code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger() @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =field(default_factory=__snake_case ) lowerCamelCase__ =field(default_factory=__snake_case ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : str = len(list(m.modules() ) ) == 1 or isinstance(a_ , nn.Convad ) or isinstance(a_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(a_ ) def __call__(self , a_ ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a_ ) [x.remove() for x in self.handles] return self @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return list(filter(lambda a_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =1 lowerCamelCase__ =field(default_factory=__snake_case ) lowerCamelCase__ =field(default_factory=__snake_case ) lowerCamelCase__ =True def __call__(self , a_ ): '''simple docstring''' __snake_case : int = Tracker(self.dest )(a_ ).parametrized __snake_case : Optional[int] = Tracker(self.src )(a_ ).parametrized __snake_case : Union[str, Any] = list(filter(lambda a_ : type(a_ ) not in self.src_skip , a_ ) ) __snake_case : Dict = list(filter(lambda a_ : type(a_ ) not in self.dest_skip , a_ ) ) if len(a_ ) != len(a_ ) and self.raise_if_mismatch: raise Exception( f"""Numbers of operations are different. Source module has {len(a_ )} operations while""" f""" destination module has {len(a_ )}.""" ) for dest_m, src_m in zip(a_ , a_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' super().__init__() __snake_case : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), f"""Unexpected layer name {k}""" __snake_case : Optional[int] = len(a_ ) + 1 feature_blocks.append((f"""res{block_index}""", v) ) __snake_case : List[Any] = nn.ModuleDict(a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return get_trunk_forward_outputs( a_ , out_feat_keys=a_ , feature_blocks=self._feature_blocks , ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__(self , a_ ): '''simple docstring''' if x not in self: __snake_case : Tuple = self.convert_name_to_timm(a_ ) __snake_case : str = partial(lambda: (timm.create_model(a_ , pretrained=a_ ).eval(), None) ) else: __snake_case : Optional[int] = super().__getitem__(a_ ) return val class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __getitem__(self , a_ ): '''simple docstring''' if "seer" in x and "in1k" not in x: __snake_case : List[Any] = RegNetModel else: __snake_case : List[str] = RegNetForImageClassification return val def lowercase ( _snake_case : Dict , _snake_case : List[str] , _snake_case : List[Tuple[str, str]] ) ->Optional[Any]: """simple docstring""" for from_key, to_key in keys: __snake_case : Union[str, Any] = from_state_dict[from_key].clone() print(f"""Copied key={from_key} to={to_key}""" ) return to_state_dict def lowercase ( _snake_case : str , _snake_case : Callable[[], nn.Module] , _snake_case : Callable[[], nn.Module] , _snake_case : RegNetConfig , _snake_case : Path , _snake_case : bool = True , ) ->Dict: """simple docstring""" print(f"""Converting {name}...""" ) with torch.no_grad(): __snake_case , __snake_case : Optional[int] = from_model_func() __snake_case : Tuple = our_model_func(_snake_case ).eval() __snake_case : List[Any] = ModuleTransfer(src=_snake_case , dest=_snake_case , raise_if_mismatch=_snake_case ) __snake_case : Union[str, Any] = torch.randn((1, 3, 224, 224) ) module_transfer(_snake_case ) if from_state_dict is not None: __snake_case : int = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __snake_case : Tuple = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] __snake_case : Union[str, Any] = manually_copy_vissl_head(_snake_case , our_model.state_dict() , _snake_case ) our_model.load_state_dict(_snake_case ) __snake_case : List[Any] = our_model(_snake_case , output_hidden_states=_snake_case ) __snake_case : Union[str, Any] = ( our_outputs.logits if isinstance(_snake_case , _snake_case ) else our_outputs.last_hidden_state ) __snake_case : Optional[Any] = from_model(_snake_case ) __snake_case : Optional[Any] = from_output[-1] if type(_snake_case ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __snake_case : str = our_outputs.hidden_states[-1] assert torch.allclose(_snake_case , _snake_case ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=_snake_case , ) __snake_case : Any = 224 if '''seer''' not in name else 384 # we can use the convnext one __snake_case : Dict = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=_snake_case ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=_snake_case , ) print(f"""Pushed {name}""" ) def lowercase ( _snake_case : Path , _snake_case : str = None , _snake_case : bool = True ) ->Any: """simple docstring""" __snake_case : Union[str, Any] = '''imagenet-1k-id2label.json''' __snake_case : Optional[Any] = 1_000 __snake_case : int = (1, num_labels) __snake_case : Optional[Any] = '''huggingface/label-files''' __snake_case : Optional[int] = num_labels __snake_case : str = json.load(open(cached_download(hf_hub_url(_snake_case , _snake_case , repo_type='''dataset''' ) ) , '''r''' ) ) __snake_case : str = {int(_snake_case ): v for k, v in idalabel.items()} __snake_case : Union[str, Any] = idalabel __snake_case : int = {v: k for k, v in idalabel.items()} __snake_case : int = partial(_snake_case , num_labels=_snake_case , idalabel=_snake_case , labelaid=_snake_case ) __snake_case : int = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1_008] , groups_width=48 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1_360] , groups_width=40 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1_624] , groups_width=56 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1_920] , groups_width=120 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2_048] , groups_width=128 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1_344, 2_520] , groups_width=168 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1_512] , groups_width=24 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1_088] , groups_width=64 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1_296] , groups_width=72 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2_016] , groups_width=56 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1_232, 3_024] , groups_width=112 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), } __snake_case : int = NameToOurModelFuncMap() __snake_case : List[str] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_snake_case : str , _snake_case : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: __snake_case : Tuple = torch.hub.load_state_dict_from_url(_snake_case , model_dir=str(_snake_case ) , map_location='''cpu''' ) __snake_case : Dict = model_func() # check if we have a head, if yes add it __snake_case : Any = files['''classy_state_dict''']['''base_model''']['''model'''] __snake_case : Tuple = model_state_dict['''trunk'''] model.load_state_dict(_snake_case ) return model.eval(), model_state_dict["heads"] # pretrained __snake_case : List[Any] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : str = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : int = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __snake_case : Optional[Any] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __snake_case : Union[str, Any] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : List[str] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __snake_case : Optional[int] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __snake_case : Optional[int] = partial( _snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( _snake_case , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _snake_case , _snake_case , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _snake_case , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _snake_case , _snake_case , _snake_case , ) return config, expected_shape if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
102
"""simple docstring""" import pytest import datasets # Import fixture modules as plugins SCREAMING_SNAKE_CASE : List[Any] = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def lowercase ( _snake_case : Optional[int] , _snake_case : Optional[int] ) ->Tuple: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def lowercase ( _snake_case : List[str] ) ->Optional[int]: """simple docstring""" config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=_snake_case ) def lowercase ( _snake_case : Optional[Any] , _snake_case : Dict ) ->Any: """simple docstring""" __snake_case : List[Any] = tmp_path_factory.getbasetemp() / '''cache''' __snake_case : int = test_hf_cache_home / '''datasets''' __snake_case : Tuple = test_hf_cache_home / '''metrics''' __snake_case : List[str] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(_snake_case ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(_snake_case ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(_snake_case ) ) __snake_case : Optional[int] = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(_snake_case ) ) __snake_case : Tuple = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(_snake_case ) ) @pytest.fixture(autouse=_snake_case , scope='''session''' ) def lowercase ( ) ->Any: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_snake_case ) def lowercase ( _snake_case : Tuple ) ->Union[str, Any]: """simple docstring""" monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , _snake_case ) @pytest.fixture def lowercase ( _snake_case : Any ) ->Optional[Any]: """simple docstring""" monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , _snake_case )
102
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowerCamelCase (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): """simple docstring""" def __init__( self : Dict, _UpperCAmelCase : Optional[Any]=None, **_UpperCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" super().__init__(features=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = torch_tensor_kwargs import torch # noqa import torch at initialization def A_ ( self : int, _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" import torch if isinstance(_UpperCAmelCase, _UpperCAmelCase ) and column: if all( isinstance(_UpperCAmelCase, torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(_UpperCAmelCase ) return column def A_ ( self : Optional[Any], _UpperCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" import torch if isinstance(_UpperCAmelCase, (str, bytes, type(_UpperCAmelCase )) ): return value elif isinstance(_UpperCAmelCase, (np.character, np.ndarray) ) and np.issubdtype(value.dtype, np.character ): return value.tolist() SCREAMING_SNAKE_CASE__ : List[str] = {} if isinstance(_UpperCAmelCase, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.integer ): SCREAMING_SNAKE_CASE__ : Optional[Any] = {"dtype": torch.intaa} elif isinstance(_UpperCAmelCase, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.floating ): SCREAMING_SNAKE_CASE__ : List[Any] = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_UpperCAmelCase, PIL.Image.Image ): SCREAMING_SNAKE_CASE__ : Dict = np.asarray(_UpperCAmelCase ) return torch.tensor(_UpperCAmelCase, **{**default_dtype, **self.torch_tensor_kwargs} ) def A_ ( self : List[str], _UpperCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" import torch # support for torch, tf, jax etc. if hasattr(_UpperCAmelCase, "__array__" ) and not isinstance(_UpperCAmelCase, torch.Tensor ): SCREAMING_SNAKE_CASE__ : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_UpperCAmelCase, np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_UpperCAmelCase ) for substruct in data_struct] ) elif isinstance(_UpperCAmelCase, (list, tuple) ): return self._consolidate([self.recursive_tensorize(_UpperCAmelCase ) for substruct in data_struct] ) return self._tensorize(_UpperCAmelCase ) def A_ ( self : Optional[Any], _UpperCAmelCase : dict ) -> Optional[int]: """simple docstring""" return map_nested(self._recursive_tensorize, _UpperCAmelCase, map_list=_UpperCAmelCase ) def A_ ( self : int, _UpperCAmelCase : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.numpy_arrow_extractor().extract_row(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = self.python_features_decoder.decode_row(_UpperCAmelCase ) return self.recursive_tensorize(_UpperCAmelCase ) def A_ ( self : List[str], _UpperCAmelCase : pa.Table ) -> "torch.Tensor": """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.numpy_arrow_extractor().extract_column(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = self.python_features_decoder.decode_column(_UpperCAmelCase, pa_table.column_names[0] ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.recursive_tensorize(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self._consolidate(_UpperCAmelCase ) return column def A_ ( self : Union[str, Any], _UpperCAmelCase : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.numpy_arrow_extractor().extract_batch(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = self.python_features_decoder.decode_batch(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = self.recursive_tensorize(_UpperCAmelCase ) for column_name in batch: SCREAMING_SNAKE_CASE__ : Dict = self._consolidate(batch[column_name] ) return batch
191
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = '''▁''' _lowerCamelCase : Dict = {'''vocab_file''': '''sentencepiece.bpe.model'''} _lowerCamelCase : int = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } _lowerCamelCase : Optional[Any] = { '''xlm-roberta-base''': 5_1_2, '''xlm-roberta-large''': 5_1_2, '''xlm-roberta-large-finetuned-conll02-dutch''': 5_1_2, '''xlm-roberta-large-finetuned-conll02-spanish''': 5_1_2, '''xlm-roberta-large-finetuned-conll03-english''': 5_1_2, '''xlm-roberta-large-finetuned-conll03-german''': 5_1_2, } class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = ["input_ids", "attention_mask"] def __init__( self : Dict, _UpperCAmelCase : str, _UpperCAmelCase : Optional[int]="<s>", _UpperCAmelCase : Optional[int]="</s>", _UpperCAmelCase : Dict="</s>", _UpperCAmelCase : List[Any]="<s>", _UpperCAmelCase : Union[str, Any]="<unk>", _UpperCAmelCase : List[Any]="<pad>", _UpperCAmelCase : str="<mask>", _UpperCAmelCase : Optional[Dict[str, Any]] = None, **_UpperCAmelCase : List[Any], ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ : int = AddedToken(_UpperCAmelCase, lstrip=_UpperCAmelCase, rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else mask_token SCREAMING_SNAKE_CASE__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase, eos_token=_UpperCAmelCase, unk_token=_UpperCAmelCase, sep_token=_UpperCAmelCase, cls_token=_UpperCAmelCase, pad_token=_UpperCAmelCase, mask_token=_UpperCAmelCase, sp_model_kwargs=self.sp_model_kwargs, **_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE__ : List[str] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE__ : Dict = 1 SCREAMING_SNAKE_CASE__ : int = len(self.sp_model ) + self.fairseq_offset SCREAMING_SNAKE_CASE__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.__dict__.copy() SCREAMING_SNAKE_CASE__ : List[Any] = None SCREAMING_SNAKE_CASE__ : Dict = self.sp_model.serialized_model_proto() return state def __setstate__( self : int, _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = d # for backward compatibility if not hasattr(self, "sp_model_kwargs" ): SCREAMING_SNAKE_CASE__ : Dict = {} SCREAMING_SNAKE_CASE__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def A_ ( self : Any, _UpperCAmelCase : List[int], _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ : List[str] = [self.cls_token_id] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A_ ( self : List[Any], _UpperCAmelCase : List[int], _UpperCAmelCase : Optional[List[int]] = None, _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase, token_ids_a=_UpperCAmelCase, already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def A_ ( self : Union[str, Any], _UpperCAmelCase : List[int], _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A_ ( self : List[str] ) -> List[str]: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def A_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A_ ( self : List[str], _UpperCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_UpperCAmelCase, out_type=_UpperCAmelCase ) def A_ ( self : Optional[Any], _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.sp_model.PieceToId(_UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A_ ( self : Tuple, _UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A_ ( self : Any, _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = "".join(_UpperCAmelCase ).replace(_UpperCAmelCase, " " ).strip() return out_string def A_ ( self : Union[str, Any], _UpperCAmelCase : str, _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join( _UpperCAmelCase, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase, "wb" ) as fi: SCREAMING_SNAKE_CASE__ : Any = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,)
191
1
def lowerCAmelCase__( lowercase : str ) -> bool: __snake_case : List[str] = [int(lowercase ) for i in ip_va_address.split("." ) if i.isdigit()] return len(lowercase ) == 4 and all(0 <= int(lowercase ) <= 254 for octet in octets ) if __name__ == "__main__": _UpperCamelCase = input().strip() _UpperCamelCase = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(F'''{ip} is a {valid_or_invalid} IP v4 address.''')
326
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : int = use_attention_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : List[str] = vocab_size __snake_case : int = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : List[Any] = num_choices __snake_case : Union[str, Any] = rescale_embeddings __snake_case : List[Any] = attention_type __snake_case : str = use_bias __snake_case : Dict = block_size __snake_case : Optional[Any] = num_random_blocks def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_attention_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase_ : Dict =False UpperCAmelCase_ : str =False def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): __snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
326
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Union[str, Any] = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
355
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """efficientformer""" def __init__( self , A = [3, 2, 6, 4] , A = [4_8, 9_6, 2_2_4, 4_4_8] , A = [True, True, True, True] , A = 4_4_8 , A = 3_2 , A = 4 , A = 7 , A = 5 , A = 8 , A = 4 , A = 0.0 , A = 1_6 , A = 3 , A = 3 , A = 3 , A = 2 , A = 1 , A = 0.0 , A = 1 , A = True , A = True , A = 1e-5 , A = "gelu" , A = 0.02 , A = 1e-1_2 , A = 2_2_4 , A = 1e-0_5 , **A , ) -> None: super().__init__(**A ) snake_case : Dict = hidden_act snake_case : int = hidden_dropout_prob snake_case : Any = hidden_sizes snake_case : Optional[Any] = num_hidden_layers snake_case : List[Any] = num_attention_heads snake_case : List[Any] = initializer_range snake_case : str = layer_norm_eps snake_case : Dict = patch_size snake_case : Optional[int] = num_channels snake_case : int = depths snake_case : Optional[int] = mlp_expansion_ratio snake_case : Any = downsamples snake_case : Dict = dim snake_case : Optional[int] = key_dim snake_case : Union[str, Any] = attention_ratio snake_case : Any = resolution snake_case : Dict = pool_size snake_case : Any = downsample_patch_size snake_case : Tuple = downsample_stride snake_case : Any = downsample_pad snake_case : Union[str, Any] = drop_path_rate snake_case : List[str] = num_metaad_blocks snake_case : Union[str, Any] = distillation snake_case : List[str] = use_layer_scale snake_case : int = layer_scale_init_value snake_case : Union[str, Any] = image_size snake_case : Dict = batch_norm_eps
176
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch a__ : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Union[str, Any] = ["pixel_values"] def __init__( self : Tuple , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : int , ) -> None: super().__init__(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 2_2_4} __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"height": 2_5_6, "width": 2_5_6} __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ , param_name="crop_size" ) __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_flip_channel_order def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PIL.Image.BILINEAR , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : str , ) -> np.ndarray: __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) __SCREAMING_SNAKE_CASE = get_resize_output_image_size(UpperCAmelCase__ , size=size["shortest_edge"] , default_to_square=UpperCAmelCase__ ) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Tuple , ) -> np.ndarray: __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(UpperCAmelCase__ , size=(size["height"], size["width"]) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[int, float] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[int] , ) -> Dict: return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: return flip_channel_order(UpperCAmelCase__ , data_format=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : float = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : Union[str, Any] , ) -> PIL.Image.Image: __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ , param_name="crop_size" ) __SCREAMING_SNAKE_CASE = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_center_crop: __SCREAMING_SNAKE_CASE = [self.center_crop(image=UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: __SCREAMING_SNAKE_CASE = [self.flip_channel_order(image=UpperCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Tuple] = None ) -> List[str]: __SCREAMING_SNAKE_CASE = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = target_sizes.numpy() __SCREAMING_SNAKE_CASE = [] for idx in range(len(UpperCAmelCase__ ) ): __SCREAMING_SNAKE_CASE = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = logits.argmax(dim=1 ) __SCREAMING_SNAKE_CASE = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
54
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ = 100_0000 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = set(range(3 , lowerCAmelCase_ , 2 ) ) primes.add(2 ) for p in range(3 , lowerCAmelCase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowerCAmelCase_ , lowerCAmelCase_ ) ) ) __SCREAMING_SNAKE_CASE = [float(lowerCAmelCase_ ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCAmelCase_ , limit + 1 , lowerCAmelCase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"{solution() = }")
54
1
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowercase__ : Dict = """CompVis/stable-diffusion-v1-1""" lowercase__ : Any = """CompVis/stable-diffusion-v1-2""" lowercase__ : str = """CompVis/stable-diffusion-v1-3""" lowercase__ : List[Any] = """CompVis/stable-diffusion-v1-4""" class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : AutoencoderKL , SCREAMING_SNAKE_CASE_ : CLIPTextModel , SCREAMING_SNAKE_CASE_ : CLIPTokenizer , SCREAMING_SNAKE_CASE_ : UNetaDConditionModel , SCREAMING_SNAKE_CASE_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , SCREAMING_SNAKE_CASE_ : StableDiffusionSafetyChecker , SCREAMING_SNAKE_CASE_ : CLIPImageProcessor , SCREAMING_SNAKE_CASE_ : bool = True , ): super()._init_() lowerCAmelCase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = StableDiffusionPipeline( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , requires_safety_checker=SCREAMING_SNAKE_CASE_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): return {k: getattr(self , SCREAMING_SNAKE_CASE_ ) for k in self.config.keys() if not k.startswith('_' )} def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCAmelCase_ : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, List[str]] , SCREAMING_SNAKE_CASE_ : int = 5_1_2 , SCREAMING_SNAKE_CASE_ : int = 5_1_2 , SCREAMING_SNAKE_CASE_ : int = 5_0 , SCREAMING_SNAKE_CASE_ : float = 7.5 , SCREAMING_SNAKE_CASE_ : Optional[Union[str, List[str]]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE_ : int = 1 , **SCREAMING_SNAKE_CASE_ : List[Any] , ): return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, List[str]] , SCREAMING_SNAKE_CASE_ : int = 5_1_2 , SCREAMING_SNAKE_CASE_ : int = 5_1_2 , SCREAMING_SNAKE_CASE_ : int = 5_0 , SCREAMING_SNAKE_CASE_ : float = 7.5 , SCREAMING_SNAKE_CASE_ : Optional[Union[str, List[str]]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE_ : int = 1 , **SCREAMING_SNAKE_CASE_ : Dict , ): return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, List[str]] , SCREAMING_SNAKE_CASE_ : int = 5_1_2 , SCREAMING_SNAKE_CASE_ : int = 5_1_2 , SCREAMING_SNAKE_CASE_ : int = 5_0 , SCREAMING_SNAKE_CASE_ : float = 7.5 , SCREAMING_SNAKE_CASE_ : Optional[Union[str, List[str]]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE_ : int = 1 , **SCREAMING_SNAKE_CASE_ : Tuple , ): return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, List[str]] , SCREAMING_SNAKE_CASE_ : int = 5_1_2 , SCREAMING_SNAKE_CASE_ : int = 5_1_2 , SCREAMING_SNAKE_CASE_ : int = 5_0 , SCREAMING_SNAKE_CASE_ : float = 7.5 , SCREAMING_SNAKE_CASE_ : Optional[Union[str, List[str]]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE_ : int = 1 , **SCREAMING_SNAKE_CASE_ : List[str] , ): return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, List[str]] , SCREAMING_SNAKE_CASE_ : int = 5_1_2 , SCREAMING_SNAKE_CASE_ : int = 5_1_2 , SCREAMING_SNAKE_CASE_ : int = 5_0 , SCREAMING_SNAKE_CASE_ : float = 7.5 , SCREAMING_SNAKE_CASE_ : Optional[Union[str, List[str]]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE_ : int = 1 , **SCREAMING_SNAKE_CASE_ : str , ): lowerCAmelCase_ : Tuple = 'cuda' if torch.cuda.is_available() else 'cpu' self.to(SCREAMING_SNAKE_CASE_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 lowerCAmelCase_ : Any = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 lowerCAmelCase_ : Tuple = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 lowerCAmelCase_ : int = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 lowerCAmelCase_ : Dict = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
289
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig lowercase__ : List[Any] = logging.getLogger(__name__) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """masked_bert""" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE_ : int=7_6_8 , SCREAMING_SNAKE_CASE_ : Tuple=1_2 , SCREAMING_SNAKE_CASE_ : List[Any]=1_2 , SCREAMING_SNAKE_CASE_ : Tuple=3_0_7_2 , SCREAMING_SNAKE_CASE_ : List[str]="gelu" , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=5_1_2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : Dict=0.02 , SCREAMING_SNAKE_CASE_ : Any=1E-12 , SCREAMING_SNAKE_CASE_ : List[str]=0 , SCREAMING_SNAKE_CASE_ : Optional[int]="topK" , SCREAMING_SNAKE_CASE_ : Optional[int]="constant" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , **SCREAMING_SNAKE_CASE_ : Any , ): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = vocab_size lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Optional[int] = num_hidden_layers lowerCAmelCase_ : Dict = num_attention_heads lowerCAmelCase_ : List[str] = hidden_act lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Any = hidden_dropout_prob lowerCAmelCase_ : str = attention_probs_dropout_prob lowerCAmelCase_ : Any = max_position_embeddings lowerCAmelCase_ : Dict = type_vocab_size lowerCAmelCase_ : Tuple = initializer_range lowerCAmelCase_ : List[Any] = layer_norm_eps lowerCAmelCase_ : str = pruning_method lowerCAmelCase_ : Optional[Any] = mask_init lowerCAmelCase_ : int = mask_scale
289
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _A : List[Any] =logging.get_logger(__name__) _A : Optional[int] =torch.device('''cpu''') def SCREAMING_SNAKE_CASE_ () -> int: lowerCamelCase__ : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase__ : str = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) return im def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Optional[int]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03E00, 2.11_07E00, -2.08_11E00, 8.86_85E-01, 2.43_60E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36E-01, 2.34_78E-01, -1.69_63E00, -1.73_81E00, -8.63_37E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68E-01, -4.74_29E-01, -1.08_97E00, -1.02_48E00, 3.55_23E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30E-01, 2.42_11E-01, -6.01_85E-01, -8.27_89E-01, -6.04_46E-02] ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Any: lowerCamelCase__ : List[str] = dct.pop(UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = val def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> int: lowerCamelCase__ : Any = [] for k in state_dict.keys(): lowerCamelCase__ : List[Any] = k if ".pwconv" in k: lowerCamelCase__ : List[str] = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: lowerCamelCase__ : str = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: lowerCamelCase__ : str = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: lowerCamelCase__ : Any = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: lowerCamelCase__ : Union[str, Any] = k_new.split(""".""" ) if ls[2].isdigit(): lowerCamelCase__ : Optional[Any] = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: lowerCamelCase__ : Any = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Tuple: lowerCamelCase__ : str = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size lowerCamelCase__ : Optional[int] = 1000 lowerCamelCase__ : int = """huggingface/label-files""" lowerCamelCase__ : Any = """imagenet-1k-id2label.json""" lowerCamelCase__ : Optional[Any] = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase__ : Optional[Any] = {int(UpperCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Optional[Any] = idalabel lowerCamelCase__ : Dict = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": lowerCamelCase__ : str = [3, 3, 6, 4] lowerCamelCase__ : Optional[Any] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": lowerCamelCase__ : List[Any] = [3, 3, 9, 6] lowerCamelCase__ : Optional[int] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": lowerCamelCase__ : int = [4, 3, 10, 5] lowerCamelCase__ : Optional[int] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": lowerCamelCase__ : Optional[int] = [4, 4, 12, 6] lowerCamelCase__ : str = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): lowerCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="""cpu""" , check_hash=UpperCamelCase ) else: lowerCamelCase__ : List[str] = torch.load(UpperCamelCase , map_location="""cpu""" ) lowerCamelCase__ : str = checkpoint lowerCamelCase__ : List[str] = create_rename_keys(UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # load HuggingFace model lowerCamelCase__ : List[str] = SwiftFormerForImageClassification(UpperCamelCase ).eval() hf_model.load_state_dict(UpperCamelCase ) # prepare test inputs lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : Optional[int] = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) lowerCamelCase__ : Union[str, Any] = processor(images=UpperCamelCase , return_tensors="""pt""" ) # compare outputs from both models lowerCamelCase__ : Tuple = get_expected_output(UpperCamelCase ) lowerCamelCase__ : str = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , UpperCamelCase , atol=1E-3 ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(f'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _A : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _A : int =parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
41
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'nllb-moe' __UpperCAmelCase = ['past_key_values'] __UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =encoder_ffn_dim SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =encoder_attention_heads SCREAMING_SNAKE_CASE =decoder_ffn_dim SCREAMING_SNAKE_CASE =decoder_layers SCREAMING_SNAKE_CASE =decoder_attention_heads SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =activation_dropout SCREAMING_SNAKE_CASE =activation_function SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =encoder_layerdrop SCREAMING_SNAKE_CASE =decoder_layerdrop SCREAMING_SNAKE_CASE =use_cache SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE =router_z_loss_coef SCREAMING_SNAKE_CASE =router_aux_loss_coef SCREAMING_SNAKE_CASE =decoder_sparse_step SCREAMING_SNAKE_CASE =encoder_sparse_step SCREAMING_SNAKE_CASE =num_experts SCREAMING_SNAKE_CASE =expert_capacity SCREAMING_SNAKE_CASE =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) SCREAMING_SNAKE_CASE =router_dtype SCREAMING_SNAKE_CASE =router_ignore_padding_tokens SCREAMING_SNAKE_CASE =batch_prioritized_routing SCREAMING_SNAKE_CASE =second_expert_policy SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE =moe_token_dropout SCREAMING_SNAKE_CASE =output_router_logits super().__init__( pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
334
0
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCamelCase = logging.get_logger(__name__) class __lowerCamelCase ( enum.Enum ): """simple docstring""" snake_case__ = 0 snake_case__ = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = '''generated''' def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: super().__init__(*_snake_case , **_snake_case ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , **SCREAMING_SNAKE_CASE__ : str , ) -> Tuple: lowerCAmelCase__ = {} if truncation is not None: lowerCAmelCase__ = truncation lowerCAmelCase__ = generate_kwargs lowerCAmelCase__ = {} if return_tensors is not None and return_type is None: lowerCAmelCase__ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowerCAmelCase__ = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase__ = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase__ = self.tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) if len(_snake_case ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) lowerCAmelCase__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: return True def a ( self : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict: lowerCAmelCase__ = self.model.config.prefix if self.model.config.prefix is not None else "" if isinstance(args[0] , _snake_case ): if self.tokenizer.pad_token_id is None: raise ValueError("Please make sure that the tokenizer has a pad_token_id when using a batch input" ) lowerCAmelCase__ = ([prefix + arg for arg in args[0]],) lowerCAmelCase__ = True elif isinstance(args[0] , _snake_case ): lowerCAmelCase__ = (prefix + args[0],) lowerCAmelCase__ = False else: raise ValueError( f' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`' ) lowerCAmelCase__ = self.tokenizer(*_snake_case , padding=_snake_case , truncation=_snake_case , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Optional[Any] , *SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Any ) -> int: lowerCAmelCase__ = super().__call__(*_snake_case , **_snake_case ) if ( isinstance(args[0] , _snake_case ) and all(isinstance(_snake_case , _snake_case ) for el in args[0] ) and all(len(_snake_case ) == 1 for res in result ) ): return [res[0] for res in result] return result def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=TruncationStrategy.DO_NOT_TRUNCATE , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[int]: lowerCAmelCase__ = self._parse_and_tokenize(_snake_case , truncation=_snake_case , **_snake_case ) return inputs def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: if self.framework == "pt": lowerCAmelCase__ , lowerCAmelCase__ = model_inputs["input_ids"].shape elif self.framework == "tf": lowerCAmelCase__ , lowerCAmelCase__ = tf.shape(model_inputs["input_ids"] ).numpy() lowerCAmelCase__ = generate_kwargs.get("min_length" , self.model.config.min_length ) lowerCAmelCase__ = generate_kwargs.get("max_length" , self.model.config.max_length ) self.check_inputs(_snake_case , generate_kwargs["min_length"] , generate_kwargs["max_length"] ) lowerCAmelCase__ = self.model.generate(**_snake_case , **_snake_case ) lowerCAmelCase__ = output_ids.shape[0] if self.framework == "pt": lowerCAmelCase__ = output_ids.reshape(_snake_case , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowerCAmelCase__ = tf.reshape(_snake_case , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any=ReturnType.TEXT , SCREAMING_SNAKE_CASE__ : Dict=False ) -> Union[str, Any]: lowerCAmelCase__ = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowerCAmelCase__ = {f'{self.return_name}_token_ids': output_ids} elif return_type == ReturnType.TEXT: lowerCAmelCase__ = { f'{self.return_name}_text': self.tokenizer.decode( _snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case , ) } records.append(_snake_case ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = '''summary''' def __call__( self : Dict , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> List[Any]: return super().__call__(*_snake_case , **_snake_case ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: if max_length < min_length: logger.warning(f'Your min_length={min_length} must be inferior than your max_length={max_length}.' ) if input_length < max_length: logger.warning( f'Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ' "a summarization task, where outputs shorter than the input are typically wanted, you might " f'consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})' ) @add_end_docstrings(UpperCamelCase__ ) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = '''translation''' def a ( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> List[str]: if input_length > 0.9 * max_length: logger.warning( f'Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ' "increasing your max_length manually, e.g. translator(\'...\', max_length=400)" ) return True def a ( self : Any , *SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any]=TruncationStrategy.DO_NOT_TRUNCATE , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if getattr(self.tokenizer , "_build_translation_inputs" , _snake_case ): return self.tokenizer._build_translation_inputs( *_snake_case , return_tensors=self.framework , truncation=_snake_case , src_lang=_snake_case , tgt_lang=_snake_case ) else: return super()._parse_and_tokenize(*_snake_case , truncation=_snake_case ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Dict=None , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = super()._sanitize_parameters(**_snake_case ) if src_lang is not None: lowerCAmelCase__ = src_lang if tgt_lang is not None: lowerCAmelCase__ = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowerCAmelCase__ = kwargs.get("task" , self.task ) lowerCAmelCase__ = task.split("_" ) if task and len(_snake_case ) == 4: # translation, XX, to YY lowerCAmelCase__ = items[1] lowerCAmelCase__ = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : List[Any] , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: return super().__call__(*_snake_case , **_snake_case )
357
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" snake_case__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def a ( self : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: lowerCAmelCase__ = hf_hub_download( repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) lowerCAmelCase__ = VideoClassificationPipeline(model=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ , top_k=2 ) lowerCAmelCase__ = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def a ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: for example in examples: lowerCAmelCase__ = video_classifier(SCREAMING_SNAKE_CASE__ ) self.assertEqual( SCREAMING_SNAKE_CASE__ , [ {"score": ANY(SCREAMING_SNAKE_CASE__ ), "label": ANY(SCREAMING_SNAKE_CASE__ )}, {"score": ANY(SCREAMING_SNAKE_CASE__ ), "label": ANY(SCREAMING_SNAKE_CASE__ )}, ] , ) @require_torch def a ( self : Dict ) -> Optional[Any]: lowerCAmelCase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" lowerCAmelCase__ = VideoMAEFeatureExtractor( size={"shortest_edge": 10} , crop_size={"height": 10, "width": 10} ) lowerCAmelCase__ = pipeline( "video-classification" , model=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , frame_sampling_rate=4 ) lowerCAmelCase__ = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) lowerCAmelCase__ = video_classifier(SCREAMING_SNAKE_CASE__ , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}] , ) lowerCAmelCase__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ] , ) @require_tf def a ( self : Optional[Any] ) -> Optional[int]: pass
221
0
