCREAMING_SNAKE_CASE__ :bool = True SCREAMING_SNAKE_CASE__ :Optional[Literal["c", "python", "pyarrow"]] = None SCREAMING_SNAKE_CASE__ :Dict[Union[int, str], Callable[[Any], Any]] = None SCREAMING_SNAKE_CASE__ :Optional[list] = None SCREAMING_SNAKE_CASE__ :Optional[list] = None SCREAMING_SNAKE_CASE__ :bool = False SCREAMING_SNAKE_CASE__ :Optional[Union[int, List[int]]] = None SCREAMING_SNAKE_CASE__ :Optional[int] = None SCREAMING_SNAKE_CASE__ :Optional[Union[str, List[str]]] = None SCREAMING_SNAKE_CASE__ :bool = True SCREAMING_SNAKE_CASE__ :bool = True SCREAMING_SNAKE_CASE__ :bool = False SCREAMING_SNAKE_CASE__ :bool = True SCREAMING_SNAKE_CASE__ :Optional[str] = None SCREAMING_SNAKE_CASE__ :str = "." SCREAMING_SNAKE_CASE__ :Optional[str] = None SCREAMING_SNAKE_CASE__ :str = '"' SCREAMING_SNAKE_CASE__ :int = 0 SCREAMING_SNAKE_CASE__ :Optional[str] = None SCREAMING_SNAKE_CASE__ :Optional[str] = None SCREAMING_SNAKE_CASE__ :Optional[str] = None SCREAMING_SNAKE_CASE__ :Optional[str] = None SCREAMING_SNAKE_CASE__ :bool = True SCREAMING_SNAKE_CASE__ :bool = True SCREAMING_SNAKE_CASE__ :int = 0 SCREAMING_SNAKE_CASE__ :bool = True SCREAMING_SNAKE_CASE__ :bool = False SCREAMING_SNAKE_CASE__ :Optional[str] = None SCREAMING_SNAKE_CASE__ :int = 10_000 SCREAMING_SNAKE_CASE__ :Optional[datasets.Features] = None SCREAMING_SNAKE_CASE__ :Optional[str] = "strict" SCREAMING_SNAKE_CASE__ :Literal["error", "warn", "skip"] = "error" SCREAMING_SNAKE_CASE__ :Optional[str] = None def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: if self.delimiter is not None: _UpperCamelCase : str = self.delimiter if self.column_names is not None: _UpperCamelCase : Tuple = self.column_names @property def __SCREAMING_SNAKE_CASE ( self : int ) -> int: _UpperCamelCase : List[Any] = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , __a ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __SCREAMING_SNAKE_CASE ( datasets.ArrowBasedBuilder ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = CsvConfig def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[Any] ) -> int: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _UpperCamelCase : Optional[int] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__a , (str, list, tuple) ): _UpperCamelCase : Optional[Any] = data_files if isinstance(__a , __a ): _UpperCamelCase : Any = [files] _UpperCamelCase : Tuple = [dl_manager.iter_files(__a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCamelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(__a , __a ): _UpperCamelCase : Any = [files] _UpperCamelCase : Union[str, Any] = [dl_manager.iter_files(__a ) for file in files] splits.append(datasets.SplitGenerator(name=__a , gen_kwargs={"files": files} ) ) return splits def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : pa.Table ) -> pa.Table: if self.config.features is not None: _UpperCamelCase : Dict = self.config.features.arrow_schema if all(not require_storage_cast(__a ) for feature in self.config.features.values() ): # cheaper cast _UpperCamelCase : str = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=__a ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCamelCase : str = table_cast(__a , __a ) return pa_table def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[int] ) -> List[str]: _UpperCamelCase : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCamelCase : Any = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(__a ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(__a ) ): _UpperCamelCase : Union[str, Any] = pd.read_csv(__a , iterator=__a , dtype=__a , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(__a ): _UpperCamelCase : Dict = pa.Table.from_pandas(__a ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__a ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(__a )}: {e}''' ) raise
310
"""simple docstring""" import torch from transformers import AutoModel class __SCREAMING_SNAKE_CASE ( torch.nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple="sayef/fsner-bert-base-uncased" ) -> Dict: super(__a , self ).__init__() _UpperCamelCase : Optional[Any] = AutoModel.from_pretrained(__a , return_dict=__a ) _UpperCamelCase : str = torch.nn.CosineSimilarity(3 , 1e-0_8 ) _UpperCamelCase : List[str] = torch.nn.Softmax(dim=1 ) def __SCREAMING_SNAKE_CASE ( self : int , **__a : Tuple ) -> Optional[Any]: return self.bert(**__a ).last_hidden_state def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Optional[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__a ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Any , __a : List[Any] , __a : Tuple=1 ) -> List[Any]: return self.softmax(T * self.cos(__a , __a ) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : List[str] , __a : Dict ) -> Union[str, Any]: _UpperCamelCase : str = W_supports["sizes"].tolist() _UpperCamelCase : Any = W_supports["start_token_id"].item() _UpperCamelCase : Optional[Any] = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _UpperCamelCase : str = self.BERT(**__a ) _UpperCamelCase : int = self.BERT(**__a ) _UpperCamelCase : int = None _UpperCamelCase : Optional[int] = None _UpperCamelCase : List[Any] = W_supports["input_ids"] == start_token_id _UpperCamelCase : Optional[int] = W_supports["input_ids"] == end_token_id for i, size in enumerate(__a ): if i == 0: _UpperCamelCase : Dict = 0 else: _UpperCamelCase : Any = support_sizes[i - 1] _UpperCamelCase : Dict = S[s : s + size][start_token_masks[s : s + size]] _UpperCamelCase : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _UpperCamelCase : List[Any] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _UpperCamelCase : Any = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _UpperCamelCase : Any = torch.vstack((p_starts, p_start) ) _UpperCamelCase : Any = torch.vstack((p_ends, p_end) ) else: _UpperCamelCase : Optional[Any] = p_start _UpperCamelCase : str = p_end return p_starts, p_ends
310
1
from __future__ import annotations import time a =list[tuple[int, int]] a =[ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a =[[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class A_ : def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Node | None): __lowerCamelCase : Tuple = pos_x __lowerCamelCase : List[str] = pos_y __lowerCamelCase : str = (pos_y, pos_x) __lowerCamelCase : str = goal_x __lowerCamelCase : int = goal_y __lowerCamelCase : List[Any] = parent class A_ : def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : tuple[int, int] ,SCREAMING_SNAKE_CASE__ : tuple[int, int]): __lowerCamelCase : Any = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = [self.start] __lowerCamelCase : List[str] = False def lowerCAmelCase ( self : List[Any]): while self.node_queue: __lowerCamelCase : Any = self.node_queue.pop(0) if current_node.pos == self.target.pos: __lowerCamelCase : Dict = True return self.retrace_path(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = self.get_successors(SCREAMING_SNAKE_CASE__) for node in successors: self.node_queue.append(SCREAMING_SNAKE_CASE__) if not self.reached: return [self.start.pos] return None def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Node): __lowerCamelCase : Union[str, Any] = [] for action in delta: __lowerCamelCase : Optional[Any] = parent.pos_x + action[1] __lowerCamelCase : Optional[int] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE__) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,self.target.pos_y ,self.target.pos_x ,SCREAMING_SNAKE_CASE__)) return successors def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Node | None): __lowerCamelCase : List[Any] = node __lowerCamelCase : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) __lowerCamelCase : int = current_node.parent path.reverse() return path class A_ : def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : int = BreadthFirstSearch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = BreadthFirstSearch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = False def lowerCAmelCase ( self : str): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __lowerCamelCase : Any = self.fwd_bfs.node_queue.pop(0) __lowerCamelCase : Any = self.bwd_bfs.node_queue.pop(0) if current_bwd_node.pos == current_fwd_node.pos: __lowerCamelCase : List[str] = True return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = current_bwd_node __lowerCamelCase : int = current_fwd_node __lowerCamelCase : str = { self.fwd_bfs: self.fwd_bfs.get_successors(SCREAMING_SNAKE_CASE__), self.bwd_bfs: self.bwd_bfs.get_successors(SCREAMING_SNAKE_CASE__), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(SCREAMING_SNAKE_CASE__) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Node ,SCREAMING_SNAKE_CASE__ : Node): __lowerCamelCase : List[Any] = self.fwd_bfs.retrace_path(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = self.bwd_bfs.retrace_path(SCREAMING_SNAKE_CASE__) bwd_path.pop() bwd_path.reverse() __lowerCamelCase : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a =(0, 0) a =(len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a =time.time() a =BreadthFirstSearch(init, goal) a =bfs.search() a =time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) a =time.time() a =BidirectionalBreadthFirstSearch(init, goal) a =bd_bfs.search() a =time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
73
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __A = data_utils.TransfoXLTokenizer __A = data_utils.TransfoXLCorpus __A = data_utils __A = data_utils def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCamelCase__ , 'rb' ) as fp: __lowerCamelCase = pickle.load(UpperCamelCase__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __lowerCamelCase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""" ) __lowerCamelCase = corpus.vocab.__dict__ torch.save(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , UpperCamelCase__ ) __lowerCamelCase = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __lowerCamelCase = os.path.abspath(UpperCamelCase__ ) __lowerCamelCase = os.path.abspath(UpperCamelCase__ ) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": __lowerCamelCase = TransfoXLConfig() else: __lowerCamelCase = TransfoXLConfig.from_json_file(UpperCamelCase__ ) print(F"""Building PyTorch model from configuration: {config}""" ) __lowerCamelCase = TransfoXLLMHeadModel(UpperCamelCase__ ) __lowerCamelCase = load_tf_weights_in_transfo_xl(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model __lowerCamelCase = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) print(F"""Save PyTorch model to {os.path.abspath(UpperCamelCase__ )}""" ) torch.save(model.state_dict() , UpperCamelCase__ ) print(F"""Save configuration file to {os.path.abspath(UpperCamelCase__ )}""" ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) __A = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
90
0
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: # Checks if the entire collection has been sorted if len(__lowerCAmelCase ) <= 1 or n <= 1: return insert_next(__lowerCAmelCase , n - 1 ) rec_insertion_sort(__lowerCAmelCase , n - 1 ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ) -> Any: # Checks order between adjacent elements if index >= len(__lowerCAmelCase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __lowerCamelCase = ( collection[index], collection[index - 1], ) insert_next(__lowerCAmelCase , index + 1 ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : int = input("Enter integers separated by spaces: ") SCREAMING_SNAKE_CASE__ : int = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ : Dict = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
339
0
"""simple docstring""" import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) set_seed(770) __magic_name__ = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } __magic_name__ = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } __magic_name__ = os.path.dirname(os.path.abspath(__file__)) __magic_name__ = os.path.join(os.path.expanduser("~"), ".cache") __magic_name__ = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_=False ): __SCREAMING_SNAKE_CASE = model_type if use_small: key += "_small" return os.path.join(UpperCamelCase_ , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) hf_hub_download(repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , local_dir=UpperCamelCase_ ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False , UpperCamelCase_="text" ): if model_type == "text": __SCREAMING_SNAKE_CASE = BarkSemanticModel __SCREAMING_SNAKE_CASE = BarkSemanticConfig __SCREAMING_SNAKE_CASE = BarkSemanticGenerationConfig elif model_type == "coarse": __SCREAMING_SNAKE_CASE = BarkCoarseModel __SCREAMING_SNAKE_CASE = BarkCoarseConfig __SCREAMING_SNAKE_CASE = BarkCoarseGenerationConfig elif model_type == "fine": __SCREAMING_SNAKE_CASE = BarkFineModel __SCREAMING_SNAKE_CASE = BarkFineConfig __SCREAMING_SNAKE_CASE = BarkFineGenerationConfig else: raise NotImplementedError() __SCREAMING_SNAKE_CASE = f"{model_type}_small" if use_small else model_type __SCREAMING_SNAKE_CASE = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(UpperCamelCase_ ): logger.info(f"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) __SCREAMING_SNAKE_CASE = torch.load(UpperCamelCase_ , map_location=UpperCamelCase_ ) # this is a hack __SCREAMING_SNAKE_CASE = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: __SCREAMING_SNAKE_CASE = model_args["""vocab_size"""] __SCREAMING_SNAKE_CASE = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __SCREAMING_SNAKE_CASE = model_args.pop("""n_head""" ) __SCREAMING_SNAKE_CASE = model_args.pop("""n_embd""" ) __SCREAMING_SNAKE_CASE = model_args.pop("""n_layer""" ) __SCREAMING_SNAKE_CASE = ConfigClass(**checkpoint["""model_args"""] ) __SCREAMING_SNAKE_CASE = ModelClass(config=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = GenerationConfigClass() __SCREAMING_SNAKE_CASE = model_generation_config __SCREAMING_SNAKE_CASE = checkpoint["""model"""] # fixup checkpoint __SCREAMING_SNAKE_CASE = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(UpperCamelCase_ ): # replace part of the key with corresponding layer name in HF implementation __SCREAMING_SNAKE_CASE = k[len(UpperCamelCase_ ) :] for old_layer_name in new_layer_name_dict: __SCREAMING_SNAKE_CASE = new_k.replace(UpperCamelCase_ , new_layer_name_dict[old_layer_name] ) __SCREAMING_SNAKE_CASE = state_dict.pop(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = set(state_dict.keys() ) - set(model.state_dict().keys() ) __SCREAMING_SNAKE_CASE = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} __SCREAMING_SNAKE_CASE = set(model.state_dict().keys() ) - set(state_dict.keys() ) __SCREAMING_SNAKE_CASE = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(UpperCamelCase_ ) != 0: raise ValueError(f"extra keys found: {extra_keys}" ) if len(UpperCamelCase_ ) != 0: raise ValueError(f"missing keys: {missing_keys}" ) model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = model.num_parameters(exclude_embeddings=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = checkpoint["""best_val_loss"""].item() logger.info(f"model loaded: {round(n_params/1e6 , 1 )}M params, {round(UpperCamelCase_ , 3 )} loss" ) model.eval() model.to(UpperCamelCase_ ) del checkpoint, state_dict return model def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_=False , UpperCamelCase_="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __SCREAMING_SNAKE_CASE = """cpu""" # do conversion on cpu __SCREAMING_SNAKE_CASE = _get_ckpt_path(UpperCamelCase_ , use_small=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = _load_model(UpperCamelCase_ , UpperCamelCase_ , model_type=UpperCamelCase_ , use_small=UpperCamelCase_ ) # load bark initial model __SCREAMING_SNAKE_CASE = _bark_load_model(UpperCamelCase_ , """cpu""" , model_type=UpperCamelCase_ , use_small=UpperCamelCase_ ) if model_type == "text": __SCREAMING_SNAKE_CASE = bark_model["""model"""] if model.num_parameters(exclude_embeddings=UpperCamelCase_ ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model __SCREAMING_SNAKE_CASE = 5 __SCREAMING_SNAKE_CASE = 10 if model_type in ["text", "coarse"]: __SCREAMING_SNAKE_CASE = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) __SCREAMING_SNAKE_CASE = bark_model(UpperCamelCase_ )[0] __SCREAMING_SNAKE_CASE = model(UpperCamelCase_ ) # take last logits __SCREAMING_SNAKE_CASE = output_new_model_total.logits[:, [-1], :] else: __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = 8 __SCREAMING_SNAKE_CASE = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) __SCREAMING_SNAKE_CASE = model(UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = bark_model(UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("""initial and new outputs are not equal""" ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __SCREAMING_SNAKE_CASE = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = BarkSemanticConfig.from_pretrained(os.path.join(UpperCamelCase_ , """config.json""" ) ) __SCREAMING_SNAKE_CASE = BarkCoarseConfig.from_pretrained(os.path.join(UpperCamelCase_ , """config.json""" ) ) __SCREAMING_SNAKE_CASE = BarkFineConfig.from_pretrained(os.path.join(UpperCamelCase_ , """config.json""" ) ) __SCREAMING_SNAKE_CASE = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) __SCREAMING_SNAKE_CASE = BarkSemanticModel.from_pretrained(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = BarkCoarseModel.from_pretrained(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = BarkFineModel.from_pretrained(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) __SCREAMING_SNAKE_CASE = BarkConfig.from_sub_model_configs( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) __SCREAMING_SNAKE_CASE = BarkModel(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = semantic __SCREAMING_SNAKE_CASE = coarseAcoustic __SCREAMING_SNAKE_CASE = fineAcoustic __SCREAMING_SNAKE_CASE = codec __SCREAMING_SNAKE_CASE = bark_generation_config Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) bark.save_pretrained(UpperCamelCase_ , repo_id=UpperCamelCase_ , push_to_hub=UpperCamelCase_ ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") __magic_name__ = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
100
from functools import lru_cache def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = 2 __a = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_SCREAMING_SNAKE_CASE ) if n > 1: factors.add(_SCREAMING_SNAKE_CASE ) return factors @lru_cache def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return len(unique_prime_factors(_SCREAMING_SNAKE_CASE ) ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list ): """simple docstring""" return len(set(_SCREAMING_SNAKE_CASE ) ) in (0, 1) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = 2 while True: # Increment each value of a generated range __a = [base + i for i in range(_SCREAMING_SNAKE_CASE )] # Run elements through out unique_prime_factors function # Append our target number to the end. __a = [upf_len(_SCREAMING_SNAKE_CASE ) for x in group] checker.append(_SCREAMING_SNAKE_CASE ) # If all numbers in the list are equal, return the group variable. if equality(_SCREAMING_SNAKE_CASE ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 4 ): """simple docstring""" __a = run(_SCREAMING_SNAKE_CASE ) return results[0] if len(_SCREAMING_SNAKE_CASE ) else None if __name__ == "__main__": print(solution())
302
0