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets lowerCamelCase_ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" lowerCamelCase_ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" lowerCamelCase_ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def __lowerCamelCase ( a_ : List[str] ) -> Optional[Any]: def remove_articles(a_ : List[str] ): __SCREAMING_SNAKE_CASE :List[str] = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(a_ , ''' ''' , a_ ) def white_space_fix(a_ : Union[str, Any] ): return " ".join(text.split() ) def remove_punc(a_ : str ): __SCREAMING_SNAKE_CASE :List[str] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(a_ : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(a_ ) ) ) ) def __lowerCamelCase ( a_ : Union[str, Any] , a_ : Optional[Any] ) -> Optional[int]: return int(normalize_answer(a_ ) == normalize_answer(a_ ) ) def __lowerCamelCase ( a_ : int , a_ : Optional[int] ) -> Any: __SCREAMING_SNAKE_CASE :Tuple = [any(compute_exact(a_ , a_ ) for ref in refs ) for pred, refs in zip(a_ , a_ )] return (sum(a_ ) / len(a_ )) * 1_00 def __lowerCamelCase ( a_ : Optional[int] , a_ : Optional[int] , a_ : Tuple , a_ : Optional[int] ) -> List[str]: __SCREAMING_SNAKE_CASE :Tuple = [rgram for rgrams in rgramslist for rgram in rgrams] __SCREAMING_SNAKE_CASE :str = Counter(a_ ) __SCREAMING_SNAKE_CASE :Tuple = Counter(a_ ) __SCREAMING_SNAKE_CASE :str = Counter() for sgram, scount in sgramcounter.items(): __SCREAMING_SNAKE_CASE :List[str] = scount * numref __SCREAMING_SNAKE_CASE :Any = Counter(a_ ) __SCREAMING_SNAKE_CASE :Tuple = Counter() for cgram, ccount in cgramcounter.items(): __SCREAMING_SNAKE_CASE :Union[str, Any] = ccount * numref # KEEP __SCREAMING_SNAKE_CASE :Union[str, Any] = sgramcounter_rep & cgramcounter_rep __SCREAMING_SNAKE_CASE :Optional[Any] = keepgramcounter_rep & rgramcounter __SCREAMING_SNAKE_CASE :Dict = sgramcounter_rep & rgramcounter __SCREAMING_SNAKE_CASE :str = 0 __SCREAMING_SNAKE_CASE :Union[str, Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __SCREAMING_SNAKE_CASE :Any = 1 __SCREAMING_SNAKE_CASE :int = 1 if len(a_ ) > 0: __SCREAMING_SNAKE_CASE :Optional[int] = keeptmpscorea / len(a_ ) if len(a_ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) __SCREAMING_SNAKE_CASE :List[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) __SCREAMING_SNAKE_CASE :List[str] = 0 if keepscore_precision > 0 or keepscore_recall > 0: __SCREAMING_SNAKE_CASE :int = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION __SCREAMING_SNAKE_CASE :List[Any] = sgramcounter_rep - cgramcounter_rep __SCREAMING_SNAKE_CASE :int = delgramcounter_rep - rgramcounter __SCREAMING_SNAKE_CASE :Optional[Any] = sgramcounter_rep - rgramcounter __SCREAMING_SNAKE_CASE :List[Any] = 0 __SCREAMING_SNAKE_CASE :List[str] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __SCREAMING_SNAKE_CASE :Dict = 1 if len(a_ ) > 0: __SCREAMING_SNAKE_CASE :Any = deltmpscorea / len(a_ ) # ADDITION __SCREAMING_SNAKE_CASE :Optional[int] = set(a_ ) - set(a_ ) __SCREAMING_SNAKE_CASE :str = set(a_ ) & set(a_ ) __SCREAMING_SNAKE_CASE :Optional[int] = set(a_ ) - set(a_ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __SCREAMING_SNAKE_CASE :Optional[int] = 1 __SCREAMING_SNAKE_CASE :List[str] = 1 if len(a_ ) > 0: __SCREAMING_SNAKE_CASE :Union[str, Any] = addtmpscore / len(a_ ) if len(a_ ) > 0: __SCREAMING_SNAKE_CASE :List[Any] = addtmpscore / len(a_ ) __SCREAMING_SNAKE_CASE :Tuple = 0 if addscore_precision > 0 or addscore_recall > 0: __SCREAMING_SNAKE_CASE :Optional[Any] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def __lowerCamelCase ( a_ : Any , a_ : List[Any] , a_ : str ) -> Any: __SCREAMING_SNAKE_CASE :int = len(a_ ) __SCREAMING_SNAKE_CASE :int = ssent.split(''' ''' ) __SCREAMING_SNAKE_CASE :Dict = csent.split(''' ''' ) __SCREAMING_SNAKE_CASE :str = [] __SCREAMING_SNAKE_CASE :Optional[int] = [] __SCREAMING_SNAKE_CASE :Tuple = [] __SCREAMING_SNAKE_CASE :Any = [] __SCREAMING_SNAKE_CASE :Dict = [] __SCREAMING_SNAKE_CASE :Any = [] __SCREAMING_SNAKE_CASE :List[Any] = [] __SCREAMING_SNAKE_CASE :int = [] __SCREAMING_SNAKE_CASE :str = [] __SCREAMING_SNAKE_CASE :int = [] for rsent in rsents: __SCREAMING_SNAKE_CASE :List[Any] = rsent.split(''' ''' ) __SCREAMING_SNAKE_CASE :str = [] __SCREAMING_SNAKE_CASE :Dict = [] __SCREAMING_SNAKE_CASE :List[Any] = [] ragramslist.append(a_ ) for i in range(0 , len(a_ ) - 1 ): if i < len(a_ ) - 1: __SCREAMING_SNAKE_CASE :Optional[Any] = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(a_ ) if i < len(a_ ) - 2: __SCREAMING_SNAKE_CASE :Any = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(a_ ) if i < len(a_ ) - 3: __SCREAMING_SNAKE_CASE :Optional[int] = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(a_ ) ragramslist.append(a_ ) ragramslist.append(a_ ) ragramslist.append(a_ ) for i in range(0 , len(a_ ) - 1 ): if i < len(a_ ) - 1: __SCREAMING_SNAKE_CASE :Union[str, Any] = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(a_ ) if i < len(a_ ) - 2: __SCREAMING_SNAKE_CASE :Optional[int] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(a_ ) if i < len(a_ ) - 3: __SCREAMING_SNAKE_CASE :List[Any] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(a_ ) for i in range(0 , len(a_ ) - 1 ): if i < len(a_ ) - 1: __SCREAMING_SNAKE_CASE :Any = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(a_ ) if i < len(a_ ) - 2: __SCREAMING_SNAKE_CASE :Optional[int] = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(a_ ) if i < len(a_ ) - 3: __SCREAMING_SNAKE_CASE :Optional[int] = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(a_ ) ((__SCREAMING_SNAKE_CASE) ,(__SCREAMING_SNAKE_CASE) ,(__SCREAMING_SNAKE_CASE)) :Optional[Any] = SARIngram(a_ , a_ , a_ , a_ ) ((__SCREAMING_SNAKE_CASE) ,(__SCREAMING_SNAKE_CASE) ,(__SCREAMING_SNAKE_CASE)) :Union[str, Any] = SARIngram(a_ , a_ , a_ , a_ ) ((__SCREAMING_SNAKE_CASE) ,(__SCREAMING_SNAKE_CASE) ,(__SCREAMING_SNAKE_CASE)) :Union[str, Any] = SARIngram(a_ , a_ , a_ , a_ ) ((__SCREAMING_SNAKE_CASE) ,(__SCREAMING_SNAKE_CASE) ,(__SCREAMING_SNAKE_CASE)) :Any = SARIngram(a_ , a_ , a_ , a_ ) __SCREAMING_SNAKE_CASE :Optional[Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 __SCREAMING_SNAKE_CASE :Union[str, Any] = sum([delascore, delascore, delascore, delascore] ) / 4 __SCREAMING_SNAKE_CASE :Optional[int] = sum([addascore, addascore, addascore, addascore] ) / 4 __SCREAMING_SNAKE_CASE :Optional[Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def __lowerCamelCase ( a_ : Dict , a_ : bool = True , a_ : str = "13a" , a_ : bool = True ) -> Any: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: __SCREAMING_SNAKE_CASE :Tuple = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: __SCREAMING_SNAKE_CASE :Optional[int] = sacrebleu.metrics.bleu._get_tokenizer(a_ )()(a_ ) else: __SCREAMING_SNAKE_CASE :Optional[int] = sacrebleu.TOKENIZERS[tokenizer]()(a_ ) elif tokenizer == "moses": __SCREAMING_SNAKE_CASE :str = sacremoses.MosesTokenizer().tokenize(a_ , return_str=a_ , escape=a_ ) elif tokenizer == "penn": __SCREAMING_SNAKE_CASE :List[str] = sacremoses.MosesTokenizer().penn_tokenize(a_ , return_str=a_ ) else: __SCREAMING_SNAKE_CASE :Dict = sentence if not return_str: __SCREAMING_SNAKE_CASE :int = normalized_sent.split() return normalized_sent def __lowerCamelCase ( a_ : Tuple , a_ : str , a_ : List[Any] ) -> Tuple: if not (len(a_ ) == len(a_ ) == len(a_ )): raise ValueError('''Sources length must match predictions and references lengths.''' ) __SCREAMING_SNAKE_CASE :Dict = 0 for src, pred, refs in zip(a_ , a_ , a_ ): sari_score += SARIsent(normalize(a_ ) , normalize(a_ ) , [normalize(a_ ) for sent in refs] ) __SCREAMING_SNAKE_CASE :Any = sari_score / len(a_ ) return 1_00 * sari_score def __lowerCamelCase ( a_ : Union[str, Any] , a_ : Dict , a_ : Dict="exp" , a_ : Any=None , a_ : List[str]=False , a_ : List[Any]=False , a_ : Optional[int]=False , ) -> Dict: __SCREAMING_SNAKE_CASE :str = len(references[0] ) if any(len(a_ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = [[refs[i] for refs in references] for i in range(a_ )] __SCREAMING_SNAKE_CASE :List[Any] = sacrebleu.corpus_bleu( a_ , a_ , smooth_method=a_ , smooth_value=a_ , force=a_ , lowercase=a_ , use_effective_order=a_ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE( datasets.Metric ): def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' ,id='''sequence''' ) ,id='''references''' ), } ) ,codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] ,reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] ,) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = {} result.update({'''sari''': compute_sari(sources=SCREAMING_SNAKE_CASE__ ,predictions=SCREAMING_SNAKE_CASE__ ,references=SCREAMING_SNAKE_CASE__ )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=SCREAMING_SNAKE_CASE__ ,references=SCREAMING_SNAKE_CASE__ )} ) result.update({'''exact''': compute_em(predictions=SCREAMING_SNAKE_CASE__ ,references=SCREAMING_SNAKE_CASE__ )} ) return result
191
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE( A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = ConsistencyModelPipeline SCREAMING_SNAKE_CASE_ : Any = UNCONDITIONAL_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE_ : Dict = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt SCREAMING_SNAKE_CASE_ : Optional[Any] = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) @property def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' ,subfolder='''test_unet''' ,) return unet @property def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' ,subfolder='''test_unet_class_cond''' ,) return unet def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=False ) -> Union[str, Any]: """simple docstring""" if class_cond: __SCREAMING_SNAKE_CASE :str = self.dummy_cond_unet else: __SCREAMING_SNAKE_CASE :Optional[Any] = self.dummy_uncond_unet # Default to CM multistep sampler __SCREAMING_SNAKE_CASE :List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :List[str] = { '''unet''': unet, '''scheduler''': scheduler, } return components def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=0 ) -> Dict: """simple docstring""" if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE :Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __SCREAMING_SNAKE_CASE :Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE :List[str] = self.get_dummy_components() __SCREAMING_SNAKE_CASE :Optional[Any] = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE :List[str] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :Any = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE :List[Any] = self.get_dummy_components(class_cond=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = 0 __SCREAMING_SNAKE_CASE :Optional[int] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE :Dict = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :List[Any] = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE :Tuple = self.get_dummy_components() __SCREAMING_SNAKE_CASE :Any = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[str] = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = 1 __SCREAMING_SNAKE_CASE :List[str] = None __SCREAMING_SNAKE_CASE :List[str] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE :List[str] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :int = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :str = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE :Any = self.get_dummy_components(class_cond=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = 1 __SCREAMING_SNAKE_CASE :Optional[Any] = None __SCREAMING_SNAKE_CASE :List[Any] = 0 __SCREAMING_SNAKE_CASE :Any = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE :int = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :Optional[Any] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE( unittest.TestCase ): def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__="cpu" ,SCREAMING_SNAKE_CASE__=torch.floataa ,SCREAMING_SNAKE_CASE__=(1, 3, 64, 64) ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __SCREAMING_SNAKE_CASE :int = self.get_fixed_latents(seed=SCREAMING_SNAKE_CASE__ ,device=SCREAMING_SNAKE_CASE__ ,dtype=SCREAMING_SNAKE_CASE__ ,shape=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = latents return inputs def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__="cpu" ,SCREAMING_SNAKE_CASE__=torch.floataa ,SCREAMING_SNAKE_CASE__=(1, 3, 64, 64) ) -> int: """simple docstring""" if type(SCREAMING_SNAKE_CASE__ ) == str: __SCREAMING_SNAKE_CASE :int = torch.device(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = randn_tensor(SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,device=SCREAMING_SNAKE_CASE__ ,dtype=SCREAMING_SNAKE_CASE__ ) return latents def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE :List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :Dict = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = self.get_inputs() __SCREAMING_SNAKE_CASE :List[str] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE :Union[str, Any] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :Dict = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE :List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :Any = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = self.get_inputs() __SCREAMING_SNAKE_CASE :int = 1 __SCREAMING_SNAKE_CASE :int = None __SCREAMING_SNAKE_CASE :Union[str, Any] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE :str = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :List[str] = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE :Any = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :Any = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ,torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = self.get_inputs(get_fixed_latents=SCREAMING_SNAKE_CASE__ ,device=SCREAMING_SNAKE_CASE__ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=SCREAMING_SNAKE_CASE__ ,enable_math=SCREAMING_SNAKE_CASE__ ,enable_mem_efficient=SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Optional[Any] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE :List[str] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :List[Any] = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE :Dict = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :int = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ,torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = self.get_inputs(get_fixed_latents=SCREAMING_SNAKE_CASE__ ,device=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = 1 __SCREAMING_SNAKE_CASE :int = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=SCREAMING_SNAKE_CASE__ ,enable_math=SCREAMING_SNAKE_CASE__ ,enable_mem_efficient=SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :str = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE :str = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :Optional[int] = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
191
1
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __A : '''simple docstring''' def __init__( self : List[str] ,_snake_case : List[str] ,_snake_case : int ,_snake_case : int ) -> Optional[Any]: """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) lowercase__ : Union[str, Any] = img lowercase__ : Optional[int] = img.shape[1] lowercase__ : Dict = img.shape[0] lowercase__ : Dict = dst_width lowercase__ : Optional[int] = dst_height lowercase__ : Union[str, Any] = self.src_w / self.dst_w lowercase__ : List[Any] = self.src_h / self.dst_h lowercase__ : Optional[Any] = ( np.ones((self.dst_h, self.dst_w, 3) ,np.uinta ) * 255 ) def UpperCAmelCase ( self : int ) -> Tuple: """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): lowercase__ : Union[str, Any] = self.img[self.get_y(_snake_case )][self.get_x(_snake_case )] def UpperCAmelCase ( self : List[str] ,_snake_case : int ) -> int: """simple docstring""" return int(self.ratio_x * x ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : int ) -> int: """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": lowerCAmelCase_ ,lowerCAmelCase_ = 800, 600 lowerCAmelCase_ = imread('image_data/lena.jpg', 1) lowerCAmelCase_ = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
302
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
1
"""simple docstring""" import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase = int(SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = t // 36_00, (t // 60) % 60, t % 60 return F'{h}:{m:02d}:{s:02d}' if h != 0 else F'{m:02d}:{s:02d}' def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any]=3_00 ): '''simple docstring''' return F'\n <div>\n {prefix}\n <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress>\n {label}\n </div>\n ' def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase = """<table border=\"1\" class=\"dataframe\">\n""" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F' <th>{i}</th>\n' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: lowerCAmelCase = F'{elt:.6f}' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else str(SCREAMING_SNAKE_CASE ) html_code += F' <td>{elt}</td>\n' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class lowercase : _SCREAMING_SNAKE_CASE = 5 _SCREAMING_SNAKE_CASE = 0.2 def __init__( self , lowercase , lowercase = None , lowercase = True , lowercase = None , lowercase = 300 , ) -> List[Any]: lowerCAmelCase = total lowerCAmelCase = """""" if prefix is None else prefix lowerCAmelCase = leave lowerCAmelCase = parent lowerCAmelCase = width lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None def _snake_case ( self , lowercase , lowercase = False , lowercase = None ) -> Optional[int]: lowerCAmelCase = value if comment is not None: lowerCAmelCase = comment if self.last_value is None: lowerCAmelCase = lowerCAmelCase = time.time() lowerCAmelCase = lowerCAmelCase = value lowerCAmelCase = lowerCAmelCase = None lowerCAmelCase = self.warmup lowerCAmelCase = 1 self.update_bar(lowercase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 lowerCAmelCase = time.time() lowerCAmelCase = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: lowerCAmelCase = self.elapsed_time / (value - self.start_value) else: lowerCAmelCase = None if value >= self.total: lowerCAmelCase = self.total lowerCAmelCase = None if not self.leave: self.close() elif self.average_time_per_item is not None: lowerCAmelCase = self.average_time_per_item * (self.total - value) self.update_bar(lowercase ) lowerCAmelCase = value lowerCAmelCase = current_time if self.average_time_per_item is None: lowerCAmelCase = 1 else: lowerCAmelCase = max(int(self.update_every / self.average_time_per_item ) , 1 ) def _snake_case ( self , lowercase , lowercase=None ) -> Dict: lowerCAmelCase = """ """ * (len(str(self.total ) ) - len(str(lowercase ) )) + str(lowercase ) if self.elapsed_time is None: lowerCAmelCase = f'[{spaced_value}/{self.total} : < :' elif self.predicted_remaining is None: lowerCAmelCase = f'[{spaced_value}/{self.total} {format_time(self.elapsed_time )}' else: lowerCAmelCase = ( f'[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <' f' {format_time(self.predicted_remaining )}' ) self.label += f', {1/self.average_time_per_item:.2f} it/s' self.label += "]" if self.comment is None or len(self.comment ) == 0 else f', {self.comment}]' self.display() def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: lowerCAmelCase = disp.display(disp.HTML(self.html_code ) , display_id=lowercase ) else: self.output.update(disp.HTML(self.html_code ) ) def _snake_case ( self ) -> Dict: if self.parent is None and self.output is not None: self.output.update(disp.HTML("""""" ) ) class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase , lowercase=None ) -> List[str]: super().__init__(lowercase ) lowerCAmelCase = None if column_names is None else [column_names] lowerCAmelCase = None def _snake_case ( self ) -> Any: lowerCAmelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: lowerCAmelCase = disp.display(disp.HTML(self.html_code ) , display_id=lowercase ) else: self.output.update(disp.HTML(self.html_code ) ) def _snake_case ( self , lowercase ) -> int: if self.inner_table is None: lowerCAmelCase = [list(values.keys() ), list(values.values() )] else: lowerCAmelCase = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(lowercase ) lowerCAmelCase = columns self.inner_table.append([values[c] for c in columns] ) def _snake_case ( self , lowercase , lowercase=None , lowercase=300 ) -> List[Any]: lowerCAmelCase = NotebookProgressBar(lowercase , prefix=lowercase , parent=self , width=lowercase ) return self.child_bar def _snake_case ( self ) -> int: lowerCAmelCase = None self.display() class lowercase ( _UpperCAmelCase ): def __init__( self ) -> Union[str, Any]: lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = False def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> Optional[Any]: lowerCAmelCase = """Epoch""" if args.evaluation_strategy == IntervalStrategy.EPOCH else """Step""" lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = [self.first_column] + ["""Training Loss"""] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("""Validation Loss""" ) lowerCAmelCase = NotebookTrainingTracker(state.max_steps , lowercase ) def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> Dict: lowerCAmelCase = int(state.epoch ) if int(state.epoch ) == state.epoch else f'{state.epoch:.2f}' self.training_tracker.update( state.global_step + 1 , comment=f'Epoch {epoch}/{state.num_train_epochs}' , force_update=self._force_next_update , ) lowerCAmelCase = False def _snake_case ( self , lowercase , lowercase , lowercase , lowercase=None , **lowercase ) -> Dict: if not has_length(lowercase ): return if self.prediction_bar is None: if self.training_tracker is not None: lowerCAmelCase = self.training_tracker.add_child(len(lowercase ) ) else: lowerCAmelCase = NotebookProgressBar(len(lowercase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> Dict: if self.prediction_bar is not None: self.prediction_bar.close() lowerCAmelCase = None def _snake_case ( self , lowercase , lowercase , lowercase , lowercase=None , **lowercase ) -> List[Any]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: lowerCAmelCase = {"""Training Loss""": logs["""loss"""]} # First column is necessarily Step sine we're not in epoch eval strategy lowerCAmelCase = state.global_step self.training_tracker.write_line(lowercase ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase=None , **lowercase ) -> List[str]: if self.training_tracker is not None: lowerCAmelCase = {"""Training Loss""": """No log""", """Validation Loss""": """No log"""} for log in reversed(state.log_history ): if "loss" in log: lowerCAmelCase = log["""loss"""] break if self.first_column == "Epoch": lowerCAmelCase = int(state.epoch ) else: lowerCAmelCase = state.global_step lowerCAmelCase = """eval""" for k in metrics: if k.endswith("""_loss""" ): lowerCAmelCase = re.sub(r"""\_loss$""" , """""" , lowercase ) lowerCAmelCase = metrics.pop("""total_flos""" , lowercase ) lowerCAmelCase = metrics.pop("""epoch""" , lowercase ) lowerCAmelCase = metrics.pop(f'{metric_key_prefix}_runtime' , lowercase ) lowerCAmelCase = metrics.pop(f'{metric_key_prefix}_samples_per_second' , lowercase ) lowerCAmelCase = metrics.pop(f'{metric_key_prefix}_steps_per_second' , lowercase ) lowerCAmelCase = metrics.pop(f'{metric_key_prefix}_jit_compilation_time' , lowercase ) for k, v in metrics.items(): if k == f'{metric_key_prefix}_loss': lowerCAmelCase = v else: lowerCAmelCase = k.split("""_""" ) lowerCAmelCase = """ """.join([part.capitalize() for part in splits[1:]] ) lowerCAmelCase = v self.training_tracker.write_line(lowercase ) self.training_tracker.remove_child() lowerCAmelCase = None # Evaluation takes a long time so we should force the next update. lowerCAmelCase = True def _snake_case ( self , lowercase , lowercase , lowercase , **lowercase ) -> List[Any]: self.training_tracker.update( state.global_step , comment=f'Epoch {int(state.epoch )}/{state.num_train_epochs}' , force_update=lowercase ) lowerCAmelCase = None
46
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __snake_case = NewType("""DataClass""", Any) __snake_case = NewType("""DataClassType""", Any) def _lowercase ( UpperCamelCase_ ) -> int: '''simple docstring''' if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def _lowercase ( UpperCamelCase_ ) -> Callable[[str], Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = {str(UpperCamelCase_ ): choice for choice in choices} return lambda UpperCamelCase_ : str_to_choice.get(UpperCamelCase_ , UpperCamelCase_ ) def _lowercase ( *, UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = dataclasses.MISSING , UpperCamelCase_ = dataclasses.MISSING , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> dataclasses.Field: '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls SCREAMING_SNAKE_CASE__ = {} if aliases is not None: SCREAMING_SNAKE_CASE__ = aliases if help is not None: SCREAMING_SNAKE_CASE__ = help return dataclasses.field(metadata=UpperCamelCase_ , default=UpperCamelCase_ , default_factory=UpperCamelCase_ , **UpperCamelCase_ ) class lowercase__ ( _UpperCAmelCase ): A__ : Iterable[DataClassType] def __init__( self : Union[str, Any] , UpperCAmelCase_ : Union[DataClassType, Iterable[DataClassType]] , **UpperCAmelCase_ : Optional[Any] ): # To make the default appear when using --help if "formatter_class" not in kwargs: SCREAMING_SNAKE_CASE__ = ArgumentDefaultsHelpFormatter super().__init__(**UpperCAmelCase_ ) if dataclasses.is_dataclass(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = [dataclass_types] SCREAMING_SNAKE_CASE__ = list(UpperCAmelCase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(UpperCAmelCase_ ) @staticmethod def A_ ( UpperCAmelCase_ : ArgumentParser , UpperCAmelCase_ : dataclasses.Field ): SCREAMING_SNAKE_CASE__ = F'--{field.name}' SCREAMING_SNAKE_CASE__ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , UpperCAmelCase_ ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) SCREAMING_SNAKE_CASE__ = kwargs.pop('aliases' , [] ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = [aliases] SCREAMING_SNAKE_CASE__ = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(UpperCAmelCase_ , 'UnionType' ) and isinstance(UpperCAmelCase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(UpperCAmelCase_ ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F' Problem encountered in field \'{field.name}\'.' ) if type(UpperCAmelCase_ ) not in field.type.__args__: # filter `str` in Union SCREAMING_SNAKE_CASE__ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] SCREAMING_SNAKE_CASE__ = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) SCREAMING_SNAKE_CASE__ = ( field.type.__args__[0] if isinstance(UpperCAmelCase_ , field.type.__args__[1] ) else field.type.__args__[1] ) SCREAMING_SNAKE_CASE__ = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) SCREAMING_SNAKE_CASE__ = {} if origin_type is Literal or (isinstance(field.type , UpperCAmelCase_ ) and issubclass(field.type , UpperCAmelCase_ )): if origin_type is Literal: SCREAMING_SNAKE_CASE__ = field.type.__args__ else: SCREAMING_SNAKE_CASE__ = [x.value for x in field.type] SCREAMING_SNAKE_CASE__ = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default else: SCREAMING_SNAKE_CASE__ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument SCREAMING_SNAKE_CASE__ = copy(UpperCAmelCase_ ) # Hack because type=bool in argparse does not behave as we want. SCREAMING_SNAKE_CASE__ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. SCREAMING_SNAKE_CASE__ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way SCREAMING_SNAKE_CASE__ = default # This tells argparse we accept 0 or 1 value after --field_name SCREAMING_SNAKE_CASE__ = '?' # This is the value that will get picked if we do --field_name (without value) SCREAMING_SNAKE_CASE__ = True elif isclass(UpperCAmelCase_ ) and issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = field.type.__args__[0] SCREAMING_SNAKE_CASE__ = '+' if field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default_factory() elif field.default is dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = True else: SCREAMING_SNAKE_CASE__ = field.type if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default elif field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default_factory() else: SCREAMING_SNAKE_CASE__ = True parser.add_argument(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): SCREAMING_SNAKE_CASE__ = False parser.add_argument(F'--no_{field.name}' , action='store_false' , dest=field.name , **UpperCAmelCase_ ) def A_ ( self : List[Any] , UpperCAmelCase_ : DataClassType ): if hasattr(UpperCAmelCase_ , '_argument_group_name' ): SCREAMING_SNAKE_CASE__ = self.add_argument_group(dtype._argument_group_name ) else: SCREAMING_SNAKE_CASE__ = self try: SCREAMING_SNAKE_CASE__ = get_type_hints(UpperCAmelCase_ ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = '.'.join(map(UpperCAmelCase_ , sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(UpperCAmelCase_ ): if not field.init: continue SCREAMING_SNAKE_CASE__ = type_hints[field.name] self._parse_dataclass_field(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Dict , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , UpperCAmelCase_ : str=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): SCREAMING_SNAKE_CASE__ = [] if args_filename: args_files.append(Path(UpperCAmelCase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values SCREAMING_SNAKE_CASE__ = ArgumentParser() args_file_parser.add_argument(UpperCAmelCase_ , type=UpperCAmelCase_ , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = args_file_parser.parse_known_args(args=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = vars(UpperCAmelCase_ ).get(args_file_flag.lstrip('-' ) , UpperCAmelCase_ ) if cmd_args_file_paths: args_files.extend([Path(UpperCAmelCase_ ) for p in cmd_args_file_paths] ) SCREAMING_SNAKE_CASE__ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last SCREAMING_SNAKE_CASE__ = file_args + args if args is not None else file_args + sys.argv[1:] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.parse_known_args(args=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE__ = {f.name for f in dataclasses.fields(UpperCAmelCase_ ) if f.init} SCREAMING_SNAKE_CASE__ = {k: v for k, v in vars(UpperCAmelCase_ ).items() if k in keys} for k in keys: delattr(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = dtype(**UpperCAmelCase_ ) outputs.append(UpperCAmelCase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(UpperCAmelCase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def A_ ( self : str , UpperCAmelCase_ : Dict[str, Any] , UpperCAmelCase_ : bool = False ): SCREAMING_SNAKE_CASE__ = set(args.keys() ) SCREAMING_SNAKE_CASE__ = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE__ = {f.name for f in dataclasses.fields(UpperCAmelCase_ ) if f.init} SCREAMING_SNAKE_CASE__ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) SCREAMING_SNAKE_CASE__ = dtype(**UpperCAmelCase_ ) outputs.append(UpperCAmelCase_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(UpperCAmelCase_ )}' ) return tuple(UpperCAmelCase_ ) def A_ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ): with open(Path(UpperCAmelCase_ ) , encoding='utf-8' ) as open_json_file: SCREAMING_SNAKE_CASE__ = json.loads(open_json_file.read() ) SCREAMING_SNAKE_CASE__ = self.parse_dict(UpperCAmelCase_ , allow_extra_keys=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def A_ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ): SCREAMING_SNAKE_CASE__ = self.parse_dict(yaml.safe_load(Path(UpperCAmelCase_ ).read_text() ) , allow_extra_keys=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ )
176
0
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 __A = sys.version_info >= (3, 10) def __A (_SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->Optional[Any]: """simple docstring""" return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :int __magic_name__ :float __magic_name__ :str __magic_name__ :bool @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :int = 42 __magic_name__ :str = field(default="""toto""" , metadata={"""help""": """help message"""} ) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :bool = False __magic_name__ :bool = True __magic_name__ :Optional[bool] = None class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Tuple = """titi""" __magic_name__ :Any = """toto""" class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Union[str, Any] = """titi""" __magic_name__ :Tuple = """toto""" __magic_name__ :Optional[Any] = 42 @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :BasicEnum = "toto" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = BasicEnum(self.foo ) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :MixedTypeEnum = "toto" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = MixedTypeEnum(self.foo ) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :Optional[int] = None __magic_name__ :Optional[float] = field(default=a , metadata={"""help""": """help message"""} ) __magic_name__ :Optional[str] = None __magic_name__ :Optional[List[str]] = list_field(default=[] ) __magic_name__ :Optional[List[int]] = list_field(default=[] ) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :List[int] = list_field(default=[] ) __magic_name__ :List[int] = list_field(default=[1, 2, 3] ) __magic_name__ :List[str] = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) __magic_name__ :List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :List[int] = field() __magic_name__ :str = field() __magic_name__ :BasicEnum = field() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = BasicEnum(self.required_enum ) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :int __magic_name__ :"BasicEnum" = field() __magic_name__ :"Optional[bool]" = None __magic_name__ :"str" = field(default="""toto""" , metadata={"""help""": """help message"""} ) __magic_name__ :"List[str]" = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :bool = False __magic_name__ :bool = True __magic_name__ :bool | None = None @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :int | None = None __magic_name__ :float | None = field(default=a , metadata={"""help""": """help message"""} ) __magic_name__ :str | None = None __magic_name__ :list[str] | None = list_field(default=[] ) __magic_name__ :list[int] | None = list_field(default=[] ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowerCAmelCase__ :Dict = {k: v for k, v in vars(__UpperCAmelCase ).items() if k != 'container'} lowerCAmelCase__ :Optional[Any] = {k: v for k, v in vars(__UpperCAmelCase ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , __UpperCAmelCase ) and yy.get('choices' , __UpperCAmelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](__UpperCAmelCase ) , yy['type'](__UpperCAmelCase ) ) del xx["type"], yy["type"] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = argparse.ArgumentParser() expected.add_argument('--foo' , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument('--bar' , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument('--baz' , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument('--flag' , type=__UpperCAmelCase , default=__UpperCAmelCase , const=__UpperCAmelCase , nargs='?' ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Tuple = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((lowerCAmelCase__) , ) :List[str] = parser.parse_args_into_dataclasses(__UpperCAmelCase , look_for_args_file=__UpperCAmelCase ) self.assertFalse(example.flag ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :int = argparse.ArgumentParser() expected.add_argument('--foo' , default=4_2 , type=__UpperCAmelCase ) expected.add_argument('--baz' , default='toto' , type=__UpperCAmelCase , help='help message' ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = argparse.ArgumentParser() expected.add_argument('--foo' , type=__UpperCAmelCase , default=__UpperCAmelCase , const=__UpperCAmelCase , nargs='?' ) expected.add_argument('--baz' , type=__UpperCAmelCase , default=__UpperCAmelCase , const=__UpperCAmelCase , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=__UpperCAmelCase , dest='baz' ) expected.add_argument('--opt' , type=__UpperCAmelCase , default=__UpperCAmelCase ) lowerCAmelCase__ :List[str] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCAmelCase ) for dataclass_type in dataclass_types: lowerCAmelCase__ :Dict = HfArgumentParser(__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Tuple = parser.parse_args([] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) lowerCAmelCase__ :List[Any] = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) lowerCAmelCase__ :List[Any] = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) lowerCAmelCase__ :Tuple = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) lowerCAmelCase__ :Dict = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 4_2] , type=make_choice_type_function(['titi', 'toto', 4_2] ) , ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Any = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) lowerCAmelCase__ :Dict = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowerCAmelCase__ :Any = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) lowerCAmelCase__ :List[Any] = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowerCAmelCase__ :Optional[Any] = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 4_2 ) lowerCAmelCase__ :Tuple = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case ( self ): '''simple docstring''' @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :Literal["titi", "toto", 42] = "toto" lowerCAmelCase__ :Dict = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :Dict = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 4_2) , type=make_choice_type_function(['titi', 'toto', 4_2] ) , ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :int = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) lowerCAmelCase__ :Optional[Any] = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) lowerCAmelCase__ :Tuple = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 4_2 ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=__UpperCAmelCase ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=__UpperCAmelCase ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=__UpperCAmelCase ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = parser.parse_args([] ) self.assertEqual( __UpperCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) lowerCAmelCase__ :List[str] = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(__UpperCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = argparse.ArgumentParser() expected.add_argument('--foo' , default=__UpperCAmelCase , type=__UpperCAmelCase ) expected.add_argument('--bar' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='help message' ) expected.add_argument('--baz' , default=__UpperCAmelCase , type=__UpperCAmelCase ) expected.add_argument('--ces' , nargs='+' , default=[] , type=__UpperCAmelCase ) expected.add_argument('--des' , nargs='+' , default=[] , type=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCAmelCase ) for dataclass_type in dataclass_types: lowerCAmelCase__ :str = HfArgumentParser(__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Dict = parser.parse_args([] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , bar=__UpperCAmelCase , baz=__UpperCAmelCase , ces=[] , des=[] ) ) lowerCAmelCase__ :Tuple = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(__UpperCAmelCase , Namespace(foo=1_2 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument('--required_str' , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=__UpperCAmelCase , ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = argparse.ArgumentParser() expected.add_argument('--foo' , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=__UpperCAmelCase , ) expected.add_argument('--opt' , type=__UpperCAmelCase , default=__UpperCAmelCase ) expected.add_argument('--baz' , default='toto' , type=__UpperCAmelCase , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = { 'foo': 1_2, 'bar': 3.14, 'baz': '42', 'flag': True, } lowerCAmelCase__ :List[str] = parser.parse_dict(__UpperCAmelCase )[0] lowerCAmelCase__ :Any = BasicExample(**__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :str = { 'foo': 1_2, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 4_2, } self.assertRaises(__UpperCAmelCase , parser.parse_dict , __UpperCAmelCase , allow_extra_keys=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = { 'foo': 1_2, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ :List[Any] = os.path.join(__UpperCAmelCase , 'temp_json' ) os.mkdir(__UpperCAmelCase ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] lowerCAmelCase__ :Union[str, Any] = BasicExample(**__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = HfArgumentParser(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = { 'foo': 1_2, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ :Optional[int] = os.path.join(__UpperCAmelCase , 'temp_yaml' ) os.mkdir(__UpperCAmelCase ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Dict = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] lowerCAmelCase__ :Any = BasicExample(**__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = HfArgumentParser(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase )
254
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __A = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __A = TaTokenizerFast __A = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __A = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
254
1
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ = 1_6 UpperCAmelCase__ = 3_2 def __UpperCAmelCase ( lowercase ,lowercase = 16 ): """simple docstring""" _UpperCAmelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=lowercase ,max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase = datasets.map( lowercase ,batched=lowercase ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase = 8 else: _UpperCAmelCase = None return tokenizer.pad( lowercase ,padding="""longest""" ,max_length=lowercase ,pad_to_multiple_of=lowercase ,return_tensors="""pt""" ,) # Instantiate dataloaders. _UpperCAmelCase = DataLoader( tokenized_datasets["""train"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) _UpperCAmelCase = DataLoader( tokenized_datasets["""validation"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase__ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,lowercase ) == "1": _UpperCAmelCase = 2 # Initialize accelerator _UpperCAmelCase = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase = config["""lr"""] _UpperCAmelCase = int(config["""num_epochs"""] ) _UpperCAmelCase = int(config["""seed"""] ) _UpperCAmelCase = int(config["""batch_size"""] ) _UpperCAmelCase = evaluate.load("""glue""" ,"""mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowercase ) def inner_training_loop(lowercase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase = AdamW(params=model.parameters() ,lr=lowercase ) _UpperCAmelCase , _UpperCAmelCase = get_dataloaders(lowercase ,lowercase ) # Instantiate scheduler _UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=lowercase ,num_warmup_steps=1_00 ,num_training_steps=(len(lowercase ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = accelerator.prepare( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase = model(**lowercase ) _UpperCAmelCase = outputs.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase = model(**lowercase ) _UpperCAmelCase = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowercase ,references=lowercase ,) _UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' ,lowercase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" ,type=lowercase ,default=lowercase ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" ,) parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase ,lowercase ) if __name__ == "__main__": main()
289
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a : def __init__( self : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any]=13 , __lowerCAmelCase : str=7 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : int=True , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : int=True , __lowerCAmelCase : List[Any]=99 , __lowerCAmelCase : Optional[int]=16 , __lowerCAmelCase : Dict=36 , __lowerCAmelCase : Optional[Any]=6 , __lowerCAmelCase : List[str]=6 , __lowerCAmelCase : Union[str, Any]=6 , __lowerCAmelCase : str=37 , __lowerCAmelCase : Optional[int]="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : List[str]=512 , __lowerCAmelCase : Optional[Any]=16 , __lowerCAmelCase : int=2 , __lowerCAmelCase : List[str]=0.02 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : List[str]=4 , __lowerCAmelCase : Any=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = embedding_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_hidden_groups _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Union[str, Any] ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Any ): _UpperCAmelCase = AlbertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int ): _UpperCAmelCase = AlbertForPreTraining(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , sentence_order_label=__lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ): _UpperCAmelCase = AlbertForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ): _UpperCAmelCase = AlbertForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = AlbertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = AlbertForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Dict ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = AlbertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : str = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _snake_case : Tuple = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) _snake_case : Dict = True def lowerCAmelCase_ ( self : str , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any]=False ): _UpperCAmelCase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCAmelCase ) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = AlbertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Dict ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = AlbertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_torch class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = AlbertModel.from_pretrained("""albert-base-v2""" ) _UpperCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )[0] _UpperCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCAmelCase ) _UpperCAmelCase = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCAmelCase , atol=1e-4 ) )
289
1
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Tuple = {} lowercase : Union[str, Any] = tokenizer(example["""content"""] , truncation=SCREAMING_SNAKE_CASE__ )["""input_ids"""] lowercase : Any = len(example["""content"""] ) / len(output["""input_ids"""] ) return output lowercase : Union[str, Any] = HfArgumentParser(PretokenizationArguments) lowercase : Optional[int] = parser.parse_args() if args.num_workers is None: lowercase : List[Any] = multiprocessing.cpu_count() lowercase : str = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowercase : Dict = time.time() lowercase : str = load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') lowercase : Optional[Any] = time.time() lowercase : Union[str, Any] = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') lowercase : Any = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
285
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: # Load configuration defined in the metadata file with open(SCREAMING_SNAKE_CASE__ ) as metadata_file: lowercase : Union[str, Any] = json.load(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE__ , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path lowercase : Tuple = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""module"""] # Load the entity vocab file lowercase : str = load_original_entity_vocab(SCREAMING_SNAKE_CASE__ ) # add an entry for [MASK2] lowercase : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowercase : Dict = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks lowercase : List[Any] = AddedToken("""<ent>""" , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) lowercase : int = AddedToken("""<ent2>""" , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """tokenizer_config.json""" ) , """r""" ) as f: lowercase : List[str] = json.load(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = """MLukeTokenizer""" with open(os.path.join(SCREAMING_SNAKE_CASE__ , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Initialize the embeddings of the special tokens lowercase : Dict = tokenizer.convert_tokens_to_ids(["""@"""] )[0] lowercase : Dict = tokenizer.convert_tokens_to_ids(["""#"""] )[0] lowercase : int = state_dict["""embeddings.word_embeddings.weight"""] lowercase : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) lowercase : List[str] = word_emb[enta_init_index].unsqueeze(0 ) lowercase : str = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowercase : List[Any] = state_dict[bias_name] lowercase : Any = decoder_bias[ent_init_index].unsqueeze(0 ) lowercase : Tuple = decoder_bias[enta_init_index].unsqueeze(0 ) lowercase : int = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowercase : Union[str, Any] = f"encoder.layer.{layer_index}.attention.self." lowercase : List[str] = state_dict[prefix + matrix_name] lowercase : Any = state_dict[prefix + matrix_name] lowercase : str = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowercase : Any = state_dict["""entity_embeddings.entity_embeddings.weight"""] lowercase : Tuple = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowercase : Optional[Any] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowercase : Optional[Any] = state_dict["""entity_predictions.bias"""] lowercase : str = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowercase : List[str] = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowercase : List[str] = LukeForMaskedLM(config=SCREAMING_SNAKE_CASE__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) lowercase : List[str] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): lowercase : List[Any] = state_dict[key] else: lowercase : Union[str, Any] = state_dict[key] lowercase , lowercase : int = model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) if set(SCREAMING_SNAKE_CASE__ ) != {"luke.embeddings.position_ids"}: raise ValueError(f"Unexpected unexpected_keys: {unexpected_keys}" ) if set(SCREAMING_SNAKE_CASE__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowercase : str = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , task="""entity_classification""" ) lowercase : str = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" lowercase : str = (0, 9) lowercase : Dict = tokenizer(SCREAMING_SNAKE_CASE__ , entity_spans=[span] , return_tensors="""pt""" ) lowercase : Any = model(**SCREAMING_SNAKE_CASE__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowercase : List[Any] = torch.Size((1, 33, 768) ) lowercase : str = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowercase : Optional[int] = torch.Size((1, 1, 768) ) lowercase : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" f" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction lowercase : Any = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = """Tokyo is the capital of <mask>.""" lowercase : List[Any] = (24, 30) lowercase : int = tokenizer(SCREAMING_SNAKE_CASE__ , entity_spans=[span] , return_tensors="""pt""" ) lowercase : Dict = model(**SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = encoding["""input_ids"""][0].tolist() lowercase : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) lowercase : Dict = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = outputs.entity_logits[0][0].argmax().item() lowercase : int = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(SCREAMING_SNAKE_CASE__ ) ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : Optional[int] = ["""[MASK]""", """[PAD]""", """[UNK]"""] lowercase : List[str] = [json.loads(SCREAMING_SNAKE_CASE__ ) for line in open(SCREAMING_SNAKE_CASE__ )] lowercase : int = {} for entry in data: lowercase : Optional[Any] = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowercase : Optional[Any] = entity_id break lowercase : List[Any] = f"{language}:{entity_name}" lowercase : Union[str, Any] = entity_id return new_mapping if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) lowercase : str = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
285
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A = 50 ) -> int: """simple docstring""" lowercase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f"""{solution() = }""")
2
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = b.T A__ = np.sum(np.square(UpperCamelCase__ ) , axis=1 ) A__ = np.sum(np.square(UpperCamelCase__ ) , axis=0 ) A__ = np.matmul(UpperCamelCase__ , UpperCamelCase__ ) A__ = aa[:, None] - 2 * ab + ba[None, :] return d def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = x.reshape(-1 , 3 ) A__ = squared_euclidean_distance(UpperCamelCase__ , UpperCamelCase__ ) return np.argmin(UpperCamelCase__ , axis=1 ) class UpperCamelCase__( __A ): lowerCAmelCase__ : Tuple = ['pixel_values'] def __init__( self ,__UpperCAmelCase = None ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = PILImageResampling.BILINEAR ,__UpperCAmelCase = True ,__UpperCAmelCase = True ,**__UpperCAmelCase ,) -> None: super().__init__(**__UpperCAmelCase ) A__ = size if size is not None else {'height': 2_56, 'width': 2_56} A__ = get_size_dict(__UpperCAmelCase ) A__ = np.array(__UpperCAmelCase ) if clusters is not None else None A__ = do_resize A__ = size A__ = resample A__ = do_normalize A__ = do_color_quantize def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = PILImageResampling.BILINEAR ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> np.ndarray: A__ = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( __UpperCAmelCase ,size=(size['height'], size['width']) ,resample=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,) -> np.ndarray: A__ = rescale(image=__UpperCAmelCase ,scale=1 / 1_2_7.5 ,data_format=__UpperCAmelCase ) A__ = image - 1 return image def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = ChannelDimension.FIRST ,**__UpperCAmelCase ,) -> PIL.Image.Image: A__ = do_resize if do_resize is not None else self.do_resize A__ = size if size is not None else self.size A__ = get_size_dict(__UpperCAmelCase ) A__ = resample if resample is not None else self.resample A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize A__ = clusters if clusters is not None else self.clusters A__ = np.array(__UpperCAmelCase ) A__ = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. A__ = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: A__ = [self.resize(image=__UpperCAmelCase ,size=__UpperCAmelCase ,resample=__UpperCAmelCase ) for image in images] if do_normalize: A__ = [self.normalize(image=__UpperCAmelCase ) for image in images] if do_color_quantize: A__ = [to_channel_dimension_format(__UpperCAmelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) A__ = np.array(__UpperCAmelCase ) A__ = color_quantize(__UpperCAmelCase ,__UpperCAmelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) A__ = images.shape[0] A__ = images.reshape(__UpperCAmelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. A__ = list(__UpperCAmelCase ) else: A__ = [to_channel_dimension_format(__UpperCAmelCase ,__UpperCAmelCase ) for image in images] A__ = {'input_ids': images} return BatchFeature(data=__UpperCAmelCase ,tensor_type=__UpperCAmelCase )
221
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = ShapEImgaImgPipeline snake_case_ = ["""image"""] snake_case_ = ["""image"""] snake_case_ = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] snake_case_ = False @property def __magic_name__ ( self : Union[str, Any] ) -> Optional[Any]: return 32 @property def __magic_name__ ( self : Optional[Any] ) -> Optional[Any]: return 32 @property def __magic_name__ ( self : List[str] ) -> Union[str, Any]: return self.time_input_dim * 4 @property def __magic_name__ ( self : Any ) -> str: return 8 @property def __magic_name__ ( self : Optional[Any] ) -> int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : int =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) SCREAMING_SNAKE_CASE__ : int =CLIPVisionModel(__lowercase ) return model @property def __magic_name__ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ : str =CLIPImageProcessor( crop_size=2_24 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , ) return image_processor @property def __magic_name__ ( self : Tuple ) -> str: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] ={ '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } SCREAMING_SNAKE_CASE__ : Any =PriorTransformer(**__lowercase ) return model @property def __magic_name__ ( self : Any ) -> Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Any ={ '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE__ : Optional[Any] =ShapERenderer(**__lowercase ) return model def __magic_name__ ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Tuple =self.dummy_prior SCREAMING_SNAKE_CASE__ : int =self.dummy_image_encoder SCREAMING_SNAKE_CASE__ : List[Any] =self.dummy_image_processor SCREAMING_SNAKE_CASE__ : Tuple =self.dummy_renderer SCREAMING_SNAKE_CASE__ : List[str] =HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=__lowercase , clip_sample=__lowercase , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE__ : Optional[int] ={ '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __magic_name__ ( self : str , __lowercase : Union[str, Any] , __lowercase : str=0 ) -> List[str]: SCREAMING_SNAKE_CASE__ : int =floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowercase ) ).to(__lowercase ) if str(__lowercase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ : int =torch.manual_seed(__lowercase ) else: SCREAMING_SNAKE_CASE__ : Dict =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] ={ '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __magic_name__ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ : int ='''cpu''' SCREAMING_SNAKE_CASE__ : Dict =self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.pipeline_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : int =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =pipe(**self.get_dummy_inputs(__lowercase ) ) SCREAMING_SNAKE_CASE__ : List[str] =output.images[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] =np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self : List[str] ) -> Dict: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __magic_name__ ( self : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Tuple =torch_device == '''cpu''' SCREAMING_SNAKE_CASE__ : str =True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__lowercase , relax_max_difference=__lowercase , ) def __magic_name__ ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE__ : str =self.get_dummy_components() SCREAMING_SNAKE_CASE__ : List[str] =self.pipeline_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =1 SCREAMING_SNAKE_CASE__ : int =2 SCREAMING_SNAKE_CASE__ : Optional[Any] =self.get_dummy_inputs(__lowercase ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE__ : Dict =batch_size * [inputs[key]] SCREAMING_SNAKE_CASE__ : int =pipe(**__lowercase , num_images_per_prompt=__lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : Union[str, Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : str =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) SCREAMING_SNAKE_CASE__ : int =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) SCREAMING_SNAKE_CASE__ : Tuple =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.Generator(device=__lowercase ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : int =pipe( __lowercase , generator=__lowercase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__lowercase , __lowercase )
222
'''simple docstring''' import math def _a( UpperCamelCase__ : int ): '''simple docstring''' return math.sqrt(UpperCamelCase__ ) * math.sqrt(UpperCamelCase__ ) == num def _a( UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =0 SCREAMING_SNAKE_CASE__ : Any =n while left <= right: SCREAMING_SNAKE_CASE__ : str =(left + right) // 2 if mid**2 == n: return True elif mid**2 > n: SCREAMING_SNAKE_CASE__ : Optional[Any] =mid - 1 else: SCREAMING_SNAKE_CASE__ : Tuple =mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
222
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" __a = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : str =StableDiffusionLatentUpscalePipeline __lowerCamelCase : Optional[int] =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowerCamelCase : Optional[int] =PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowerCamelCase : List[Any] =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCamelCase : List[str] =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowerCamelCase : Union[str, Any] =frozenset([] ) __lowerCamelCase : Union[str, Any] =True @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = 1 __a = 4 __a = (16, 16) __a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowercase ) return image def UpperCamelCase_ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) __a = UNetaDConditionModel( act_fn="""gelu""" , attention_head_dim=8 , norm_num_groups=__lowercase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( """KDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", ) , in_channels=8 , mid_block_type=__lowercase , only_cross_attention=__lowercase , out_channels=5 , resnet_time_scale_shift="""scale_shift""" , time_embedding_type="""fourier""" , timestep_post_act="""gelu""" , up_block_types=("""KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KUpBlock2D""") , ) __a = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", ] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) __a = EulerDiscreteScheduler(prediction_type="""sample""" ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""quick_gelu""" , projection_dim=512 , ) __a = CLIPTextModel(__lowercase ) __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __a = { """unet""": model.eval(), """vae""": vae.eval(), """scheduler""": scheduler, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase_ ( self : Tuple , __lowercase : Optional[int] , __lowercase : Dict=0 ): '''simple docstring''' if str(__lowercase ).startswith("""mps""" ): __a = torch.manual_seed(__lowercase ) else: __a = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __a = { """prompt""": """A painting of a squirrel eating a burger""", """image""": self.dummy_image.cpu(), """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = """cpu""" __a = self.get_dummy_components() __a = self.pipeline_class(**__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __a = self.get_dummy_inputs(__lowercase ) __a = pipe(**__lowercase ).images __a = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) __a = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) __a = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowercase , 1E-3 ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3E-3 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3E-3 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = [ """DDIMScheduler""", """DDPMScheduler""", """PNDMScheduler""", """HeunDiscreteScheduler""", """EulerAncestralDiscreteScheduler""", """KDPM2DiscreteScheduler""", """KDPM2AncestralDiscreteScheduler""", """DPMSolverSDEScheduler""", ] __a = self.get_dummy_components() __a = self.pipeline_class(**__lowercase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __a = self.get_dummy_inputs(__lowercase ) __a = 2 __a = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __a = getattr(__lowercase , scheduler_enum.name ) __a = scheduler_cls.from_config(pipe.scheduler.config ) __a = pipe(**__lowercase )[0] outputs.append(__lowercase ) assert check_same_shape(__lowercase ) @require_torch_gpu @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = torch.manual_seed(33 ) __a = StableDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) __a = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) __a = """a photo of an astronaut high resolution, unreal engine, ultra realistic""" __a = pipe(__lowercase , generator=__lowercase , output_type="""latent""" ).images __a = upscaler( prompt=__lowercase , image=__lowercase , num_inference_steps=20 , guidance_scale=0 , generator=__lowercase , output_type="""np""" , ).images[0] __a = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy""" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = torch.manual_seed(33 ) __a = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) __a = """the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas""" __a = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png""" ) __a = upscaler( prompt=__lowercase , image=__lowercase , num_inference_steps=20 , guidance_scale=0 , generator=__lowercase , output_type="""np""" , ).images[0] __a = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy""" ) assert np.abs((expected_image - image).max() ) < 5E-2
302
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] ='autoformer' __lowerCamelCase : str ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : List[Any] , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : str = "student_t" , __lowercase : str = "nll" , __lowercase : int = 1 , __lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowercase : bool = True , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : Optional[List[int]] = None , __lowercase : Optional[List[int]] = None , __lowercase : int = 64 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 32 , __lowercase : int = 32 , __lowercase : str = "gelu" , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : int = 100 , __lowercase : float = 0.02 , __lowercase : bool = True , __lowercase : List[Any]=True , __lowercase : int = 10 , __lowercase : int = 25 , __lowercase : int = 3 , **__lowercase : Optional[int] , ): '''simple docstring''' # time series specific configuration __a = prediction_length __a = context_length if context_length is not None else prediction_length __a = distribution_output __a = loss __a = input_size __a = num_time_features __a = lags_sequence __a = scaling __a = num_dynamic_real_features __a = num_static_real_features __a = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) __a = cardinality else: __a = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) __a = embedding_dimension else: __a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __a = num_parallel_samples # Transformer architecture configuration __a = input_size * len(self.lags_sequence ) + self._number_of_features __a = d_model __a = encoder_attention_heads __a = decoder_attention_heads __a = encoder_ffn_dim __a = decoder_ffn_dim __a = encoder_layers __a = decoder_layers __a = dropout __a = attention_dropout __a = activation_dropout __a = encoder_layerdrop __a = decoder_layerdrop __a = activation_function __a = init_std __a = use_cache # Autoformer __a = label_length __a = moving_average __a = autocorrelation_factor super().__init__(is_encoder_decoder=__lowercase , **__lowercase ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
302
1
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase__ ( a__ : Dict , a__ : Dict="shi-labs/oneformer_demo" ) -> List[Any]: with open(hf_hub_download(a__ , a__ , repo_type="""dataset""" ) , """r""" ) as f: UpperCamelCase_ = json.load(a__ ) UpperCamelCase_ = {} UpperCamelCase_ = [] UpperCamelCase_ = [] for key, info in class_info.items(): UpperCamelCase_ = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(a__ ) ) UpperCamelCase_ = thing_ids UpperCamelCase_ = class_names return metadata class lowercase_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=3_0 , __UpperCamelCase=4_0_0 , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=1_0 , __UpperCamelCase=False , __UpperCamelCase=2_5_5 , __UpperCamelCase="shi-labs/oneformer_demo" , __UpperCamelCase="ade20k_panoptic.json" , __UpperCamelCase=1_0 , ): """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = {"""shortest_edge""": 3_2, """longest_edge""": 1_3_3_3} if size is None else size UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean UpperCamelCase_ = image_std UpperCamelCase_ = class_info_file UpperCamelCase_ = prepare_metadata(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = num_text UpperCamelCase_ = repo_path # for the post_process_functions UpperCamelCase_ = 2 UpperCamelCase_ = 1_0 UpperCamelCase_ = 1_0 UpperCamelCase_ = 3 UpperCamelCase_ = 4 UpperCamelCase_ = num_labels UpperCamelCase_ = do_reduce_labels UpperCamelCase_ = ignore_index def lowerCamelCase_ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=False ): """simple docstring""" if not batched: UpperCamelCase_ = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): UpperCamelCase_ , UpperCamelCase_ = image.size else: UpperCamelCase_ , UpperCamelCase_ = image.shape[1], image.shape[2] if w < h: UpperCamelCase_ = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase_ = self.size["""shortest_edge"""] elif w > h: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = self.size["""shortest_edge"""] else: UpperCamelCase_ = [] for image in image_inputs: UpperCamelCase_ , UpperCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0] UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width def lowerCamelCase_ ( self ): """simple docstring""" return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : str = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string A__ : Dict = image_processing_class def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = OneFormerImageProcessorTester(self ) @property def lowerCamelCase_ ( self ): """simple docstring""" return self.image_processing_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """size""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """ignore_index""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """class_info_file""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """num_text""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """repo_path""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """metadata""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_reduce_labels""" ) ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input UpperCamelCase_ = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processing_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ , UpperCamelCase_ = self.image_processing_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) UpperCamelCase_ = image_processor( __UpperCamelCase , ["""semantic"""] * len(__UpperCamelCase ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processing_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ , UpperCamelCase_ = self.image_processing_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) UpperCamelCase_ = image_processor( __UpperCamelCase , ["""semantic"""] * len(__UpperCamelCase ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processing_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ , UpperCamelCase_ = self.image_processing_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) UpperCamelCase_ = image_processor( __UpperCamelCase , ["""semantic"""] * len(__UpperCamelCase ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase="np" ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCamelCase_ = self.image_processing_tester.num_labels UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=__UpperCamelCase ) if with_segmentation_maps: UpperCamelCase_ = num_labels if is_instance_map: UpperCamelCase_ = list(range(__UpperCamelCase ) ) * 2 UpperCamelCase_ = dict(enumerate(__UpperCamelCase ) ) UpperCamelCase_ = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCamelCase_ = [Image.fromarray(__UpperCamelCase ) for annotation in annotations] UpperCamelCase_ = image_processor( __UpperCamelCase , ["""semantic"""] * len(__UpperCamelCase ) , __UpperCamelCase , return_tensors="""pt""" , instance_id_to_semantic_id=__UpperCamelCase , pad_and_return_pixel_mask=__UpperCamelCase , ) return inputs def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" def common(__UpperCamelCase=False , __UpperCamelCase=None ): UpperCamelCase_ = self.comm_get_image_processor_inputs( with_segmentation_maps=__UpperCamelCase , is_instance_map=__UpperCamelCase , segmentation_type=__UpperCamelCase ) UpperCamelCase_ = inputs["""mask_labels"""] UpperCamelCase_ = inputs["""class_labels"""] UpperCamelCase_ = inputs["""pixel_values"""] UpperCamelCase_ = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(__UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=__UpperCamelCase ) common(is_instance_map=__UpperCamelCase , segmentation_type="""pil""" ) common(is_instance_map=__UpperCamelCase , segmentation_type="""pil""" ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = np.zeros((2_0, 5_0) ) UpperCamelCase_ = 1 UpperCamelCase_ = 1 UpperCamelCase_ = 1 UpperCamelCase_ = binary_mask_to_rle(__UpperCamelCase ) self.assertEqual(len(__UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 2_1 ) self.assertEqual(rle[1] , 4_5 ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) UpperCamelCase_ = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase_ = fature_extractor.post_process_semantic_segmentation(__UpperCamelCase ) self.assertEqual(len(__UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCamelCase_ = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCamelCase_ = fature_extractor.post_process_semantic_segmentation(__UpperCamelCase , target_sizes=__UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) UpperCamelCase_ = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase_ = image_processor.post_process_instance_segmentation(__UpperCamelCase , threshold=0 ) self.assertTrue(len(__UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , __UpperCamelCase ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) UpperCamelCase_ = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase_ = image_processor.post_process_panoptic_segmentation(__UpperCamelCase , threshold=0 ) self.assertTrue(len(__UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , __UpperCamelCase ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
261
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowerCamelCase__ ( a__ : BertModel , a__ : str , a__ : str ) -> Tuple: UpperCamelCase_ = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""") UpperCamelCase_ = ( ("""layer.""", """layer_"""), ("""word_embeddings.weight""", """word_embeddings"""), ("""position_embeddings.weight""", """position_embeddings"""), ("""token_type_embeddings.weight""", """token_type_embeddings"""), (""".""", """/"""), ("""LayerNorm/weight""", """LayerNorm/gamma"""), ("""LayerNorm/bias""", """LayerNorm/beta"""), ("""weight""", """kernel"""), ) if not os.path.isdir(a__ ): os.makedirs(a__ ) UpperCamelCase_ = model.state_dict() def to_tf_var_name(a__ : str ): for patt, repl in iter(a__ ): UpperCamelCase_ = name.replace(a__ , a__ ) return f'''bert/{name}''' def create_tf_var(a__ : np.ndarray , a__ : str , a__ : tf.Session ): UpperCamelCase_ = tf.dtypes.as_dtype(tensor.dtype ) UpperCamelCase_ = tf.get_variable(dtype=a__ , shape=tensor.shape , name=a__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCamelCase_ = to_tf_var_name(a__ ) UpperCamelCase_ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCamelCase_ = torch_tensor.T UpperCamelCase_ = create_tf_var(tensor=a__ , name=a__ , session=a__ ) tf.keras.backend.set_value(a__ , a__ ) UpperCamelCase_ = session.run(a__ ) print(f'''Successfully created {tf_name}: {np.allclose(a__ , a__ )}''' ) UpperCamelCase_ = tf.train.Saver(tf.trainable_variables() ) saver.save(a__ , os.path.join(a__ , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) ) def lowerCamelCase__ ( a__ : Union[str, Any]=None ) -> Any: UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=a__ , required=a__ , help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""" , type=a__ , default=a__ , required=a__ , help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""" , type=a__ , required=a__ , help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""" , type=a__ , required=a__ , help="""Directory in which to save tensorflow model""" ) UpperCamelCase_ = parser.parse_args(a__ ) UpperCamelCase_ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
261
1
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class _A ( nn.Module ): _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = hidden_states.shape __UpperCAmelCase : Optional[int] = jax.image.resize( __UpperCAmelCase , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) __UpperCAmelCase : int = self.conv(__UpperCAmelCase ) return hidden_states class _A ( nn.Module ): _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __UpperCAmelCase : Optional[Any] = self.conv(__UpperCAmelCase ) return hidden_states class _A ( nn.Module ): _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : int = None _SCREAMING_SNAKE_CASE : float = 0.0 _SCREAMING_SNAKE_CASE : bool = None _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = self.in_channels if self.out_channels is None else self.out_channels __UpperCAmelCase : List[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __UpperCAmelCase : str = nn.Conv( __UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Union[str, Any] = nn.Dense(__UpperCAmelCase , dtype=self.dtype ) __UpperCAmelCase : str = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __UpperCAmelCase : int = nn.Dropout(self.dropout_prob ) __UpperCAmelCase : Any = nn.Conv( __UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : int = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __UpperCAmelCase : Union[str, Any] = None if use_nin_shortcut: __UpperCAmelCase : Any = nn.Conv( __UpperCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[Any] = hidden_states __UpperCAmelCase : Union[str, Any] = self.norma(__UpperCAmelCase ) __UpperCAmelCase : List[str] = nn.swish(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.conva(__UpperCAmelCase ) __UpperCAmelCase : List[str] = self.time_emb_proj(nn.swish(__UpperCAmelCase ) ) __UpperCAmelCase : Optional[Any] = jnp.expand_dims(jnp.expand_dims(__UpperCAmelCase , 1 ) , 1 ) __UpperCAmelCase : Dict = hidden_states + temb __UpperCAmelCase : List[str] = self.norma(__UpperCAmelCase ) __UpperCAmelCase : Dict = nn.swish(__UpperCAmelCase ) __UpperCAmelCase : int = self.dropout(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Tuple = self.conva(__UpperCAmelCase ) if self.conv_shortcut is not None: __UpperCAmelCase : Dict = self.conv_shortcut(__UpperCAmelCase ) return hidden_states + residual
254
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _UpperCamelCase = get_logger(__name__) class _A : _SCREAMING_SNAKE_CASE : Dict = "dummy_data" _SCREAMING_SNAKE_CASE : int = "datasets" _SCREAMING_SNAKE_CASE : Union[str, Any] = False def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Tuple = dataset_name __UpperCAmelCase : List[Any] = cache_dir __UpperCAmelCase : List[Any] = use_local_dummy_data __UpperCAmelCase : str = config # download_callbacks take a single url as input __UpperCAmelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __UpperCAmelCase : Tuple = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __UpperCAmelCase : Dict = str(__UpperCAmelCase ) # to be downloaded __UpperCAmelCase : Any = None __UpperCAmelCase : List[str] = None @property def __A ( self ) -> Dict: '''simple docstring''' if self._dummy_file is None: __UpperCAmelCase : Dict = self.download_dummy_data() return self._dummy_file @property def __A ( self ) -> Any: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def __A ( self ) -> Optional[Any]: '''simple docstring''' return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __UpperCAmelCase : Tuple = cached_path( __UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=__UpperCAmelCase , force_extract=__UpperCAmelCase ) return os.path.join(__UpperCAmelCase , self.dummy_file_name ) @property def __A ( self ) -> Any: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __A ( self ) -> List[Any]: '''simple docstring''' if self._bucket_url is None: __UpperCAmelCase : Optional[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def __A ( self ) -> Dict: '''simple docstring''' # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def __A ( self , __UpperCAmelCase , *__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested __UpperCAmelCase : Dict = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __UpperCAmelCase : Optional[int] = self.dummy_file_name # special case when data_url is a dict if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return self.create_dummy_data_dict(__UpperCAmelCase , __UpperCAmelCase ) elif isinstance(__UpperCAmelCase , (list, tuple) ): return self.create_dummy_data_list(__UpperCAmelCase , __UpperCAmelCase ) else: return self.create_dummy_data_single(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase , *__UpperCAmelCase ) -> Dict: '''simple docstring''' return self.download_and_extract(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' return self.download_and_extract(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return path def __A ( self ) -> List[Any]: '''simple docstring''' return {} def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : str = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): for single_url in single_urls: download_callback(__UpperCAmelCase ) else: __UpperCAmelCase : Union[str, Any] = single_urls download_callback(__UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCAmelCase : str = [os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(Path(__UpperCAmelCase ).name ) ) for x in single_urls] else: __UpperCAmelCase : List[str] = single_urls __UpperCAmelCase : Any = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(Path(__UpperCAmelCase ).name ) ) __UpperCAmelCase : Union[str, Any] = value # make sure that values are unique if all(isinstance(__UpperCAmelCase , __UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __UpperCAmelCase : Tuple = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __UpperCAmelCase : Tuple = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , __UpperCAmelCase ) ) for url in data_url ) __UpperCAmelCase : str = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __UpperCAmelCase : int = [data_url[0]] * len(__UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __UpperCAmelCase : List[str] = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(__UpperCAmelCase ) return dummy_data_list def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(__UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __UpperCAmelCase : List[str] = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(__UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __A ( self ) -> Tuple: '''simple docstring''' pass def __A ( self ) -> int: '''simple docstring''' pass def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' def _iter_archive_members(__UpperCAmelCase ): # this preserves the order of the members inside the ZIP archive __UpperCAmelCase : Dict = Path(self.dummy_file ).parent __UpperCAmelCase : Dict = path.relative_to(__UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __UpperCAmelCase : List[str] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__UpperCAmelCase ) __UpperCAmelCase : Any = Path(__UpperCAmelCase ) __UpperCAmelCase : int = _iter_archive_members(__UpperCAmelCase ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(__UpperCAmelCase ).as_posix(), file_path.open("""rb""" ) def __A ( self , __UpperCAmelCase ) -> Dict: '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCAmelCase : List[Any] = [paths] for path in paths: if os.path.isfile(__UpperCAmelCase ): if os.path.basename(__UpperCAmelCase ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__UpperCAmelCase ): if os.path.basename(__UpperCAmelCase ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(__UpperCAmelCase ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(__UpperCAmelCase , __UpperCAmelCase )