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = abs(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = 0 while n > 0: res += n % 10 n //= 10 return res def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = abs(SCREAMING_SNAKE_CASE__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE__ ) for c in str(abs(SCREAMING_SNAKE_CASE__ ) ) ) def _UpperCamelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(SCREAMING_SNAKE_CASE__ : Callable , SCREAMING_SNAKE_CASE__ : int ) -> None: UpperCAmelCase__ = F'''{func.__name__}({value})''' UpperCAmelCase__ = timeit(F'''__main__.{call}''' , setup="""import __main__""" ) print(F'''{call:56} = {func(SCREAMING_SNAKE_CASE__ )} -- {timing:.4f} seconds''' ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
61
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
61
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING snake_case_ : str = logging.get_logger(__name__) snake_case_ : List[Any] = Dict[str, Any] snake_case_ : Union[str, Any] = List[Prediction] @add_end_docstrings(lowercase ) class lowercase__ ( lowercase ): def __init__( self : Any ,*lowerCamelCase__ : List[Any] ,**lowerCamelCase__ : Optional[int] ): '''simple docstring''' super().__init__(*lowerCamelCase__ ,**lowerCamelCase__ ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self ,'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCamelCase_ ( self : str ,**lowerCamelCase__ : List[Any] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = {} if "threshold" in kwargs: _UpperCamelCase : Optional[Any] = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self : Optional[Any] ,*lowerCamelCase__ : Optional[Any] ,**lowerCamelCase__ : List[str] ): '''simple docstring''' return super().__call__(*lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[int] ,lowerCamelCase__ : int ): '''simple docstring''' _UpperCamelCase : Optional[int] = load_image(lowerCamelCase__ ) _UpperCamelCase : List[Any] = torch.IntTensor([[image.height, image.width]] ) _UpperCamelCase : int = self.image_processor(images=[image] ,return_tensors='pt' ) if self.tokenizer is not None: _UpperCamelCase : int = self.tokenizer(text=inputs['words'] ,boxes=inputs['boxes'] ,return_tensors='pt' ) _UpperCamelCase : List[Any] = target_size return inputs def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : Optional[int] = model_inputs.pop('target_size' ) _UpperCamelCase : Optional[int] = self.model(**lowerCamelCase__ ) _UpperCamelCase : Any = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: _UpperCamelCase : Dict = model_inputs['bbox'] return model_outputs def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Any=0.9 ): '''simple docstring''' _UpperCamelCase : List[str] = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _UpperCamelCase , _UpperCamelCase : Union[str, Any] = target_size[0].tolist() def unnormalize(lowerCamelCase__ : Optional[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) _UpperCamelCase , _UpperCamelCase : List[Any] = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) _UpperCamelCase : Any = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] _UpperCamelCase : int = [unnormalize(lowerCamelCase__ ) for bbox in model_outputs['bbox'].squeeze(0 )] _UpperCamelCase : Any = ['score', 'label', 'box'] _UpperCamelCase : Tuple = [dict(zip(lowerCamelCase__ ,lowerCamelCase__ ) ) for vals in zip(scores.tolist() ,lowerCamelCase__ ,lowerCamelCase__ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _UpperCamelCase : Dict = self.image_processor.post_process_object_detection(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : int = raw_annotations[0] _UpperCamelCase : Tuple = raw_annotation['scores'] _UpperCamelCase : Union[str, Any] = raw_annotation['labels'] _UpperCamelCase : int = raw_annotation['boxes'] _UpperCamelCase : Optional[Any] = scores.tolist() _UpperCamelCase : Tuple = [self.model.config.idalabel[label.item()] for label in labels] _UpperCamelCase : int = [self._get_bounding_box(lowerCamelCase__ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _UpperCamelCase : Union[str, Any] = ['score', 'label', 'box'] _UpperCamelCase : Tuple = [ dict(zip(lowerCamelCase__ ,lowerCamelCase__ ) ) for vals in zip(raw_annotation['scores'] ,raw_annotation['labels'] ,raw_annotation['boxes'] ) ] return annotation def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[str] = box.int().tolist() _UpperCamelCase : List[Any] = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
83
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration UpperCAmelCase__ = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def A ( _UpperCAmelCase : Optional[int] ) -> str: '''simple docstring''' _UpperCAmelCase = ['layers', 'blocks'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def A ( _UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = list(s_dict.keys() ) for key in keys: _UpperCAmelCase = key for k, v in WHISPER_MAPPING.items(): if k in key: _UpperCAmelCase = new_key.replace(_UpperCAmelCase , _UpperCAmelCase ) print(F"{key} -> {new_key}" ) _UpperCAmelCase = s_dict.pop(_UpperCAmelCase ) return s_dict def A ( _UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = emb.weight.shape _UpperCAmelCase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) _UpperCAmelCase = emb.weight.data return lin_layer def A ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> bytes: '''simple docstring''' os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) _UpperCAmelCase = os.path.basename(_UpperCAmelCase ) _UpperCAmelCase = url.split('/' )[-2] _UpperCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if os.path.exists(_UpperCAmelCase ) and not os.path.isfile(_UpperCAmelCase ): raise RuntimeError(F"{download_target} exists and is not a regular file" ) if os.path.isfile(_UpperCAmelCase ): _UpperCAmelCase = open(_UpperCAmelCase , 'rb' ).read() if hashlib.shaaaa(_UpperCAmelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" ) with urllib.request.urlopen(_UpperCAmelCase ) as source, open(_UpperCAmelCase , 'wb' ) as output: with tqdm( total=int(source.info().get('Content-Length' ) ) , ncols=80 , unit='iB' , unit_scale=_UpperCAmelCase , unit_divisor=1_024 ) as loop: while True: _UpperCAmelCase = source.read(8_192 ) if not buffer: break output.write(_UpperCAmelCase ) loop.update(len(_UpperCAmelCase ) ) _UpperCAmelCase = open(_UpperCAmelCase , 'rb' ).read() if hashlib.shaaaa(_UpperCAmelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( 'Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.' ) return model_bytes def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' if ".pt" not in checkpoint_path: _UpperCAmelCase = _download(_MODELS[checkpoint_path] ) else: _UpperCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' ) _UpperCAmelCase = original_checkpoint['dims'] _UpperCAmelCase = original_checkpoint['model_state_dict'] _UpperCAmelCase = state_dict['decoder.token_embedding.weight'] remove_ignore_keys_(_UpperCAmelCase ) rename_keys(_UpperCAmelCase ) _UpperCAmelCase = True _UpperCAmelCase = state_dict['decoder.layers.0.fc1.weight'].shape[0] _UpperCAmelCase = WhisperConfig( vocab_size=dimensions['n_vocab'] , encoder_ffn_dim=_UpperCAmelCase , decoder_ffn_dim=_UpperCAmelCase , num_mel_bins=dimensions['n_mels'] , d_model=dimensions['n_audio_state'] , max_target_positions=dimensions['n_text_ctx'] , encoder_layers=dimensions['n_audio_layer'] , encoder_attention_heads=dimensions['n_audio_head'] , decoder_layers=dimensions['n_text_layer'] , decoder_attention_heads=dimensions['n_text_state'] , max_source_positions=dimensions['n_audio_ctx'] , ) _UpperCAmelCase = WhisperForConditionalGeneration(_UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0 and not set(_UpperCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F" but all the following weights are missing {missing}" ) if tie_embeds: _UpperCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _UpperCAmelCase = proj_out_weights model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
339
0
"""simple docstring""" lowercase__ : Tuple = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowercase__ : Optional[int] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowercase__ : str = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
289
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : int ): # test for the above condition self.test() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Optional[Any] = False while not completed: if counter == 1: self.reset() lowerCAmelCase_ : Any = self.advance() if not self.does_advance(SCREAMING_SNAKE_CASE_ ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : List[str] = self.update(SCREAMING_SNAKE_CASE_ ) counter += 1 if counter > 1_0_0_0_0: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Tuple ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : int ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : str ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=False ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] ): super(SCREAMING_SNAKE_CASE_ , self ).__init__() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError(F"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) lowerCAmelCase_ : Union[str, Any] = token_ids lowerCAmelCase_ : Union[str, Any] = len(self.token_ids ) lowerCAmelCase_ : Union[str, Any] = -1 # the index of the currently fulfilled step lowerCAmelCase_ : Dict = False def SCREAMING_SNAKE_CASE__ ( self : int ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Union[str, Any] = False if self.does_advance(SCREAMING_SNAKE_CASE_ ): self.fulfilled_idx += 1 lowerCAmelCase_ : Optional[int] = True if self.fulfilled_idx == (self.seqlen - 1): lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : List[str] = completed else: # failed to make progress. lowerCAmelCase_ : Optional[Any] = True self.reset() return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = 0 def SCREAMING_SNAKE_CASE__ ( self : Tuple ): return self.seqlen - (self.fulfilled_idx + 1) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple=False ): lowerCAmelCase_ : Any = PhrasalConstraint(self.token_ids ) if stateful: lowerCAmelCase_ : int = self.seqlen lowerCAmelCase_ : Dict = self.fulfilled_idx lowerCAmelCase_ : Optional[Any] = self.completed return new_constraint class UpperCamelCase__ : """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[List[int]] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True ): lowerCAmelCase_ : Tuple = max([len(SCREAMING_SNAKE_CASE_ ) for one in nested_token_ids] ) lowerCAmelCase_ : Optional[Any] = {} for token_ids in nested_token_ids: lowerCAmelCase_ : Union[str, Any] = root for tidx, token_id in enumerate(SCREAMING_SNAKE_CASE_ ): if token_id not in level: lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : Tuple = level[token_id] if no_subsets and self.has_subsets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F" {nested_token_ids}." ) lowerCAmelCase_ : Union[str, Any] = root def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any ): lowerCAmelCase_ : str = self.trie for current_token in current_seq: lowerCAmelCase_ : Optional[int] = start[current_token] lowerCAmelCase_ : Dict = list(start.keys() ) return next_tokens def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Any ): lowerCAmelCase_ : Any = self.next_tokens(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 0 def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase_ : Tuple = list(root.values() ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return 1 else: return sum([self.count_leaves(SCREAMING_SNAKE_CASE_ ) for nn in next_nodes] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ): lowerCAmelCase_ : Any = self.count_leaves(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) != leaf_count class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[List[int]] ): super(SCREAMING_SNAKE_CASE_ , self ).__init__() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError(F"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for token_ids in nested_token_ids ): raise ValueError(F"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) lowerCAmelCase_ : Dict = DisjunctiveTrie(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = nested_token_ids lowerCAmelCase_ : Tuple = self.trie.max_height lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : Optional[Any] = False def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : int = self.trie.next_tokens(self.current_seq ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) lowerCAmelCase_ : Optional[int] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) lowerCAmelCase_ : int = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Optional[Any] = False if self.does_advance(SCREAMING_SNAKE_CASE_ ): self.current_seq.append(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = True else: lowerCAmelCase_ : List[str] = True self.reset() lowerCAmelCase_ : Dict = self.trie.reached_leaf(self.current_seq ) lowerCAmelCase_ : List[str] = completed return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : int = False lowerCAmelCase_ : Optional[Any] = [] def SCREAMING_SNAKE_CASE__ ( self : str ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict=False ): lowerCAmelCase_ : Dict = DisjunctiveConstraint(self.token_ids ) if stateful: lowerCAmelCase_ : Dict = self.seqlen lowerCAmelCase_ : Optional[Any] = self.current_seq lowerCAmelCase_ : List[Any] = self.completed return new_constraint class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Constraint] ): lowerCAmelCase_ : Optional[int] = constraints # max # of steps required to fulfill a given constraint lowerCAmelCase_ : Optional[int] = max([c.seqlen for c in constraints] ) lowerCAmelCase_ : List[str] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = False self.init_state() def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : int = None lowerCAmelCase_ : Optional[int] = [constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) for constraint in self.constraints] def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ : Optional[Any] = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : List[str] = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowerCAmelCase_ : List[Any] = constraint.advance() if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.append(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.extend(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase_ : Dict = self.inprogress_constraint.advance() if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.append(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.extend(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowerCAmelCase_ ,lowerCAmelCase_ : Union[str, Any] = self.add(SCREAMING_SNAKE_CASE_ ) # the entire list of constraints are fulfilled if self.completed: break def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` should be an `int`, but is `{token_id}`." ) lowerCAmelCase_ ,lowerCAmelCase_ : Tuple = False, False if self.completed: lowerCAmelCase_ : Any = True lowerCAmelCase_ : Dict = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : Any = self.inprogress_constraint.update(SCREAMING_SNAKE_CASE_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase_ : Optional[int] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowerCAmelCase_ : str = None if len(self.pending_constraints ) == 0: # we're done! lowerCAmelCase_ : Union[str, Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : str = pending_constraint.update(SCREAMING_SNAKE_CASE_ ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = None if not complete and stepped: lowerCAmelCase_ : Optional[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowerCAmelCase_ : Optional[int] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowerCAmelCase_ : Optional[Any] = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str=True ): lowerCAmelCase_ : List[Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowerCAmelCase_ : Any = [ constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowerCAmelCase_ : List[str] = self.inprogress_constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = [constraint.copy() for constraint in self.pending_constraints] return new_state
289
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __lowerCamelCase (unittest.TestCase ): def __init__( self: Union[str, Any],A_: Optional[int],A_: Optional[int]=7,A_: List[str]=3,A_: Union[str, Any]=18,A_: Optional[int]=30,A_: Union[str, Any]=400,A_: Optional[Any]=True,A_: List[str]=32,A_: Any=True,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = num_channels __UpperCamelCase = image_size __UpperCamelCase = min_resolution __UpperCamelCase = max_resolution __UpperCamelCase = do_resize __UpperCamelCase = size_divisor __UpperCamelCase = do_rescale def snake_case_ ( self: int ): '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = GLPNImageProcessor if is_vision_available() else None def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = GLPNImageProcessingTester(self ) @property def snake_case_ ( self: Tuple ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_,'do_resize' ) ) self.assertTrue(hasattr(A_,'size_divisor' ) ) self.assertTrue(hasattr(A_,'resample' ) ) self.assertTrue(hasattr(A_,'do_rescale' ) ) def snake_case_ ( self: str ): '''simple docstring''' pass def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase = prepare_image_inputs(self.image_processor_tester,equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __UpperCamelCase = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester,equal_resolution=A_,numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __UpperCamelCase = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester,equal_resolution=A_,torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __UpperCamelCase = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
310