254
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class A__ ( __snake_case ): _UpperCAmelCase :List[str] = 'char' _UpperCAmelCase :List[str] = 'bpe' _UpperCAmelCase :List[Any] = 'wp' __lowerCamelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class A__ ( __snake_case ): _UpperCAmelCase :Any = ['image_processor', 'char_tokenizer'] _UpperCAmelCase :Optional[Any] = 'ViTImageProcessor' _UpperCAmelCase :List[Any] = 'MgpstrTokenizer' def __init__( self , A_=None , A_=None , **A_ ): '''simple docstring''' UpperCamelCase : Tuple = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , A_ , ) UpperCamelCase : Optional[Any] = kwargs.pop("feature_extractor" ) UpperCamelCase : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) UpperCamelCase : Dict = tokenizer UpperCamelCase : List[str] = AutoTokenizer.from_pretrained("gpt2" ) UpperCamelCase : int = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(A_ , A_ ) def __call__( self , A_=None , A_=None , A_=None , **A_ ): '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: UpperCamelCase : Tuple = self.image_processor(A_ , return_tensors=A_ , **A_ ) if text is not None: UpperCamelCase : Optional[Any] = self.char_tokenizer(A_ , return_tensors=A_ , **A_ ) if text is None: return inputs elif images is None: return encodings else: UpperCamelCase : Union[str, Any] = encodings["input_ids"] return inputs def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase , UpperCamelCase , UpperCamelCase : Dict = sequences UpperCamelCase : Dict = char_preds.size(0 ) UpperCamelCase , UpperCamelCase : List[Any] = self._decode_helper(A_ , "char" ) UpperCamelCase , UpperCamelCase : List[str] = self._decode_helper(A_ , "bpe" ) UpperCamelCase , UpperCamelCase : Optional[int] = self._decode_helper(A_ , "wp" ) UpperCamelCase : List[Any] = [] UpperCamelCase : int = [] for i in range(A_ ): UpperCamelCase : Any = [char_scores[i], bpe_scores[i], wp_scores[i]] UpperCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] UpperCamelCase : Tuple = scores.index(max(A_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) UpperCamelCase : List[Any] = {} UpperCamelCase : Dict = final_strs UpperCamelCase : List[str] = final_scores UpperCamelCase : str = char_strs UpperCamelCase : Union[str, Any] = bpe_strs UpperCamelCase : Tuple = wp_strs return out def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' if format == DecodeType.CHARACTER: UpperCamelCase : Tuple = self.char_decode UpperCamelCase : str = 1 UpperCamelCase : List[Any] = "[s]" elif format == DecodeType.BPE: UpperCamelCase : Any = self.bpe_decode UpperCamelCase : Any = 2 UpperCamelCase : Optional[int] = "#" elif format == DecodeType.WORDPIECE: UpperCamelCase : Tuple = self.wp_decode UpperCamelCase : Any = 102 UpperCamelCase : Any = "[SEP]" else: raise ValueError(F"""Format {format} is not supported.""" ) UpperCamelCase , UpperCamelCase : Dict = [], [] UpperCamelCase : Dict = pred_logits.size(0 ) UpperCamelCase : Dict = pred_logits.size(1 ) UpperCamelCase , UpperCamelCase : List[Any] = pred_logits.topk(1 , dim=-1 , largest=A_ , sorted=A_ ) UpperCamelCase : Optional[Any] = preds_index.view(-1 , A_ )[:, 1:] UpperCamelCase : Optional[int] = decoder(A_ ) UpperCamelCase , UpperCamelCase : int = torch.nn.functional.softmax(A_ , dim=2 ).max(dim=2 ) UpperCamelCase : int = preds_max_prob[:, 1:] for index in range(A_ ): UpperCamelCase : Optional[Any] = preds_str[index].find(A_ ) UpperCamelCase : Dict = preds_str[index][:pred_eos] UpperCamelCase : Union[str, Any] = preds_index[index].cpu().tolist() UpperCamelCase : int = pred_index.index(A_ ) if eos_token in pred_index else -1 UpperCamelCase : List[Any] = preds_max_prob[index][: pred_eos_index + 1] UpperCamelCase : Any = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(A_ ) conf_scores.append(A_ ) return dec_strs, conf_scores def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Any = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(A_ )] return decode_strs def __UpperCamelCase( self , A_ ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(A_ ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Any = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(A_ )] return decode_strs
140
def A_ ( _lowerCAmelCase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCamelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCamelCase : Union[str, Any] = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowerCAmelCase ) == 26 def A_ ( _lowerCAmelCase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCamelCase : List[Any] = [False] * 26 for char in input_str: if char.islower(): UpperCamelCase : Tuple = True elif char.isupper(): UpperCamelCase : str = True return all(_lowerCAmelCase ) def A_ ( _lowerCAmelCase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def A_ ( ) -> None: from timeit import timeit UpperCamelCase : Tuple = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=_lowerCAmelCase ) ) print(timeit("is_pangram_faster()" , setup=_lowerCAmelCase ) ) print(timeit("is_pangram_fastest()" , setup=_lowerCAmelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
140
1
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem _UpperCAmelCase : Optional[int] = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 _UpperCAmelCase : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if "://" in dataset_path: snake_case_ = dataset_path.split('://' )[1] return dataset_path def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = not is_remote_filesystem(UpperCamelCase__ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(UpperCamelCase__ ) , fs._strip_protocol(UpperCamelCase__ ) ) else: fs.mv(UpperCamelCase__ , UpperCamelCase__ , recursive=UpperCamelCase__ ) def __lowerCamelCase ( ): '''simple docstring''' if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: snake_case_ = None snake_case_ = None snake_case_ = threading.Lock()
285
import numpy as np def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return vector * sigmoid(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
285
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase__ = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } UpperCAmelCase__ = { """facebook/mbart-large-en-ro""": 1_0_2_4, """facebook/mbart-large-cc25""": 1_0_2_4, } # fmt: off UpperCAmelCase__ = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class a ( __UpperCamelCase ): _snake_case : Any = VOCAB_FILES_NAMES _snake_case : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Tuple = PRETRAINED_VOCAB_FILES_MAP _snake_case : Any = ["""input_ids""", """attention_mask"""] _snake_case : Dict = MBartTokenizer _snake_case : List[int] = [] _snake_case : List[int] = [] def __init__( self : List[Any] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Any=None , __lowerCAmelCase : List[Any]="<s>" , __lowerCAmelCase : int="</s>" , __lowerCAmelCase : str="</s>" , __lowerCAmelCase : Union[str, Any]="<s>" , __lowerCAmelCase : int="<unk>" , __lowerCAmelCase : str="<pad>" , __lowerCAmelCase : List[Any]="<mask>" , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : str=None , __lowerCAmelCase : Union[str, Any]=None , **__lowerCAmelCase : Union[str, Any] , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token super().__init__( vocab_file=__lowerCAmelCase , tokenizer_file=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , src_lang=__lowerCAmelCase , tgt_lang=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True _UpperCAmelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _UpperCAmelCase = { lang_code: self.convert_tokens_to_ids(__lowerCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _UpperCAmelCase = src_lang if src_lang is not None else """en_XX""" _UpperCAmelCase = self.convert_tokens_to_ids(self._src_lang ) _UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCAmelCase_ ( self : Optional[int] ): return self._src_lang @src_lang.setter def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : str ): _UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] , __lowerCAmelCase : Optional[str] , **__lowerCAmelCase : List[str] ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _UpperCAmelCase = src_lang _UpperCAmelCase = self(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = self.convert_tokens_to_ids(__lowerCAmelCase ) _UpperCAmelCase = tgt_lang_id return inputs def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str = "en_XX" , __lowerCAmelCase : Optional[List[str]] = None , __lowerCAmelCase : str = "ro_RO" , **__lowerCAmelCase : Any , ): _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase_ ( self : str ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Tuple ): _UpperCAmelCase = self.convert_tokens_to_ids(__lowerCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = [self.eos_token_id, self.cur_lang_code] _UpperCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) _UpperCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) _UpperCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : str ): _UpperCAmelCase = self.convert_tokens_to_ids(__lowerCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = [self.eos_token_id, self.cur_lang_code] _UpperCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) _UpperCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) _UpperCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return _UpperCAmelCase = os.path.join( __lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ): copyfile(self.vocab_file , __lowerCAmelCase ) return (out_vocab_file,)
356
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = tokenizer(example["""content"""] ,truncation=lowercase )["""input_ids"""] _UpperCAmelCase = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCAmelCase__ = HfArgumentParser(PretokenizationArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
30
0
def A ( lowercase , lowercase ) -> int: '''simple docstring''' return number | (1 << position) def A ( lowercase , lowercase ) -> int: '''simple docstring''' return number & ~(1 << position) def A ( lowercase , lowercase ) -> int: '''simple docstring''' return number ^ (1 << position) def A ( lowercase , lowercase ) -> bool: '''simple docstring''' return ((number >> position) & 1) == 1 def A ( lowercase , lowercase ) -> int: '''simple docstring''' return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
222
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def A ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } UpperCamelCase = Dataset.from_dict(lowercase ) return dataset class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = get_dataset() UpperCamelCase = make_duplicate_clusters(A_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = get_dataset() UpperCamelCase , UpperCamelCase = deduplicate_dataset(A_ ) self.assertEqual(len(A_ ) , 2 ) print(A_ ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , A_ )
222
1
"""simple docstring""" UpperCAmelCase : Tuple = "Tobias Carryer" from time import time class __lowercase : """simple docstring""" def __init__( self , A , A , A , A=int(time() ) ) -> Optional[int]: # noqa: B008 '''simple docstring''' lowerCamelCase = multiplier lowerCamelCase = increment lowerCamelCase = modulo lowerCamelCase = seed def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. UpperCAmelCase : List[Any] = LinearCongruentialGenerator(1_66_45_25, 10_13_90_42_23, 2 << 31) while True: print(lcg.next_number())
356
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = tempfile.mkdtemp() lowerCamelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCamelCase = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } lowerCamelCase = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(A , A ) def __A ( self , **A ) -> Optional[Any]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **A ) def __A ( self , **A ) -> List[Any]: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **A ) def __A ( self , **A ) -> Optional[int]: '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **A ) def __A ( self ) -> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCamelCase = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self.get_tokenizer() lowerCamelCase = self.get_rust_tokenizer() lowerCamelCase = self.get_image_processor() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=A ) lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCamelCase = self.get_image_processor(do_normalize=A , padding_value=1.0 ) lowerCamelCase = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = image_processor(A , return_tensors="""np""" ) lowerCamelCase = processor(images=A , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = """lower newer""" lowerCamelCase = processor(text=A ) lowerCamelCase = tokenizer(A , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = """lower newer""" lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase = processor.batch_decode(A ) lowerCamelCase = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = """lower newer""" lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
66
0
"""simple docstring""" import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) SCREAMING_SNAKE_CASE__:List[str] = """bert-base-cased""" SCREAMING_SNAKE_CASE__:str = """fp16""" SCREAMING_SNAKE_CASE__:Dict = """bf16""" SCREAMING_SNAKE_CASE__:Dict = [FPaa, BFaa] @require_fsdp @require_cuda class snake_case__ ( snake_case_ ): def a__ ( self ): super().setUp() __a = dict( ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , ) def a__ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(lowerCamelCase ): __a = self.dist_env.copy() __a = F"{i + 1}" __a = strategy with mockenv_context(**lowerCamelCase ): __a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def a__ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(lowerCamelCase ): __a = self.dist_env.copy() __a = prefetch_policy with mockenv_context(**lowerCamelCase ): __a = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def a__ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(lowerCamelCase ): __a = self.dist_env.copy() __a = state_dict_type with mockenv_context(**lowerCamelCase ): __a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def a__ ( self ): __a = AutoModel.from_pretrained(lowerCamelCase ) for policy in FSDP_AUTO_WRAP_POLICY: __a = self.dist_env.copy() __a = policy if policy == "TRANSFORMER_BASED_WRAP": __a = "BertLayer" elif policy == "SIZE_BASED_WRAP": __a = "2000" with mockenv_context(**lowerCamelCase ): __a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowerCamelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) __a = self.dist_env.copy() __a = "TRANSFORMER_BASED_WRAP" __a = "T5Layer" with mockenv_context(**lowerCamelCase ): __a = FullyShardedDataParallelPlugin() with self.assertRaises(lowerCamelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(lowerCamelCase ) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) ) __a = self.dist_env.copy() __a = "SIZE_BASED_WRAP" __a = "0" with mockenv_context(**lowerCamelCase ): __a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowerCamelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def a__ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: __a = self.dist_env.copy() __a = mp_dtype with mockenv_context(**lowerCamelCase ): __a = Accelerator() if mp_dtype == "fp16": __a = torch.floataa elif mp_dtype == "bf16": __a = torch.bfloataa __a = MixedPrecision(param_dtype=lowerCamelCase , reduce_dtype=lowerCamelCase , buffer_dtype=lowerCamelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , lowerCamelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , lowerCamelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(lowerCamelCase ) def a__ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: __a = self.dist_env.copy() __a = str(lowerCamelCase ).lower() with mockenv_context(**lowerCamelCase ): __a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=lowerCamelCase ) ) @require_fsdp @require_multi_gpu @slow class snake_case__ ( snake_case_ ): def a__ ( self ): super().setUp() __a = 0.82 __a = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] __a = { "multi_gpu_fp16": 3200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000, "fsdp_full_shard_transformer_based_wrap_fp16": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } __a = 160 __a = 160 __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] ) def a__ ( self ): __a = os.path.join(self.test_scripts_folder , "test_performance.py" ) __a = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: __a = cmd.copy() for i, strategy in enumerate(lowerCamelCase ): if strategy.lower() in config: cmd_config.append(F"--fsdp_sharding_strategy={i+1}" ) break if "fp32" in config: cmd_config.append("--mixed_precision=no" ) else: cmd_config.append("--mixed_precision=fp16" ) if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"--fsdp_auto_wrap_policy={policy}" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"--output_dir={self.tmpdir}", F"--performance_lower_bound={self.performance_lower_bound}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase , env=os.environ.copy() ) def a__ ( self ): __a = os.path.join(self.test_scripts_folder , "test_checkpointing.py" ) __a = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(lowerCamelCase ): __a = cmd.copy() cmd_config.append(F"--fsdp_sharding_strategy={i+1}" ) if strategy != "FULL_SHARD": continue __a = len(lowerCamelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: __a = cmd_config[:state_dict_config_index] cmd_config.append(F"--fsdp_state_dict_type={state_dict_type}" ) cmd_config.extend( [ self.test_file_path, F"--output_dir={self.tmpdir}", "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase , env=os.environ.copy() ) __a = cmd_config[:-1] __a = os.path.join(self.tmpdir , "epoch_0" ) cmd_config.extend( [ F"--resume_from_checkpoint={resume_from_checkpoint}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase , env=os.environ.copy() ) def a__ ( self ): __a = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py" ) __a = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): __a = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"] ) else: cmd_config.extend(["--mixed_precision=no"] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"] ) for i, strategy in enumerate(lowerCamelCase ): if strategy.lower() in spec: cmd_config.append(F"--fsdp_sharding_strategy={i+1}" ) break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"--fsdp_auto_wrap_policy={policy}" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"--output_dir={self.tmpdir}", F"--peak_memory_upper_bound={peak_mem_upper_bound}", F"--n_train={self.n_train}", F"--n_val={self.n_val}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase , env=os.environ.copy() )
261
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase( a ): return getitem, k def _lowerCamelCase( a , a ): return setitem, k, v def _lowerCamelCase( a ): return delitem, k def _lowerCamelCase( a , a , *a ): try: return fun(a , *a ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE__:List[Any] = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) SCREAMING_SNAKE_CASE__:List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] SCREAMING_SNAKE_CASE__:List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] SCREAMING_SNAKE_CASE__:Any = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] SCREAMING_SNAKE_CASE__:int = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE__:Any = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase( a ): __a = HashMap(initial_block_size=4 ) __a = {} for _, (fun, *args) in enumerate(a ): __a , __a = _run_operation(a , a , *a ) __a , __a = _run_operation(a , a , *a ) assert my_res == py_res assert str(a ) == str(a ) assert set(a ) == set(a ) assert len(a ) == len(a ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase( ): def is_public(a ) -> bool: return not name.startswith("_" ) __a = {name for name in dir({} ) if is_public(a )} __a = {name for name in dir(HashMap() ) if is_public(a )} assert dict_public_names > hash_public_names
261
1
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _A (lowerCAmelCase__ :List[str] ) -> Dict: '''simple docstring''' return 1 / (1 + np.exp(-z )) def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> Any: '''simple docstring''' return (-y * np.log(__lowerCamelCase ) - (1 - y) * np.log(1 - h )).mean() def _A (lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :str ) -> Dict: '''simple docstring''' _a = np.dot(__lowerCamelCase , __lowerCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(__lowerCamelCase ) ) ) def _A (lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any]=7_00_00 ) -> List[str]: '''simple docstring''' _a = np.zeros(x.shape[1] ) for iterations in range(__lowerCamelCase ): _a = np.dot(__lowerCamelCase , __lowerCamelCase ) _a = sigmoid_function(__lowerCamelCase ) _a = np.dot(x.T , h - y ) / y.size _a = theta - alpha * gradient # updating the weights _a = np.dot(__lowerCamelCase , __lowerCamelCase ) _a = sigmoid_function(__lowerCamelCase ) _a = cost_function(__lowerCamelCase , __lowerCamelCase ) if iterations % 1_00 == 0: print(f'loss: {j} \t' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a_ : Dict = datasets.load_iris() a_ : Union[str, Any] = iris.data[:, :2] a_ : Optional[Any] = (iris.target != 0) * 1 a_ : Optional[int] = 0.1 a_ : Tuple = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print("theta: ", theta) # printing the theta i.e our weights vector def _A (lowerCAmelCase__ :int ) -> str: '''simple docstring''' return sigmoid_function( np.dot(__lowerCamelCase , __lowerCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((a_) , (a_)) : Optional[Any] = (x[:, 0].min(), x[:, 0].max()) ((a_) , (a_)) : Optional[int] = (x[:, 1].min(), x[:, 1].max()) ((a_) , (a_)) : Union[str, Any] = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a_ : Dict = np.c_[xxa.ravel(), xxa.ravel()] a_ : Any = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
360
'''simple docstring''' from __future__ import annotations def _A (lowerCAmelCase__ :int ) -> list[int]: '''simple docstring''' _a = 2 _a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase__ ) if n > 1: factors.append(lowerCAmelCase__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
104
0
from typing import Any import numpy as np def UpperCamelCase ( __lowercase : np.ndarray ): '''simple docstring''' return np.array_equal(__lowercase ,matrix.conjugate().T ) def UpperCamelCase ( __lowercase : np.ndarray ,__lowercase : np.ndarray ): '''simple docstring''' A_ : Union[str, Any] = v.conjugate().T A_ : Dict = v_star.dot(__lowercase ) assert isinstance(__lowercase ,np.ndarray ) return (v_star_dot.dot(__lowercase )) / (v_star.dot(__lowercase )) def UpperCamelCase ( ): '''simple docstring''' A_ : Dict = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) A_ : List[Any] = np.array([[1], [2], [3]] ) assert is_hermitian(__lowercase ), f'''{a} is not hermitian.''' print(rayleigh_quotient(__lowercase ,__lowercase ) ) A_ : List[str] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__lowercase ), f'''{a} is not hermitian.''' assert rayleigh_quotient(__lowercase ,__lowercase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
140
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: _UpperCAmelCase = None _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } _UpperCAmelCase = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off _UpperCAmelCase = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = ['''input_ids''', '''attention_mask'''] lowerCamelCase_ = MBartTokenizer lowerCamelCase_ = [] lowerCamelCase_ = [] def __init__( self , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=None , lowercase=None , lowercase=None , **lowercase , ): """simple docstring""" A_ : List[Any] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token super().__init__( vocab_file=lowercase , tokenizer_file=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , src_lang=lowercase , tgt_lang=lowercase , additional_special_tokens=lowercase , **lowercase , ) A_ : Union[str, Any] = vocab_file A_ : Optional[int] = False if not self.vocab_file else True A_ : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) A_ : Tuple = { lang_code: self.convert_tokens_to_ids(lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } A_ : Dict = src_lang if src_lang is not None else 'en_XX' A_ : Dict = self.convert_tokens_to_ids(self._src_lang ) A_ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return self._src_lang @src_lang.setter def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : List[Any] = [self.sep_token_id] A_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , lowercase , **lowercase ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) A_ : int = src_lang A_ : Optional[int] = self(lowercase , add_special_tokens=lowercase , return_tensors=lowercase , **lowercase ) A_ : Optional[Any] = self.convert_tokens_to_ids(lowercase ) A_ : Dict = tgt_lang_id return inputs def lowerCAmelCase_ ( self , lowercase , lowercase = "en_XX" , lowercase = None , lowercase = "ro_RO" , **lowercase , ): """simple docstring""" A_ : Union[str, Any] = src_lang A_ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase_ ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Any = self.convert_tokens_to_ids(lowercase ) A_ : Optional[Any] = [] A_ : Optional[int] = [self.eos_token_id, self.cur_lang_code] A_ : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) A_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) A_ : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Union[str, Any] = self.convert_tokens_to_ids(lowercase ) A_ : List[Any] = [] A_ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] A_ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) A_ : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) A_ : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return A_ : Dict = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ): copyfile(self.vocab_file , lowercase ) return (out_vocab_file,)
140
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
364
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase(self : Tuple ) -> List[str]: snake_case = ["a", "b", "c"] # Defaults to last layer if both are None snake_case , snake_case = get_aligned_output_features_output_indices(_A , _A , _A ) self.assertEqual(_A , ["c"] ) self.assertEqual(_A , [2] ) # Out indices set to match out features snake_case , snake_case = get_aligned_output_features_output_indices(["a", "c"] , _A , _A ) self.assertEqual(_A , ["a", "c"] ) self.assertEqual(_A , [0, 2] ) # Out features set to match out indices snake_case , snake_case = get_aligned_output_features_output_indices(_A , [0, 2] , _A ) self.assertEqual(_A , ["a", "c"] ) self.assertEqual(_A , [0, 2] ) # Out features selected from negative indices snake_case , snake_case = get_aligned_output_features_output_indices(_A , [-3, -1] , _A ) self.assertEqual(_A , ["a", "c"] ) self.assertEqual(_A , [-3, -1] ) def UpperCAmelCase(self : Optional[int] ) -> str: # Stage names must be set with self.assertRaises(_A ): verify_out_features_out_indices(["a", "b"] , (0, 1) , _A ) # Out features must be a list with self.assertRaises(_A ): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"] ) # Out features must be a subset of stage names with self.assertRaises(_A ): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"] ) # Out indices must be a list or tuple with self.assertRaises(_A ): verify_out_features_out_indices(_A , 0 , ["a", "b"] ) # Out indices must be a subset of stage names with self.assertRaises(_A ): verify_out_features_out_indices(_A , (0, 1) , ["a"] ) # Out features and out indices must be the same length with self.assertRaises(_A ): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"] ) # Out features should match out indices with self.assertRaises(_A ): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"] ) # Out features and out indices should be in order with self.assertRaises(_A ): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"] ) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"] ) def UpperCAmelCase(self : List[str] ) -> str: snake_case = BackboneMixin() snake_case = ["a", "b", "c"] snake_case = ["a", "c"] snake_case = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly snake_case = ["a", "b"] self.assertEqual(backbone.out_features , ["a", "b"] ) self.assertEqual(backbone.out_indices , [0, 1] ) snake_case = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [-3, -1] )
137
0
'''simple docstring''' from math import factorial def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('Please enter positive integers for n and k where n >= k' ) return factorial(_SCREAMING_SNAKE_CASE ) // (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( 'If a class of 40 students must be arranged into groups of', f'''4 for group projects, there are {combinations(40, 4)} ways''', 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', f'''are {combinations(10, 3)} ways that first, second and''', 'third place can be awarded.', )
27
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __a = logging.get_logger(__name__) __a = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[str]: super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if config is None: assert isinstance(self.model , SCREAMING_SNAKE_CASE_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) lowercase_ = self.model.config else: lowercase_ = config lowercase_ = data_args lowercase_ = self.config.tgt_vocab_size if isinstance(self.config , SCREAMING_SNAKE_CASE_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ''' padding..''' ) if self.args.label_smoothing == 0: lowercase_ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowercase_ = label_smoothed_nll_loss def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: if self.optimizer is None: lowercase_ = ['''bias''', '''LayerNorm.weight'''] lowercase_ = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] lowercase_ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowercase_ = Adafactor lowercase_ = {'''scale_parameter''': False, '''relative_step''': False} else: lowercase_ = AdamW lowercase_ = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } lowercase_ = self.args.learning_rate if self.sharded_ddp: lowercase_ = OSS( params=SCREAMING_SNAKE_CASE_ , optim=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) else: lowercase_ = optimizer_cls(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.lr_scheduler is None: lowercase_ = self._get_lr_scheduler(SCREAMING_SNAKE_CASE_ ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: lowercase_ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowercase_ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowercase_ = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: lowercase_ = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE_ ) return scheduler def _lowercase ( self : Tuple ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Any: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowercase_ = model(**SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )[0] lowercase_ = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models lowercase_ , lowercase_ = model(**SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )[:2] else: # compute label smoothed loss lowercase_ = model(**SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )[0] lowercase_ = torch.nn.functional.log_softmax(SCREAMING_SNAKE_CASE_ , dim=-1 ) lowercase_ , lowercase_ = self.loss_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[Any]: lowercase_ = inputs.pop('''labels''' ) lowercase_ , lowercase_ = self._compute_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return loss def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : nn.Module , SCREAMING_SNAKE_CASE_ : Dict[str, Union[torch.Tensor, Any]] , SCREAMING_SNAKE_CASE_ : bool , SCREAMING_SNAKE_CASE_ : Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: lowercase_ = self._prepare_inputs(SCREAMING_SNAKE_CASE_ ) lowercase_ = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowercase_ = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **SCREAMING_SNAKE_CASE_ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowercase_ = self._pad_tensors_to_max_len(SCREAMING_SNAKE_CASE_ , gen_kwargs['''max_length'''] ) lowercase_ = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data lowercase_ , lowercase_ = self._compute_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowercase_ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowercase_ = self._pad_tensors_to_max_len(SCREAMING_SNAKE_CASE_ , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: # If PAD token is not defined at least EOS token has to be defined lowercase_ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' f''' padded to `max_length`={max_length}''' ) lowercase_ = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) lowercase_ = tensor return padded_tensor
30
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() snake_case_ : int = logging.get_logger(__name__) def A (__A : Tuple , __A : Union[str, Any] , __A : Any ) -> List[str]: """simple docstring""" UpperCAmelCase_ = os.path.abspath(__A ) logger.info(F"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model UpperCAmelCase_ = tf.train.list_variables(__A ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") UpperCAmelCase_ = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(F"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' UpperCAmelCase_ = name[1:] # figure out how many levels deep the name is UpperCAmelCase_ = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(__A ) # read data UpperCAmelCase_ = tf.train.load_variable(__A , __A ) names.append('''/'''.join(__A ) ) arrays.append(__A ) logger.info(F"""Read a total of {len(__A ):,} layers""" ) # Sanity check if len(set(__A ) ) != 1: raise ValueError(F"""Found layer names with different depths (layer depth {list(set(__A ) )})""" ) UpperCAmelCase_ = list(set(__A ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(__A , __A ): UpperCAmelCase_ = full_name.split('''/''' ) UpperCAmelCase_ = model UpperCAmelCase_ = [] for i, m_name in enumerate(__A ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): UpperCAmelCase_ = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) UpperCAmelCase_ = getattr(__A , '''embeddings''' ) UpperCAmelCase_ = getattr(__A , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) UpperCAmelCase_ = getattr(__A , '''encoder''' ) UpperCAmelCase_ = getattr(__A , '''layer''' ) UpperCAmelCase_ = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) UpperCAmelCase_ = getattr(__A , '''pooler''' ) UpperCAmelCase_ = getattr(__A , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) UpperCAmelCase_ = getattr(__A , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) UpperCAmelCase_ = getattr(__A , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) UpperCAmelCase_ = getattr(__A , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) UpperCAmelCase_ = getattr(__A , '''token_type_embeddings''' ) else: raise ValueError(F"""Unknown embedding layer with name {full_name}""" ) trace.append('''weight''' ) UpperCAmelCase_ = getattr(__A , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) UpperCAmelCase_ = getattr(__A , '''attention''' ) UpperCAmelCase_ = getattr(__A , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) UpperCAmelCase_ = getattr(__A , '''attention''' ) UpperCAmelCase_ = getattr(__A , '''output''' ) UpperCAmelCase_ = getattr(__A , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) UpperCAmelCase_ = getattr(__A , '''attention''' ) UpperCAmelCase_ = getattr(__A , '''output''' ) UpperCAmelCase_ = getattr(__A , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) UpperCAmelCase_ = getattr(__A , '''output''' ) UpperCAmelCase_ = getattr(__A , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) UpperCAmelCase_ = getattr(__A , '''output''' ) UpperCAmelCase_ = getattr(__A , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) UpperCAmelCase_ = getattr(__A , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) UpperCAmelCase_ = getattr(__A , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) UpperCAmelCase_ = getattr(__A , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) UpperCAmelCase_ = getattr(__A , '''intermediate''' ) UpperCAmelCase_ = getattr(__A , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) UpperCAmelCase_ = getattr(__A , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) UpperCAmelCase_ = getattr(__A , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) UpperCAmelCase_ = getattr(__A , '''weight''' ) else: logger.warning(F"""Ignored {m_name}""" ) # for certain layers reshape is necessary UpperCAmelCase_ = '''.'''.join(__A ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , __A ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''' , __A ): UpperCAmelCase_ = array.reshape(pointer.data.shape ) if "kernel" in full_name: UpperCAmelCase_ = array.transpose() if pointer.shape == array.shape: UpperCAmelCase_ = torch.from_numpy(__A ) else: raise ValueError( F"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" F""" {array.shape}""" ) logger.info(F"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def A (__A : Optional[Any] , __A : Optional[Any] , __A : int ) -> List[str]: """simple docstring""" logger.info(F"""Loading model based on config from {config_path}...""" ) UpperCAmelCase_ = BertConfig.from_json_file(__A ) UpperCAmelCase_ = BertModel(__A ) # Load weights from checkpoint logger.info(F"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(__A , __A , __A ) # Save pytorch-model logger.info(F"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": snake_case_ : Any = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) snake_case_ : Optional[Any] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
7
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): snake_case_ : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case_ : Optional[Any] = 128022 snake_case_ : Optional[int] = 128028 @require_sentencepiece class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : List[str] = MaMaaaTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[str] = True def lowerCamelCase ( self : str): """simple docstring""" super().setUp() UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case)))) UpperCAmelCase_ = Path(self.tmpdirname) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab_file''']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''spm_file''']) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : str , **_snake_case : Union[str, Any]): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]): """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = '''</s>''' UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = list(tokenizer.get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''</s>''') self.assertEqual(vocab_keys[1] , '''<unk>''') self.assertEqual(vocab_keys[-1] , '''<s>''') self.assertEqual(len(_snake_case) , tokenizer.vocab_size + len(tokenizer.get_added_vocab())) @unittest.skip('''Skip this test while all models are still to be uploaded.''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case) , [2, 3, 4, 5, 6] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6]) self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case) self.assertEqual(_snake_case , '''This is a test''') @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = {'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : Dict = '''facebook/m2m100_418M''' UpperCAmelCase__ : Dict = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] UpperCAmelCase__ : Dict = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off UpperCAmelCase__ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''') UpperCAmelCase_ = 1 return cls def lowerCamelCase ( self : List[Any]): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''') , 128006) self.assertEqual(self.tokenizer.get_lang_id('''en''') , 128022) self.assertEqual(self.tokenizer.get_lang_id('''ro''') , 128076) self.assertEqual(self.tokenizer.get_lang_id('''mr''') , 128063) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer.get_vocab() self.assertEqual(len(_snake_case) , self.tokenizer.vocab_size) self.assertEqual(vocab['''<unk>'''] , 3) self.assertIn(self.tokenizer.get_lang_token('''en''') , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , _snake_case) def lowerCamelCase ( self : Any): """simple docstring""" self.assertIn(_snake_case , self.tokenizer.all_special_ids) # fmt: off UpperCAmelCase_ = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case) self.assertEqual(_snake_case , _snake_case) self.assertNotIn(self.tokenizer.eos_token , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(_snake_case) self.assertDictEqual(new_tok.lang_token_to_id , _snake_case) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = '''fr''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''') UpperCAmelCase_ = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id) for k in batch: UpperCAmelCase_ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) UpperCAmelCase_ = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) @require_torch def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) UpperCAmelCase_ = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''') self.assertEqual( nested_simplify(_snake_case) , { # en_XX, A, test, EOS '''input_ids''': [[128022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 128006, } , )