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __lowerCamelCase : _lowercase = XGLMConfig _lowercase = {} _lowercase = """gelu""" def __init__( self: Optional[int],A_: Dict,A_: Any=14,A_: Optional[int]=7,A_: str=True,A_: Any=True,A_: Optional[int]=True,A_: Optional[int]=99,A_: List[str]=32,A_: Any=2,A_: Tuple=4,A_: List[str]=37,A_: Dict="gelu",A_: int=0.1,A_: List[str]=0.1,A_: int=512,A_: List[Any]=0.0_2,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = ffn_dim __UpperCamelCase = activation_function __UpperCamelCase = activation_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = 2 __UpperCamelCase = 1 def snake_case_ ( self: Dict ): '''simple docstring''' return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length],self.vocab_size ),clip_value_min=0,clip_value_max=3 ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = self.get_config() __UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads],2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,num_layers=self.num_hidden_layers,attention_heads=self.num_attention_heads,ffn_dim=self.ffn_dim,activation_function=self.activation_function,activation_dropout=self.activation_dropout,attention_dropout=self.attention_dropout,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,use_cache=A_,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,return_dict=A_,) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ( __UpperCamelCase ), ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _lowercase = (TFXGLMForCausalLM,) if is_tf_available() else () _lowercase = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = TFXGLMModelTester(self ) __UpperCamelCase = ConfigTester(self,config_class=A_,n_embd=37 ) def snake_case_ ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() @slow def snake_case_ ( self: Any ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def snake_case_ ( self: Tuple ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __lowerCamelCase (unittest.TestCase ): @slow def snake_case_ ( self: Optional[Any],A_: int=True ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = tf.convert_to_tensor([[2, 268, 9865]],dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase = model.generate(A_,do_sample=A_,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(),A_ ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase = tokenizer('Today is a nice day and',return_tensors='tf' ) __UpperCamelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase = model.generate(A_,do_sample=A_,seed=[7, 0] ) __UpperCamelCase = tokenizer.decode(output_ids[0],skip_special_tokens=A_ ) __UpperCamelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(A_,A_ ) @slow def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase = 'left' # use different length sentences to test batching __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase = tokenizer(A_,return_tensors='tf',padding=A_ ) __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = model.generate(input_ids=A_,attention_mask=inputs['attention_mask'],max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[0],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer(sentences[1],return_tensors='tf' ).input_ids __UpperCamelCase = model.generate(input_ids=A_,max_new_tokens=12 ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_non_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.decode(output_padded[0],skip_special_tokens=A_ ) __UpperCamelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(A_,A_ ) self.assertListEqual(A_,[non_padded_sentence, padded_sentence] )
310
1
from numpy import exp, pi, sqrt def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase = 0.0, __lowerCamelCase = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
325
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): # ===== initialization ===== _SCREAMING_SNAKE_CASE : List[Any] = Mock() _SCREAMING_SNAKE_CASE : Optional[Any] = conn, Mock() _SCREAMING_SNAKE_CASE : Dict = iter([1, None] ) _SCREAMING_SNAKE_CASE : Optional[Any] = lambda __lowerCamelCase : next(__lowerCamelCase ) # ===== invoke ===== send_file(filename="mytext.txt", testing=__lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
325
1
import argparse import hashlib # hashlib is only used inside the Test class import struct class A : def __init__(self : Optional[Any] , __UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" UpperCAmelCase__ = data UpperCAmelCase__ = [0X67_452_301, 0XEF_CDA_B89, 0X98_BAD_CFE, 0X10_325_476, 0XC3_D2E_1F0] @staticmethod def lowercase_ (__UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" return ((n << b) | (n >> (3_2 - b))) & 0XFF_FFF_FFF def lowercase_ (self : Optional[int] ) -> Tuple: """simple docstring""" UpperCAmelCase__ = b"\x80" + b"\x00" * (6_3 - (len(self.data ) + 8) % 6_4) UpperCAmelCase__ = self.data + padding + struct.pack(">Q" , 8 * len(self.data ) ) return padded_data def lowercase_ (self : List[str] ) -> List[Any]: """simple docstring""" return [ self.padded_data[i : i + 6_4] for i in range(0 , len(self.padded_data ) , 6_4 ) ] def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = list(struct.unpack(">16L" , __UpperCAmelCase ) ) + [0] * 6_4 for i in range(1_6 , 8_0 ): UpperCAmelCase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 1_4] ^ w[i - 1_6]) , 1 ) return w def lowercase_ (self : Dict ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.padding() UpperCAmelCase__ = self.split_blocks() for block in self.blocks: UpperCAmelCase__ = self.expand_block(__UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.h for i in range(0 , 8_0 ): if 0 <= i < 2_0: UpperCAmelCase__ = (b & c) | ((~b) & d) UpperCAmelCase__ = 0X5A_827_999 elif 2_0 <= i < 4_0: UpperCAmelCase__ = b ^ c ^ d UpperCAmelCase__ = 0X6E_D9E_BA1 elif 4_0 <= i < 6_0: UpperCAmelCase__ = (b & c) | (b & d) | (c & d) UpperCAmelCase__ = 0X8F_1BB_CDC elif 6_0 <= i < 8_0: UpperCAmelCase__ = b ^ c ^ d UpperCAmelCase__ = 0XCA_62C_1D6 UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = ( self.rotate(__UpperCAmelCase , 5 ) + f + e + k + expanded_block[i] & 0XFF_FFF_FFF, a, self.rotate(__UpperCAmelCase , 3_0 ), c, d, ) UpperCAmelCase__ = ( self.h[0] + a & 0XFF_FFF_FFF, self.h[1] + b & 0XFF_FFF_FFF, self.h[2] + c & 0XFF_FFF_FFF, self.h[3] + d & 0XFF_FFF_FFF, self.h[4] + e & 0XFF_FFF_FFF, ) return ("{:08x}" * 5).format(*self.h ) def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase__ = B"Test String" assert SHAaHash(__A ).final_hash() == hashlib.shaa(__A ).hexdigest() # noqa: S324 def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser(description="Process some strings or files" ) parser.add_argument( "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", ) parser.add_argument("--file", dest="input_file", help="Hash contents of a file" ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file, "rb" ) as f: UpperCAmelCase__ = f.read() else: UpperCAmelCase__ = bytes(__A, "utf-8" ) print(SHAaHash(__A ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
65
import math import unittest def A ( _UpperCAmelCase : int ) -> bool: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" self.assertTrue(is_prime(2)) self.assertTrue(is_prime(3)) self.assertTrue(is_prime(5)) self.assertTrue(is_prime(7)) self.assertTrue(is_prime(11)) self.assertTrue(is_prime(13)) self.assertTrue(is_prime(17)) self.assertTrue(is_prime(19)) self.assertTrue(is_prime(23)) self.assertTrue(is_prime(29)) def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" with self.assertRaises(A): is_prime(-19) self.assertFalse( is_prime(0) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2)) self.assertFalse(is_prime(2 * 3)) self.assertFalse(is_prime(3 * 3)) self.assertFalse(is_prime(3 * 5)) self.assertFalse(is_prime(3 * 5 * 7)) if __name__ == "__main__": unittest.main()
339
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _A : Optional[Any] = TypeVar('T') class __SCREAMING_SNAKE_CASE ( Generic[T] ): _UpperCAmelCase : deque[T] # Cache store of keys _UpperCAmelCase : set[T] # References of the keys in cache _UpperCAmelCase : int = 1_0 # Maximum capacity of cache def __init__( self : Dict , A : int ) ->None: lowerCamelCase__ : List[Any] = deque() lowerCamelCase__ : Dict = set() if not n: lowerCamelCase__ : List[Any] = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: lowerCamelCase__ : Dict = n def __lowerCamelCase ( self : int , A : T ) ->None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowerCamelCase__ : Union[str, Any] = self.dq_store.pop() self.key_reference.remove(A ) else: self.dq_store.remove(A ) self.dq_store.appendleft(A ) self.key_reference.add(A ) def __lowerCamelCase ( self : Union[str, Any] ) ->None: for k in self.dq_store: print(A ) def __repr__( self : Optional[Any] ) ->str: return F"LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}" if __name__ == "__main__": import doctest doctest.testmod() _A : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
265
def _a ( UpperCAmelCase ) -> int: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) lowerCamelCase__ : List[str] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
265
1
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a = logging.get_logger(__name__) # pylint: disable=invalid-name _a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ): UpperCAmelCase_ : Union[str, Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase_ : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if latents is None: UpperCAmelCase_ : List[Any] = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase_ : int = latents.to(lowercase_ ) UpperCAmelCase_ : List[Any] = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ : Dict = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase_ : Tuple = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : Union[str, Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : int = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase_ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self._execution_device UpperCAmelCase_ : Dict = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Optional[int] = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase_ : List[str] = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Any = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Optional[Any] = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Tuple = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase_ : Any = self.scheduler.timesteps UpperCAmelCase_ : List[Any] = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds} UpperCAmelCase_ : Optional[Any] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = variance_pred.chunk(2 ) UpperCAmelCase_ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : Dict = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase_ : Optional[Any] = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : Any = image * 0.5 + 0.5 UpperCAmelCase_ : Tuple = image.clamp(0 , 1 ) UpperCAmelCase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Tuple = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
61
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: _a = None _a = logging.get_logger(__name__) _a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _a = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } _a = { 'google/fnet-base': 512, 'google/fnet-large': 512, } _a = '▁' class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""input_ids""", """token_type_ids"""] SCREAMING_SNAKE_CASE__ : Tuple = FNetTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_=False , lowercase_=True , lowercase_=True , lowercase_="<unk>" , lowercase_="[SEP]" , lowercase_="<pad>" , lowercase_="[CLS]" , lowercase_="[MASK]" , **lowercase_ , ): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase_ : int = ( AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ , normalized=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token ) super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , ) UpperCAmelCase_ : Any = do_lower_case UpperCAmelCase_ : Tuple = remove_space UpperCAmelCase_ : str = keep_accents UpperCAmelCase_ : Any = vocab_file UpperCAmelCase_ : List[Any] = False if not self.vocab_file else True def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Tuple = [self.sep_token_id] UpperCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Any = [self.sep_token_id] UpperCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : List[str] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
61
1
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def a( A : Dict ) -> Union[str, Any]: """simple docstring""" a = {} a = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] a = len(example["content"] ) / len(output["input_ids"] ) return output _lowercase: Dict = HfArgumentParser(PretokenizationArguments) _lowercase: Dict = parser.parse_args() if args.num_workers is None: _lowercase: List[str] = multiprocessing.cpu_count() _lowercase: Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) _lowercase: str = time.time() _lowercase: Dict = load_dataset(args.dataset_name, split="train") print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") _lowercase: List[Any] = time.time() _lowercase: Union[str, Any] = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") _lowercase: Union[str, Any] = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
354
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase: Optional[Any] = logging.get_logger(__name__) _lowercase: Any = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = "git_vision_model" def __init__(self , lowerCamelCase_=768 , lowerCamelCase_=3072 , lowerCamelCase_=12 , lowerCamelCase_=12 , lowerCamelCase_=3 , lowerCamelCase_=224 , lowerCamelCase_=16 , lowerCamelCase_="quick_gelu" , lowerCamelCase_=1E-5 , lowerCamelCase_=0.0 , lowerCamelCase_=0.02 , **lowerCamelCase_ , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) a = hidden_size a = intermediate_size a = num_hidden_layers a = num_attention_heads a = num_channels a = patch_size a = image_size a = initializer_range a = attention_dropout a = layer_norm_eps a = hidden_act @classmethod def UpperCamelCase_ (cls , lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" cls._set_token_in_kwargs(lowerCamelCase_ ) a , a = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": a = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = "git" def __init__(self , lowerCamelCase_=None , lowerCamelCase_=30522 , lowerCamelCase_=768 , lowerCamelCase_=6 , lowerCamelCase_=12 , lowerCamelCase_=3072 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=1024 , lowerCamelCase_=0.02 , lowerCamelCase_=1E-1_2 , lowerCamelCase_=0 , lowerCamelCase_="absolute" , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=101 , lowerCamelCase_=102 , lowerCamelCase_=None , **lowerCamelCase_ , ): """simple docstring""" super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) if vision_config is None: a = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) a = GitVisionConfig(**lowerCamelCase_ ) a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = initializer_range a = layer_norm_eps a = position_embedding_type a = use_cache a = tie_word_embeddings a = num_image_with_embedding a = bos_token_id a = eos_token_id def UpperCamelCase_ (self ): """simple docstring""" a = copy.deepcopy(self.__dict__ ) a = self.vision_config.to_dict() a = self.__class__.model_type return output
71
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
289
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCAmelCase__ = logging.get_logger(__name__) enable_full_determinism() class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : Optional[int] = UNetaDModel _snake_case : List[str] = 'sample' @property def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = (32, 32) _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor([10] ).to(__lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase_ ( self : List[Any] ): return (3, 32, 32) @property def lowerCAmelCase_ ( self : Optional[Any] ): return (3, 32, 32) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = { """block_out_channels""": (32, 64), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 32, } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : int = UNetaDModel _snake_case : Optional[Any] = 'sample' @property def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = 4 _UpperCAmelCase = 4 _UpperCAmelCase = (32, 32) _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor([10] ).to(__lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase_ ( self : Optional[Any] ): return (4, 32, 32) @property def lowerCAmelCase_ ( self : Dict ): return (4, 32, 32) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = { """sample_size""": 32, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (32, 64), """attention_head_dim""": 32, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(__lowerCAmelCase ) _UpperCAmelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase ) model.to(__lowerCAmelCase ) _UpperCAmelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def lowerCAmelCase_ ( self : str ): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase ) model_accelerate.to(__lowerCAmelCase ) model_accelerate.eval() _UpperCAmelCase = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) _UpperCAmelCase = noise.to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor([10] * noise.shape[0] ).to(__lowerCAmelCase ) _UpperCAmelCase = model_accelerate(__lowerCAmelCase , __lowerCAmelCase )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained( """fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase , low_cpu_mem_usage=__lowerCAmelCase ) model_normal_load.to(__lowerCAmelCase ) model_normal_load.eval() _UpperCAmelCase = model_normal_load(__lowerCAmelCase , __lowerCAmelCase )["""sample"""] assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-3 ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ) model.eval() model.to(__lowerCAmelCase ) _UpperCAmelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _UpperCAmelCase = noise.to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor([10] * noise.shape[0] ).to(__lowerCAmelCase ) with torch.no_grad(): _UpperCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ).sample _UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-13.3_258, -20.1_100, -15.9_873, -17.6_617, -23.0_596, -17.9_419, -13.3_675, -16.1_889, -12.3_800] ) # fmt: on self.assertTrue(torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-3 ) ) class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : Optional[Any] = UNetaDModel _snake_case : str = 'sample' @property def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : str=(32, 32) ): _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=__lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase_ ( self : Any ): return (3, 32, 32) @property def lowerCAmelCase_ ( self : Union[str, Any] ): return (3, 32, 32) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = { """block_out_channels""": [32, 64, 64, 64], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1e-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict @slow def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(__lowerCAmelCase ) _UpperCAmelCase = self.dummy_input _UpperCAmelCase = floats_tensor((4, 3) + (256, 256) ).to(__lowerCAmelCase ) _UpperCAmelCase = noise _UpperCAmelCase = model(**__lowerCAmelCase ) assert image is not None, "Make sure output is not None" @slow def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ) model.to(__lowerCAmelCase ) _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = (256, 256) _UpperCAmelCase = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor(batch_size * [1e-4] ).to(__lowerCAmelCase ) with torch.no_grad(): _UpperCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ).sample _UpperCAmelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-4_842.8_691, -6_499.6_631, -3_800.1_953, -7_978.2_686, -10_980.7_129, -20_028.8_535, 8_148.2_822, 2_342.2_905, 567.7_608] ) # fmt: on self.assertTrue(torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-2 ) ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" ) model.to(__lowerCAmelCase ) _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = (32, 32) _UpperCAmelCase = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor(batch_size * [1e-4] ).to(__lowerCAmelCase ) with torch.no_grad(): _UpperCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ).sample _UpperCAmelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-0.0_325, -0.0_900, -0.0_869, -0.0_332, -0.0_725, -0.0_270, -0.0_101, 0.0_227, 0.0_256] ) # fmt: on self.assertTrue(torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-2 ) ) def lowerCAmelCase_ ( self : List[str] ): # not required for this model pass
289
1
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Dict, __A : Any, __A : Optional[int]=1_3, __A : Any=7, __A : Tuple=True, __A : int=True, __A : Dict=True, __A : Union[str, Any]=True, __A : Optional[int]=9_9, __A : Optional[int]=3_2, __A : Union[str, Any]=5, __A : Optional[int]=4, __A : str=3_7, __A : Union[str, Any]="gelu", __A : Optional[int]=0.1, __A : Optional[Any]=0.1, __A : Any=5_1_2, __A : List[str]=1_6, __A : Optional[int]=2, __A : Union[str, Any]=0.0_2, __A : Optional[int]=False, __A : List[str]=True, __A : int="None", __A : List[str]=3, __A : Any=4, __A : Dict=None, ): UpperCAmelCase : str = parent UpperCAmelCase : int = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Dict = use_input_mask UpperCAmelCase : Optional[Any] = use_token_type_ids UpperCAmelCase : str = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : int = type_vocab_size UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Dict = num_labels UpperCAmelCase : Optional[Any] = num_choices UpperCAmelCase : str = relative_attention UpperCAmelCase : Any = position_biased_input UpperCAmelCase : str = pos_att_type UpperCAmelCase : Union[str, Any] = scope def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase : int = None if self.use_input_mask: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase : List[str] = None UpperCAmelCase : str = None UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size], self.num_choices ) UpperCAmelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : Any ): return DebertaVaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, pos_att_type=self.pos_att_type, ) def __magic_name__ ( self : Dict, __A : str ): self.parent.assertListEqual(list(result.loss.size() ), [] ) def __magic_name__ ( self : List[str], __A : Dict, __A : int, __A : str, __A : List[str], __A : Dict, __A : str, __A : int ): UpperCAmelCase : Optional[int] = DebertaVaModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[int] = model(__A, attention_mask=__A, token_type_ids=__A )[0] UpperCAmelCase : Optional[int] = model(__A, token_type_ids=__A )[0] UpperCAmelCase : int = model(__A )[0] self.parent.assertListEqual(list(sequence_output.size() ), [self.batch_size, self.seq_length, self.hidden_size] ) def __magic_name__ ( self : Dict, __A : Union[str, Any], __A : Optional[Any], __A : Tuple, __A : Optional[int], __A : List[Any], __A : List[Any], __A : Optional[int] ): UpperCAmelCase : int = DebertaVaForMaskedLM(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : int = model(__A, attention_mask=__A, token_type_ids=__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : List[str], __A : str, __A : Optional[Any], __A : List[str], __A : Optional[int], __A : List[Any], __A : int, __A : Optional[int] ): UpperCAmelCase : int = self.num_labels UpperCAmelCase : Union[str, Any] = DebertaVaForSequenceClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : int = model(__A, attention_mask=__A, token_type_ids=__A, labels=__A ) self.parent.assertListEqual(list(result.logits.size() ), [self.batch_size, self.num_labels] ) self.check_loss_output(__A ) def __magic_name__ ( self : Any, __A : Tuple, __A : Any, __A : str, __A : List[Any], __A : Dict, __A : Optional[Any], __A : List[str] ): UpperCAmelCase : Dict = self.num_labels UpperCAmelCase : int = DebertaVaForTokenClassification(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A, attention_mask=__A, token_type_ids=__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Tuple, __A : List[str], __A : Tuple, __A : Tuple, __A : int, __A : Optional[Any], __A : Tuple, __A : Any ): UpperCAmelCase : Union[str, Any] = DebertaVaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Any = model( __A, attention_mask=__A, token_type_ids=__A, start_positions=__A, end_positions=__A, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def __magic_name__ ( self : Dict, __A : Optional[int], __A : str, __A : List[str], __A : Dict, __A : Optional[Any], __A : Union[str, Any], __A : int ): UpperCAmelCase : Union[str, Any] = DebertaVaForMultipleChoice(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase : int = model( __A, attention_mask=__A, token_type_ids=__A, labels=__A, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[str] = config_and_inputs UpperCAmelCase : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : str = DebertaVaModelTester(self ) UpperCAmelCase : Dict = ConfigTester(self, config_class=__A, hidden_size=3_7 ) def __magic_name__ ( self : Any ): self.config_tester.run_common_tests() def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__A ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__A ) def __magic_name__ ( self : Tuple ): UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__A ) def __magic_name__ ( self : Any ): UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__A ) @slow def __magic_name__ ( self : Dict ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : str = DebertaVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def __magic_name__ ( self : str ): pass @slow def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : str = DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' ) UpperCAmelCase : Union[str, Any] = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) UpperCAmelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase : List[str] = model(__A, attention_mask=__A )[0] # compare the actual values for a slice. UpperCAmelCase : List[str] = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], __A, atol=1E-4 ), F'''{output[:, 1:4, 1:4]}''' )
99
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _lowerCamelCase : Dict = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Optional[Any], *__A : Tuple, **__A : Tuple ): super().__init__(*__A, **__A ) self.check_model_type(__A ) def __magic_name__ ( self : Union[str, Any], __A : int=None, __A : Tuple=None, __A : Any=None, **__A : Optional[int] ): UpperCAmelCase , UpperCAmelCase : List[Any] = {}, {} if padding is not None: UpperCAmelCase : Optional[int] = padding if truncation is not None: UpperCAmelCase : Optional[int] = truncation if top_k is not None: UpperCAmelCase : Tuple = top_k return preprocess_params, {}, postprocess_params def __call__( self : Union[str, Any], __A : Union["Image.Image", str], __A : str = None, **__A : Optional[int] ): if isinstance(__A, (Image.Image, str) ) and isinstance(__A, __A ): UpperCAmelCase : int = {'''image''': image, '''question''': question} else: UpperCAmelCase : str = image UpperCAmelCase : Union[str, Any] = super().__call__(__A, **__A ) return results def __magic_name__ ( self : List[str], __A : Union[str, Any], __A : Tuple=False, __A : List[Any]=False ): UpperCAmelCase : int = load_image(inputs['''image'''] ) UpperCAmelCase : List[str] = self.tokenizer( inputs['''question'''], return_tensors=self.framework, padding=__A, truncation=__A ) UpperCAmelCase : Union[str, Any] = self.image_processor(images=__A, return_tensors=self.framework ) model_inputs.update(__A ) return model_inputs def __magic_name__ ( self : Optional[Any], __A : List[Any] ): UpperCAmelCase : Optional[int] = self.model(**__A ) return model_outputs def __magic_name__ ( self : Any, __A : List[str], __A : Union[str, Any]=5 ): if top_k > self.model.config.num_labels: UpperCAmelCase : Any = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase : Any = model_outputs.logits.sigmoid()[0] UpperCAmelCase , UpperCAmelCase : Union[str, Any] = probs.topk(__A ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) UpperCAmelCase : str = scores.tolist() UpperCAmelCase : Tuple = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__A, __A )]
99
1
from numpy import exp, pi, sqrt def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 ) -> int: return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
325
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. SCREAMING_SNAKE_CASE__ = 10 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if array[i] == target: return i return -1 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: __lowercase = 0 __lowercase = len(SCREAMING_SNAKE_CASE ) while left <= right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = (left + right) // 3 + 1 __lowercase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __lowercase = one_third - 1 elif array[two_third] < target: __lowercase = two_third + 1 else: __lowercase = one_third + 1 __lowercase = two_third - 1 else: return -1 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: if left < right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = (left + right) // 3 + 1 __lowercase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by comma:\n""").strip() SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be found in the list:\n""").strip()) SCREAMING_SNAKE_CASE__ = ite_ternary_search(collection, target) SCREAMING_SNAKE_CASE__ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
325
1
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , ): if config_name_or_path is None: _UpperCamelCase : List[Any] = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: _UpperCamelCase : Optional[int] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: _UpperCamelCase : Union[str, Any] = question_encoder_name_or_path _UpperCamelCase : Union[str, Any] = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. _UpperCamelCase : Optional[Any] = RagConfig.from_pretrained(_lowerCAmelCase ) _UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(_lowerCAmelCase ) _UpperCamelCase : Optional[Any] = AutoConfig.from_pretrained(_lowerCAmelCase ) _UpperCamelCase : Union[str, Any] = gen_config _UpperCamelCase : Optional[int] = question_encoder_config _UpperCamelCase : List[Any] = model_class.from_pretrained_question_encoder_generator( _lowerCAmelCase , _lowerCAmelCase , config=_lowerCAmelCase ) rag_model.save_pretrained(_lowerCAmelCase ) # Sanity check. model_class.from_pretrained(_lowerCAmelCase ) # Save tokenizers. _UpperCamelCase : Dict = AutoTokenizer.from_pretrained(_lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": snake_case_ : Tuple = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) snake_case_ : List[str] = parser.parse_args() snake_case_ : str = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
354
'''simple docstring''' from torch import nn def A__ ( UpperCAmelCase_ ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'Unsupported activation function: {act_fn}' )
236
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a : Any = logging.get_logger(__name__) a : Any = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase_ ( __magic_name__ , __magic_name__ ): lowercase = 'nat' lowercase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , A=4 , A=3 , A=64 , A=[3, 4, 6, 5] , A=[2, 4, 8, 16] , A=7 , A=3.0 , A=True , A=0.0 , A=0.0 , A=0.1 , A="gelu" , A=0.0_2 , A=1e-5 , A=0.0 , A=None , A=None , **A , ) -> List[Any]: super().__init__(**A ) UpperCAmelCase : Union[str, Any] = patch_size UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : str = embed_dim UpperCAmelCase : Union[str, Any] = depths UpperCAmelCase : Optional[int] = len(A ) UpperCAmelCase : Any = num_heads UpperCAmelCase : List[str] = kernel_size UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Tuple = qkv_bias UpperCAmelCase : Optional[Any] = hidden_dropout_prob UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase : List[str] = drop_path_rate UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : Optional[int] = layer_norm_eps UpperCAmelCase : str = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(A ) - 1) ) UpperCAmelCase : Tuple = layer_scale_init_value UpperCAmelCase : Any = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(A ) + 1 )] UpperCAmelCase , UpperCAmelCase : str = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names )
265
'''simple docstring''' from __future__ import annotations import math class UpperCamelCase_ : def __init__( self , A ) -> None: UpperCAmelCase : Optional[int] = size # approximate the overall size of segment tree with given value UpperCAmelCase : Optional[int] = [0 for i in range(0 , 4 * size )] # create array to store lazy update UpperCAmelCase : Any = [0 for i in range(0 , 4 * size )] UpperCAmelCase : Tuple = [0 for i in range(0 , 4 * size )] # flag for lazy update def _lowercase( self , A ) -> int: return idx * 2 def _lowercase( self , A ) -> int: return idx * 2 + 1 def _lowercase( self , A , A , A , A ) -> None: if left_element == right_element: UpperCAmelCase : str = a[left_element - 1] else: UpperCAmelCase : Tuple = (left_element + right_element) // 2 self.build(self.left(A ) , A , A , A ) self.build(self.right(A ) , mid + 1 , A , A ) UpperCAmelCase : str = max( self.segment_tree[self.left(A )] , self.segment_tree[self.right(A )] ) def _lowercase( self , A , A , A , A , A , A ) -> bool: if self.flag[idx] is True: UpperCAmelCase : Optional[Any] = self.lazy[idx] UpperCAmelCase : int = False if left_element != right_element: UpperCAmelCase : List[str] = self.lazy[idx] UpperCAmelCase : Optional[Any] = self.lazy[idx] UpperCAmelCase : List[str] = True UpperCAmelCase : int = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCAmelCase : Optional[Any] = val if left_element != right_element: UpperCAmelCase : Tuple = val UpperCAmelCase : int = val UpperCAmelCase : Any = True UpperCAmelCase : str = True return True UpperCAmelCase : str = (left_element + right_element) // 2 self.update(self.left(A ) , A , A , A , A , A ) self.update(self.right(A ) , mid + 1 , A , A , A , A ) UpperCAmelCase : List[str] = max( self.segment_tree[self.left(A )] , self.segment_tree[self.right(A )] ) return True def _lowercase( self , A , A , A , A , A ) -> int | float: if self.flag[idx] is True: UpperCAmelCase : Any = self.lazy[idx] UpperCAmelCase : Any = False if left_element != right_element: UpperCAmelCase : Optional[Any] = self.lazy[idx] UpperCAmelCase : Tuple = self.lazy[idx] UpperCAmelCase : List[str] = True UpperCAmelCase : Tuple = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCAmelCase : Dict = (left_element + right_element) // 2 UpperCAmelCase : List[Any] = self.query(self.left(A ) , A , A , A , A ) UpperCAmelCase : str = self.query(self.right(A ) , mid + 1 , A , A , A ) return max(A , A ) def __str__( self ) -> str: return str([self.query(1 , 1 , self.size , A , A ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a : Optional[int] = [1, 2, -4, 7, 3, -5, 6, 1_1, -2_0, 9, 1_4, 1_5, 5, 2, -8] a : Optional[Any] = 1_5 a : Union[str, Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 1_1)) print(segt.query(1, 1, size, 7, 1_2)) segt.update(1, 1, size, 1, 3, 1_1_1) print(segt.query(1, 1, size, 1, 1_5)) segt.update(1, 1, size, 7, 8, 2_3_5) print(segt)
265
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
354
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool = False ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = F'''Expected string as input, found {type(SCREAMING_SNAKE_CASE__ )}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = F'''Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE__ )}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = input_str.split("""_""" ) UpperCAmelCase__ = 0 if use_pascal else 1 UpperCAmelCase__ = words[start_index:] UpperCAmelCase__ = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCAmelCase__ = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
61
0
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy lowerCAmelCase__ = logging.get_logger(__name__) class a__ ( snake_case ): """simple docstring""" def __init__( self , lowercase , lowercase , lowercase , **lowercase ) -> Union[str, Any]: '''simple docstring''' A__ = feature_size A__ = sampling_rate A__ = padding_value A__ = kwargs.pop("padding_side" , "right" ) A__ = kwargs.pop("return_attention_mask" , lowercase ) super().__init__(**lowercase ) def UpperCamelCase ( self , lowercase , lowercase = True , lowercase = None , lowercase = False , lowercase = None , lowercase = None , lowercase = None , ) -> BatchFeature: '''simple docstring''' if isinstance(lowercase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): A__ = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F' to this method that includes {self.model_input_names[0]}, but you provided' F' {list(processed_features.keys() )}' ) A__ = processed_features[self.model_input_names[0]] A__ = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowercase ) == 0: if return_attention_mask: A__ = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch A__ = required_input[0] if isinstance(lowercase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. A__ = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowercase ): A__ = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowercase ): A__ = "tf" elif is_torch_tensor(lowercase ): A__ = "pt" elif isinstance(lowercase , (int, float, list, tuple, np.ndarray) ): A__ = "np" else: raise ValueError( F'type of {first_element} unknown: {type(lowercase )}. ' "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): A__ = to_numpy(lowercase ) else: A__ = [to_numpy(lowercase ) for v in value] # Convert padding_strategy in PaddingStrategy A__ = self._get_padding_strategies(padding=lowercase , max_length=lowercase ) A__ = processed_features[self.model_input_names[0]] A__ = len(lowercase ) if not all(len(lowercase ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) A__ = [] for i in range(lowercase ): A__ = {k: v[i] for k, v in processed_features.items()} # truncation A__ = self._truncate( lowercase , max_length=lowercase , pad_to_multiple_of=lowercase , truncation=lowercase , ) truncated_inputs.append(lowercase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length A__ = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) A__ = PaddingStrategy.MAX_LENGTH A__ = {} for i in range(lowercase ): # padding A__ = self._pad( truncated_inputs[i] , max_length=lowercase , padding_strategy=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , ) for key, value in outputs.items(): if key not in batch_outputs: A__ = [] if value.dtype is np.dtype(np.floataa ): A__ = value.astype(np.floataa ) batch_outputs[key].append(lowercase ) return BatchFeature(lowercase , tensor_type=lowercase ) def UpperCamelCase ( self , lowercase , lowercase = None , lowercase = PaddingStrategy.DO_NOT_PAD , lowercase = None , lowercase = None , ) -> dict: '''simple docstring''' A__ = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: A__ = len(lowercase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): A__ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of A__ = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: A__ = np.ones(len(lowercase ) , dtype=np.intaa ) if needs_to_be_padded: A__ = max_length - len(lowercase ) if self.padding_side == "right": if return_attention_mask: A__ = np.pad( processed_features["attention_mask"] , (0, difference) ) A__ = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) A__ = np.pad( lowercase , lowercase , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: A__ = np.pad( processed_features["attention_mask"] , (difference, 0) ) A__ = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) A__ = np.pad( lowercase , lowercase , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCamelCase ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , ) -> Union[str, Any]: '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) A__ = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): A__ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of A__ = len(lowercase ) > max_length if needs_to_be_truncated: A__ = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: A__ = processed_features["attention_mask"][:max_length] return processed_features def UpperCamelCase ( self , lowercase=False , lowercase=None ) -> Any: '''simple docstring''' if padding is not False: if padding is True: A__ = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowercase , lowercase ): A__ = PaddingStrategy(lowercase ) elif isinstance(lowercase , lowercase ): A__ = padding else: A__ = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