7
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class __A ( unittest.TestCase ): """simple docstring""" def __init__( self , __A , __A=7 , __A=3 , __A=30 , __A=400 , __A=True , __A=None , __A=True , __A=1 / 255 , __A=True , __A=[0.5, 0.5, 0.5] , __A=[0.5, 0.5, 0.5] , __A=True , ) -> Any: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p a =size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} a =parent a =batch_size a =num_channels a =min_resolution a =max_resolution a =do_resize a =size a =do_rescale a =rescale_factor a =do_normalize a =image_mean a =image_std a =do_pad def SCREAMING_SNAKE_CASE ( self ) -> Dict: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE ( self , __A , __A=False ) -> Union[str, Any]: if not batched: a =image_inputs[0] if isinstance(__A , Image.Image ): a =image.size else: a =image.shape[1], image.shape[2] if w < h: a =int(self.size['''shortest_edge'''] * h / w ) a =self.size["""shortest_edge"""] elif w > h: a =self.size["""shortest_edge"""] a =int(self.size['''shortest_edge'''] * w / h ) else: a =self.size["""shortest_edge"""] a =self.size["""shortest_edge"""] else: a =[] for image in image_inputs: a =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a =max(__A , key=lambda __A : item[0] )[0] a =max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __A ( _lowerCAmelCase, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = DetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =DetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self ) -> Any: a =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , '''image_mean''' ) ) self.assertTrue(hasattr(__A , '''image_std''' ) ) self.assertTrue(hasattr(__A , '''do_normalize''' ) ) self.assertTrue(hasattr(__A , '''do_rescale''' ) ) self.assertTrue(hasattr(__A , '''rescale_factor''' ) ) self.assertTrue(hasattr(__A , '''do_resize''' ) ) self.assertTrue(hasattr(__A , '''size''' ) ) self.assertTrue(hasattr(__A , '''do_pad''' ) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __A ) a =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __A ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: # Initialize image_processing a =self.image_processing_class(**self.image_processor_dict ) # create random PIL images a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input a =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a =self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a =self.image_processor_tester.get_expected_values(__A , batched=__A ) a =image_processing(__A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # Initialize image_processing a =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input a =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a =self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a =image_processing(__A , return_tensors='''pt''' ).pixel_values a =self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: # Initialize image_processing a =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input a =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a =self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a =image_processing(__A , return_tensors='''pt''' ).pixel_values a =self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: # prepare image and target a =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: a =json.loads(f.read() ) a ={"""image_id""": 3_9769, """annotations""": target} # encode them a =DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50''' ) a =image_processing(images=__A , annotations=__A , return_tensors='''pt''' ) # verify pixel values a =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __A ) a =torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __A , atol=1E-4 ) ) # verify area a =torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __A ) ) # verify boxes a =torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __A ) a =torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __A , atol=1E-3 ) ) # verify image_id a =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __A ) ) # verify is_crowd a =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __A ) ) # verify class_labels a =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __A ) ) # verify orig_size a =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __A ) ) # verify size a =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __A ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # prepare image, target and masks_path a =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: a =json.loads(f.read() ) a ={"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} a =pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them a =DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50-panoptic''' ) a =image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors='''pt''' ) # verify pixel values a =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __A ) a =torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __A , atol=1E-4 ) ) # verify area a =torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __A ) ) # verify boxes a =torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __A ) a =torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __A , atol=1E-3 ) ) # verify image_id a =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __A ) ) # verify is_crowd a =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __A ) ) # verify class_labels a =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __A ) ) # verify masks a =82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __A ) # verify orig_size a =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __A ) ) # verify size a =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __A ) )
81
"""simple docstring""" import math class lowerCamelCase : '''simple docstring''' def lowerCAmelCase_ ( self: Tuple , snake_case: list[list[float]] , snake_case: list[int] ) -> int: snake_case_ :Any = 0.0 snake_case_ :Tuple = 0.0 for i in range(len(snake_case ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowerCAmelCase_ ( self: Optional[int] , snake_case: list[list[int | float]] , snake_case: list[int] , snake_case: int , snake_case: float ) -> list[list[int | float]]: for i in range(len(snake_case ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def A_ ( ): '''simple docstring''' snake_case_ :Dict = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case_ :List[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case_ :Optional[Any] = SelfOrganizingMap() snake_case_ :Dict = 3 snake_case_ :Dict = 0.5 for _ in range(_lowercase ): for j in range(len(_lowercase ) ): # training sample snake_case_ :List[Any] = training_samples[j] # Compute the winning vector snake_case_ :Optional[int] = self_organizing_map.get_winner(_lowercase, _lowercase ) # Update the winning vector snake_case_ :List[str] = self_organizing_map.update(_lowercase, _lowercase, _lowercase, _lowercase ) # classify test sample snake_case_ :str = [0, 0, 0, 1] snake_case_ :List[Any] = self_organizing_map.get_winner(_lowercase, _lowercase ) # results print(f"""Clusters that the test sample belongs to : {winner}""" ) print(f"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
66
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowercase__ = random.Random() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->Optional[Any]: if rng is None: a__: Optional[Any] = global_rng a__: Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class __snake_case ( unittest.TestCase ): def __init__( self , lowercase , lowercase=7 , lowercase=4_00 , lowercase=20_00 , lowercase=1 , lowercase=0.0 , lowercase=1_60_00 , lowercase=True , lowercase=80 , lowercase=16 , lowercase=64 , lowercase="hann_window" , lowercase=80 , lowercase=76_00 , lowercase=1e-10 , lowercase=True , ) -> List[Any]: '''simple docstring''' a__: Optional[int] = parent a__: int = batch_size a__: Tuple = min_seq_length a__: int = max_seq_length a__: Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a__: Union[str, Any] = feature_size a__: Tuple = padding_value a__: str = sampling_rate a__: Dict = do_normalize a__: int = num_mel_bins a__: Dict = hop_length a__: Dict = win_length a__: Dict = win_function a__: int = fmin a__: str = fmax a__: List[str] = mel_floor a__: List[str] = return_attention_mask def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowerCamelCase_ ( self , lowercase=False , lowercase=False) -> List[Any]: '''simple docstring''' def _flatten(lowercase): return list(itertools.chain(*__A)) if equal_length: a__: int = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size a__: str = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: a__: int = [np.asarray(__A) for x in speech_inputs] return speech_inputs def lowerCamelCase_ ( self , lowercase=False , lowercase=False) -> Optional[int]: '''simple docstring''' if equal_length: a__: Dict = [floats_list((self.max_seq_length, self.num_mel_bins)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size a__: Dict = [ floats_list((x, self.num_mel_bins)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: a__: int = [np.asarray(__A) for x in speech_inputs] return speech_inputs @require_torch class __snake_case ( lowerCamelCase__ , unittest.TestCase ): a__ = SpeechTaFeatureExtractor def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: str = SpeechTaFeatureExtractionTester(self) def lowerCamelCase_ ( self , lowercase) -> List[Any]: '''simple docstring''' self.assertTrue(np.all(np.mean(__A , axis=0) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(__A , axis=0) - 1) < 1e-3)) def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 a__: int = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] a__: Optional[Any] = [np.asarray(__A) for speech_input in speech_inputs] # Test not batched input a__: Tuple = feat_extract(speech_inputs[0] , return_tensors='np').input_values a__: Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors='np').input_values self.assertTrue(np.allclose(__A , __A , atol=1e-3)) # Test batched a__: Optional[Any] = feat_extract(__A , return_tensors='np').input_values a__: int = feat_extract(__A , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(__A , __A): self.assertTrue(np.allclose(__A , __A , atol=1e-3)) def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) a__: Dict = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] a__: Optional[int] = ['''longest''', '''max_length''', '''do_not_pad'''] a__: str = [None, 16_00, None] for max_length, padding in zip(__A , __A): a__: Tuple = feat_extract(__A , padding=__A , max_length=__A , return_tensors='np') a__: Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00]) self.assertTrue(input_values[0][8_00:].sum() < 1e-6) self._check_zero_mean_unit_variance(input_values[1][:10_00]) self.assertTrue(input_values[0][10_00:].sum() < 1e-6) self._check_zero_mean_unit_variance(input_values[2][:12_00]) def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) a__: List[str] = range(8_00 , 14_00 , 2_00) a__: str = [floats_list((1, x))[0] for x in lengths] a__: List[Any] = ['''longest''', '''max_length''', '''do_not_pad'''] a__: str = [None, 16_00, None] for max_length, padding in zip(__A , __A): a__: List[Any] = feat_extract(__A , max_length=__A , padding=__A) a__: int = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00]) self._check_zero_mean_unit_variance(input_values[1][:10_00]) self._check_zero_mean_unit_variance(input_values[2][:12_00]) def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) a__: str = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] a__: Union[str, Any] = feat_extract( __A , truncation=__A , max_length=10_00 , padding='max_length' , return_tensors='np') a__: Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00]) self._check_zero_mean_unit_variance(input_values[1]) self._check_zero_mean_unit_variance(input_values[2]) def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' a__: Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) a__: Any = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] a__: Tuple = feat_extract( __A , truncation=__A , max_length=10_00 , padding='longest' , return_tensors='np') a__: Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00]) self._check_zero_mean_unit_variance(input_values[1, :10_00]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00)) a__: Any = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] a__: str = feat_extract( __A , truncation=__A , max_length=20_00 , padding='longest' , return_tensors='np') a__: str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00]) self._check_zero_mean_unit_variance(input_values[1, :10_00]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00)) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) a__: Any = np.random.rand(1_00).astype(np.floataa) a__: Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a__: List[Any] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np') self.assertTrue(np_processed.input_values.dtype == np.floataa) a__: List[str] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt') self.assertTrue(pt_processed.input_values.dtype == torch.floataa) def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 a__: Optional[int] = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] a__: List[str] = [np.asarray(__A) for speech_input in speech_inputs] # Test feature size a__: Tuple = feature_extractor(audio_target=__A , padding=__A , return_tensors='np').input_values self.assertTrue(input_values.ndim == 3) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins) # Test not batched input a__: Dict = feature_extractor(speech_inputs[0] , return_tensors='np').input_values a__: List[Any] = feature_extractor(np_speech_inputs[0] , return_tensors='np').input_values self.assertTrue(np.allclose(__A , __A , atol=1e-3)) # Test batched a__: Optional[Any] = feature_extractor(__A , return_tensors='np').input_values a__: Dict = feature_extractor(__A , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(__A , __A): self.assertTrue(np.allclose(__A , __A , atol=1e-3)) # Test 2-D numpy arrays are batched. a__: Optional[Any] = [floats_list((1, x))[0] for x in (8_00, 8_00, 8_00)] a__: Any = np.asarray(__A) a__: Dict = feature_extractor(__A , return_tensors='np').input_values a__: Tuple = feature_extractor(__A , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(__A , __A): self.assertTrue(np.allclose(__A , __A , atol=1e-3)) def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: List[Any] = self.feat_extract_tester.prepare_inputs_for_target() a__: Any = self.feature_extraction_class(**self.feat_extract_dict) a__: Optional[int] = feat_extract.model_input_names[0] a__: Dict = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(__A) == len(__A) for x, y in zip(__A , processed_features[input_name]))) a__: Any = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__A) a__: Union[str, Any] = BatchFeature({input_name: speech_inputs} , tensor_type='np') a__: Dict = processed_features[input_name] if len(batch_features_input.shape) < 3: a__: Optional[int] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.num_mel_bins)) @require_torch def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Tuple = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__A) a__: Dict = self.feature_extraction_class(**self.feat_extract_dict) a__: List[str] = feat_extract.model_input_names[0] a__: Dict = BatchFeature({input_name: speech_inputs} , tensor_type='pt') a__: Optional[Any] = processed_features[input_name] if len(batch_features_input.shape) < 3: a__: Optional[int] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.num_mel_bins)) @require_torch def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: List[str] = self.feature_extraction_class(**self.feat_extract_dict) a__: str = self.feat_extract_tester.prepare_inputs_for_target() a__: Any = feat_extract.model_input_names[0] a__: List[Any] = BatchFeature({input_name: speech_inputs}) a__: Union[str, Any] = feat_extract.num_mel_bins # hack! a__: List[str] = feat_extract.pad(__A , padding='longest' , return_tensors='np')[input_name] a__: Dict = feat_extract.pad(__A , padding='longest' , return_tensors='pt')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1e-2) def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: List[str] = self.feat_extract_dict a__: Any = True a__: Dict = self.feature_extraction_class(**__A) a__: Tuple = self.feat_extract_tester.prepare_inputs_for_target() a__: Any = [len(__A) for x in speech_inputs] a__: Tuple = feat_extract.model_input_names[0] a__: Optional[int] = BatchFeature({input_name: speech_inputs}) a__: List[Any] = feat_extract.num_mel_bins # hack! a__: str = feat_extract.pad(__A , padding='longest' , return_tensors='np') self.assertIn('attention_mask' , __A) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , __A) def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' a__: Dict = self.feat_extract_dict a__: Optional[int] = True a__: Optional[int] = self.feature_extraction_class(**__A) a__: Any = self.feat_extract_tester.prepare_inputs_for_target() a__: Union[str, Any] = [len(__A) for x in speech_inputs] a__: str = feat_extract.model_input_names[0] a__: Tuple = BatchFeature({input_name: speech_inputs}) a__: Optional[Any] = min(__A) a__: List[Any] = feat_extract.num_mel_bins # hack! a__: str = feat_extract.pad( __A , padding='max_length' , max_length=__A , truncation=__A , return_tensors='np') self.assertIn('attention_mask' , __A) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs]) def lowerCamelCase_ ( self , lowercase) -> Dict: '''simple docstring''' from datasets import load_dataset a__: List[Any] = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation') # automatic decoding with librispeech a__: Optional[Any] = ds.sort('id').select(range(__A))[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: Dict = torch.tensor( [2.3_804e-03, 2.0_752e-03, 1.9_836e-03, 2.1_057e-03, 1.6_174e-03, 3.0_518e-04, 9.1_553e-05, 3.3_569e-04, 9.7_656e-04, 1.8_311e-03, 2.0_142e-03, 2.1_057e-03, 1.7_395e-03, 4.5_776e-04, -3.9_673e-04, 4.5_776e-04, 1.0_071e-03, 9.1_553e-05, 4.8_828e-04, 1.1_597e-03, 7.3_242e-04, 9.4_604e-04, 1.8_005e-03, 1.8_311e-03, 8.8_501e-04, 4.2_725e-04, 4.8_828e-04, 7.3_242e-04, 1.0_986e-03, 2.1_057e-03]) # fmt: on a__: Optional[int] = self._load_datasamples(1) a__: Optional[Any] = SpeechTaFeatureExtractor() a__: str = feature_extractor(__A , return_tensors='pt').input_values self.assertEquals(input_values.shape , (1, 9_36_80)) self.assertTrue(torch.allclose(input_values[0, :30] , __A , atol=1e-6)) def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: List[Any] = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998]) # fmt: on a__: int = self._load_datasamples(1) a__: Tuple = SpeechTaFeatureExtractor() a__: List[str] = feature_extractor(audio_target=__A , return_tensors='pt').input_values self.assertEquals(input_values.shape , (1, 3_66, 80)) self.assertTrue(torch.allclose(input_values[0, 0, :30] , __A , atol=1e-4))
361
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: lowercase__ = None try: import msvcrt except ImportError: lowercase__ = None try: import fcntl except ImportError: lowercase__ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowercase__ = OSError # Data # ------------------------------------------------ lowercase__ = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] lowercase__ = '3.0.12' lowercase__ = None def __a ( ) ->List[Any]: global _logger a__: str = _logger or logging.getLogger(__name__ ) return _logger class __snake_case ( __lowerCAmelCase ): def __init__( self , lowercase) -> Any: '''simple docstring''' a__: List[Any] = lock_file return None def __str__( self) -> List[str]: '''simple docstring''' a__: int = f'The file lock \'{self.lock_file}\' could not be acquired.' return temp class __snake_case : def __init__( self , lowercase) -> Union[str, Any]: '''simple docstring''' a__: Any = lock return None def __enter__( self) -> List[Any]: '''simple docstring''' return self.lock def __exit__( self , lowercase , lowercase , lowercase) -> int: '''simple docstring''' self.lock.release() return None class __snake_case : def __init__( self , lowercase , lowercase=-1 , lowercase=None) -> Dict: '''simple docstring''' a__: Union[str, Any] = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long a__: Tuple = self.hash_filename_if_too_long(lowercase , lowercase) # The path to the lock file. a__: Any = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. a__: Dict = None # The default timeout value. a__: Union[str, Any] = timeout # We use this lock primarily for the lock counter. a__: Any = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. a__: Tuple = 0 return None @property def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' return self._lock_file @property def lowerCamelCase_ ( self) -> int: '''simple docstring''' return self._timeout @timeout.setter def lowerCamelCase_ ( self , lowercase) -> List[str]: '''simple docstring''' a__: Optional[int] = float(lowercase) return None def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' raise NotImplementedError() def lowerCamelCase_ ( self) -> int: '''simple docstring''' raise NotImplementedError() @property def lowerCamelCase_ ( self) -> str: '''simple docstring''' return self._lock_file_fd is not None def lowerCamelCase_ ( self , lowercase=None , lowercase=0.05) -> int: '''simple docstring''' if timeout is None: a__: int = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 a__: Optional[int] = id(self) a__: Union[str, Any] = self._lock_file a__: Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'Attempting to acquire lock {lock_id} on {lock_filename}') self._acquire() if self.is_locked: logger().debug(f'Lock {lock_id} acquired on {lock_filename}') break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'Timeout on acquiring lock {lock_id} on {lock_filename}') raise Timeout(self._lock_file) else: logger().debug( f'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...') time.sleep(lowercase) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: a__: Optional[int] = max(0 , self._lock_counter - 1) raise return _Acquire_ReturnProxy(lock=self) def lowerCamelCase_ ( self , lowercase=False) -> Tuple: '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: a__: List[str] = id(self) a__: List[Any] = self._lock_file logger().debug(f'Attempting to release lock {lock_id} on {lock_filename}') self._release() a__: List[str] = 0 logger().debug(f'Lock {lock_id} released on {lock_filename}') return None def __enter__( self) -> Dict: '''simple docstring''' self.acquire() return self def __exit__( self , lowercase , lowercase , lowercase) -> List[str]: '''simple docstring''' self.release() return None def __del__( self) -> Optional[int]: '''simple docstring''' self.release(force=lowercase) return None def lowerCamelCase_ ( self , lowercase , lowercase) -> str: '''simple docstring''' a__: List[str] = os.path.basename(lowercase) if len(lowercase) > max_length and max_length > 0: a__: str = os.path.dirname(lowercase) a__: Optional[int] = str(hash(lowercase)) a__: List[str] = filename[: max_length - len(lowercase) - 8] + '...' + hashed_filename + '.lock' return os.path.join(lowercase , lowercase) else: return path class __snake_case ( __lowerCAmelCase ): def __init__( self , lowercase , lowercase=-1 , lowercase=None) -> Dict: '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(lowercase , timeout=lowercase , max_filename_length=lowercase) a__: List[Any] = '\\\\?\\' + relative_to_absolute_path(self.lock_file) def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: str = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: a__: Tuple = os.open(self._lock_file , lowercase) except OSError: pass else: try: msvcrt.locking(lowercase , msvcrt.LK_NBLCK , 1) except OSError: os.close(lowercase) else: a__: Dict = fd return None def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: int = self._lock_file_fd a__: Union[str, Any] = None msvcrt.locking(lowercase , msvcrt.LK_UNLCK , 1) os.close(lowercase) try: os.remove(self._lock_file) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __snake_case ( __lowerCAmelCase ): def __init__( self , lowercase , lowercase=-1 , lowercase=None) -> Dict: '''simple docstring''' a__: Union[str, Any] = os.statvfs(os.path.dirname(lowercase)).f_namemax super().__init__(lowercase , timeout=lowercase , max_filename_length=lowercase) def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Optional[int] = os.O_RDWR | os.O_CREAT | os.O_TRUNC a__: int = os.open(self._lock_file , lowercase) try: fcntl.flock(lowercase , fcntl.LOCK_EX | fcntl.LOCK_NB) except OSError: os.close(lowercase) else: a__: Any = fd return None def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: str = self._lock_file_fd a__: Tuple = None fcntl.flock(lowercase , fcntl.LOCK_UN) os.close(lowercase) return None class __snake_case ( __lowerCAmelCase ): def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: int = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: a__: Optional[Any] = os.open(self._lock_file , lowercase) except OSError: pass else: a__: Union[str, Any] = fd return None def lowerCamelCase_ ( self) -> str: '''simple docstring''' os.close(self._lock_file_fd) a__: int = None try: os.remove(self._lock_file) # The file is already deleted and that's what we want. except OSError: pass return None lowercase__ = None if msvcrt: lowercase__ = WindowsFileLock elif fcntl: lowercase__ = UnixFileLock else: lowercase__ = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
203
0
def _snake_case( SCREAMING_SNAKE_CASE__ : int = 1000 ) -> int: '''simple docstring''' A__ = 2**power A__ = 0 while n: A__ , A__ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
7
'''simple docstring''' def _A ( A__ = 10 , A__ = 22 ): """simple docstring""" __lowercase = range(1 , A__ ) __lowercase = range(1 , A__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'{solution(10, 22) = }')
104
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : str = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
0
'''simple docstring''' from collections.abc import Generator from math import sin def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple ) -> str: if len(_UpperCAmelCase ) != 32: raise ValueError('''Input must be of length 32''' ) UpperCAmelCase_ : int = b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict: if i < 0: raise ValueError('''Input must be non-negative''' ) UpperCAmelCase_ : Union[str, Any] = format(_UpperCAmelCase, '''08x''' )[-8:] UpperCAmelCase_ : Optional[int] = b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: UpperCAmelCase_ : Tuple = b'''''' for char in message: bit_string += format(_UpperCAmelCase, '''08b''' ).encode('''utf-8''' ) UpperCAmelCase_ : Union[str, Any] = format(len(_UpperCAmelCase ), '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_UpperCAmelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: if len(_UpperCAmelCase ) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0, len(_UpperCAmelCase ), 512 ): UpperCAmelCase_ : Optional[Any] = bit_string[pos : pos + 512] UpperCAmelCase_ : Any = [] for i in range(0, 512, 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ), 2 ) ) yield block_words def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: if i < 0: raise ValueError('''Input must be non-negative''' ) UpperCAmelCase_ : Dict = format(_UpperCAmelCase, '''032b''' ) UpperCAmelCase_ : Optional[Any] = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(_UpperCAmelCase, 2 ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Any ) -> List[str]: return (a + b) % 2**32 def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict: if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> str: UpperCAmelCase_ : Optional[int] = preprocess(_UpperCAmelCase ) UpperCAmelCase_ : int = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states UpperCAmelCase_ : int = 0x67_452_301 UpperCAmelCase_ : Dict = 0xEF_CDA_B89 UpperCAmelCase_ : List[Any] = 0x98_BAD_CFE UpperCAmelCase_ : int = 0x10_325_476 UpperCAmelCase_ : List[str] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_UpperCAmelCase ): UpperCAmelCase_ : List[str] = aa UpperCAmelCase_ : Dict = ba UpperCAmelCase_ : Any = ca UpperCAmelCase_ : Tuple = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f UpperCAmelCase_ : Optional[int] = d ^ (b & (c ^ d)) UpperCAmelCase_ : List[Any] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f UpperCAmelCase_ : int = c ^ (d & (b ^ c)) UpperCAmelCase_ : Optional[int] = (5 * i + 1) % 16 elif i <= 47: UpperCAmelCase_ : Optional[int] = b ^ c ^ d UpperCAmelCase_ : Any = (3 * i + 5) % 16 else: UpperCAmelCase_ : List[str] = c ^ (b | not_aa(_UpperCAmelCase )) UpperCAmelCase_ : str = (7 * i) % 16 UpperCAmelCase_ : Union[str, Any] = (f + a + added_consts[i] + block_words[g]) % 2**32 UpperCAmelCase_ : Optional[Any] = d UpperCAmelCase_ : List[str] = c UpperCAmelCase_ : Tuple = b UpperCAmelCase_ : Optional[Any] = sum_aa(_UpperCAmelCase, left_rotate_aa(_UpperCAmelCase, shift_amounts[i] ) ) # Add hashed chunk to running total UpperCAmelCase_ : Union[str, Any] = sum_aa(_UpperCAmelCase, _UpperCAmelCase ) UpperCAmelCase_ : Optional[int] = sum_aa(_UpperCAmelCase, _UpperCAmelCase ) UpperCAmelCase_ : str = sum_aa(_UpperCAmelCase, _UpperCAmelCase ) UpperCAmelCase_ : Dict = sum_aa(_UpperCAmelCase, _UpperCAmelCase ) UpperCAmelCase_ : Tuple = reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
125
def lowerCamelCase__ (_UpperCAmelCase): def merge(_UpperCAmelCase , _UpperCAmelCase) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0) yield from left yield from right return list(_merge()) if len(_UpperCAmelCase) <= 1: return collection SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) // 2 return merge(merge_sort(collection[:mid]) , merge_sort(collection[mid:])) if __name__ == "__main__": import doctest doctest.testmod() a_ : Tuple = input('Enter numbers separated by a comma:\n').strip() a_ : Optional[Any] = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
137
0
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , )-> Dict: lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_input_mask lowerCamelCase_ =use_token_type_ids lowerCamelCase_ =use_labels lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =num_labels lowerCamelCase_ =num_choices lowerCamelCase_ =scope def _snake_case ( self )-> Tuple: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ =None if self.use_input_mask: lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ =ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self )-> Tuple: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> List[Any]: lowerCamelCase_ =DistilBertModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[Any]: lowerCamelCase_ =DistilBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> str: lowerCamelCase_ =DistilBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> List[str]: lowerCamelCase_ =self.num_labels lowerCamelCase_ =DistilBertForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Tuple: lowerCamelCase_ =self.num_labels lowerCamelCase_ =DistilBertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[int]: lowerCamelCase_ =self.num_choices lowerCamelCase_ =DistilBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self )-> str: lowerCamelCase_ =self.prepare_config_and_inputs() ((lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_)) =config_and_inputs lowerCamelCase_ ={"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Dict = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _UpperCamelCase:Optional[Any] = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase:Tuple = True _UpperCamelCase:List[Any] = True _UpperCamelCase:Any = True _UpperCamelCase:str = True def _snake_case ( self )-> int: lowerCamelCase_ =DistilBertModelTester(self ) lowerCamelCase_ =ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , dim=37 ) def _snake_case ( self )-> Optional[int]: self.config_tester.run_common_tests() def _snake_case ( self )-> Dict: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[str]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[str]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Tuple: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )-> Dict: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =DistilBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu def _snake_case ( self )-> str: lowerCamelCase_ , lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowerCamelCase_ =True lowerCamelCase_ =model_class(config=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.jit.trace( _SCREAMING_SNAKE_CASE , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , """traced_model.pt""" ) ) lowerCamelCase_ =torch.jit.load(os.path.join(_SCREAMING_SNAKE_CASE , """traced_model.pt""" ) , map_location=_SCREAMING_SNAKE_CASE ) loaded(inputs_dict["""input_ids"""].to(_SCREAMING_SNAKE_CASE ) , inputs_dict["""attention_mask"""].to(_SCREAMING_SNAKE_CASE ) ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase): @slow def _snake_case ( self )-> Tuple: lowerCamelCase_ =DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) lowerCamelCase_ =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase_ =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] lowerCamelCase_ =torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
364
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , )-> str: lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_input_mask lowerCamelCase_ =use_token_type_ids lowerCamelCase_ =use_labels lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =num_labels lowerCamelCase_ =num_choices lowerCamelCase_ =scope def _snake_case ( self )-> int: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ =None if self.use_input_mask: lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =None if self.use_token_type_ids: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ =ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self )-> Dict: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def _snake_case ( self )-> Tuple: ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =self.prepare_config_and_inputs() lowerCamelCase_ =True lowerCamelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[int]: lowerCamelCase_ =NezhaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Tuple: lowerCamelCase_ =True lowerCamelCase_ =NezhaModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> List[str]: lowerCamelCase_ =NezhaForMaskedLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Tuple: lowerCamelCase_ =NezhaForNextSentencePrediction(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> int: lowerCamelCase_ =NezhaForPreTraining(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , next_sentence_label=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Dict: lowerCamelCase_ =NezhaForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> int: lowerCamelCase_ =self.num_labels lowerCamelCase_ =NezhaForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Dict: lowerCamelCase_ =self.num_labels lowerCamelCase_ =NezhaForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Tuple: lowerCamelCase_ =self.num_choices lowerCamelCase_ =NezhaForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self )-> List[str]: lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =config_and_inputs lowerCamelCase_ ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Optional[int] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) _UpperCamelCase:int = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase:Tuple = True def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False )-> Optional[Any]: lowerCamelCase_ =super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(_SCREAMING_SNAKE_CASE ): lowerCamelCase_ =torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def _snake_case ( self )-> Dict: lowerCamelCase_ =NezhaModelTester(self ) lowerCamelCase_ =ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def _snake_case ( self )-> List[str]: self.config_tester.run_common_tests() def _snake_case ( self )-> str: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: # This regression test was failing with PyTorch < 1.3 ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase_ =None self.model_tester.create_and_check_model_as_decoder( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) def _snake_case ( self )-> Dict: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Tuple: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Any: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )-> Union[str, Any]: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =NezhaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu def _snake_case ( self )-> Any: lowerCamelCase_ , lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowerCamelCase_ =True lowerCamelCase_ =model_class(config=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.jit.trace( _SCREAMING_SNAKE_CASE , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , """bert.pt""" ) ) lowerCamelCase_ =torch.jit.load(os.path.join(_SCREAMING_SNAKE_CASE , """bert.pt""" ) , map_location=_SCREAMING_SNAKE_CASE ) loaded(inputs_dict["""input_ids"""].to(_SCREAMING_SNAKE_CASE ) , inputs_dict["""attention_mask"""].to(_SCREAMING_SNAKE_CASE ) ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase): @slow def _snake_case ( self )-> Dict: lowerCamelCase_ =NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) lowerCamelCase_ =torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ =torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] lowerCamelCase_ =torch.Size((1, 6, 768) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) lowerCamelCase_ =torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ =torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] lowerCamelCase_ =torch.Size((1, 6, 2_1128) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
49