68
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A ( a_ ,a_ ) -> Optional[Any]: # Load checkpoint __UpperCamelCase : int =torch.load(a_ ,map_location='cpu' ) __UpperCamelCase : List[Any] =chkpt['model'] # We have the base model one level deeper than the original XLM repository __UpperCamelCase : str ={} for k, v in state_dict.items(): if "pred_layer" in k: __UpperCamelCase : Optional[Any] =v else: __UpperCamelCase : Optional[Any] =v __UpperCamelCase : List[Any] =chkpt['params'] __UpperCamelCase : str ={n: v for n, v in config.items() if not isinstance(a_ ,(torch.FloatTensor, numpy.ndarray) )} __UpperCamelCase : str =chkpt['dico_word2id'] __UpperCamelCase : Dict ={s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' ,'' ): i for s, i in vocab.items()} # Save pytorch-model __UpperCamelCase : List[Any] =pytorch_dump_folder_path + '/' + WEIGHTS_NAME __UpperCamelCase : Tuple =pytorch_dump_folder_path + '/' + CONFIG_NAME __UpperCamelCase : Any =pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(a_ ,a_ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(a_ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(a_ ,indent=2 ) + '\n' ) print(F'Save vocab file to {pytorch_config_dump_path}' ) with open(a_ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(a_ ,indent=2 ) + '\n' ) if __name__ == "__main__": A_ :str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A_ :List[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
71
0
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.txt'} _a = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } _a = { 'facebook/esm2_t6_8M_UR50D': 1024, 'facebook/esm2_t12_35M_UR50D': 1024, } def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" with open(a__, '''r''' ) as f: _UpperCamelCase = f.read().splitlines() return [l.strip() for l in lines] class _UpperCAmelCase( lowerCamelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ['input_ids', 'attention_mask'] def __init__( self , __a , __a="<unk>" , __a="<cls>" , __a="<pad>" , __a="<mask>" , __a="<eos>" , **__a , ) -> int: '''simple docstring''' super().__init__(**_snake_case) _UpperCamelCase = load_vocab_file(_snake_case) _UpperCamelCase = dict(enumerate(self.all_tokens)) _UpperCamelCase = {tok: ind for ind, tok in enumerate(self.all_tokens)} _UpperCamelCase = unk_token _UpperCamelCase = cls_token _UpperCamelCase = pad_token _UpperCamelCase = mask_token _UpperCamelCase = eos_token _UpperCamelCase = self.all_tokens self._create_trie(self.unique_no_split_tokens) def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' return self._id_to_token.get(_snake_case , self.unk_token) def UpperCAmelCase ( self , __a) -> int: '''simple docstring''' return self._token_to_id.get(_snake_case , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self , __a , **__a) -> Optional[Any]: '''simple docstring''' return text.split() def UpperCAmelCase ( self , __a=False) -> Union[str, Any]: '''simple docstring''' return len(self._id_to_token) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens)} def UpperCAmelCase ( self , __a) -> int: '''simple docstring''' return self._token_to_id.get(_snake_case , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' return self._id_to_token.get(_snake_case , self.unk_token) def UpperCAmelCase ( self , __a , __a = None) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.cls_token_id] _UpperCamelCase = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''') return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def UpperCAmelCase ( self , __a , __a = None , __a = False) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''') return [1 if token in self.all_special_ids else 0 for token in token_ids_a] _UpperCamelCase = [1] + ([0] * len(_snake_case)) + [1] if token_ids_a is not None: mask += [0] * len(_snake_case) + [1] return mask def UpperCAmelCase ( self , __a , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = os.path.join(_snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''') with open(_snake_case , '''w''') as f: f.write('''\n'''.join(self.all_tokens)) return (vocab_file,) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=_snake_case) def UpperCAmelCase ( self , __a , __a = False) -> int: '''simple docstring''' return super()._add_tokens(_snake_case , special_tokens=_snake_case)
361
"""simple docstring""" import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _a = get_logger(__name__) class _UpperCAmelCase: def __init__( self , __a = None) -> List[str]: '''simple docstring''' _UpperCamelCase = ( os.path.join(__a , config.EXTRACTED_DATASETS_DIR) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _UpperCamelCase = Extractor def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _UpperCamelCase = os.path.abspath(__a) return os.path.join(self.extract_dir , hash_url_to_filename(__a)) def UpperCAmelCase ( self , __a , __a) -> bool: '''simple docstring''' return force_extract or ( not os.path.isfile(__a) and not (os.path.isdir(__a) and os.listdir(__a)) ) def UpperCAmelCase ( self , __a , __a = False) -> str: '''simple docstring''' _UpperCamelCase = self.extractor.infer_extractor_format(__a) if not extractor_format: return input_path _UpperCamelCase = self._get_output_path(__a) if self._do_extract(__a , __a): self.extractor.extract(__a , __a , __a) return output_path class _UpperCAmelCase( lowerCamelCase ): @classmethod @abstractmethod def UpperCAmelCase ( cls , __a , **__a) -> bool: '''simple docstring''' ... @staticmethod @abstractmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' ... class _UpperCAmelCase( lowerCamelCase , lowerCamelCase ): lowercase__ = [] @staticmethod def UpperCAmelCase ( __a , __a) -> Any: '''simple docstring''' with open(__a , '''rb''') as f: return f.read(__a) @classmethod def UpperCAmelCase ( cls , __a , __a = b"") -> bool: '''simple docstring''' if not magic_number: _UpperCamelCase = max(len(__a) for cls_magic_number in cls.magic_numbers) try: _UpperCamelCase = cls.read_magic_number(__a , __a) except OSError: return False return any(magic_number.startswith(__a) for cls_magic_number in cls.magic_numbers) class _UpperCAmelCase( lowerCamelCase ): @classmethod def UpperCAmelCase ( cls , __a , **__a) -> bool: '''simple docstring''' return tarfile.is_tarfile(__a) @staticmethod def UpperCAmelCase ( __a , __a) -> List[str]: '''simple docstring''' def resolved(__a) -> str: return os.path.realpath(os.path.abspath(__a)) def badpath(__a , __a) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__a , __a)).startswith(__a) def badlink(__a , __a) -> bool: # Links are interpreted relative to the directory containing the link _UpperCamelCase = resolved(os.path.join(__a , os.path.dirname(info.name))) return badpath(info.linkname , base=__a) _UpperCamelCase = resolved(__a) for finfo in members: if badpath(finfo.name , __a): logger.error(F'''Extraction of {finfo.name} is blocked (illegal path)''') elif finfo.issym() and badlink(__a , __a): logger.error(F'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''') elif finfo.islnk() and badlink(__a , __a): logger.error(F'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''') else: yield finfo @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' os.makedirs(__a , exist_ok=__a) _UpperCamelCase = tarfile.open(__a) tar_file.extractall(__a , members=TarExtractor.safemembers(__a , __a)) tar_file.close() class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x1F\x8B'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' with gzip.open(__a , '''rb''') as gzip_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [ b'PK\x03\x04', b'PK\x05\x06', # empty archive b'PK\x07\x08', # spanned archive ] @classmethod def UpperCAmelCase ( cls , __a , __a = b"") -> bool: '''simple docstring''' if super().is_extractable(__a , magic_number=__a): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__a , '''rb''') as fp: _UpperCamelCase = _EndRecData(__a) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET]) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _UpperCamelCase = fp.read(__a) # CD is where we expect it to be if len(__a) == sizeCentralDir: _UpperCamelCase = struct.unpack(__a , __a) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' os.makedirs(__a , exist_ok=__a) with zipfile.ZipFile(__a , '''r''') as zip_file: zip_file.extractall(__a) zip_file.close() class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' with lzma.open(__a) as compressed_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''') import rarfile os.makedirs(__a , exist_ok=__a) _UpperCamelCase = rarfile.RarFile(__a) rf.extractall(__a) rf.close() class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x28\xb5\x2F\xFD'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''') import zstandard as zstd _UpperCamelCase = zstd.ZstdDecompressor() with open(__a , '''rb''') as ifh, open(__a , '''wb''') as ofh: dctx.copy_stream(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x42\x5A\x68'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' with bza.open(__a , '''rb''') as compressed_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''') import pyazr os.makedirs(__a , exist_ok=__a) with pyazr.SevenZipFile(__a , '''r''') as archive: archive.extractall(__a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x04\x22\x4D\x18'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''') import lza.frame with lza.frame.open(__a , '''rb''') as compressed_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase: # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) lowercase__ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def UpperCAmelCase ( cls) -> Any: '''simple docstring''' return max( len(__a) for extractor in cls.extractors.values() if issubclass(__a , __a) for extractor_magic_number in extractor.magic_numbers) @staticmethod def UpperCAmelCase ( __a , __a) -> List[str]: '''simple docstring''' try: return MagicNumberBaseExtractor.read_magic_number(__a , magic_number_length=__a) except OSError: return b"" @classmethod def UpperCAmelCase ( cls , __a , __a = False) -> bool: '''simple docstring''' warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=__a , ) _UpperCamelCase = cls.infer_extractor_format(__a) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def UpperCAmelCase ( cls , __a) -> str: # <Added version="2.4.0"/> '''simple docstring''' _UpperCamelCase = cls._get_magic_number_max_length() _UpperCamelCase = cls._read_magic_number(__a , __a) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__a , magic_number=__a): return extractor_format @classmethod def UpperCAmelCase ( cls , __a , __a , __a = None , __a = "deprecated" , ) -> None: '''simple docstring''' os.makedirs(os.path.dirname(__a) , exist_ok=__a) # Prevent parallel extractions _UpperCamelCase = str(Path(__a).with_suffix('''.lock''')) with FileLock(__a): shutil.rmtree(__a , ignore_errors=__a) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__a , __a): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=__a , ) _UpperCamelCase = extractor if extractor != '''deprecated''' else extractor_format else: _UpperCamelCase = cls.extractors[extractor_format] return extractor.extract(__a , __a) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=__a , ) for extractor in cls.extractors.values(): if extractor.is_extractable(__a): return extractor.extract(__a , __a)
100
0
lowercase : Union[str, Any] = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } def A_ ( A__ , A__ , A__ ) -> list[str]: a__ : List[str] = set() # keep track of all the paths to be checked a__ : Union[str, Any] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue a__ : Tuple = queue.pop(0 ) # get the last node from the path a__ : Optional[int] = path[-1] if node not in explored: a__ : List[str] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: a__ : Optional[Any] = list(A__ ) new_path.append(A__ ) queue.append(A__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A__ ) # in case there's no path between the 2 nodes return [] def A_ ( A__ , A__ , A__ ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 a__ : Tuple = [start] a__ : Union[str, Any] = set(A__ ) # Keep tab on distances from `start` node. a__ : Optional[Any] = {start: 0, target: -1} while queue: a__ : str = queue.pop(0 ) if node == target: a__ : List[Any] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A__ ) queue.append(A__ ) a__ : int = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
99
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=64 , lowercase=2 , lowercase=3 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=[1, 16, 4, 4] , lowercase=None , ) -> List[Any]: '''simple docstring''' a__ : Optional[int] = parent a__ : Optional[int] = batch_size a__ : Any = image_size a__ : Optional[Any] = patch_size a__ : Optional[Any] = num_channels a__ : int = is_training a__ : List[str] = use_labels a__ : List[str] = hidden_size a__ : Tuple = num_hidden_layers a__ : Optional[Any] = num_attention_heads a__ : Union[str, Any] = intermediate_size a__ : Optional[int] = hidden_act a__ : Optional[Any] = hidden_dropout_prob a__ : Any = attention_probs_dropout_prob a__ : Any = type_sequence_label_size a__ : Tuple = initializer_range a__ : Tuple = scope a__ : int = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size a__ : Any = (self.image_size // 32) ** 2 a__ : List[Any] = num_patches + 1 def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ : int = None if self.use_labels: a__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self) -> Dict: '''simple docstring''' a__ : List[str] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=lowercase , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> List[str]: '''simple docstring''' a__ : List[str] = ViTHybridModel(config=lowercase) model.to(lowercase) model.eval() a__ : Union[str, Any] = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __lowercase ( self , lowercase , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' a__ : Dict = self.type_sequence_label_size a__ : Union[str, Any] = ViTHybridForImageClassification(lowercase) model.to(lowercase) model.eval() a__ : Tuple = model(lowercase , labels=lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[str] = self.prepare_config_and_inputs() a__ , a__ , a__ : Union[str, Any] = config_and_inputs a__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Optional[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __A : List[str] = ( {'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification} if is_torch_available() else {} ) __A : Any = False __A : Optional[int] = False __A : Optional[Any] = False def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Any = ViTHybridModelTester(self) a__ : Any = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37) def __lowercase ( self) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def __lowercase ( self) -> Dict: '''simple docstring''' pass def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ , a__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : str = model_class(lowercase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear)) def __lowercase ( self) -> int: '''simple docstring''' a__ , a__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Union[str, Any] = model_class(lowercase) a__ : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[Any] = [*signature.parameters.keys()] a__ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase) def __lowercase ( self) -> Dict: '''simple docstring''' a__ , a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : Tuple = _config_zero_init(lowercase) for model_class in self.all_model_classes: a__ : List[Any] = model_class(config=lowercase) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": a__ : Dict = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __lowercase ( self) -> Any: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Optional[Any] = ViTHybridModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def A_ ( ) -> int: a__ : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self) -> Optional[Any]: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[str] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( lowercase) a__ : List[str] = self.default_image_processor a__ : List[Any] = prepare_img() a__ : Any = image_processor(images=lowercase , return_tensors='pt').to(lowercase) # forward pass with torch.no_grad(): a__ : Optional[Any] = model(**lowercase) # verify the logits a__ : Optional[Any] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Any = torch.tensor([-1.90_90, -0.49_93, -0.23_89]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4)) @slow @require_accelerate def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : List[str] = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384') a__ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto') a__ : Any = prepare_img() a__ : str = image_processor(images=lowercase , return_tensors='pt') a__ : List[Any] = model(**lowercase) a__ : int = outputs.logits # model predicts one of the 1000 ImageNet classes a__ : List[str] = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat')
99
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __snake_case = logging.get_logger(__name__) __snake_case = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class lowercase ( A__ ): """simple docstring""" _a = 'bloom' _a = ['past_key_values'] _a = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self , UpperCamelCase_=250880 , UpperCamelCase_=64 , UpperCamelCase_=2 , UpperCamelCase_=8 , UpperCamelCase_=1e-5 , UpperCamelCase_=0.02 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=2 , UpperCamelCase_=False , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=1 , UpperCamelCase_=False , **UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = vocab_size # Backward compatibility with n_embed kwarg UpperCamelCase__ :List[Any] = kwargs.pop('''n_embed''' , UpperCamelCase_ ) UpperCamelCase__ :Dict = hidden_size if n_embed is None else n_embed UpperCamelCase__ :str = n_layer UpperCamelCase__ :str = n_head UpperCamelCase__ :List[str] = layer_norm_epsilon UpperCamelCase__ :Dict = initializer_range UpperCamelCase__ :List[Any] = use_cache UpperCamelCase__ :int = pretraining_tp UpperCamelCase__ :str = apply_residual_connection_post_layernorm UpperCamelCase__ :List[str] = hidden_dropout UpperCamelCase__ :List[str] = attention_dropout UpperCamelCase__ :List[Any] = bos_token_id UpperCamelCase__ :Optional[int] = eos_token_id UpperCamelCase__ :List[Any] = slow_but_exact super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) class lowercase ( A__ ): """simple docstring""" _a = version.parse('1.12' ) def __init__( self , UpperCamelCase_ , UpperCamelCase_ = "default" , UpperCamelCase_ = None , UpperCamelCase_ = False , ): '''simple docstring''' super().__init__(UpperCamelCase_ , task=UpperCamelCase_ , patching_specs=UpperCamelCase_ , use_past=UpperCamelCase_ ) if not getattr(self._config , '''pad_token_id''' , UpperCamelCase_ ): # TODO: how to do that better? UpperCamelCase__ :List[str] = 0 @property def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(UpperCamelCase_ , direction='''inputs''' , inverted_values_shape=UpperCamelCase_ ) UpperCamelCase__ :Dict = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCamelCase__ :str = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self._config.n_head @property def lowerCAmelCase__ ( self ): '''simple docstring''' return 1e-3 def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = -1 , UpperCamelCase_ = -1 , UpperCamelCase_ = False , UpperCamelCase_ = None , ): '''simple docstring''' UpperCamelCase__ :List[Any] = super(UpperCamelCase_ , self ).generate_dummy_inputs( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) # We need to order the input in the way they appears in the forward() UpperCamelCase__ :str = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCamelCase__ :int = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCamelCase__ :int = seqlen + 2 UpperCamelCase__ :Any = self._config.hidden_size // self.num_attention_heads UpperCamelCase__ :str = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) UpperCamelCase__ :Tuple = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) UpperCamelCase__ :Union[str, Any] = [ (torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) for _ in range(self.num_layers ) ] UpperCamelCase__ :Optional[int] = common_inputs['''attention_mask'''] if self.use_past: UpperCamelCase__ :List[str] = ordered_inputs['''attention_mask'''].dtype UpperCamelCase__ :Tuple = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(UpperCamelCase_ , UpperCamelCase_ , dtype=UpperCamelCase_ )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase__ ( self ): '''simple docstring''' return 13