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: '''simple docstring''' A__ = os.path.abspath(SCREAMING_SNAKE_CASE__ ) logger.info(f'Converting TensorFlow checkpoint from {tf_path}' ) # Load weights from TF model A__ = tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) A__ = [] A__ = [] A__ = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") A__ = full_name.split('/' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'Skipping non-model layer {full_name}' ) continue if "optimizer" in full_name: logger.info(f'Skipping optimization layer {full_name}' ) continue if name[0] == "model": # ignore initial 'model' A__ = name[1:] # figure out how many levels deep the name is A__ = 0 for _name in name: if _name.startswith('layer_with_weights' ): depth += 1 else: break layer_depth.append(SCREAMING_SNAKE_CASE__ ) # read data A__ = tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) names.append('/'.join(SCREAMING_SNAKE_CASE__ ) ) arrays.append(SCREAMING_SNAKE_CASE__ ) logger.info(f'Read a total of {len(SCREAMING_SNAKE_CASE__ ):,} layers' ) # Sanity check if len(set(SCREAMING_SNAKE_CASE__ ) ) != 1: raise ValueError(f'Found layer names with different depths (layer depth {list(set(SCREAMING_SNAKE_CASE__ ) )})' ) A__ = list(set(SCREAMING_SNAKE_CASE__ ) )[0] if layer_depth != 1: raise ValueError( 'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP' ' heads.' ) # convert layers logger.info('Converting weights...' ) for full_name, array in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = full_name.split('/' ) A__ = model A__ = [] for i, m_name in enumerate(SCREAMING_SNAKE_CASE__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('layer_with_weights' ): A__ = int(m_name.split('-' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['embeddings', 'LayerNorm'] ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'embeddings' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'LayerNorm' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['encoder', 'layer', str(layer_num - 4 )] ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'encoder' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'layer' ) A__ = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['pooler', 'dense'] ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'pooler' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'dense' ) elif m_name == "embeddings": trace.append('embeddings' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'embeddings' ) if layer_num == 0: trace.append('word_embeddings' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'word_embeddings' ) elif layer_num == 1: trace.append('position_embeddings' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'position_embeddings' ) elif layer_num == 2: trace.append('token_type_embeddings' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'token_type_embeddings' ) else: raise ValueError(f'Unknown embedding layer with name {full_name}' ) trace.append('weight' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'weight' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['attention', 'self'] ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'attention' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'self' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['attention', 'output', 'LayerNorm'] ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'attention' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'output' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'LayerNorm' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['attention', 'output', 'dense'] ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'attention' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'output' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'dense' ) elif m_name == "_output_dense": # output dense trace.extend(['output', 'dense'] ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'output' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'dense' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['output', 'LayerNorm'] ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'output' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'LayerNorm' ) elif m_name == "_key_dense": # attention key trace.append('key' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'key' ) elif m_name == "_query_dense": # attention query trace.append('query' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'query' ) elif m_name == "_value_dense": # attention value trace.append('value' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'value' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['intermediate', 'dense'] ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'intermediate' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'dense' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('output' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'output' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('bias' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'bias' ) elif m_name in ["kernel", "gamma"]: trace.append('weight' ) A__ = getattr(SCREAMING_SNAKE_CASE__ , 'weight' ) else: logger.warning(f'Ignored {m_name}' ) # for certain layers reshape is necessary A__ = '.'.join(SCREAMING_SNAKE_CASE__ ) if re.match(R'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , SCREAMING_SNAKE_CASE__ ) or re.match( R'(\S+)\.attention\.output\.dense\.weight' , SCREAMING_SNAKE_CASE__ ): A__ = array.reshape(pointer.data.shape ) if "kernel" in full_name: A__ = array.transpose() if pointer.shape == array.shape: A__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) else: raise ValueError( f'Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:' f' {array.shape}' ) logger.info(f'Successfully set variable {full_name} to PyTorch layer {trace}' ) return model def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any: '''simple docstring''' logger.info(f'Loading model based on config from {config_path}...' ) A__ = BertConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) A__ = BertModel(SCREAMING_SNAKE_CASE__ ) # Load weights from checkpoint logger.info(f'Loading weights from checkpoint {tf_checkpoint_path}...' ) load_tfa_weights_in_bert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model logger.info(f'Saving PyTorch model to {pytorch_dump_path}...' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) lowercase_ = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
7
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowercase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : tuple , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , ) -> Union[str, Any]: '''simple docstring''' output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , use_external_data_format=SCREAMING_SNAKE_CASE__ , enable_onnx_checker=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) else: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool = False ) -> Tuple: '''simple docstring''' A__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A__ = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A__ = 'cpu' A__ = Path(SCREAMING_SNAKE_CASE__ ) # VAE DECODER A__ = AutoencoderKL.from_pretrained(model_path + '/vae' ) A__ = vae_decoder.config.latent_channels # forward only through the decoder part A__ = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE__ , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE__ , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE__ , ) del vae_decoder if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowercase_ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
7
1
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _A = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[Any]: if rng is None: lowerCAmelCase__ : Any = random.Random() lowerCAmelCase__ : str = 1 for dim in shape: total_dims *= dim lowerCAmelCase__ : Dict = [] for _ in range(__UpperCAmelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) lowerCAmelCase__ : Dict = np.array(__UpperCAmelCase , dtype=jnp.intaa ).reshape(__UpperCAmelCase ) return output def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase=None ) -> List[Any]: lowerCAmelCase__ : Dict = ids_tensor(__UpperCAmelCase , vocab_size=2 , rng=__UpperCAmelCase ) # make sure that at least one token is attended to for each batch lowerCAmelCase__ : str = 1 return attn_mask @require_flax class _lowerCamelCase : _lowerCamelCase :Optional[int] = None _lowerCamelCase :Optional[Any] = () def _lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 lowerCAmelCase__ : Optional[Any] = 2 lowerCAmelCase__ : Union[str, Any] = inputs["""input_ids"""].shape[-1] // 2 lowerCAmelCase__ : Tuple = inputs["""input_ids"""][:max_batch_size, :sequence_length] lowerCAmelCase__ : str = jnp.ones_like(UpperCamelCase ) lowerCAmelCase__ : Tuple = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens lowerCAmelCase__ : Union[str, Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` lowerCAmelCase__ : Dict = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self._get_input_ids_and_config() lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : Optional[int] = max_length lowerCAmelCase__ : Any = 0 for model_class in self.all_generative_model_classes: lowerCAmelCase__ : List[str] = model_class(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase__ : Tuple = getattr(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[Any] = pt_model_class(UpperCamelCase ).eval() lowerCAmelCase__ : Dict = load_flax_weights_in_pytorch_model(UpperCamelCase , flax_model.params ) lowerCAmelCase__ : Union[str, Any] = flax_model.generate(UpperCamelCase ).sequences lowerCAmelCase__ : List[Any] = pt_model.generate(torch.tensor(UpperCamelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: lowerCAmelCase__ : Union[str, Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = self._get_input_ids_and_config() lowerCAmelCase__ : str = False lowerCAmelCase__ : Optional[Any] = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ : int = model_class(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = jit(model.generate ) lowerCAmelCase__ : Tuple = jit_generate(UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self._get_input_ids_and_config() lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : List[Any] = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ : List[str] = model_class(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) lowerCAmelCase__ : List[Any] = jit(model.generate ) lowerCAmelCase__ : int = jit_generate(UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" lowerCAmelCase__ : Any = self._get_input_ids_and_config() lowerCAmelCase__ : Any = False lowerCAmelCase__ : int = max_length lowerCAmelCase__ : List[Any] = 2 for model_class in self.all_generative_model_classes: lowerCAmelCase__ : List[str] = model_class(UpperCamelCase ) lowerCAmelCase__ : int = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) lowerCAmelCase__ : Tuple = jit(model.generate ) lowerCAmelCase__ : List[Any] = jit_generate(UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = self._get_input_ids_and_config() lowerCAmelCase__ : Dict = False lowerCAmelCase__ : int = max_length lowerCAmelCase__ : Any = 2 lowerCAmelCase__ : Any = 2 for model_class in self.all_generative_model_classes: lowerCAmelCase__ : Union[str, Any] = model_class(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def _lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowerCAmelCase__ : Dict = self._get_input_ids_and_config() lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : Optional[int] = max_length lowerCAmelCase__ : Optional[int] = 0.8 lowerCAmelCase__ : Any = 10 lowerCAmelCase__ : Any = 0.3 lowerCAmelCase__ : Tuple = 1 lowerCAmelCase__ : Optional[Any] = 8 lowerCAmelCase__ : Tuple = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ : Any = model_class(UpperCamelCase ) lowerCAmelCase__ : List[str] = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) lowerCAmelCase__ : str = jit(model.generate ) lowerCAmelCase__ : Any = jit_generate(UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Dict = self._get_input_ids_and_config() lowerCAmelCase__ : int = max_length lowerCAmelCase__ : Optional[Any] = 1 lowerCAmelCase__ : Tuple = 8 lowerCAmelCase__ : Union[str, Any] = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ : Union[str, Any] = model_class(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) lowerCAmelCase__ : Tuple = jit(model.generate ) lowerCAmelCase__ : int = jit_generate(UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowerCAmelCase__ : Any = self._get_input_ids_and_config() lowerCAmelCase__ : Tuple = max_length lowerCAmelCase__ : str = 2 lowerCAmelCase__ : Tuple = 1 lowerCAmelCase__ : List[Any] = 8 lowerCAmelCase__ : int = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ : Dict = model_class(UpperCamelCase ) lowerCAmelCase__ : Dict = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = jit(model.generate ) lowerCAmelCase__ : Optional[int] = jit_generate(UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ : Any = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ : str = False lowerCAmelCase__ : Any = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ : Any = model_class(UpperCamelCase ) lowerCAmelCase__ : Dict = model.generate(UpperCamelCase , attention_mask=UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) lowerCAmelCase__ : Any = jit(model.generate ) lowerCAmelCase__ : Dict = jit_generate(UpperCamelCase , attention_mask=UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Dict = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ : Dict = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ : Dict = True lowerCAmelCase__ : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ : str = model_class(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = model.generate(UpperCamelCase , attention_mask=UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) lowerCAmelCase__ : List[str] = jit(model.generate ) lowerCAmelCase__ : Tuple = jit_generate(UpperCamelCase , attention_mask=UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[int] = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ : Optional[Any] = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ : Optional[int] = 2 lowerCAmelCase__ : Optional[int] = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ : Tuple = model_class(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = model.generate(UpperCamelCase , attention_mask=UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) lowerCAmelCase__ : int = jit(model.generate ) lowerCAmelCase__ : Union[str, Any] = jit_generate(UpperCamelCase , attention_mask=UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class _lowerCamelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" lowerCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) lowerCAmelCase__ : str = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) lowerCAmelCase__ : List[str] = """Hello world""" lowerCAmelCase__ : Dict = tokenizer(UpperCamelCase , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(UpperCamelCase , """do_samples""" ): model.generate(UpperCamelCase , do_samples=UpperCamelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(UpperCamelCase , """foo""" ): lowerCAmelCase__ : Tuple = {"""foo""": """bar"""} model.generate(UpperCamelCase , **UpperCamelCase )
362
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowercase_ ( __UpperCAmelCase ) -> List[str]: return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _lowerCamelCase ( a_ ): @staticmethod def _lowerCAmelCase ( UpperCamelCase : ArgumentParser ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : int = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=UpperCamelCase , default=UpperCamelCase , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=UpperCamelCase , help="""Name of the model to download""" ) download_parser.set_defaults(func=UpperCamelCase ) def __init__( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : bool , UpperCamelCase : bool ) -> Any: """simple docstring""" lowerCAmelCase__ : int = model lowerCAmelCase__ : Union[str, Any] = cache lowerCAmelCase__ : Optional[int] = force lowerCAmelCase__ : Dict = trust_remote_code def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
212
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig UpperCAmelCase : List[str] = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : List[str] = """albert""" def __init__( self , lowerCAmelCase__=3_0_0_0_0 , lowerCAmelCase__=1_2_8 , lowerCAmelCase__=4_0_9_6 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1 , lowerCAmelCase__=6_4 , lowerCAmelCase__=1_6_3_8_4 , lowerCAmelCase__=1 , lowerCAmelCase__="gelu_new" , lowerCAmelCase__=0 , lowerCAmelCase__=0 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0.1 , lowerCAmelCase__="absolute" , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , **lowerCAmelCase__ , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : str =vocab_size a__ : Optional[int] =embedding_size a__ : Optional[Any] =hidden_size a__ : List[str] =num_hidden_layers a__ : Any =num_hidden_groups a__ : int =num_attention_heads a__ : int =inner_group_num a__ : List[str] =hidden_act a__ : Tuple =intermediate_size a__ : List[Any] =hidden_dropout_prob a__ : List[str] =attention_probs_dropout_prob a__ : str =max_position_embeddings a__ : str =type_vocab_size a__ : List[str] =initializer_range a__ : List[Any] =layer_norm_eps a__ : Optional[Any] =classifier_dropout_prob a__ : Tuple =position_embedding_type class __lowerCAmelCase ( UpperCamelCase__): @property def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": a__ : Any ={0: "batch", 1: "choice", 2: "sequence"} else: a__ : Dict ={0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
95
"""simple docstring""" def __lowerCAmelCase ( lowercase : Union[str, Any] ) -> List[str]: """simple docstring""" snake_case : List[str] = len(lowercase ) for i in range(length - 1 ): snake_case : List[str] = i for k in range(i + 1 , lowercase ): if collection[k] < collection[least]: snake_case : List[str] = k if least != i: snake_case ,snake_case : Union[str, Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": __snake_case = input("""Enter numbers separated by a comma:\n""").strip() __snake_case = [int(item) for item in user_input.split(""",""")] print(selection_sort(unsorted))
203
0
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase : List[str] = logging.get_logger(__name__) lowercase : Tuple = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowercase : Any = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } lowercase : str = {'''facebook/blenderbot-3B''': 1_28} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase__ ( ): snake_case_ : Tuple = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case_ : Tuple = bs[:] snake_case_ : Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(_a ) cs.append(2**8 + n ) n += 1 snake_case_ : Tuple = [chr(_a ) for n in cs] return dict(zip(_a , _a ) ) def lowerCAmelCase__ ( _a : Union[str, Any] ): snake_case_ : Union[str, Any] = set() snake_case_ : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ : Any = char return pairs class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Any = VOCAB_FILES_NAMES A : Tuple = PRETRAINED_VOCAB_FILES_MAP A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Any = ['input_ids', 'attention_mask'] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="replace" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: snake_case_ : Optional[Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else bos_token snake_case_ : List[str] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else eos_token snake_case_ : Optional[Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else sep_token snake_case_ : List[Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else cls_token snake_case_ : Dict = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else unk_token snake_case_ : int = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ : Optional[Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( errors=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) with open(_SCREAMING_SNAKE_CASE , encoding="utf-8" ) as vocab_handle: snake_case_ : str = json.load(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = {v: k for k, v in self.encoder.items()} snake_case_ : Union[str, Any] = errors # how to handle errors in decoding snake_case_ : Union[str, Any] = bytes_to_unicode() snake_case_ : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(_SCREAMING_SNAKE_CASE , encoding="utf-8" ) as merges_handle: snake_case_ : Any = merges_handle.read().split("\n" )[1:-1] snake_case_ : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] snake_case_ : List[Any] = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) snake_case_ : int = {} snake_case_ : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case_ : Any = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCAmelCase ( self ) -> int: return len(self.encoder ) def _lowerCAmelCase ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Tuple: if token in self.cache: return self.cache[token] snake_case_ : Optional[Any] = tuple(_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = get_pairs(_SCREAMING_SNAKE_CASE ) if not pairs: return token while True: snake_case_ : List[str] = min(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : self.bpe_ranks.get(_SCREAMING_SNAKE_CASE , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case_ , snake_case_ : Optional[int] = bigram snake_case_ : Union[str, Any] = [] snake_case_ : Any = 0 while i < len(_SCREAMING_SNAKE_CASE ): try: snake_case_ : List[str] = word.index(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case_ : List[Any] = j if word[i] == first and i < len(_SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case_ : int = tuple(_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = new_word if len(_SCREAMING_SNAKE_CASE ) == 1: break else: snake_case_ : int = get_pairs(_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = " ".join(_SCREAMING_SNAKE_CASE ) snake_case_ : str = word return word def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ : Dict = [] for token in re.findall(self.pat , _SCREAMING_SNAKE_CASE ): snake_case_ : List[Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_SCREAMING_SNAKE_CASE ).split(" " ) ) return bpe_tokens def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: return self.encoder.get(_SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: return self.decoder.get(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Any: snake_case_ : Any = "".join(_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ : int = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ : List[Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE , ensure_ascii=_SCREAMING_SNAKE_CASE ) + "\n" ) snake_case_ : str = 0 with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case_ : str = token_index writer.write(" ".join(_SCREAMING_SNAKE_CASE ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: snake_case_ : Optional[Any] = [self.sep_token_id] snake_case_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_SCREAMING_SNAKE_CASE ) > 0 and not text[0].isspace()): snake_case_ : List[Any] = " " + text return (text, kwargs) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[str]: return token_ids_a + [self.eos_token_id] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[int]: snake_case_ : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = " ".join(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = self.encode(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > self.model_max_length: snake_case_ : Tuple = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
36
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self ) -> Dict: snake_case_ : int = [] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: self.events.append("on_init_end" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: self.events.append("on_train_begin" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: self.events.append("on_train_end" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: self.events.append("on_epoch_begin" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: self.events.append("on_epoch_end" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: self.events.append("on_step_begin" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: self.events.append("on_step_end" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: self.events.append("on_evaluate" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: self.events.append("on_predict" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: self.events.append("on_save" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: self.events.append("on_log" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: self.events.append("on_prediction_step" ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Any: snake_case_ : Optional[int] = tempfile.mkdtemp() def _lowerCAmelCase ( self ) -> Optional[Any]: shutil.rmtree(self.output_dir ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE ) -> Dict: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. snake_case_ : Any = RegressionDataset(length=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = RegressionDataset(length=_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = RegressionModelConfig(a=_SCREAMING_SNAKE_CASE , b=_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = RegressionPreTrainedModel(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=_SCREAMING_SNAKE_CASE , report_to=[] , **_SCREAMING_SNAKE_CASE ) return Trainer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , callbacks=_SCREAMING_SNAKE_CASE , ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) # Order doesn't matter snake_case_ : List[str] = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ ) snake_case_ : List[str] = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ ) for cba, cba in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(_SCREAMING_SNAKE_CASE , cba.__class__ ) elif not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(cba.__class__ , _SCREAMING_SNAKE_CASE ) else: self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> int: snake_case_ : int = ["on_init_end", "on_train_begin"] snake_case_ : Any = 0 snake_case_ : Dict = len(trainer.get_eval_dataloader() ) snake_case_ : Tuple = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs ): expected_events.append("on_epoch_begin" ) for _ in range(_SCREAMING_SNAKE_CASE ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save" ) expected_events.append("on_epoch_end" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _lowerCAmelCase ( self ) -> int: snake_case_ : Dict = self.get_trainer() snake_case_ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) # Callbacks passed at init are added to the default callbacks snake_case_ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(_SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback snake_case_ : Optional[int] = self.get_trainer(disable_tqdm=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : Tuple = DEFAULT_CALLBACKS.copy() + [ProgressCallback] snake_case_ : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(_SCREAMING_SNAKE_CASE ) expected_callbacks.remove(_SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = self.get_trainer() snake_case_ : List[Any] = trainer.pop_callback(_SCREAMING_SNAKE_CASE ) self.assertEqual(cb.__class__ , _SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) trainer.add_callback(_SCREAMING_SNAKE_CASE ) expected_callbacks.insert(0 , _SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) # We can also add, pop, or remove by instance snake_case_ : str = self.get_trainer() snake_case_ : Tuple = trainer.callback_handler.callbacks[0] trainer.remove_callback(_SCREAMING_SNAKE_CASE ) expected_callbacks.remove(_SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) snake_case_ : str = self.get_trainer() snake_case_ : List[Any] = trainer.callback_handler.callbacks[0] snake_case_ : List[str] = trainer.pop_callback(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) trainer.add_callback(_SCREAMING_SNAKE_CASE ) expected_callbacks.insert(0 , _SCREAMING_SNAKE_CASE ) self.check_callbacks_equality(trainer.callback_handler.callbacks , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Union[str, Any]: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore" , category=_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() snake_case_ : Optional[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_SCREAMING_SNAKE_CASE , self.get_expected_events(_SCREAMING_SNAKE_CASE ) ) # Independent log/save/eval snake_case_ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() snake_case_ : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(_SCREAMING_SNAKE_CASE , self.get_expected_events(_SCREAMING_SNAKE_CASE ) ) snake_case_ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() snake_case_ : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(_SCREAMING_SNAKE_CASE , self.get_expected_events(_SCREAMING_SNAKE_CASE ) ) snake_case_ : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps" ) trainer.train() snake_case_ : List[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_SCREAMING_SNAKE_CASE , self.get_expected_events(_SCREAMING_SNAKE_CASE ) ) snake_case_ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch" ) trainer.train() snake_case_ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_SCREAMING_SNAKE_CASE , self.get_expected_events(_SCREAMING_SNAKE_CASE ) ) # A bit of everything snake_case_ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , ) trainer.train() snake_case_ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_SCREAMING_SNAKE_CASE , self.get_expected_events(_SCREAMING_SNAKE_CASE ) ) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning" ) as warn_mock: snake_case_ : int = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(_SCREAMING_SNAKE_CASE ) in warn_mock.call_args[0][0]
36
1
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __A: def __init__( self , _snake_case , _snake_case=12 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=0.02 , _snake_case=0 , _snake_case=None , ) -> Dict: '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_labels __a = vocab_size __a = hidden_size __a = projection_dim __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = dropout __a = attention_dropout __a = max_position_embeddings __a = initializer_range __a = scope __a = bos_token_id def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: __a = input_mask.numpy() __a , __a = input_mask.shape __a = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_snake_case ): __a = 1 __a = 0 __a = self.get_config() return config, input_ids, tf.convert_to_tensor(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = TFBlipTextModel(config=_snake_case ) __a = model(_snake_case , attention_mask=_snake_case , training=_snake_case ) __a = model(_snake_case , training=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __A( a , unittest.TestCase ): snake_case_ = (TFBlipTextModel,) if is_tf_available() else () snake_case_ = False snake_case_ = False snake_case_ = False def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = BlipTextModelTester(self ) __a = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = TFBlipTextModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case=True ) -> Optional[Any]: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=_snake_case )
6
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class UpperCamelCase__ ( lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaxAutoencoderKL @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : str = 3 SCREAMING_SNAKE_CASE : List[Any] = (32, 32) SCREAMING_SNAKE_CASE : Tuple = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE : Any = jax.random.uniform(lowerCamelCase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } SCREAMING_SNAKE_CASE : List[Any] = self.dummy_input return init_dict, inputs_dict
323
0
def __magic_name__ ( __lowerCAmelCase : int = 50 ) -> int: __lowerCamelCase = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'{solution() = }')
339
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated SCREAMING_SNAKE_CASE__ : Tuple = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ SCREAMING_SNAKE_CASE__ : List[str] = "https://storage.googleapis.com/cvdf-datasets/mnist/" def __magic_name__ ( __lowerCAmelCase : Any ) -> int: __lowerCamelCase = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowerCAmelCase )[0] @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(rows * cols * num_images ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) __lowerCamelCase = data.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 ) return data @deprecated(__lowerCAmelCase , '''Please use tf.one_hot on tensors.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> Dict: __lowerCamelCase = labels_dense.shape[0] __lowerCamelCase = numpy.arange(__lowerCAmelCase ) * num_classes __lowerCamelCase = numpy.zeros((num_labels, num_classes) ) __lowerCamelCase = 1 return labels_one_hot @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str=False , __lowerCAmelCase : List[str]=10 ) -> List[str]: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(__lowerCAmelCase ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowerCAmelCase , __lowerCAmelCase ) return labels class lowerCAmelCase__ : @deprecated( SCREAMING_SNAKE_CASE__ , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=dtypes.floataa , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=None , ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase = random_seed.get_seed(SCREAMING_SNAKE_CASE__ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __lowerCamelCase = dtypes.as_dtype(SCREAMING_SNAKE_CASE__ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: __lowerCamelCase = 1_00_00 __lowerCamelCase = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' __lowerCamelCase = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowerCamelCase = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowerCamelCase = images.astype(numpy.floataa ) __lowerCamelCase = numpy.multiply(SCREAMING_SNAKE_CASE__ , 1.0 / 255.0 ) __lowerCamelCase = images __lowerCamelCase = labels __lowerCamelCase = 0 __lowerCamelCase = 0 @property def __A ( self : str ) -> Optional[int]: return self._images @property def __A ( self : Any ) -> Dict: return self._labels @property def __A ( self : List[Any] ) -> int: return self._num_examples @property def __A ( self : str ) -> Any: return self._epochs_completed def __A ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : str=True ) -> str: if fake_data: __lowerCamelCase = [1] * 7_84 __lowerCamelCase = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(SCREAMING_SNAKE_CASE__ )], [fake_label for _ in range(SCREAMING_SNAKE_CASE__ )], ) __lowerCamelCase = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perma] __lowerCamelCase = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowerCamelCase = self._num_examples - start __lowerCamelCase = self._images[start : self._num_examples] __lowerCamelCase = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perm] __lowerCamelCase = self.labels[perm] # Start next epoch __lowerCamelCase = 0 __lowerCamelCase = batch_size - rest_num_examples __lowerCamelCase = self._index_in_epoch __lowerCamelCase = self._images[start:end] __lowerCamelCase = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __lowerCamelCase = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowerCAmelCase , '''Please write your own downloading logic.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: if not gfile.Exists(__lowerCAmelCase ): gfile.MakeDirs(__lowerCAmelCase ) __lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if not gfile.Exists(__lowerCAmelCase ): urllib.request.urlretrieve(__lowerCAmelCase , __lowerCAmelCase ) # noqa: S310 with gfile.GFile(__lowerCAmelCase ) as f: __lowerCamelCase = f.size() print('''Successfully downloaded''' , __lowerCAmelCase , __lowerCAmelCase , '''bytes.''' ) return filepath @deprecated( __lowerCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[str]=dtypes.floataa , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : int=5000 , __lowerCAmelCase : Any=None , __lowerCAmelCase : List[str]=DEFAULT_SOURCE_URL , ) -> Optional[Any]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__lowerCAmelCase , one_hot=__lowerCAmelCase , dtype=__lowerCAmelCase , seed=__lowerCAmelCase ) __lowerCamelCase = fake() __lowerCamelCase = fake() __lowerCamelCase = fake() return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase ) if not source_url: # empty string check __lowerCamelCase = DEFAULT_SOURCE_URL __lowerCamelCase = '''train-images-idx3-ubyte.gz''' __lowerCamelCase = '''train-labels-idx1-ubyte.gz''' __lowerCamelCase = '''t10k-images-idx3-ubyte.gz''' __lowerCamelCase = '''t10k-labels-idx1-ubyte.gz''' __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) if not 0 <= validation_size <= len(__lowerCAmelCase ): __lowerCamelCase = ( '''Validation size should be between 0 and ''' f'''{len(__lowerCAmelCase )}. Received: {validation_size}.''' ) raise ValueError(__lowerCAmelCase ) __lowerCamelCase = train_images[:validation_size] __lowerCamelCase = train_labels[:validation_size] __lowerCamelCase = train_images[validation_size:] __lowerCamelCase = train_labels[validation_size:] __lowerCamelCase = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
339
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowercase ( unittest.TestCase ): '''simple docstring''' @property def a ( self : Dict ) -> List[Any]: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def a ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.dummy_uncond_unet __lowerCAmelCase = PNDMScheduler() __lowerCAmelCase = PNDMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pndm.to(__SCREAMING_SNAKE_CASE ) pndm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pndm(generator=__SCREAMING_SNAKE_CASE , num_inference_steps=20 , output_type="""numpy""" ).images __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pndm(generator=__SCREAMING_SNAKE_CASE , num_inference_steps=20 , output_type="""numpy""" , return_dict=__SCREAMING_SNAKE_CASE )[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def a ( self : Any ) -> str: __lowerCAmelCase = """google/ddpm-cifar10-32""" __lowerCAmelCase = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = PNDMScheduler() __lowerCAmelCase = PNDMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pndm.to(__SCREAMING_SNAKE_CASE ) pndm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pndm(generator=__SCREAMING_SNAKE_CASE , output_type="""numpy""" ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
229
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case :List[str] = '''\ Text data. Second line of data.''' __snake_case :Optional[Any] = '''file''' @pytest.fixture(scope='''session''' ) def __snake_case ( _UpperCAmelCase ): __a = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') __a = bytes(_UpperCAmelCase , '''utf-8''' ) with zstd.open(_UpperCAmelCase , '''wb''' ) as f: f.write(_UpperCAmelCase ) return path @pytest.fixture def __snake_case ( _UpperCAmelCase ): with open(os.path.join(tmpfs.local_root_dir , _UpperCAmelCase ) , '''w''' ) as f: f.write(_UpperCAmelCase ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} __a = input_paths[compression_format] __a = tmp_path / '''cache''' __a = DownloadConfig(cache_dir=_UpperCAmelCase , extract_compressed_file=_UpperCAmelCase ) __a = cached_path(_UpperCAmelCase , download_config=_UpperCAmelCase ) with open(_UpperCAmelCase ) as f: __a = f.read() with open(_UpperCAmelCase ) as f: __a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = '''custom_cache''' __a = '''custom_extracted_dir''' __a = tmp_path / '''custom_extracted_path''' if default_extracted: __a = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , _UpperCAmelCase ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(_UpperCAmelCase ) ) __a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __a = xz_file __a = ( DownloadConfig(extract_compressed_file=_UpperCAmelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_UpperCAmelCase ) ) __a = cached_path(_UpperCAmelCase , download_config=_UpperCAmelCase ) assert Path(_UpperCAmelCase ).parent.parts[-2:] == expected def __snake_case ( _UpperCAmelCase ): # absolute path __a = str(Path(_UpperCAmelCase ).resolve() ) assert cached_path(_UpperCAmelCase ) == text_file # relative path __a = str(Path(_UpperCAmelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_UpperCAmelCase ) == text_file def __snake_case ( _UpperCAmelCase ): # absolute path __a = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(_UpperCAmelCase ): cached_path(_UpperCAmelCase ) # relative path __a = '''./__missing_file__.txt''' with pytest.raises(_UpperCAmelCase ): cached_path(_UpperCAmelCase ) def __snake_case ( _UpperCAmelCase ): __a = get_from_cache(f'tmp://{tmpfs_file}' ) with open(_UpperCAmelCase ) as f: __a = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _UpperCAmelCase ) def __snake_case ( ): with pytest.raises(_UpperCAmelCase ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _UpperCAmelCase ) def __snake_case ( _UpperCAmelCase ): __a = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_UpperCAmelCase ): http_get('''https://huggingface.co''' , temp_file=_UpperCAmelCase ) with pytest.raises(_UpperCAmelCase ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _UpperCAmelCase ) def __snake_case ( _UpperCAmelCase ): __a = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_UpperCAmelCase ): ftp_get('''ftp://huggingface.co''' , temp_file=_UpperCAmelCase ) with pytest.raises(_UpperCAmelCase ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _UpperCAmelCase ) def __snake_case ( _UpperCAmelCase ): __a = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_UpperCAmelCase ): fsspec_get('''s3://huggingface.co''' , temp_file=_UpperCAmelCase ) with pytest.raises(_UpperCAmelCase ): fsspec_head('''s3://huggingface.co''' )
49
0
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : List[Any] = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class __A( a ): snake_case_ = '''autoformer''' snake_case_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , _snake_case = None , _snake_case = None , _snake_case = "student_t" , _snake_case = "nll" , _snake_case = 1 , _snake_case = [1, 2, 3, 4, 5, 6, 7] , _snake_case = True , _snake_case = 0 , _snake_case = 0 , _snake_case = 0 , _snake_case = 0 , _snake_case = None , _snake_case = None , _snake_case = 64 , _snake_case = 2 , _snake_case = 2 , _snake_case = 2 , _snake_case = 2 , _snake_case = 32 , _snake_case = 32 , _snake_case = "gelu" , _snake_case = 0.1 , _snake_case = 0.1 , _snake_case = 0.1 , _snake_case = 0.1 , _snake_case = 0.1 , _snake_case = 100 , _snake_case = 0.02 , _snake_case = True , _snake_case=True , _snake_case = 10 , _snake_case = 25 , _snake_case = 3 , **_snake_case , ) -> List[str]: '''simple docstring''' __a = prediction_length __a = context_length if context_length is not None else prediction_length __a = distribution_output __a = loss __a = input_size __a = num_time_features __a = lags_sequence __a = scaling __a = num_dynamic_real_features __a = num_static_real_features __a = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(_snake_case ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __a = cardinality else: __a = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(_snake_case ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __a = embedding_dimension else: __a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __a = num_parallel_samples # Transformer architecture configuration __a = input_size * len(self.lags_sequence ) + self._number_of_features __a = d_model __a = encoder_attention_heads __a = decoder_attention_heads __a = encoder_ffn_dim __a = decoder_ffn_dim __a = encoder_layers __a = decoder_layers __a = dropout __a = attention_dropout __a = activation_dropout __a = encoder_layerdrop __a = decoder_layerdrop __a = activation_function __a = init_std __a = use_cache # Autoformer __a = label_length __a = moving_average __a = autocorrelation_factor super().__init__(is_encoder_decoder=_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