351
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase__ :List[Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = logging.get_verbosity() UpperCamelCase__ :Union[str, Any] = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) UpperCamelCase__ :Optional[Any] = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning(UpperCamelCase_ ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning(UpperCamelCase_ ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning(UpperCamelCase_ ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(UpperCamelCase_ ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase__ :Tuple = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) UpperCamelCase__ :Any = os.getenv('''TRANSFORMERS_VERBOSITY''' , UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = logging.log_levels[env_level_str] UpperCamelCase__ :int = logging.get_verbosity() self.assertEqual( UpperCamelCase_ , UpperCamelCase_ , F'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCamelCase__ :Union[str, Any] = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() UpperCamelCase__ :Dict = logging.logging.getLogger() with CaptureLogger(UpperCamelCase_ ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase__ ( self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() UpperCamelCase__ :Optional[int] = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) UpperCamelCase__ :int = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning_advice(UpperCamelCase_ ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning_advice(UpperCamelCase_ ) self.assertEqual(cl.out , msg + '''\n''' ) def a ( ) -> str: '''simple docstring''' disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
219
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowercase : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[int]: # initialize config if "resnet-50" in model_name: _snake_case = ResNetConfig.from_pretrained('microsoft/resnet-50' ) elif "resnet-101" in model_name: _snake_case = ResNetConfig.from_pretrained('microsoft/resnet-101' ) else: raise ValueError('Model name should include either resnet50 or resnet101' ) _snake_case = DetrConfig(use_timm_backbone=__A , backbone_config=__A ) # set label attributes _snake_case = 'panoptic' in model_name if is_panoptic: _snake_case = 250 else: _snake_case = 91 _snake_case = 'huggingface/label-files' _snake_case = 'coco-detection-id2label.json' _snake_case = json.load(open(hf_hub_download(__A , __A , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(__A ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config, is_panoptic def SCREAMING_SNAKE_CASE__ ( __A ) -> Tuple: # here we list all keys to be renamed (original name on the left, our name on the right) _snake_case = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') ) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') ) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') ) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') ) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias') ) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Union[str, Any]: _snake_case = state_dict.pop(__A ) _snake_case = val def SCREAMING_SNAKE_CASE__ ( __A , __A=False ) -> int: _snake_case = '' if is_panoptic: _snake_case = 'detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _snake_case = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) _snake_case = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:256, :] _snake_case = in_proj_bias[:256] _snake_case = in_proj_weight[256:512, :] _snake_case = in_proj_bias[256:512] _snake_case = in_proj_weight[-256:, :] _snake_case = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _snake_case = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) _snake_case = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[:256, :] _snake_case = in_proj_bias[:256] _snake_case = in_proj_weight[256:512, :] _snake_case = in_proj_bias[256:512] _snake_case = in_proj_weight[-256:, :] _snake_case = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _snake_case = state_dict.pop( F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) _snake_case = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict _snake_case = in_proj_weight_cross_attn[:256, :] _snake_case = in_proj_bias_cross_attn[:256] _snake_case = in_proj_weight_cross_attn[256:512, :] _snake_case = in_proj_bias_cross_attn[256:512] _snake_case = in_proj_weight_cross_attn[-256:, :] _snake_case = in_proj_bias_cross_attn[-256:] def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __A , __A=None , __A=False ) -> Optional[int]: _snake_case , _snake_case = get_detr_config(__A ) # load original model from torch hub _snake_case = { 'detr-resnet-50': 'detr_resnet50', 'detr-resnet-101': 'detr_resnet101', } logger.info(F'Converting model {model_name}...' ) _snake_case = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=__A ).eval() _snake_case = detr.state_dict() # rename keys for src, dest in create_rename_keys(__A ): if is_panoptic: _snake_case = 'detr.' + src rename_key(__A , __A , __A ) # query, key and value matrices need special treatment read_in_q_k_v(__A , is_panoptic=__A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _snake_case = 'detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): _snake_case = state_dict.pop(__A ) _snake_case = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _snake_case = state_dict.pop(__A ) _snake_case = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: _snake_case = state_dict.pop(__A ) _snake_case = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): _snake_case = state_dict.pop(__A ) _snake_case = val # finally, create HuggingFace model and load state dict _snake_case = DetrForSegmentation(__A ) if is_panoptic else DetrForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() # verify our conversion on an image _snake_case = 'coco_panoptic' if is_panoptic else 'coco_detection' _snake_case = DetrImageProcessor(format=__A ) _snake_case = processor(images=prepare_img() , return_tensors='pt' ) _snake_case = encoding['pixel_values'] _snake_case = detr(__A ) _snake_case = model(__A ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...' ) model.push_to_hub(F'nielsr/{model_name}' ) processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_name", default="detr-resnet-50", type=str, choices=["detr-resnet-50", "detr-resnet-101"], help="Name of the DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.") lowercase : Any = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
42
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __lowerCAmelCase : def __init__( self: List[str] , _lowerCAmelCase: Dict , _lowerCAmelCase: List[str]=13 , _lowerCAmelCase: Dict=7 , _lowerCAmelCase: Tuple=True , _lowerCAmelCase: Dict=True , _lowerCAmelCase: Optional[Any]=True , _lowerCAmelCase: Union[str, Any]=True , _lowerCAmelCase: str=99 , _lowerCAmelCase: Dict=32 , _lowerCAmelCase: Dict=5 , _lowerCAmelCase: int=4 , _lowerCAmelCase: Optional[Any]=4 , _lowerCAmelCase: Any="gelu" , _lowerCAmelCase: Any=0.0 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Optional[int]=True , _lowerCAmelCase: Any=5_12 , _lowerCAmelCase: Optional[Any]=16 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Tuple=0.02 , _lowerCAmelCase: str=3 , _lowerCAmelCase: List[str]=4 , _lowerCAmelCase: Optional[Any]=None , ): lowercase :List[str] = parent lowercase :List[str] = batch_size lowercase :List[str] = seq_length lowercase :Dict = is_training lowercase :Union[str, Any] = use_input_mask lowercase :Optional[int] = use_token_type_ids lowercase :Dict = use_labels lowercase :Any = vocab_size lowercase :List[Any] = hidden_size lowercase :Optional[int] = num_hidden_layers lowercase :Union[str, Any] = num_attention_heads lowercase :Any = intermediate_multiple_size lowercase :str = hidden_act lowercase :List[Any] = hidden_dropout lowercase :Optional[Any] = attention_dropout lowercase :int = weight_tying lowercase :Tuple = max_position_embeddings lowercase :str = type_vocab_size lowercase :Union[str, Any] = type_sequence_label_size lowercase :Dict = initializer_range lowercase :Dict = num_labels lowercase :Dict = num_choices lowercase :Any = scope def SCREAMING_SNAKE_CASE ( self: str ): lowercase :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase :Optional[Any] = None if self.use_input_mask: lowercase :str = random_attention_mask([self.batch_size, self.seq_length] ) lowercase :int = None if self.use_labels: lowercase :Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase :Tuple = self.get_config() return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE ( self: str ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): lowercase , lowercase , lowercase , lowercase :Any = self.prepare_config_and_inputs() lowercase :Tuple = True return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Dict , _lowerCAmelCase: List[str] ): lowercase :List[str] = GPTNeoXJapaneseModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase :Optional[int] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) lowercase :Dict = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: Dict , _lowerCAmelCase: List[Any] , _lowerCAmelCase: int ): lowercase :Dict = True lowercase :Optional[Any] = GPTNeoXJapaneseModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase :List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: str , _lowerCAmelCase: Dict , _lowerCAmelCase: int , _lowerCAmelCase: List[Any] ): lowercase :str = GPTNeoXJapaneseForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase :Tuple = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any ): lowercase :Optional[Any] = True lowercase :List[str] = GPTNeoXJapaneseForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # first forward pass lowercase :str = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) lowercase :Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase :Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase :Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase :Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase :List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase :Dict = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) lowercase :List[str] = output_from_no_past["hidden_states"][0] lowercase :str = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )["hidden_states"][0] # select random slice lowercase :Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase :str = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase :List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase :str = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase :Tuple = config_and_inputs lowercase :Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): _a = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _a = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _a = ( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Any = GPTNeoXJapaneseModelTester(self ) lowercase :List[str] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self: Tuple ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase , lowercase , lowercase , lowercase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase , lowercase , lowercase , lowercase :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): # This regression test was failing with PyTorch < 1.3 lowercase , lowercase , lowercase , lowercase :Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase :Union[str, Any] = None self.model_tester.create_and_check_model_as_decoder(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase , lowercase , lowercase , lowercase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self: str ): lowercase :int = "abeja/gpt-neox-japanese-2.7b" lowercase :Optional[int] = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] lowercase :int = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] lowercase :List[str] = GPTNeoXJapaneseTokenizer.from_pretrained(_lowerCAmelCase ) lowercase :Tuple = GPTNeoXJapaneseForCausalLM.from_pretrained(_lowerCAmelCase ) lowercase :List[str] = [] for prompt in prompts: lowercase :Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids lowercase :Union[str, Any] = model.generate(_lowerCAmelCase , max_length=50 ) lowercase :List[str] = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
236
0
import os import jsonlines import numpy as np from tqdm import tqdm _SCREAMING_SNAKE_CASE = 2_0_4_8 _SCREAMING_SNAKE_CASE = 4_0_9_6 _SCREAMING_SNAKE_CASE = 4_2 _SCREAMING_SNAKE_CASE = os.environ.pop("""PROCESS_TRAIN""", """false""") _SCREAMING_SNAKE_CASE = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def lowercase( UpperCamelCase_ ) -> Tuple: '''simple docstring''' def choose_first(UpperCamelCase_ , UpperCamelCase_=False ): assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) if len(UpperCamelCase_ ) == 1: UpperCamelCase = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: UpperCamelCase = {k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a UpperCamelCase = {"""id""": example["""id"""]} UpperCamelCase = example["""annotations"""] UpperCamelCase = annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: UpperCamelCase = ["""yes"""] if 1 in yes_no_answer else ["""no"""] UpperCamelCase = UpperCamelCase = [] UpperCamelCase = UpperCamelCase = [] UpperCamelCase = ["""<cls>"""] else: UpperCamelCase = ["""short"""] UpperCamelCase = choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available UpperCamelCase = ["""long"""] UpperCamelCase = choose_first(annotation["""long_answer"""] , is_long_answer=UpperCamelCase_ ) UpperCamelCase = [] answer.update(UpperCamelCase_ ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: UpperCamelCase = True else: UpperCamelCase = False UpperCamelCase = ["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , UpperCamelCase_ ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def lowercase( UpperCamelCase_ , UpperCamelCase_=False ) -> Optional[int]: '''simple docstring''' UpperCamelCase = _get_single_answer(UpperCamelCase_ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCamelCase = example["""document"""]["""tokens"""] UpperCamelCase = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(UpperCamelCase_ ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples UpperCamelCase = ["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 UpperCamelCase = example["""document"""]["""tokens"""] UpperCamelCase = answer["""start_token"""] UpperCamelCase = answer["""end_token"""] UpperCamelCase = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 UpperCamelCase = """ """.join(context[start_token:end_token] ) # checking above code if assertion: UpperCamelCase = doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] UpperCamelCase = doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] UpperCamelCase = """ """.join([old[i] for i in range(len(UpperCamelCase_ ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , UpperCamelCase_ , end="""\n""" ) print("""Old:""" , UpperCamelCase_ , end="""\n\n""" ) return { "context": " ".join(UpperCamelCase_ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=2048 , UpperCamelCase_=4096 , UpperCamelCase_=True ) -> List[Any]: '''simple docstring''' # overlap will be of doc_stride - q_len UpperCamelCase = get_context_and_ans(UpperCamelCase_ , assertion=UpperCamelCase_ ) UpperCamelCase = out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } UpperCamelCase = tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids UpperCamelCase = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = input_ids[:q_len] UpperCamelCase = range(UpperCamelCase_ , len(UpperCamelCase_ ) , max_length - doc_stride ) for i in doc_start_indices: UpperCamelCase = i + max_length - q_len UpperCamelCase = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(UpperCamelCase_ ), "end_token": [-100] * len(UpperCamelCase_ ), "category": category, }, } UpperCamelCase = out["""context"""].split() UpperCamelCase = splitted_context[answer["""end_token"""]] UpperCamelCase = len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=UpperCamelCase_ , ).input_ids ) UpperCamelCase = len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=UpperCamelCase_ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token UpperCamelCase = len(tokenizer(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 UpperCamelCase = input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive UpperCamelCase = answer["""start_token"""] UpperCamelCase = answer["""end_token"""] if assertion: UpperCamelCase = tokenizer.decode(UpperCamelCase_ ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , UpperCamelCase_ , end="""\n\n""" ) if len(UpperCamelCase_ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } UpperCamelCase = input_ids[:q_len] UpperCamelCase = range(UpperCamelCase_ , len(UpperCamelCase_ ) , max_length - doc_stride ) UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] # null, yes, no, long, short for i in doc_start_indices: UpperCamelCase = i + max_length - q_len UpperCamelCase = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: UpperCamelCase = start_token - i + q_len UpperCamelCase = end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: UpperCamelCase = -100 UpperCamelCase = -100 answers_category.append("""null""" ) UpperCamelCase = inputs[-1][start_token : end_token + 1] answers_start_token.append(UpperCamelCase_ ) answers_end_token.append(UpperCamelCase_ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(UpperCamelCase_ ) ) print("""Old:""" , tokenizer.decode(UpperCamelCase_ ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=2048 , UpperCamelCase_=4096 , UpperCamelCase_=False ) -> Dict: '''simple docstring''' UpperCamelCase = get_strided_contexts_and_ans( UpperCamelCase_ , UpperCamelCase_ , doc_stride=UpperCamelCase_ , max_length=UpperCamelCase_ , assertion=UpperCamelCase_ , ) return example def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' with jsonlines.open(UpperCamelCase_ , """a""" ) as writer: for example in tqdm(UpperCamelCase_ , total=len(UpperCamelCase_ ) , desc="""Saving samples ... """ ): UpperCamelCase = example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer _SCREAMING_SNAKE_CASE = load_dataset("""natural_questions""") _SCREAMING_SNAKE_CASE = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") _SCREAMING_SNAKE_CASE = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] _SCREAMING_SNAKE_CASE = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } _SCREAMING_SNAKE_CASE = data.map(prepare_inputs, fn_kwargs=fn_kwargs) _SCREAMING_SNAKE_CASE = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) _SCREAMING_SNAKE_CASE = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
165
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = StableDiffusionXLImgaImgPipeline __lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} __lowerCAmelCase = PipelineTesterMixin.required_optional_params - {"""latents"""} __lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase_ ( self : str ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) UpperCamelCase = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_ ) UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=lowerCamelCase_ ) UpperCamelCase = CLIPTextModelWithProjection(lowerCamelCase_ ) UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=lowerCamelCase_ ) UpperCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowerCamelCase_ ( self : str , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int]=0 ): """simple docstring""" UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) UpperCamelCase = image / 2 + 0.5 if str(lowerCamelCase_ ).startswith("""mps""" ): UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) UpperCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionXLImgaImgPipeline(**lowerCamelCase_ ) UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = sd_pipe(**lowerCamelCase_ ).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" pass def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionXLImgaImgPipeline(**lowerCamelCase_ ) UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) # forward without prompt embeds UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = 3 * ["""this is a negative prompt"""] UpperCamelCase = negative_prompt UpperCamelCase = 3 * [inputs["""prompt"""]] UpperCamelCase = sd_pipe(**lowerCamelCase_ ) UpperCamelCase = output.images[0, -3:, -3:, -1] # forward with prompt embeds UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) UpperCamelCase = 3 * ["""this is a negative prompt"""] UpperCamelCase = 3 * [inputs.pop("""prompt""" )] ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = sd_pipe.encode_prompt(lowerCamelCase_ , negative_prompt=lowerCamelCase_ ) UpperCamelCase = sd_pipe( **lowerCamelCase_ , prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , pooled_prompt_embeds=lowerCamelCase_ , negative_pooled_prompt_embeds=lowerCamelCase_ , ) UpperCamelCase = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict="cpu" , lowerCamelCase_ : List[str]=torch.floataa , lowerCamelCase_ : Tuple=0 ): """simple docstring""" UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) UpperCamelCase = np.random.RandomState(lowerCamelCase_ ).standard_normal((1, 4, 64, 64) ) UpperCamelCase = torch.from_numpy(lowerCamelCase_ ).to(device=lowerCamelCase_ , dtype=lowerCamelCase_ ) UpperCamelCase = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = self.get_inputs(lowerCamelCase_ ) UpperCamelCase = pipe(**lowerCamelCase_ ).images UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCamelCase = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
165
1
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests SCREAMING_SNAKE_CASE__ = open # noqa: we just need to have a builtin inside this module to test it properly
46
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _a = 'platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ): if attention_mask is None: UpperCAmelCase_ : Union[str, Any] = np.where(input_ids != config.pad_token_id, 1, 0 ) if decoder_attention_mask is None: UpperCAmelCase_ : Optional[int] = np.where(decoder_input_ids != config.pad_token_id, 1, 0 ) if head_mask is None: UpperCAmelCase_ : int = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ : Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=99 , lowercase_=16 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=32 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=0.02 , ): """simple docstring""" UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : str = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : str = eos_token_id UpperCAmelCase_ : str = pad_token_id UpperCAmelCase_ : str = bos_token_id UpperCAmelCase_ : List[Any] = initializer_range def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) UpperCAmelCase_ : Any = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) UpperCAmelCase_ : str = shift_tokens_right(lowercase_ , 1 , 2 ) UpperCAmelCase_ : str = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase_ , ) UpperCAmelCase_ : Optional[int] = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = 20 UpperCAmelCase_ : int = model_class_name(lowercase_ ) UpperCAmelCase_ : Optional[int] = model.encode(inputs_dict["input_ids"] ) UpperCAmelCase_ , UpperCAmelCase_ : Any = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCAmelCase_ : Any = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) UpperCAmelCase_ : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ : int = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ : Dict = model.decode( decoder_input_ids[:, -1:] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : Optional[Any] = model.decode(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = 20 UpperCAmelCase_ : Any = model_class_name(lowercase_ ) UpperCAmelCase_ : Tuple = model.encode(inputs_dict["input_ids"] ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCAmelCase_ : Optional[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase_ : int = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ : List[str] = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ : Dict = model.decode( decoder_input_ids[:, -1:] , lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase_ , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : Dict = model.decode(lowercase_ , lowercase_ , decoder_attention_mask=lowercase_ ) UpperCAmelCase_ : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class A_ (unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 99 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) UpperCAmelCase_ : Any = input_ids.shape[0] UpperCAmelCase_ : Dict = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._get_config_and_data() UpperCAmelCase_ : List[str] = FlaxBlenderbotSmallForConditionalGeneration(lowercase_ ) UpperCAmelCase_ : Optional[int] = lm_model(input_ids=lowercase_ ) UpperCAmelCase_ : Optional[int] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) UpperCAmelCase_ : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(lowercase_ ) UpperCAmelCase_ : str = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) UpperCAmelCase_ : str = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) UpperCAmelCase_ : Tuple = lm_model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ) UpperCAmelCase_ : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) UpperCAmelCase_ : Dict = shift_tokens_right(lowercase_ , 1 , 2 ) UpperCAmelCase_ : Tuple = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() UpperCAmelCase_ : Optional[Any] = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowercase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class A_ (lowercase__ ,unittest.TestCase ,lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE__ : List[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = FlaxBlenderbotSmallModelTester(self ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : List[Any] = self._prepare_for_class(lowercase_ , lowercase_ ) UpperCAmelCase_ : Dict = model_class(lowercase_ ) @jax.jit def encode_jitted(lowercase_ , lowercase_=None , **lowercase_ ): return model.encode(input_ids=lowercase_ , attention_mask=lowercase_ ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ : List[Any] = encode_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ : Optional[Any] = encode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : Optional[int] = model_class(lowercase_ ) UpperCAmelCase_ : Tuple = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) UpperCAmelCase_ : int = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(lowercase_ , lowercase_ , lowercase_ ): return model.decode( decoder_input_ids=lowercase_ , decoder_attention_mask=lowercase_ , encoder_outputs=lowercase_ , ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ : str = decode_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ : List[Any] = decode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("facebook/blenderbot_small-90M" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCAmelCase_ : List[str] = np.ones((1, 1) ) * model.config.eos_token_id UpperCAmelCase_ : Optional[int] = model(lowercase_ ) self.assertIsNotNone(lowercase_ )
61
0
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline UpperCamelCase__ = logging.get_logger(__name__) class a__ ( snake_case__ ): def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" if isinstance(_A , _A ): __lowerCAmelCase = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self , _A , _A , _A ): """simple docstring""" if len(_A ) == 0 or len(_A ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(_A ) ) if isinstance(_A , _A ): __lowerCAmelCase = [sequences] __lowerCAmelCase = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(_A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(snake_case__ ) class a__ ( snake_case__ ): def __init__( self , _A=ZeroShotClassificationArgumentHandler() , *_A , **_A ): """simple docstring""" __lowerCAmelCase = args_parser super().__init__(*_A , **_A ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def __SCREAMING_SNAKE_CASE( self , _A , _A=True , _A=True , _A=TruncationStrategy.ONLY_FIRST , **_A ): """simple docstring""" __lowerCAmelCase = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) __lowerCAmelCase = self.tokenizer.eos_token try: __lowerCAmelCase = self.tokenizer( _A , add_special_tokens=_A , return_tensors=_A , padding=_A , truncation=_A , ) except Exception as e: if "too short" in str(_A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. __lowerCAmelCase = self.tokenizer( _A , add_special_tokens=_A , return_tensors=_A , padding=_A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def __SCREAMING_SNAKE_CASE( self , **_A ): """simple docstring""" if kwargs.get("multi_class" , _A ) is not None: __lowerCAmelCase = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) __lowerCAmelCase = {} if "candidate_labels" in kwargs: __lowerCAmelCase = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: __lowerCAmelCase = kwargs["hypothesis_template"] __lowerCAmelCase = {} if "multi_label" in kwargs: __lowerCAmelCase = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self , _A , *_A , **_A , ): """simple docstring""" if len(_A ) == 0: pass elif len(_A ) == 1 and "candidate_labels" not in kwargs: __lowerCAmelCase = args[0] else: raise ValueError(f"""Unable to understand extra arguments {args}""" ) return super().__call__(_A , **_A ) def __SCREAMING_SNAKE_CASE( self , _A , _A=None , _A="This example is {}." ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self._args_parser(_A , _A , _A ) for i, (candidate_label, sequence_pair) in enumerate(zip(_A , _A ) ): __lowerCAmelCase = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(_A ) - 1, **model_input, } def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = inputs["candidate_label"] __lowerCAmelCase = inputs["sequence"] __lowerCAmelCase = {k: inputs[k] for k in self.tokenizer.model_input_names} __lowerCAmelCase = self.model(**_A ) __lowerCAmelCase = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def __SCREAMING_SNAKE_CASE( self , _A , _A=False ): """simple docstring""" __lowerCAmelCase = [outputs["candidate_label"] for outputs in model_outputs] __lowerCAmelCase = [outputs["sequence"] for outputs in model_outputs] __lowerCAmelCase = np.concatenate([output["logits"].numpy() for output in model_outputs] ) __lowerCAmelCase = logits.shape[0] __lowerCAmelCase = len(_A ) __lowerCAmelCase = N // n __lowerCAmelCase = logits.reshape((num_sequences, n, -1) ) if multi_label or len(_A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently __lowerCAmelCase = self.entailment_id __lowerCAmelCase = -1 if entailment_id == 0 else 0 __lowerCAmelCase = reshaped_outputs[..., [contradiction_id, entailment_id]] __lowerCAmelCase = np.exp(_A ) / np.exp(_A ).sum(-1 , keepdims=_A ) __lowerCAmelCase = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels __lowerCAmelCase = reshaped_outputs[..., self.entailment_id] __lowerCAmelCase = np.exp(_A ) / np.exp(_A ).sum(-1 , keepdims=_A ) __lowerCAmelCase = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
102
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a__ : def __init__( self , _A , _A=1_3 , _A=3_0 , _A=2 , _A=3 , _A=True , _A=True , _A=3_2 , _A=2 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=1_0 , _A=0.02 , _A=3 , _A=None , _A=2 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = num_patches + 2 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDeiTModel(config=_A ) __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDeiTForMaskedImageModeling(config=_A ) __lowerCAmelCase = model(_A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = TFDeiTForMaskedImageModeling(_A ) __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = TFDeiTForImageClassification(_A ) __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = TFDeiTForImageClassification(_A ) __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class a__ ( snake_case__ , snake_case__ , unittest.TestCase ): _a : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) _a : Optional[Any] = ( { """feature-extraction""": TFDeiTModel, """image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) _a : str = False _a : str = False _a : List[str] = False _a : Optional[int] = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDeiTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Dense ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) __lowerCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A=False ): """simple docstring""" __lowerCAmelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = TFDeiTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _a ( ): __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class a__ ( unittest.TestCase ): @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_A , return_tensors="tf" ) # forward pass __lowerCAmelCase = model(**_A ) # verify the logits __lowerCAmelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _A ) __lowerCAmelCase = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
102
1
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: str = "encodec" def __init__( self : Optional[int] , A : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , A : List[Any]=24000 , A : Union[str, Any]=1 , A : List[Any]=False , A : Optional[int]=None , A : int=None , A : str=128 , A : List[Any]=32 , A : List[Any]=1 , A : int=[8, 5, 4, 2] , A : Optional[int]="weight_norm" , A : List[Any]=7 , A : Any=7 , A : Dict=3 , A : Optional[int]=2 , A : Dict=True , A : Dict="reflect" , A : Any=2 , A : Dict=2 , A : str=1.0 , A : Optional[int]=1024 , A : Any=None , A : Any=True , **A : str , ): _UpperCAmelCase : Optional[int] = target_bandwidths _UpperCAmelCase : List[str] = sampling_rate _UpperCAmelCase : Optional[int] = audio_channels _UpperCAmelCase : str = normalize _UpperCAmelCase : int = chunk_length_s _UpperCAmelCase : str = overlap _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : int = num_filters _UpperCAmelCase : Optional[Any] = num_residual_layers _UpperCAmelCase : Optional[int] = upsampling_ratios _UpperCAmelCase : int = norm_type _UpperCAmelCase : List[Any] = kernel_size _UpperCAmelCase : List[Any] = last_kernel_size _UpperCAmelCase : List[Any] = residual_kernel_size _UpperCAmelCase : List[str] = dilation_growth_rate _UpperCAmelCase : Dict = use_causal_conv _UpperCAmelCase : Tuple = pad_mode _UpperCAmelCase : Tuple = compress _UpperCAmelCase : List[str] = num_lstm_layers _UpperCAmelCase : List[Any] = trim_right_ratio _UpperCAmelCase : int = codebook_size _UpperCAmelCase : Optional[Any] = codebook_dim if codebook_dim is not None else hidden_size _UpperCAmelCase : Optional[int] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**A ) @property def _A ( self : Any ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _A ( self : Union[str, Any] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _A ( self : Union[str, Any] ): _UpperCAmelCase : Dict = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _A ( self : str ): return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
31