359
from string import ascii_uppercase A : Optional[int] = {char: i for i, char in enumerate(ascii_uppercase)} A : Union[str, Any] = dict(enumerate(ascii_uppercase)) def __lowerCAmelCase ( a__ , a__ ) -> str: __a = len(a__ ) __a = 0 while True: if x == i: __a = 0 if len(a__ ) == len(a__ ): break key += key[i] i += 1 return key def __lowerCAmelCase ( a__ , a__ ) -> str: __a = '''''' __a = 0 for letter in message: if letter == " ": cipher_text += " " else: __a = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __lowerCAmelCase ( a__ , a__ ) -> str: __a = '''''' __a = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __a = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __lowerCAmelCase ( ) -> None: __a = '''THE GERMAN ATTACK''' __a = '''SECRET''' __a = generate_key(a__ , a__ ) __a = cipher_text(a__ , a__ ) print(F"""Encrypted Text = {s}""" ) print(F"""Original Text = {original_text(a__ , a__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
33
0
'''simple docstring''' from __future__ import annotations __lowercase : Union[str, Any] = list[list[int]] # assigning initial values to the grid __lowercase : Union[str, Any] = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __lowercase : Any = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple ): if location := find_empty_location(SCREAMING_SNAKE_CASE_ ): __a : Any = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __a : Optional[Any] = digit if sudoku(SCREAMING_SNAKE_CASE_ ) is not None: return grid __a : List[Any] = 0 return None def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict ): for row in grid: for cell in row: print(SCREAMING_SNAKE_CASE_ , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') __lowercase : Optional[int] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
27
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class A__ ( __magic_name__ ): def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase__ : Dict = 8 # DPR tok lowerCAmelCase__ : str = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCAmelCase__ : List[str] = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(a , exist_ok=a ) lowerCAmelCase__ : Union[str, Any] = os.path.join(a , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok lowerCAmelCase__ : Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCAmelCase__ : str = dict(zip(a , range(len(a ) ) ) ) lowerCAmelCase__ : int = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCAmelCase__ : Dict = {'unk_token': '<unk>'} lowerCAmelCase__ : Dict = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(a , exist_ok=a ) lowerCAmelCase__ : Optional[Any] = os.path.join(a , BART_VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ : Any = os.path.join(a , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(a ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) @require_tokenizers def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , 'rag_tokenizer' ) lowerCAmelCase__ : Any = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) lowerCAmelCase__ : Any = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(a ) rag_tokenizer.save_pretrained(a ) lowerCAmelCase__ : List[str] = RagTokenizer.from_pretrained(a , config=a ) self.assertIsInstance(new_rag_tokenizer.question_encoder , a ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , a ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = RagTokenizer.from_pretrained('facebook/rag-token-nq' ) lowerCAmelCase__ : Any = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] lowerCAmelCase__ : List[str] = tokenizer(a ) self.assertIsNotNone(a ) @slow def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) lowerCAmelCase__ : List[str] = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] lowerCAmelCase__ : int = tokenizer(a ) self.assertIsNotNone(a )
212
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def lowerCamelCase__ ( __snake_case, __snake_case=False ) -> int: """simple docstring""" _UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('''head''' ): _UpperCamelCase = '''segformer.encoder.''' + key if key.startswith('''backbone''' ): _UpperCamelCase = key.replace('''backbone''', '''segformer.encoder''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCamelCase = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] _UpperCamelCase = key.replace(F'''patch_embed{idx}''', F'''patch_embeddings.{int(__snake_case )-1}''' ) if "norm" in key: _UpperCamelCase = key.replace('''norm''', '''layer_norm''' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCamelCase = key[key.find('''segformer.encoder.layer_norm''' ) + len('''segformer.encoder.layer_norm''' )] _UpperCamelCase = key.replace(F'''layer_norm{idx}''', F'''layer_norm.{int(__snake_case )-1}''' ) if "layer_norm1" in key: _UpperCamelCase = key.replace('''layer_norm1''', '''layer_norm_1''' ) if "layer_norm2" in key: _UpperCamelCase = key.replace('''layer_norm2''', '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 _UpperCamelCase = key[key.find('''block''' ) + len('''block''' )] _UpperCamelCase = key.replace(F'''block{idx}''', F'''block.{int(__snake_case )-1}''' ) if "attn.q" in key: _UpperCamelCase = key.replace('''attn.q''', '''attention.self.query''' ) if "attn.proj" in key: _UpperCamelCase = key.replace('''attn.proj''', '''attention.output.dense''' ) if "attn" in key: _UpperCamelCase = key.replace('''attn''', '''attention.self''' ) if "fc1" in key: _UpperCamelCase = key.replace('''fc1''', '''dense1''' ) if "fc2" in key: _UpperCamelCase = key.replace('''fc2''', '''dense2''' ) if "linear_pred" in key: _UpperCamelCase = key.replace('''linear_pred''', '''classifier''' ) if "linear_fuse" in key: _UpperCamelCase = key.replace('''linear_fuse.conv''', '''linear_fuse''' ) _UpperCamelCase = key.replace('''linear_fuse.bn''', '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCamelCase = key[key.find('''linear_c''' ) + len('''linear_c''' )] _UpperCamelCase = key.replace(F'''linear_c{idx}''', F'''linear_c.{int(__snake_case )-1}''' ) if key.startswith('''head''' ): _UpperCamelCase = key.replace('''head''', '''classifier''' ) _UpperCamelCase = value return new_state_dict def lowerCamelCase__ ( __snake_case, __snake_case ) -> str: """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCamelCase = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) _UpperCamelCase = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict _UpperCamelCase = kv_weight[ : config.hidden_sizes[i], : ] _UpperCamelCase = kv_bias[: config.hidden_sizes[i]] _UpperCamelCase = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCamelCase = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return image @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = SegformerConfig() _UpperCamelCase = False # set attributes based on model_name _UpperCamelCase = '''huggingface/label-files''' if "segformer" in model_name: _UpperCamelCase = model_name[len('''segformer.''' ) : len('''segformer.''' ) + 2] if "ade" in model_name: _UpperCamelCase = 1_50 _UpperCamelCase = '''ade20k-id2label.json''' _UpperCamelCase = (1, 1_50, 1_28, 1_28) elif "city" in model_name: _UpperCamelCase = 19 _UpperCamelCase = '''cityscapes-id2label.json''' _UpperCamelCase = (1, 19, 1_28, 1_28) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: _UpperCamelCase = True _UpperCamelCase = model_name[4:6] _UpperCamelCase = 10_00 _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = (1, 10_00) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes _UpperCamelCase = json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type='''dataset''' ), '''r''' ) ) _UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 2_56 elif size == "b2": _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 7_68 _UpperCamelCase = [3, 4, 6, 3] elif size == "b3": _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 7_68 _UpperCamelCase = [3, 4, 18, 3] elif size == "b4": _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 7_68 _UpperCamelCase = [3, 8, 27, 3] elif size == "b5": _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 7_68 _UpperCamelCase = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) _UpperCamelCase = SegformerImageProcessor( image_scale=(5_12, 5_12), keep_ratio=__snake_case, align=__snake_case, do_random_crop=__snake_case ) # prepare image _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__snake_case, return_tensors='''pt''' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: _UpperCamelCase = torch.load(__snake_case, map_location=torch.device('''cpu''' ) ) else: _UpperCamelCase = torch.load(__snake_case, map_location=torch.device('''cpu''' ) )['''state_dict'''] # rename keys _UpperCamelCase = rename_keys(__snake_case, encoder_only=__snake_case ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(__snake_case, __snake_case ) # create HuggingFace model and load state dict if encoder_only: _UpperCamelCase = False _UpperCamelCase = SegformerForImageClassification(__snake_case ) else: _UpperCamelCase = SegformerForSemanticSegmentation(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # forward pass _UpperCamelCase = model(__snake_case ) _UpperCamelCase = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _UpperCamelCase = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _UpperCamelCase = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _UpperCamelCase = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _UpperCamelCase = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _UpperCamelCase = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _UpperCamelCase = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _UpperCamelCase = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _UpperCamelCase = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _UpperCamelCase = torch.tensor( [ [ [-1.1_372e01, -1.2_787e01, -1.3_477e01], [-1.2_536e01, -1.4_194e01, -1.4_409e01], [-1.3_217e01, -1.4_888e01, -1.5_327e01], ], [ [-1.4_791e01, -1.7_122e01, -1.8_277e01], [-1.7_163e01, -1.9_192e01, -1.9_533e01], [-1.7_897e01, -1.9_991e01, -2.0_315e01], ], [ [7.6_723e-01, 4.1_921e-01, -7.7_878e-02], [4.7_772e-01, 9.5_557e-03, -2.8_082e-01], [3.6_032e-01, -2.4_826e-01, -5.1_168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _UpperCamelCase = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _UpperCamelCase = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _UpperCamelCase = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _UpperCamelCase = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _UpperCamelCase = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _UpperCamelCase = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: _UpperCamelCase = logits.argmax(-1 ).item() print('''Predicted class:''', model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3], __snake_case, atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _a = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
100
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase__ ( __snake_case ) -> None: """simple docstring""" _UpperCamelCase , _UpperCamelCase = analyze_text(__snake_case ) _UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. _UpperCamelCase = sum(single_char_strings.values() ) # one length string _UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _UpperCamelCase = single_char_strings[ch] _UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(__snake_case ) # entropy formula. # print entropy print(F'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _UpperCamelCase = sum(two_char_strings.values() ) _UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _UpperCamelCase = cha + cha if sequence in two_char_strings: _UpperCamelCase = two_char_strings[sequence] _UpperCamelCase = int(__snake_case ) / all_sum my_sec_sum += prob * math.loga(__snake_case ) # print second entropy print(F'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(F'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def lowerCamelCase__ ( __snake_case ) -> tuple[dict, dict]: """simple docstring""" _UpperCamelCase = Counter() # type: ignore _UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(__snake_case ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase__ ( ) -> Dict: """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
100
1
def A ( _lowerCamelCase = 50_000_000 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = set() _lowerCAmelCase : Any = int((limit - 24) ** (1 / 2) ) _lowerCAmelCase : Tuple = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , _lowerCamelCase ) ) ) for primea in primes: _lowerCAmelCase : Dict = primea * primea for primea in primes: _lowerCAmelCase : Any = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: _lowerCAmelCase : Optional[int] = primea * primea * primea * primea _lowerCAmelCase : Union[str, Any] = square + cube + tetr if total >= limit: break ret.add(_lowerCamelCase ) return len(_lowerCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
36
from PIL import Image def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = image.size _lowerCAmelCase : Any = 0 _lowerCAmelCase : Tuple = image.load() for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = pixels[j, i] mean += pixel mean //= width * height for j in range(_lowerCamelCase ): for i in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _snake_case = mean_threshold(Image.open("path_to_image").convert("L")) image.save("output_image_path")
36
1
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: snake_case_ = False snake_case_ = logging.get_logger(__name__) snake_case_ = """ybelkada/fonts""" def snake_case__ ( ): '''simple docstring''' if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ 'Pix2StructImageProcessor. Please upgrade torch.' ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ['torch'] ) _check_torch_version() lowercase__ : Dict = image_tensor.unsqueeze(0 ) lowercase__ : int = torch.nn.functional.unfold(SCREAMING_SNAKE_CASE_ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowercase__ : List[str] = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , -1 ) lowercase__ : int = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int = 36 , SCREAMING_SNAKE_CASE_ : str = "black" , SCREAMING_SNAKE_CASE_ : str = "white" , SCREAMING_SNAKE_CASE_ : int = 5 , SCREAMING_SNAKE_CASE_ : int = 5 , SCREAMING_SNAKE_CASE_ : int = 5 , SCREAMING_SNAKE_CASE_ : int = 5 , SCREAMING_SNAKE_CASE_ : Optional[bytes] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None , ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , 'vision' ) # Add new lines so that each line is no more than 80 characters. lowercase__ : Tuple = textwrap.TextWrapper(width=80 ) lowercase__ : List[Any] = wrapper.wrap(text=SCREAMING_SNAKE_CASE_ ) lowercase__ : Optional[int] = '\n'.join(SCREAMING_SNAKE_CASE_ ) if font_bytes is not None and font_path is None: lowercase__ : List[str] = io.BytesIO(SCREAMING_SNAKE_CASE_ ) elif font_path is not None: lowercase__ : Optional[Any] = font_path else: lowercase__ : Dict = hf_hub_download(SCREAMING_SNAKE_CASE_ , 'Arial.TTF' ) lowercase__ : Any = ImageFont.truetype(SCREAMING_SNAKE_CASE_ , encoding='UTF-8' , size=SCREAMING_SNAKE_CASE_ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowercase__ : Optional[Any] = ImageDraw.Draw(Image.new('RGB' , (1, 1) , SCREAMING_SNAKE_CASE_ ) ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = temp_draw.textbbox((0, 0) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Create the actual image with a bit of padding around the text. lowercase__ : List[str] = text_width + left_padding + right_padding lowercase__ : int = text_height + top_padding + bottom_padding lowercase__ : int = Image.new('RGB' , (image_width, image_height) , SCREAMING_SNAKE_CASE_ ) lowercase__ : Tuple = ImageDraw.Draw(SCREAMING_SNAKE_CASE_ ) draw.text(xy=(left_padding, top_padding) , text=SCREAMING_SNAKE_CASE_ , fill=SCREAMING_SNAKE_CASE_ , font=SCREAMING_SNAKE_CASE_ ) return image def snake_case__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , 'vision' ) # Convert to PIL image if necessary lowercase__ : List[str] = to_pil_image(SCREAMING_SNAKE_CASE_ ) lowercase__ : Union[str, Any] = render_text(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase__ : Optional[int] = max(header_image.width , image.width ) lowercase__ : List[str] = int(image.height * (new_width / image.width) ) lowercase__ : Union[str, Any] = int(header_image.height * (new_width / header_image.width) ) lowercase__ : str = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowercase__ : Dict = to_numpy_array(SCREAMING_SNAKE_CASE_ ) if infer_channel_dimension_format(SCREAMING_SNAKE_CASE_ ) == ChannelDimension.LAST: lowercase__ : Optional[int] = to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , ChannelDimension.LAST ) return new_image class SCREAMING_SNAKE_CASE__ (lowerCAmelCase__ ): __lowerCamelCase : Optional[int] = ["flattened_patches"] def __init__( self , a = True , a = True , a = None , a = 2048 , a = False , **a , ): super().__init__(**a__) lowercase__ : Union[str, Any] = patch_size if patch_size is not None else {'height': 16, 'width': 16} lowercase__ : Union[str, Any] = do_normalize lowercase__ : Any = do_convert_rgb lowercase__ : Optional[int] = max_patches lowercase__ : Any = is_vqa def snake_case_ ( self , a , a , a , **a): requires_backends(self.extract_flattened_patches , 'torch') _check_torch_version() # convert to torch lowercase__ : List[Any] = to_channel_dimension_format(a__ , ChannelDimension.FIRST) lowercase__ : Optional[Any] = torch.from_numpy(a__) lowercase__ , lowercase__ : Any = patch_size['height'], patch_size['width'] lowercase__ , lowercase__ : int = get_image_size(a__) # maximize scale s.t. lowercase__ : Optional[int] = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width)) lowercase__ : Optional[Any] = max(min(math.floor(scale * image_height / patch_height) , a__) , 1) lowercase__ : Optional[int] = max(min(math.floor(scale * image_width / patch_width) , a__) , 1) lowercase__ : Optional[int] = max(num_feasible_rows * patch_height , 1) lowercase__ : List[Any] = max(num_feasible_cols * patch_width , 1) lowercase__ : Optional[Any] = torch.nn.functional.interpolate( image.unsqueeze(0) , size=(resized_height, resized_width) , mode='bilinear' , align_corners=a__ , antialias=a__ , ).squeeze(0) # [1, rows, columns, patch_height * patch_width * image_channels] lowercase__ : Dict = torch_extract_patches(a__ , a__ , a__) lowercase__ : List[Any] = patches.shape lowercase__ : Optional[Any] = patches_shape[1] lowercase__ : List[str] = patches_shape[2] lowercase__ : Optional[Any] = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowercase__ : Dict = patches.reshape([rows * columns, depth]) # [rows * columns, 1] lowercase__ : Union[str, Any] = torch.arange(a__).reshape([rows, 1]).repeat(1 , a__).reshape([rows * columns, 1]) lowercase__ : str = torch.arange(a__).reshape([1, columns]).repeat(a__ , 1).reshape([rows * columns, 1]) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowercase__ : List[Any] = row_ids.to(torch.floataa) lowercase__ : Any = col_ids.to(torch.floataa) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowercase__ : Tuple = torch.cat([row_ids, col_ids, patches] , -1) # [max_patches, 2 + patch_height * patch_width * image_channels] lowercase__ : List[Any] = torch.nn.functional.pad(a__ , [0, 0, 0, max_patches - (rows * columns)]).float() lowercase__ : Any = to_numpy_array(a__) return result def snake_case_ ( self , a , a = None , **a): if image.dtype == np.uinta: lowercase__ : Optional[Any] = image.astype(np.floataa) # take mean across the whole `image` lowercase__ : List[str] = np.mean(a__) lowercase__ : Optional[Any] = np.std(a__) lowercase__ : Dict = max(a__ , 1.0 / math.sqrt(np.prod(image.shape))) return normalize(a__ , mean=a__ , std=a__ , **a__) def snake_case_ ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ): lowercase__ : Dict = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ : Dict = patch_size if patch_size is not None else self.patch_size lowercase__ : str = max_patches if max_patches is not None else self.max_patches lowercase__ : Dict = self.is_vqa if kwargs.get('data_format' , a__) is not None: raise ValueError('data_format is not an accepted input as the outputs are ') lowercase__ : Union[str, Any] = make_list_of_images(a__) if not valid_images(a__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ : Any = [convert_to_rgb(a__) for image in images] # All transformations expect numpy arrays. lowercase__ : Union[str, Any] = [to_numpy_array(a__) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.') lowercase__ : Dict = kwargs.pop('font_bytes' , a__) lowercase__ : Any = kwargs.pop('font_path' , a__) if isinstance(a__ , a__): lowercase__ : Optional[int] = [header_text] * len(a__) lowercase__ : Optional[int] = [ render_header(a__ , header_text[i] , font_bytes=a__ , font_path=a__) for i, image in enumerate(a__) ] if do_normalize: lowercase__ : List[str] = [self.normalize(image=a__) for image in images] # convert to torch tensor and permute lowercase__ : str = [ self.extract_flattened_patches(image=a__ , max_patches=a__ , patch_size=a__) for image in images ] # create attention mask in numpy lowercase__ : List[str] = [(image.sum(axis=-1) != 0).astype(np.floataa) for image in images] lowercase__ : int = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks} , tensor_type=a__) return encoded_outputs
364
def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' lowercase__ : List[str] = 0 lowercase__ : Optional[int] = number while duplicate > 0: lowercase__ , lowercase__ : Tuple = divmod(SCREAMING_SNAKE_CASE_ , 10 ) fact_sum += factorial(SCREAMING_SNAKE_CASE_ ) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') snake_case_ = int(input('''Enter number: ''').strip()) print( F'''{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.''' )
216
0
def A ( _UpperCAmelCase : int = 50 ) -> int: '''simple docstring''' _UpperCAmelCase = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f"""{solution() = }""")
339
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder UpperCAmelCase__ = datasets.utils.logging.get_logger(__name__) class __lowerCAmelCase ( folder_based_builder.FolderBasedBuilderConfig ): UpperCamelCase = None UpperCamelCase = None class __lowerCAmelCase ( folder_based_builder.FolderBasedBuilder ): UpperCamelCase = datasets.Audio() UpperCamelCase = '''audio''' UpperCamelCase = AudioFolderConfig UpperCamelCase = 42 # definition at the bottom of the script UpperCamelCase = AudioClassification(audio_column='''audio''' , label_column='''label''' ) UpperCAmelCase__ = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] UpperCAmelCase__ = AUDIO_EXTENSIONS
339
1
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class A_ (enum.Enum ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 0 SCREAMING_SNAKE_CASE__ : Dict = 1 SCREAMING_SNAKE_CASE__ : str = 2 @add_end_docstrings(__lowercase ) class A_ (__lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *lowercase_ , **lowercase_ ): """simple docstring""" super().__init__(*lowercase_ , **lowercase_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase_ : Dict = None if self.model.config.prefix is not None: UpperCAmelCase_ : List[str] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase_ : int = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=lowercase_ , **self._forward_params ) UpperCAmelCase_ : Any = {**self._preprocess_params, **preprocess_params} UpperCAmelCase_ : Dict = {**self._forward_params, **forward_params} def UpperCamelCase__ ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : int = {} if prefix is not None: UpperCAmelCase_ : Union[str, Any] = prefix if prefix: UpperCAmelCase_ : Optional[Any] = self.tokenizer( lowercase_ , padding=lowercase_ , add_special_tokens=lowercase_ , return_tensors=self.framework ) UpperCAmelCase_ : Any = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" " [None, 'hole']" ) UpperCAmelCase_ : Any = handle_long_generation preprocess_params.update(lowercase_ ) UpperCAmelCase_ : str = generate_kwargs UpperCAmelCase_ : Optional[Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) UpperCAmelCase_ : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) UpperCAmelCase_ : Optional[Any] = ReturnType.TENSORS if return_type is not None: UpperCAmelCase_ : Dict = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ : str = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ : List[str] = self.tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) if len(lowercase_ ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) UpperCAmelCase_ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCamelCase__ ( self , *lowercase_ , **lowercase_ ): """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*lowercase_ , **lowercase_ ) def __call__( self , lowercase_ , **lowercase_ ): """simple docstring""" return super().__call__(lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_="" , lowercase_=None , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.tokenizer( prefix + prompt_text , padding=lowercase_ , add_special_tokens=lowercase_ , return_tensors=self.framework ) UpperCAmelCase_ : int = prompt_text if handle_long_generation == "hole": UpperCAmelCase_ : int = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase_ : Any = generate_kwargs["""max_new_tokens"""] else: UpperCAmelCase_ : int = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase_ : Tuple = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) UpperCAmelCase_ : Any = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase_ : Any = inputs["""attention_mask"""][:, -keep_length:] return inputs def UpperCamelCase__ ( self , lowercase_ , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = model_inputs["""input_ids"""] UpperCAmelCase_ : Any = model_inputs.get("attention_mask" , lowercase_ ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : str = 1 else: UpperCAmelCase_ : List[Any] = input_ids.shape[0] UpperCAmelCase_ : Dict = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase_ : Union[str, Any] = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: UpperCAmelCase_ : List[Any] = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase_ : Optional[Any] = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase_ : Any = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase_ : List[Any] = self.model.generate(input_ids=lowercase_ , attention_mask=lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase_ : Dict = generated_sequence.reshape(lowercase_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ : int = tf.reshape(lowercase_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def UpperCamelCase__ ( self , lowercase_ , lowercase_=ReturnType.FULL_TEXT , lowercase_=True ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = model_outputs["""generated_sequence"""][0] UpperCAmelCase_ : Any = model_outputs["""input_ids"""] UpperCAmelCase_ : List[Any] = model_outputs["""prompt_text"""] UpperCAmelCase_ : str = generated_sequence.numpy().tolist() UpperCAmelCase_ : Union[str, Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase_ : Optional[Any] = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase_ : str = self.tokenizer.decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase_ : Tuple = 0 else: UpperCAmelCase_ : Any = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase_ : Union[str, Any] = prompt_text + text[prompt_length:] else: UpperCAmelCase_ : int = text[prompt_length:] UpperCAmelCase_ : List[str] = {"""generated_text""": all_text} records.append(lowercase_ ) return records
363
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = "ylacombe/bark-small" UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase_ : List[str] = "en_speaker_1" UpperCAmelCase_ : Tuple = "This is a test string" UpperCAmelCase_ : List[Any] = "speaker_embeddings_path.json" UpperCAmelCase_ : Any = "speaker_embeddings" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = BarkProcessor(tokenizer=lowercase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase_ : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase_ : int = 35 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : List[Any] = 8 UpperCAmelCase_ : Optional[Any] = { "semantic_prompt": np.ones(lowercase_ ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : Dict = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , "file.npz" ) np.savez(lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = BarkProcessor(tokenizer=lowercase_ ) UpperCAmelCase_ : Tuple = processor(text=self.input_string ) UpperCAmelCase_ : Union[str, Any] = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
23
0
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file A_ = TapasConfig.from_json_file(__snake_case ) # set absolute/relative position embeddings parameter A_ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": A_ = TapasForQuestionAnswering(config=__snake_case ) elif task == "WTQ": # run_task_main.py hparams A_ = 4 A_ = True # hparam_utils.py hparams A_ = 0.664_694 A_ = 0.207_951 A_ = 0.121_194 A_ = True A_ = True A_ = False A_ = 0.0_352_513 A_ = TapasForQuestionAnswering(config=__snake_case ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams A_ = 4 A_ = False # hparam_utils.py hparams A_ = 36.4_519 A_ = 0.903_421 A_ = 222.088 A_ = True A_ = True A_ = True A_ = 0.763_141 A_ = TapasForQuestionAnswering(config=__snake_case ) elif task == "TABFACT": A_ = TapasForSequenceClassification(config=__snake_case ) elif task == "MLM": A_ = TapasForMaskedLM(config=__snake_case ) elif task == "INTERMEDIATE_PRETRAINING": A_ = TapasModel(config=__snake_case ) else: raise ValueError(F'''Task {task} not supported.''' ) print(F'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__snake_case, __snake_case, __snake_case ) # Save pytorch-model (weights and configuration) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__snake_case ) # Save tokenizer files print(F'''Save tokenizer files to {pytorch_dump_path}''' ) A_ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""", model_max_length=5_12 ) tokenizer.save_pretrained(__snake_case ) print("""Used relative position embeddings:""", model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
162
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Any = KandinskyVaaControlnetImgaImgPipeline SCREAMING_SNAKE_CASE_ : Optional[int] = ["image_embeds", "negative_image_embeds", "image", "hint"] SCREAMING_SNAKE_CASE_ : str = ["image_embeds", "negative_image_embeds", "image", "hint"] SCREAMING_SNAKE_CASE_ : Dict = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] SCREAMING_SNAKE_CASE_ : Dict = False @property def A ( self : Any ) -> Any: return 32 @property def A ( self : Optional[int] ) -> Any: return 32 @property def A ( self : Dict ) -> int: return self.time_input_dim @property def A ( self : Tuple ) -> str: return self.time_input_dim * 4 @property def A ( self : Any ) -> str: return 1_00 @property def A ( self : str ) -> List[str]: torch.manual_seed(0 ) lowercase_ : List[Any] = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase_ : Dict = UNetaDConditionModel(**A ) return model @property def A ( self : Optional[Any] ) -> Union[str, Any]: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def A ( self : List[Any] ) -> Dict: torch.manual_seed(0 ) lowercase_ : int = VQModel(**self.dummy_movq_kwargs ) return model def A ( self : Union[str, Any] ) -> Optional[int]: lowercase_ : Tuple = self.dummy_unet lowercase_ : int = self.dummy_movq lowercase_ : List[Any] = { '''num_train_timesteps''': 10_00, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowercase_ : str = DDIMScheduler(**A ) lowercase_ : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def A ( self : Optional[int] , A : int , A : List[str]=0 ) -> int: lowercase_ : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A ) ).to(A ) lowercase_ : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A ) # create init_image lowercase_ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(A ) ).to(A ) lowercase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ : Optional[Any] = Image.fromarray(np.uinta(A ) ).convert('''RGB''' ).resize((2_56, 2_56) ) # create hint lowercase_ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(A ) ).to(A ) if str(A ).startswith('''mps''' ): lowercase_ : Optional[Any] = torch.manual_seed(A ) else: lowercase_ : List[Any] = torch.Generator(device=A ).manual_seed(A ) lowercase_ : Dict = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def A ( self : Any ) -> List[Any]: lowercase_ : List[str] = '''cpu''' lowercase_ : Any = self.get_dummy_components() lowercase_ : Any = self.pipeline_class(**A ) lowercase_ : int = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) lowercase_ : Dict = pipe(**self.get_dummy_inputs(A ) ) lowercase_ : str = output.images lowercase_ : int = pipe( **self.get_dummy_inputs(A ) , return_dict=A , )[0] lowercase_ : Dict = image[0, -3:, -3:, -1] lowercase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ : List[str] = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def A ( self : Tuple ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Any ) -> Optional[int]: lowercase_ : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) lowercase_ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowercase_ : Optional[int] = init_image.resize((5_12, 5_12) ) lowercase_ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) lowercase_ : Optional[int] = torch.from_numpy(np.array(A ) ).float() / 255.0 lowercase_ : Tuple = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowercase_ : Optional[Any] = '''A robot, 4k photo''' lowercase_ : Tuple = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(A ) lowercase_ : Dict = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) lowercase_ : int = pipeline.to(A ) pipeline.set_progress_bar_config(disable=A ) lowercase_ : Tuple = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase_ , lowercase_ : int = pipe_prior( A , image=A , strength=0.85 , generator=A , negative_prompt='''''' , ).to_tuple() lowercase_ : str = pipeline( image=A , image_embeds=A , negative_image_embeds=A , hint=A , generator=A , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type='''np''' , ) lowercase_ : Optional[Any] = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(A , A )
33
0
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = PegasusTokenizer __lowerCAmelCase = PegasusTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def _lowerCamelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing __a : Tuple = PegasusTokenizer(_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self ): return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def _lowerCamelCase ( self , **_UpperCAmelCase ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): return ("This is a test", "This is a test") def _lowerCamelCase ( self ): __a : Any = '''</s>''' __a : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(_UpperCAmelCase ) , 1103 ) def _lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowerCamelCase ( self ): __a : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __a : int = self.tokenizer_class.from_pretrained(self.tmpdirname ) __a : Optional[int] = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) __a : List[str] = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] __a : Tuple = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __a : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' __a : Tuple = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] __a : List[str] = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Any = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 __a : Union[str, Any] = '''To ensure a smooth flow of bank resolutions.''' __a : List[str] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] __a : List[str] = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowerCamelCase ( self ): __a : Optional[int] = ['''This is going to be way too long.''' * 150, '''short example'''] __a : List[str] = ['''not super long but more than 5 tokens''', '''tiny'''] __a : int = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='''pt''' ) __a : Any = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. @slow def _lowerCamelCase ( self ): # fmt: off __a : Optional[int] = {'''input_ids''': [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = PegasusTokenizer __lowerCAmelCase = PegasusTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def _lowerCamelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing __a : Tuple = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self ): return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def _lowerCamelCase ( self , **_UpperCAmelCase ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): return ("This is a test", "This is a test") def _lowerCamelCase ( self ): __a : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __a : int = self.tokenizer_class.from_pretrained(self.tmpdirname ) __a : List[Any] = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) __a : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] __a : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_torch def _lowerCamelCase ( self ): __a : Tuple = ['''This is going to be way too long.''' * 1000, '''short example'''] __a : int = ['''not super long but more than 5 tokens''', '''tiny'''] __a : List[Any] = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='''pt''' ) __a : List[str] = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. def _lowerCamelCase ( self ): __a : Dict = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) __a : int = self._large_tokenizer(_UpperCAmelCase ).input_ids self.assertListEqual( _UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
188
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ['''image_processor''', '''tokenizer'''] __lowerCAmelCase = '''CLIPImageProcessor''' __lowerCAmelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): __a : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _UpperCAmelCase , ) __a : Any = kwargs.pop('''feature_extractor''' ) __a : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __a : Any = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: __a : List[str] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: __a : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def _lowerCamelCase ( self ): __a : Union[str, Any] = self.tokenizer.model_input_names __a : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
188
1
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): # Check if the input is valid if not len(UpperCamelCase_ ) == len(UpperCamelCase_ ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = equationa __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = equationa # Calculate the determinants of the matrices __SCREAMING_SNAKE_CASE = aa * ba - aa * ba __SCREAMING_SNAKE_CASE = ca * ba - ca * ba __SCREAMING_SNAKE_CASE = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: __SCREAMING_SNAKE_CASE = determinant_x / determinant __SCREAMING_SNAKE_CASE = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
100
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Optional[Any] = '''blip_2_vision_model''' def __init__( self , lowerCAmelCase__=1_4_0_8 , lowerCAmelCase__=6_1_4_4 , lowerCAmelCase__=3_9 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=1_4 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0_00_01 , lowerCAmelCase__=0.0 , lowerCAmelCase__=1E-10 , lowerCAmelCase__=True , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = qkv_bias @classmethod def snake_case_ ( cls , lowerCAmelCase__ , **lowerCAmelCase__): cls._set_token_in_kwargs(lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""") == "blip-2": __SCREAMING_SNAKE_CASE = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Tuple = '''blip_2_qformer''' def __init__( self , lowerCAmelCase__=3_0_5_2_2 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0 , lowerCAmelCase__="absolute" , lowerCAmelCase__=2 , lowerCAmelCase__=1_4_0_8 , **lowerCAmelCase__ , ): super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = cross_attention_frequency __SCREAMING_SNAKE_CASE = encoder_hidden_size @classmethod def snake_case_ ( cls , lowerCAmelCase__ , **lowerCAmelCase__): cls._set_token_in_kwargs(lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""") == "blip-2": __SCREAMING_SNAKE_CASE = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Optional[Any] = '''blip-2''' __lowercase : Any = True def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=3_2 , **lowerCAmelCase__): super().__init__(**lowerCAmelCase__) if vision_config is None: __SCREAMING_SNAKE_CASE = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""") if qformer_config is None: __SCREAMING_SNAKE_CASE = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""") if text_config is None: __SCREAMING_SNAKE_CASE = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""") __SCREAMING_SNAKE_CASE = BlipaVisionConfig(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = BlipaQFormerConfig(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = text_config["""model_type"""] if """model_type""" in text_config else """opt""" __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[text_model_type](**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.text_config.tie_word_embeddings __SCREAMING_SNAKE_CASE = self.text_config.is_encoder_decoder __SCREAMING_SNAKE_CASE = num_query_tokens __SCREAMING_SNAKE_CASE = self.vision_config.hidden_size __SCREAMING_SNAKE_CASE = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __SCREAMING_SNAKE_CASE = 1.0 __SCREAMING_SNAKE_CASE = 0.02 @classmethod def snake_case_ ( cls , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase__ , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__) __SCREAMING_SNAKE_CASE = self.vision_config.to_dict() __SCREAMING_SNAKE_CASE = self.qformer_config.to_dict() __SCREAMING_SNAKE_CASE = self.text_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