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __magic_name__ = logging.get_logger(__name__) @add_end_docstrings( __a , R''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" def snake_case_ ( self , lowerCAmelCase__): if self.framework == "tf": __SCREAMING_SNAKE_CASE = tf.where(input_ids == self.tokenizer.mask_token_id).numpy() elif self.framework == "pt": __SCREAMING_SNAKE_CASE = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase__) else: raise ValueError("""Unsupported framework""") return masked_index def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.get_masked_index(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = np.prod(masked_index.shape) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def snake_case_ ( self , lowerCAmelCase__): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0]) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__): if return_tensors is None: __SCREAMING_SNAKE_CASE = self.framework __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__) self.ensure_exactly_one_mask_token(lowerCAmelCase__) return model_inputs def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.model(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model_inputs["""input_ids"""] return model_outputs def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=5 , lowerCAmelCase__=None): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __SCREAMING_SNAKE_CASE = target_ids.shape[0] __SCREAMING_SNAKE_CASE = model_outputs["""input_ids"""][0] __SCREAMING_SNAKE_CASE = model_outputs["""logits"""] if self.framework == "tf": __SCREAMING_SNAKE_CASE = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0] __SCREAMING_SNAKE_CASE = outputs.numpy() __SCREAMING_SNAKE_CASE = outputs[0, masked_index, :] __SCREAMING_SNAKE_CASE = stable_softmax(lowerCAmelCase__ , axis=-1) if target_ids is not None: __SCREAMING_SNAKE_CASE = tf.gather_nd(tf.squeeze(lowerCAmelCase__ , 0) , target_ids.reshape(-1 , 1)) __SCREAMING_SNAKE_CASE = tf.expand_dims(lowerCAmelCase__ , 0) __SCREAMING_SNAKE_CASE = tf.math.top_k(lowerCAmelCase__ , k=lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = topk.values.numpy(), topk.indices.numpy() else: __SCREAMING_SNAKE_CASE = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase__).squeeze(-1) # Fill mask pipeline supports only one ${mask_token} per sample __SCREAMING_SNAKE_CASE = outputs[0, masked_index, :] __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1) if target_ids is not None: __SCREAMING_SNAKE_CASE = probs[..., target_ids] __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = probs.topk(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist())): __SCREAMING_SNAKE_CASE = [] for v, p in zip(_values , _predictions): # Copy is important since we're going to modify this array in place __SCREAMING_SNAKE_CASE = input_ids.numpy().copy() if target_ids is not None: __SCREAMING_SNAKE_CASE = target_ids[p].tolist() __SCREAMING_SNAKE_CASE = p # Filter padding out: __SCREAMING_SNAKE_CASE = tokens[np.where(tokens != self.tokenizer.pad_token_id)] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __SCREAMING_SNAKE_CASE = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p]), """sequence""": sequence} row.append(lowerCAmelCase__) result.append(lowerCAmelCase__) if single_mask: return result[0] return result def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=None): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = [targets] try: __SCREAMING_SNAKE_CASE = self.tokenizer.get_vocab() except Exception: __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = [] for target in targets: __SCREAMING_SNAKE_CASE = vocab.get(lowerCAmelCase__ , lowerCAmelCase__) if id_ is None: __SCREAMING_SNAKE_CASE = self.tokenizer( lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , max_length=1 , truncation=lowerCAmelCase__ , )["""input_ids"""] if len(lowerCAmelCase__) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " """We cannot replace it with anything meaningful, ignoring it""") continue __SCREAMING_SNAKE_CASE = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`.") target_ids.append(id_) __SCREAMING_SNAKE_CASE = list(set(lowerCAmelCase__)) if len(lowerCAmelCase__) == 0: raise ValueError("""At least one target must be provided when passed.""") __SCREAMING_SNAKE_CASE = np.array(lowerCAmelCase__) return target_ids def snake_case_ ( self , lowerCAmelCase__=None , lowerCAmelCase__=None): __SCREAMING_SNAKE_CASE = {} if targets is not None: __SCREAMING_SNAKE_CASE = self.get_target_ids(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = target_ids if top_k is not None: __SCREAMING_SNAKE_CASE = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""") return {}, {}, postprocess_params def __call__( self , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = super().__call__(lowerCAmelCase__ , **lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) and len(lowerCAmelCase__) == 1: return outputs[0] return outputs
100
0
'''simple docstring''' def __lowerCamelCase ( _lowercase = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: try: UpperCAmelCase : List[str] = int(_lowercase ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) UpperCAmelCase : Dict = 2 UpperCAmelCase : Dict = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 UpperCAmelCase : int = i while n % i == 0: UpperCAmelCase : Optional[int] = n // i i += 1 return int(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
1
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=5_1_2, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __SCREAMING_SNAKE_CASE ( A_ ): if string == "True": return True elif string == "False": return False else: raise ValueError(f'could not parse string as bool {string}' ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) __UpperCamelCase : Optional[int] = parser.parse_args() __UpperCamelCase : Tuple = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
106
import warnings from ..trainer import Trainer from ..utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) class __snake_case ( lowerCamelCase_ ): def __init__( self : Tuple , _lowercase : Optional[int]=None , **_lowercase : List[Any] ): """simple docstring""" warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , _lowercase , ) super().__init__(args=_lowercase , **_lowercase )
219
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowercase ( a__ : Optional[int] ) -> Union[str, Any]: _UpperCamelCase = filter(lambda a__ : p.requires_grad , model.parameters() ) _UpperCamelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase = logging.getLogger(__name__) def lowercase ( a__ : Any , a__ : Optional[int] ) -> str: if metric == "rouge2": _UpperCamelCase = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": _UpperCamelCase = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": _UpperCamelCase = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ''' function.''' ) _UpperCamelCase = ModelCheckpoint( dirpath=a__ , filename=a__ , monitor=F'''val_{metric}''' , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowercase ( a__ : List[str] , a__ : Dict ) -> Dict: return EarlyStopping( monitor=F'''val_{metric}''' , mode='''min''' if '''loss''' in metric else '''max''' , patience=a__ , verbose=a__ , ) class UpperCAmelCase_ ( pl.Callback): def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Any ) -> int: _UpperCamelCase = {F'''lr_group_{i}''': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__UpperCamelCase ) @rank_zero_only def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : pl.Trainer , __UpperCamelCase : pl.LightningModule , __UpperCamelCase : str , __UpperCamelCase : List[str]=True ) -> None: logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) _UpperCamelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results _UpperCamelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": _UpperCamelCase = od / '''test_results.txt''' _UpperCamelCase = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCamelCase = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' _UpperCamelCase = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=__UpperCamelCase ) generations_file.parent.mkdir(exist_ok=__UpperCamelCase ) with open(__UpperCamelCase , '''a+''' ) as writer: for key in sorted(__UpperCamelCase ): if key in ["log", "progress_bar", "preds"]: continue _UpperCamelCase = metrics[key] if isinstance(__UpperCamelCase , torch.Tensor ): _UpperCamelCase = val.item() _UpperCamelCase = F'''{key}: {val:.6f}\n''' writer.write(__UpperCamelCase ) if not save_generations: return if "preds" in metrics: _UpperCamelCase = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(__UpperCamelCase ) @rank_zero_only def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict ) -> Tuple: try: _UpperCamelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCamelCase = pl_module.model.num_parameters() _UpperCamelCase = count_trainable_parameters(__UpperCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6} ) @rank_zero_only def _UpperCamelCase ( self : Dict , __UpperCamelCase : pl.Trainer , __UpperCamelCase : pl.LightningModule ) -> Any: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__UpperCamelCase , __UpperCamelCase , '''test''' ) @rank_zero_only def _UpperCamelCase ( self : int , __UpperCamelCase : pl.Trainer , __UpperCamelCase : Union[str, Any] ) -> Any: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
54
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCAmelCase_ ( _lowercase): def __init__( self : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict=None , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=None , **__UpperCamelCase : Any ) -> Dict: _UpperCamelCase = parent _UpperCamelCase = config_class _UpperCamelCase = has_text_modality _UpperCamelCase = kwargs _UpperCamelCase = common_properties def _UpperCamelCase ( self : Optional[Any] ) -> List[str]: _UpperCamelCase = self.config_class(**self.inputs_dict ) _UpperCamelCase = ( ['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers'''] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(__UpperCamelCase , __UpperCamelCase ) , msg=F'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(__UpperCamelCase ): try: setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) self.parent.assertEqual( getattr(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase , msg=F'''`{name} value {idx} expected, but was {getattr(__UpperCamelCase , __UpperCamelCase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(__UpperCamelCase ): try: _UpperCamelCase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase , msg=F'''`{name} value {idx} expected, but was {getattr(__UpperCamelCase , __UpperCamelCase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _UpperCamelCase ( self : Any ) -> List[str]: _UpperCamelCase = self.config_class(**self.inputs_dict ) _UpperCamelCase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , __UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] ) -> Tuple: _UpperCamelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = os.path.join(__UpperCamelCase , '''config.json''' ) config_first.to_json_file(__UpperCamelCase ) _UpperCamelCase = self.config_class.from_json_file(__UpperCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _UpperCamelCase ( self : int ) -> List[str]: _UpperCamelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(__UpperCamelCase ) _UpperCamelCase = self.config_class.from_pretrained(__UpperCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _UpperCamelCase ( self : Dict ) -> Any: _UpperCamelCase = self.config_class(**self.inputs_dict ) _UpperCamelCase = '''test''' with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = os.path.join(__UpperCamelCase , __UpperCamelCase ) config_first.save_pretrained(__UpperCamelCase ) _UpperCamelCase = self.config_class.from_pretrained(__UpperCamelCase , subfolder=__UpperCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _UpperCamelCase ( self : Dict ) -> int: _UpperCamelCase = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _UpperCamelCase = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _UpperCamelCase ( self : Any ) -> str: if self.config_class.is_composition: return _UpperCamelCase = self.config_class() self.parent.assertIsNotNone(__UpperCamelCase ) def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]: _UpperCamelCase = copy.deepcopy(__UpperCamelCase ) _UpperCamelCase = self.config_class(**__UpperCamelCase ) _UpperCamelCase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(__UpperCamelCase , __UpperCamelCase ) != value: wrong_values.append((key, getattr(__UpperCamelCase , __UpperCamelCase ), value) ) if len(__UpperCamelCase ) > 0: _UpperCamelCase = '''\n'''.join([F'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(F'''The following keys were not properly set in the config:\n{errors}''' ) def _UpperCamelCase ( self : Tuple ) -> int: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
54
1
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ : Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowerCamelCase (A__ ,unittest.TestCase ): lowerCamelCase__ : str = XLMRobertaTokenizer lowerCamelCase__ : Any = XLMRobertaTokenizerFast lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : int = True def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = """<pad>""" SCREAMING_SNAKE_CASE__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__UpperCAmelCase ) , 1_0_0_2 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_2 ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE__ = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = tokenizer_r.save_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_p.save_pretrained(__UpperCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE__ = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__UpperCAmelCase , __UpperCAmelCase ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE__ = tokenizer_r.from_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_p.from_pretrained(__UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCAmelCase , __UpperCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__UpperCAmelCase ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = tokenizer_r.save_pretrained(__UpperCAmelCase , legacy_format=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_p.save_pretrained(__UpperCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(__UpperCAmelCase , __UpperCAmelCase ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE__ = tokenizer_r.from_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_p.from_pretrained(__UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCAmelCase , __UpperCAmelCase ) ) shutil.rmtree(__UpperCAmelCase ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = tokenizer_r.save_pretrained(__UpperCAmelCase , legacy_format=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_p.save_pretrained(__UpperCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE__ = tokenizer_r.from_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_p.from_pretrained(__UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCAmelCase , __UpperCAmelCase ) ) shutil.rmtree(__UpperCAmelCase ) @cached_property def SCREAMING_SNAKE_CASE ( self : Any ) -> str: return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__UpperCAmelCase , f.name ) SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizer(f.name , keep_accents=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = pickle.dumps(__UpperCAmelCase ) pickle.loads(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = """I was born in 92000, and this is falsé.""" SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = tokenizer.encode(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ = """Hello World!""" SCREAMING_SNAKE_CASE__ = [0, 3_5_3_7_8, 6_6_6_1, 3_8, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) SCREAMING_SNAKE_CASE__ = [ 0, 3_2_9_3, 8_3, 1_0, 4_5_5_2, 4_9_8_9, 7_9_8_6, 6_7_8, 1_0, 5_9_1_5, 1_1_1, 1_7_9_4_5_9, 1_2_4_8_5_0, 4, 6_0_4_4, 2_3_7, 1_2, 6, 5, 6, 4, 6_7_8_0, 7_0_5, 1_5, 1_3_8_8, 4_4, 3_7_8, 1_0_1_1_4, 7_1_1, 1_5_2, 2_0, 6, 5, 2_2_3_7_6, 6_4_2, 1_2_2_1, 1_5_1_9_0, 3_4_1_5_3, 4_5_0, 5_6_0_8, 9_5_9, 1_1_1_9, 5_7_7_0_2, 1_3_6, 1_8_6, 4_7, 1_0_9_8, 2_9_3_6_7, 4_7, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_0_4_4, 2_3_7, 6_2_8_4, 5_0_9_0_1, 5_2_8, 3_1, 9_0, 3_4, 9_2_7, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> str: # fmt: off SCREAMING_SNAKE_CASE__ = {"""input_ids""": [[0, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [0, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
165
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging A_ : str = logging.get_logger(__name__) # TODO: upload to AWS A_ : Optional[int] = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class lowerCamelCase (A__ ): lowerCamelCase__ : Any = 'retribert' def __init__( self : Tuple , __UpperCAmelCase : Optional[Any]=3_0_5_2_2 , __UpperCAmelCase : Union[str, Any]=7_6_8 , __UpperCAmelCase : List[str]=8 , __UpperCAmelCase : Dict=1_2 , __UpperCAmelCase : List[Any]=3_0_7_2 , __UpperCAmelCase : str="gelu" , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : List[Any]=5_1_2 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : Any=1e-12 , __UpperCAmelCase : str=True , __UpperCAmelCase : List[Any]=1_2_8 , __UpperCAmelCase : Tuple=0 , **__UpperCAmelCase : Optional[int] , ) -> List[str]: super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = share_encoders SCREAMING_SNAKE_CASE__ = projection_dim
165
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : List[str] = """canine""" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Optional[Any]=7_68 , SCREAMING_SNAKE_CASE_ : List[Any]=12 , SCREAMING_SNAKE_CASE_ : Tuple=12 , SCREAMING_SNAKE_CASE_ : Any=30_72 , SCREAMING_SNAKE_CASE_ : str="gelu" , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_63_84 , SCREAMING_SNAKE_CASE_ : str=16 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE_ : int=0Xe_0_0_0 , SCREAMING_SNAKE_CASE_ : Dict=0Xe_0_0_1 , SCREAMING_SNAKE_CASE_ : List[Any]=4 , SCREAMING_SNAKE_CASE_ : str=4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=8 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_63_84 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_28 , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) A: Union[str, Any] = max_position_embeddings A: str = hidden_size A: Union[str, Any] = num_hidden_layers A: Any = num_attention_heads A: Tuple = intermediate_size A: Optional[int] = hidden_act A: int = hidden_dropout_prob A: Any = attention_probs_dropout_prob A: Optional[Any] = initializer_range A: Any = type_vocab_size A: List[Any] = layer_norm_eps # Character config: A: Any = downsampling_rate A: Optional[int] = upsampling_kernel_size A: List[Any] = num_hash_functions A: Tuple = num_hash_buckets A: Tuple = local_transformer_stride
369
'''simple docstring''' class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] ) -> int: '''simple docstring''' A: Tuple = None A: Dict = None A: Optional[int] = graph self._normalize_graph(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: str = len(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = None def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ) -> str: '''simple docstring''' if sources is int: A: Union[str, Any] = [sources] if sinks is int: A: Tuple = [sinks] if len(SCREAMING_SNAKE_CASE_ ) == 0 or len(SCREAMING_SNAKE_CASE_ ) == 0: return A: List[str] = sources[0] A: Optional[int] = sinks[0] # make fake vertex if there are more # than one source or sink if len(SCREAMING_SNAKE_CASE_ ) > 1 or len(SCREAMING_SNAKE_CASE_ ) > 1: A: Any = 0 for i in sources: max_input_flow += sum(self.graph[i] ) A: Dict = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: A: Optional[Any] = max_input_flow A: Optional[Any] = 0 A: str = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: A: Optional[Any] = max_input_flow A: str = size - 1 def _snake_case ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: '''simple docstring''' A: Optional[Any] = algorithm(self ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: '''simple docstring''' A: str = flow_network A: List[str] = flow_network.verticesCount A: Dict = flow_network.sourceIndex A: Any = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that A: str = flow_network.graph A: str = False def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' if not self.executed: self._algorithm() A: str = True def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) # use this to save your result A: Any = -1 def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = [[0] * self.verticies_count for i in range(self.verticies_count )] A: Any = [0] * self.verticies_count A: Optional[Any] = [0] * self.verticies_count def _snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' A: Any = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule A: str = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list A: Dict = 0 while i < len(SCREAMING_SNAKE_CASE_ ): A: Any = vertices_list[i] A: str = self.heights[vertex_index] self.process_vertex(SCREAMING_SNAKE_CASE_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE_ ) ) A: Tuple = 0 else: i += 1 A: Tuple = sum(self.preflow[self.source_index] ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.relabel(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: '''simple docstring''' A: Optional[int] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> int: '''simple docstring''' A: Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): A: List[Any] = self.heights[to_index] if min_height is not None: A: int = min_height + 1 if __name__ == "__main__": UpperCamelCase = [0] UpperCamelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCamelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCamelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCamelCase = flow_network.find_maximum_flow() print(f'maximum flow is {maximum_flow}')
334
0