100
1
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = list(lowerCAmelCase__ ) lowerCAmelCase__ = list(lowerCAmelCase__ ) lowerCAmelCase__ = 0 for i in range(len(lowerCAmelCase__ ) ): if lista[i] != lista[i]: count += 1 lowerCAmelCase__ = '_' if count > 1: return False else: return "".join(lowerCAmelCase__ ) def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = [] while True: lowerCAmelCase__ = ['$'] * len(lowerCAmelCase__ ) lowerCAmelCase__ = [] for i in range(len(lowerCAmelCase__ ) ): for j in range(i + 1 , len(lowerCAmelCase__ ) ): lowerCAmelCase__ = compare_string(binary[i] , binary[j] ) if k is False: lowerCAmelCase__ = '*' lowerCAmelCase__ = '*' temp.append('X' ) for i in range(len(lowerCAmelCase__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowerCAmelCase__ ) == 0: return pi lowerCAmelCase__ = list(set(lowerCAmelCase__ ) ) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = [] for minterm in minterms: lowerCAmelCase__ = '' for _ in range(lowerCAmelCase__ ): lowerCAmelCase__ = str(minterm % 2 ) + string minterm //= 2 temp.append(lowerCAmelCase__ ) return temp def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = list(lowerCAmelCase__ ) lowerCAmelCase__ = list(lowerCAmelCase__ ) lowerCAmelCase__ = 0 for i in range(len(lowerCAmelCase__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = [] lowerCAmelCase__ = [0] * len(lowerCAmelCase__ ) for i in range(len(chart[0] ) ): lowerCAmelCase__ = 0 lowerCAmelCase__ = -1 for j in range(len(lowerCAmelCase__ ) ): if chart[j][i] == 1: count += 1 lowerCAmelCase__ = j if count == 1: lowerCAmelCase__ = 1 for i in range(len(lowerCAmelCase__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowerCAmelCase__ ) ): lowerCAmelCase__ = 0 temp.append(prime_implicants[i] ) while True: lowerCAmelCase__ = 0 lowerCAmelCase__ = -1 lowerCAmelCase__ = 0 for i in range(len(lowerCAmelCase__ ) ): lowerCAmelCase__ = chart[i].count(1 ) if count_n > max_n: lowerCAmelCase__ = count_n lowerCAmelCase__ = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowerCAmelCase__ ) ): lowerCAmelCase__ = 0 def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = [[0 for x in range(len(lowerCAmelCase__ ) )] for x in range(len(lowerCAmelCase__ ) )] for i in range(len(lowerCAmelCase__ ) ): lowerCAmelCase__ = prime_implicants[i].count('_' ) for j in range(len(lowerCAmelCase__ ) ): if is_for_table(prime_implicants[i] , binary[j] , lowerCAmelCase__ ): lowerCAmelCase__ = 1 return chart def __lowerCamelCase ( ): lowerCAmelCase__ = int(input('Enter the no. of variables\n' ) ) lowerCAmelCase__ = [ float(lowerCAmelCase__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] lowerCAmelCase__ = decimal_to_binary(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = check(lowerCAmelCase__ ) print('Prime Implicants are:' ) print(lowerCAmelCase__ ) lowerCAmelCase__ = prime_implicant_chart(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ = selection(lowerCAmelCase__ , lowerCAmelCase__ ) print('Essential Prime Implicants are:' ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
119
import argparse from collections import defaultdict import yaml lowerCAmelCase__ = 'docs/source/en/_toctree.yml' def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = defaultdict(lowerCAmelCase__ ) for doc in model_doc: counts[doc["local"]] += 1 lowerCAmelCase__ = [key for key, value in counts.items() if value > 1] lowerCAmelCase__ = [] for duplicate_key in duplicates: lowerCAmelCase__ = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(lowerCAmelCase__ ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : s["title"].lower() ) def __lowerCamelCase ( lowerCAmelCase__=False ): with open(lowerCAmelCase__ , encoding='utf-8' ) as f: lowerCAmelCase__ = yaml.safe_load(f.read() ) # Get to the API doc lowerCAmelCase__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCAmelCase__ = content[api_idx]['sections'] # Then to the model doc lowerCAmelCase__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowerCAmelCase__ = api_doc[model_idx]['sections'] lowerCAmelCase__ = [(idx, section) for idx, section in enumerate(lowerCAmelCase__ ) if 'sections' in section] lowerCAmelCase__ = False for idx, modality_doc in modalities_docs: lowerCAmelCase__ = modality_doc['sections'] lowerCAmelCase__ = clean_model_doc_toc(lowerCAmelCase__ ) if old_modality_doc != new_modality_doc: lowerCAmelCase__ = True if overwrite: lowerCAmelCase__ = new_modality_doc if diff: if overwrite: lowerCAmelCase__ = model_doc lowerCAmelCase__ = api_doc with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase__ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
119
1
'''simple docstring''' import fire from utils import calculate_rouge, save_json def a_ ( __snake_case : int , __snake_case : Optional[int] , __snake_case : Optional[Any]=None , **__snake_case : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ =[x.strip() for x in open(__snake_case ).readlines()] lowerCamelCase_ =[x.strip() for x in open(__snake_case ).readlines()][: len(__snake_case )] lowerCamelCase_ =calculate_rouge(__snake_case , __snake_case , **__snake_case ) if save_path is not None: save_json(__snake_case , __snake_case , indent=__snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
75
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase (self : int ): __a , __a : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , ) __a : Any = '''A painting of a squirrel eating a burger''' __a : Dict = jax.device_count() __a : Optional[int] = num_samples * [prompt] __a : Optional[Any] = sd_pipe.prepare_inputs(snake_case_ ) __a : Optional[Any] = replicate(snake_case_ ) __a : Optional[int] = shard(snake_case_ ) __a : int = jax.random.PRNGKey(0 ) __a : str = jax.random.split(snake_case_ , jax.device_count() ) __a : int = sd_pipe(snake_case_ , snake_case_ , snake_case_ , num_inference_steps=2_5 , jit=snake_case_ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) __a : Optional[int] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __a : List[Any] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] __a : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __a : str = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.4_5508, 0.4512] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase (self : Tuple ): __a : Optional[Any] = '''stabilityai/stable-diffusion-2''' __a , __a : Dict = FlaxDPMSolverMultistepScheduler.from_pretrained(snake_case_ , subfolder='''scheduler''' ) __a , __a : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( snake_case_ , scheduler=snake_case_ , revision='''bf16''' , dtype=jnp.bfloataa , ) __a : Union[str, Any] = scheduler_params __a : List[Any] = '''A painting of a squirrel eating a burger''' __a : Any = jax.device_count() __a : Any = num_samples * [prompt] __a : List[Any] = sd_pipe.prepare_inputs(snake_case_ ) __a : Tuple = replicate(snake_case_ ) __a : Dict = shard(snake_case_ ) __a : Dict = jax.random.PRNGKey(0 ) __a : Dict = jax.random.split(snake_case_ , jax.device_count() ) __a : str = sd_pipe(snake_case_ , snake_case_ , snake_case_ , num_inference_steps=2_5 , jit=snake_case_ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) __a : List[Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __a : Any = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] __a : List[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __a : List[Any] = jnp.array([0.4336, 0.4_2969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
216
0
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS lowercase__ = logging.get_logger(__name__) lowercase__ = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class __lowerCamelCase ( A__ ): '''simple docstring''' def __init__( self : Optional[int] , a_ : List[str]=None , a_ : List[Any]=None , *a_ : str , **a_ : Tuple ): super().__init__(*a_ , **a_ ) if config is None: assert isinstance(self.model , a_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) lowerCAmelCase_ : Any = self.model.config else: lowerCAmelCase_ : Union[str, Any] = config lowerCAmelCase_ : Tuple = data_args lowerCAmelCase_ : Optional[int] = self.config.tgt_vocab_size if isinstance(self.config , a_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' " padding.." ) if self.args.label_smoothing == 0: lowerCAmelCase_ : Union[str, Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowerCAmelCase_ : Union[str, Any] = label_smoothed_nll_loss def lowerCamelCase ( self : List[str] , a_ : int ): if self.optimizer is None: lowerCAmelCase_ : List[str] = ["bias", "LayerNorm.weight"] lowerCAmelCase_ : List[Any] = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] lowerCAmelCase_ : Any = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowerCAmelCase_ : Union[str, Any] = Adafactor lowerCAmelCase_ : List[Any] = {"scale_parameter": False, "relative_step": False} else: lowerCAmelCase_ : List[str] = AdamW lowerCAmelCase_ : Optional[Any] = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } lowerCAmelCase_ : str = self.args.learning_rate if self.sharded_ddp: lowerCAmelCase_ : str = OSS( params=a_ , optim=a_ , **a_ , ) else: lowerCAmelCase_ : str = optimizer_cls(a_ , **a_ ) if self.lr_scheduler is None: lowerCAmelCase_ : Dict = self._get_lr_scheduler(a_ ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def lowerCamelCase ( self : Optional[Any] , a_ : Optional[int] ): lowerCAmelCase_ : int = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowerCAmelCase_ : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowerCAmelCase_ : str = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: lowerCAmelCase_ : Union[str, Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=a_ ) return scheduler def lowerCamelCase ( self : int ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCamelCase ( self : Dict , a_ : int , a_ : Union[str, Any] , a_ : Union[str, Any] ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowerCAmelCase_ : int = model(**a_ , use_cache=a_ )[0] lowerCAmelCase_ : Union[str, Any] = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models lowerCAmelCase_ : str = model(**a_ , labels=a_ , use_cache=a_ )[:2] else: # compute label smoothed loss lowerCAmelCase_ : List[str] = model(**a_ , use_cache=a_ )[0] lowerCAmelCase_ : Union[str, Any] = torch.nn.functional.log_softmax(a_ , dim=-1 ) lowerCAmelCase_ : int = self.loss_fn(a_ , a_ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowerCamelCase ( self : Union[str, Any] , a_ : int , a_ : List[str] ): lowerCAmelCase_ : Any = inputs.pop("labels" ) lowerCAmelCase_ : str = self._compute_loss(a_ , a_ , a_ ) return loss def lowerCamelCase ( self : Any , a_ : nn.Module , a_ : Dict[str, Union[torch.Tensor, Any]] , a_ : bool , a_ : Optional[List[str]] = None , ): lowerCAmelCase_ : Union[str, Any] = self._prepare_inputs(a_ ) lowerCAmelCase_ : int = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowerCAmelCase_ : List[Any] = self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **a_ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowerCAmelCase_ : str = self._pad_tensors_to_max_len(a_ , gen_kwargs["max_length"] ) lowerCAmelCase_ : int = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data lowerCAmelCase_ : Tuple = self._compute_loss(a_ , a_ , a_ ) lowerCAmelCase_ : List[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowerCAmelCase_ : List[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowerCAmelCase_ : Optional[Any] = self._pad_tensors_to_max_len(a_ , gen_kwargs["max_length"] ) return (loss, logits, labels) def lowerCamelCase ( self : str , a_ : Optional[int] , a_ : Optional[int] ): # If PAD token is not defined at least EOS token has to be defined lowerCAmelCase_ : Dict = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" f''' padded to `max_length`={max_length}''' ) lowerCAmelCase_ : Any = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) lowerCAmelCase_ : Tuple = tensor return padded_tensor
370
"""simple docstring""" from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def __lowerCamelCase ( __UpperCamelCase ) -> Any: """simple docstring""" if not is_accelerate_available(): return method lowerCAmelCase_ : Union[str, Any] = version.parse(accelerate.__version__ ).base_version if version.parse(__UpperCamelCase ) < version.parse("0.17.0" ): return method def wrapper(self , *__UpperCamelCase , **__UpperCamelCase ): if hasattr(self , "_hf_hook" ) and hasattr(self._hf_hook , "pre_forward" ): self._hf_hook.pre_forward(self ) return method(self , *__UpperCamelCase , **__UpperCamelCase ) return wrapper
161
0
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'spiece.model'} UpperCAmelCase_ = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } UpperCAmelCase_ = '▁' class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Any = ['input_ids', 'attention_mask'] def __init__( self: Dict , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any]="</s>" , UpperCamelCase_: Optional[Any]="<unk>" , UpperCamelCase_: Any="<pad>" , UpperCamelCase_: Optional[Any]=1_00 , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Optional[Dict[str, Any]] = None , UpperCamelCase_: Optional[int]=True , **UpperCamelCase_: str , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __lowerCamelCase = [F'<extra_id_{i}>' for i in range(UpperCamelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __lowerCamelCase = len(set(filter(lambda UpperCamelCase_ : bool("""extra_id""" in str(UpperCamelCase_ ) ) , UpperCamelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) if legacy: logger.warning_once( F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' """ read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" ) __lowerCamelCase = legacy __lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , extra_ids=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , legacy=UpperCamelCase_ , **UpperCamelCase_ , ) __lowerCamelCase = vocab_file __lowerCamelCase = extra_ids __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase_ ) @staticmethod def lowerCAmelCase__ ( UpperCamelCase_: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: Optional[int] ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: __lowerCamelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , UpperCamelCase_ , ) return max_model_length @property def lowerCAmelCase__ ( self: List[Any] ): return self.sp_model.get_piece_size() + self._extra_ids def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCamelCase_ )) + [1] return ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCAmelCase__ ( self: List[str] ): return list( set(filter(lambda UpperCamelCase_ : bool(re.search(r"""<extra_id_\d+>""" , UpperCamelCase_ ) ) is not None , self.additional_special_tokens ) ) ) def lowerCAmelCase__ ( self: Union[str, Any] ): return [self._convert_token_to_id(UpperCamelCase_ ) for token in self.get_sentinel_tokens()] def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[int] ): if len(UpperCamelCase_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): __lowerCamelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): __lowerCamelCase = self._add_eos_if_not_present(UpperCamelCase_ ) if token_ids_a is None: return token_ids_a else: __lowerCamelCase = self._add_eos_if_not_present(UpperCamelCase_ ) return token_ids_a + token_ids_a def __getstate__( self: Dict ): __lowerCamelCase = self.__dict__.copy() __lowerCamelCase = None return state def __setstate__( self: int , UpperCamelCase_: Dict ): __lowerCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCamelCase = {} __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: "TextInput" , **UpperCamelCase_: Dict ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: __lowerCamelCase = SPIECE_UNDERLINE + text.replace(UpperCamelCase_ , """ """ ) return super().tokenize(UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Any , **UpperCamelCase_: List[Any] ): if not self.legacy: __lowerCamelCase = text.startswith(UpperCamelCase_ ) if is_first: __lowerCamelCase = text[1:] __lowerCamelCase = self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(UpperCamelCase_ ): __lowerCamelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Tuple ): if token.startswith("""<extra_id_""" ): __lowerCamelCase = re.match(r"""<extra_id_(\d+)>""" , UpperCamelCase_ ) __lowerCamelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int] ): if index < self.sp_model.get_piece_size(): __lowerCamelCase = self.sp_model.IdToPiece(UpperCamelCase_ ) else: __lowerCamelCase = F'<extra_id_{self.vocab_size - 1 - index}>' return token def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Dict ): __lowerCamelCase = [] __lowerCamelCase = """""" __lowerCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase_ ) + token __lowerCamelCase = True __lowerCamelCase = [] else: current_sub_tokens.append(UpperCamelCase_ ) __lowerCamelCase = False out_string += self.sp_model.decode(UpperCamelCase_ ) return out_string.strip() def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , """wb""" ) as fi: __lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
12
'''simple docstring''' from manim import * class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase : Tuple = [mem.copy() for i in range(6 )] UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase : Dict = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Union[str, Any] = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Optional[Any] = Text('''CPU''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(4 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''GPU''' , font_size=24 ) UpperCAmelCase : Dict = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''Model''' , font_size=24 ) UpperCAmelCase : Tuple = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) UpperCAmelCase : Any = [] for i, rect in enumerate(__snake_case ): rect.set_stroke(__snake_case ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__snake_case , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__snake_case , buff=0.0 ) self.add(__snake_case ) cpu_targs.append(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : int = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = Text('''Loaded Checkpoint''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , aligned_edge=__snake_case , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase : str = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case , __snake_case ) UpperCAmelCase : Tuple = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase : List[Any] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) , Write(__snake_case ) ) self.play(Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) ) UpperCAmelCase : Tuple = [] UpperCAmelCase : int = [] for i, rect in enumerate(__snake_case ): UpperCAmelCase : Any = fill.copy().set_fill(__snake_case , opacity=0.7 ) target.move_to(__snake_case ) first_animations.append(GrowFromCenter(__snake_case , run_time=1 ) ) UpperCAmelCase : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) ) self.play(*__snake_case ) self.play(*__snake_case ) self.wait()
23
0
'''simple docstring''' import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __UpperCamelCase ( lowerCAmelCase_ ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(__a , 'num_attention_heads' ) ) class __UpperCamelCase : def __init__( self , __a , __a=13 , __a=64 , __a=3 , __a=3 , __a=2 , __a=1 , __a=16 , __a=[128, 256, 384] , __a=[4, 6, 8] , __a=[2, 3, 4] , __a=[16, 16, 16] , __a=0 , __a=[2, 2, 2] , __a=[2, 2, 2] , __a=0.02 , __a=True , __a=True , __a=2 , ): '''simple docstring''' __a : List[Any] = parent __a : Dict = batch_size __a : List[Any] = image_size __a : Dict = num_channels __a : Optional[Any] = kernel_size __a : str = stride __a : Optional[int] = padding __a : Union[str, Any] = hidden_sizes __a : Any = num_attention_heads __a : List[Any] = depths __a : Optional[Any] = key_dim __a : Optional[int] = drop_path_rate __a : Union[str, Any] = patch_size __a : Optional[Any] = attention_ratio __a : Any = mlp_ratio __a : Any = initializer_range __a : Union[str, Any] = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __a : Optional[Any] = is_training __a : List[str] = use_labels __a : Any = num_labels __a : List[str] = initializer_range def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Dict = None if self.use_labels: __a : Any = ids_tensor([self.batch_size] , self.num_labels ) __a : List[str] = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ): '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __UpperCAmelCase ( self , __a , __a , __a ): '''simple docstring''' __a : List[str] = LevitModel(config=__a ) model.to(__a ) model.eval() __a : List[str] = model(__a ) __a : List[Any] = (self.image_size, self.image_size) __a , __a : Optional[Any] = image_size[0], image_size[1] for _ in range(4 ): __a : str = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __a : Optional[int] = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def __UpperCAmelCase ( self , __a , __a , __a ): '''simple docstring''' __a : Tuple = self.num_labels __a : Any = LevitForImageClassification(__a ) model.to(__a ) model.eval() __a : Union[str, Any] = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = self.prepare_config_and_inputs() __a , __a , __a : Any = config_and_inputs __a : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) A_ = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) A_ = False A_ = False A_ = False A_ = False A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = LevitModelTester(self ) __a : List[Any] = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __UpperCAmelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self ): '''simple docstring''' return @unittest.skip(reason='Levit does not use inputs_embeds' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Levit does not output attentions' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[Any] = model_class(__a ) __a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : int = [*signature.parameters.keys()] __a : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' def check_hidden_states_output(__a , __a , __a ): __a : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __a : Optional[Any] = model(**self._prepare_for_class(__a , __a ) ) __a : List[Any] = outputs.hidden_states __a : List[Any] = len(self.model_tester.depths ) + 1 self.assertEqual(len(__a ) , __a ) __a : Any = (self.model_tester.image_size, self.model_tester.image_size) __a , __a : str = image_size[0], image_size[1] for _ in range(4 ): __a : int = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __a : str = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) __a , __a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[Any] = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a : str = True check_hidden_states_output(__a , __a , __a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass def __UpperCAmelCase ( self , __a , __a , __a=False ): '''simple docstring''' __a : Any = super()._prepare_for_class(__a , __a , return_labels=__a ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __a , __a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__a ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __a : Dict = model_class(__a ) model.to(__a ) model.train() __a : Any = self._prepare_for_class(__a , __a , return_labels=__a ) __a : Dict = model(**__a ).loss loss.backward() def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : int = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __a : Optional[Any] = False __a : Tuple = True for model_class in self.all_model_classes: if model_class in get_values(__a ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __a : str = model_class(__a ) model.gradient_checkpointing_enable() model.to(__a ) model.train() __a : Optional[Any] = self._prepare_for_class(__a , __a , return_labels=__a ) __a : Optional[int] = model(**__a ).loss loss.backward() def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __a : Dict = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__a ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}""" ): __a : Optional[int] = problem_type['title'] __a : int = problem_type['num_labels'] __a : List[str] = model_class(__a ) model.to(__a ) model.train() __a : List[Any] = self._prepare_for_class(__a , __a , return_labels=__a ) if problem_type["num_labels"] > 1: __a : Tuple = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) __a : Union[str, Any] = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__a ) as warning_list: __a : Optional[int] = model(**__a ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def __UpperCAmelCase ( self ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Optional[Any] = LevitModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCamelCase (): __a : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __a ) __a : Dict = self.default_image_processor __a : int = prepare_img() __a : Dict = image_processor(images=__a , return_tensors='pt' ).to(__a ) # forward pass with torch.no_grad(): __a : Tuple = model(**__a ) # verify the logits __a : List[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) __a : Dict = torch.tensor([1.0448, -0.3745, -1.8317] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
294
'''simple docstring''' def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('iterations must be defined as integers' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) __a : Dict = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_SCREAMING_SNAKE_CASE ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
294
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class __magic_name__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ : str = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ : Tuple = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_ ) -> List[Any]: """simple docstring""" a__ =ZeroShotClassificationPipeline( model=lowercase_, tokenizer=lowercase_, candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _UpperCAmelCase ( self, lowercase_, lowercase_ ) -> int: """simple docstring""" a__ =classifier('''Who are you voting for in 2020?''', candidate_labels='''politics''' ) self.assertEqual(lowercase_, {'''sequence''': ANY(lowercase_ ), '''labels''': [ANY(lowercase_ )], '''scores''': [ANY(lowercase_ )]} ) # No kwarg a__ =classifier('''Who are you voting for in 2020?''', ['''politics'''] ) self.assertEqual(lowercase_, {'''sequence''': ANY(lowercase_ ), '''labels''': [ANY(lowercase_ )], '''scores''': [ANY(lowercase_ )]} ) a__ =classifier('''Who are you voting for in 2020?''', candidate_labels=['''politics'''] ) self.assertEqual(lowercase_, {'''sequence''': ANY(lowercase_ ), '''labels''': [ANY(lowercase_ )], '''scores''': [ANY(lowercase_ )]} ) a__ =classifier('''Who are you voting for in 2020?''', candidate_labels='''politics, public health''' ) self.assertEqual( lowercase_, {'''sequence''': ANY(lowercase_ ), '''labels''': [ANY(lowercase_ ), ANY(lowercase_ )], '''scores''': [ANY(lowercase_ ), ANY(lowercase_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ), 1.0 ) a__ =classifier('''Who are you voting for in 2020?''', candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( lowercase_, {'''sequence''': ANY(lowercase_ ), '''labels''': [ANY(lowercase_ ), ANY(lowercase_ )], '''scores''': [ANY(lowercase_ ), ANY(lowercase_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ), 1.0 ) a__ =classifier( '''Who are you voting for in 2020?''', candidate_labels='''politics''', hypothesis_template='''This text is about {}''' ) self.assertEqual(lowercase_, {'''sequence''': ANY(lowercase_ ), '''labels''': [ANY(lowercase_ )], '''scores''': [ANY(lowercase_ )]} ) # https://github.com/huggingface/transformers/issues/13846 a__ =classifier(['''I am happy'''], ['''positive''', '''negative'''] ) self.assertEqual( lowercase_, [ {'''sequence''': ANY(lowercase_ ), '''labels''': [ANY(lowercase_ ), ANY(lowercase_ )], '''scores''': [ANY(lowercase_ ), ANY(lowercase_ )]} for i in range(1 ) ], ) a__ =classifier(['''I am happy''', '''I am sad'''], ['''positive''', '''negative'''] ) self.assertEqual( lowercase_, [ {'''sequence''': ANY(lowercase_ ), '''labels''': [ANY(lowercase_ ), ANY(lowercase_ )], '''scores''': [ANY(lowercase_ ), ANY(lowercase_ )]} for i in range(2 ) ], ) with self.assertRaises(lowercase_ ): classifier('''''', candidate_labels='''politics''' ) with self.assertRaises(lowercase_ ): classifier(lowercase_, candidate_labels='''politics''' ) with self.assertRaises(lowercase_ ): classifier('''Who are you voting for in 2020?''', candidate_labels='''''' ) with self.assertRaises(lowercase_ ): classifier('''Who are you voting for in 2020?''', candidate_labels=lowercase_ ) with self.assertRaises(lowercase_ ): classifier( '''Who are you voting for in 2020?''', candidate_labels='''politics''', hypothesis_template='''Not formatting template''', ) with self.assertRaises(lowercase_ ): classifier( '''Who are you voting for in 2020?''', candidate_labels='''politics''', hypothesis_template=lowercase_, ) self.run_entailment_id(lowercase_ ) def _UpperCAmelCase ( self, lowercase_ ) -> int: """simple docstring""" a__ =zero_shot_classifier.model.config a__ =config.labelaid a__ =zero_shot_classifier.entailment_id a__ ={'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id, -1 ) a__ ={'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id, 0 ) a__ ={'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id, 0 ) a__ ={'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id, 2 ) a__ =original_labelaid self.assertEqual(lowercase_, zero_shot_classifier.entailment_id ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" a__ =pipeline( '''zero-shot-classification''', model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''', framework='''pt''', ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 100, candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" a__ =pipeline( '''zero-shot-classification''', model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''', framework='''pt''', ) a__ =zero_shot_classifier( '''Who are you voting for in 2020?''', candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(lowercase_ ), { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], }, ) @require_tf def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" a__ =pipeline( '''zero-shot-classification''', model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''', framework='''tf''', ) a__ =zero_shot_classifier( '''Who are you voting for in 2020?''', candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(lowercase_ ), { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], }, ) @slow @require_torch def _UpperCAmelCase ( self ) -> int: """simple docstring""" a__ =pipeline('''zero-shot-classification''', model='''roberta-large-mnli''', framework='''pt''' ) a__ =zero_shot_classifier( '''Who are you voting for in 2020?''', candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(lowercase_ ), { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], }, ) a__ =zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''', candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''], multi_label=lowercase_, ) self.assertEqual( nested_simplify(lowercase_ ), { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__ =pipeline('''zero-shot-classification''', model='''roberta-large-mnli''', framework='''tf''' ) a__ =zero_shot_classifier( '''Who are you voting for in 2020?''', candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(lowercase_ ), { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], }, ) a__ =zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''', candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''], multi_label=lowercase_, ) self.assertEqual( nested_simplify(lowercase_ ), { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], }, )
188
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __magic_name__ : '''simple docstring''' def __init__( self, lowercase_, lowercase_=13, lowercase_=7, lowercase_=True, lowercase_=True, lowercase_=False, lowercase_=True, lowercase_=99, lowercase_=32, lowercase_=5, lowercase_=4, lowercase_=37, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=16, lowercase_=2, lowercase_=0.02, lowercase_=3, lowercase_=4, lowercase_=None, ) -> List[Any]: """simple docstring""" a__ =parent a__ =batch_size a__ =seq_length a__ =is_training a__ =use_input_mask a__ =use_token_type_ids a__ =use_labels a__ =vocab_size a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =max_position_embeddings a__ =type_vocab_size a__ =type_sequence_label_size a__ =initializer_range a__ =num_labels a__ =num_choices a__ =scope def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" a__ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) a__ =None if self.use_input_mask: a__ =random_attention_mask([self.batch_size, self.seq_length] ) a__ =None if self.use_token_type_ids: a__ =ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) a__ =None a__ =None a__ =None if self.use_labels: a__ =ids_tensor([self.batch_size], self.type_sequence_label_size ) a__ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) a__ =ids_tensor([self.batch_size], self.num_choices ) a__ =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowercase_, initializer_range=self.initializer_range, use_stable_embedding=lowercase_, ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> List[str]: """simple docstring""" a__ =OpenLlamaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_ ) a__ =model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Any: """simple docstring""" a__ =True a__ =OpenLlamaModel(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, ) a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, ) a__ =model(lowercase_, attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> List[str]: """simple docstring""" a__ =OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> List[Any]: """simple docstring""" a__ =True a__ =True a__ =OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, use_cache=lowercase_, ) a__ =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a__ =ids_tensor((self.batch_size, 3), config.vocab_size ) a__ =ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and a__ =torch.cat([input_ids, next_tokens], dim=-1 ) a__ =torch.cat([input_mask, next_mask], dim=-1 ) a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, output_hidden_states=lowercase_, )['''hidden_states'''][0] a__ =model( lowercase_, attention_mask=lowercase_, encoder_hidden_states=lowercase_, encoder_attention_mask=lowercase_, past_key_values=lowercase_, output_hidden_states=lowercase_, )['''hidden_states'''][0] # select random slice a__ =ids_tensor((1,), output_from_past.shape[-1] ).item() a__ =output_from_no_past[:, -3:, random_slice_idx].detach() a__ =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_, lowercase_, atol=1E-3 ) ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__ =self.prepare_config_and_inputs() ( ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ) =config_and_inputs a__ ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowerCamelCase__ : Optional[Any] = (OpenLlamaForCausalLM,) if is_torch_available() else () lowerCamelCase__ : List[str] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : int = False lowerCamelCase__ : Any = False def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" a__ =OpenLlamaModelTester(self ) a__ =ConfigTester(self, config_class=lowercase_, hidden_size=37 ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ =type self.model_tester.create_and_check_model(*lowercase_ ) def _UpperCAmelCase ( self ) -> int: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =3 a__ =input_dict['''input_ids'''] a__ =input_ids.ne(1 ).to(lowercase_ ) a__ =ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) a__ =OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =3 a__ ='''single_label_classification''' a__ =input_dict['''input_ids'''] a__ =input_ids.ne(1 ).to(lowercase_ ) a__ =ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) a__ =OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =3 a__ ='''multi_label_classification''' a__ =input_dict['''input_ids'''] a__ =input_ids.ne(1 ).to(lowercase_ ) a__ =ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float ) a__ =OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _UpperCAmelCase ( self, lowercase_ ) -> Optional[Any]: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =ids_tensor([1, 10], config.vocab_size ) a__ =ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a__ =OpenLlamaModel(lowercase_ ) original_model.to(lowercase_ ) original_model.eval() a__ =original_model(lowercase_ ).last_hidden_state a__ =original_model(lowercase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a__ ={'''type''': scaling_type, '''factor''': 10.0} a__ =OpenLlamaModel(lowercase_ ) scaled_model.to(lowercase_ ) scaled_model.eval() a__ =scaled_model(lowercase_ ).last_hidden_state a__ =scaled_model(lowercase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_, lowercase_, atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowercase_, lowercase_, atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_, lowercase_, atol=1E-5 ) )
188
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Optional[int] = logging.get_logger(__name__) lowerCamelCase_ : Dict = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Optional[int] = """luke""" def __init__( self : Tuple , snake_case_ : List[Any]=5_0267 , snake_case_ : Any=50_0000 , snake_case_ : str=768 , snake_case_ : int=256 , snake_case_ : str=12 , snake_case_ : int=12 , snake_case_ : Dict=3072 , snake_case_ : Optional[Any]="gelu" , snake_case_ : Dict=0.1 , snake_case_ : List[str]=0.1 , snake_case_ : int=512 , snake_case_ : Dict=2 , snake_case_ : List[Any]=0.02 , snake_case_ : int=1e-12 , snake_case_ : Union[str, Any]=True , snake_case_ : Union[str, Any]=None , snake_case_ : Dict=1 , snake_case_ : Optional[int]=0 , snake_case_ : List[str]=2 , **snake_case_ : Union[str, Any] , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) UpperCamelCase_: Dict = vocab_size UpperCamelCase_: Tuple = entity_vocab_size UpperCamelCase_: Optional[int] = hidden_size UpperCamelCase_: Any = entity_emb_size UpperCamelCase_: str = num_hidden_layers UpperCamelCase_: Union[str, Any] = num_attention_heads UpperCamelCase_: Dict = hidden_act UpperCamelCase_: Dict = intermediate_size UpperCamelCase_: str = hidden_dropout_prob UpperCamelCase_: List[str] = attention_probs_dropout_prob UpperCamelCase_: int = max_position_embeddings UpperCamelCase_: int = type_vocab_size UpperCamelCase_: List[Any] = initializer_range UpperCamelCase_: Union[str, Any] = layer_norm_eps UpperCamelCase_: Tuple = use_entity_aware_attention UpperCamelCase_: int = classifier_dropout
223
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCamelCase_ : Dict = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys lowerCamelCase_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
223
1
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : List[Any] ) -> List[str]: assert isinstance(snake_case__ , snake_case__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase ( snake_case__ : int , snake_case__ : str , snake_case__ : Tuple , snake_case__ : Optional[Any] ) -> Dict: UpperCamelCase : Optional[int] = tmp_path / 'cache' UpperCamelCase : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase : Tuple = SqlDatasetReader( 'dataset' , 'sqlite:///' + sqlite_path , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_sql_dataset(snake_case__ , snake_case__ ) @require_sqlalchemy @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def UpperCamelCase ( snake_case__ : str , snake_case__ : int , snake_case__ : List[str] , snake_case__ : int ) -> List[str]: UpperCamelCase : str = tmp_path / 'cache' UpperCamelCase : Dict = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase : Optional[int] = features.copy() if features else default_expected_features UpperCamelCase : Union[str, Any] = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase : int = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , features=snake_case__ , cache_dir=snake_case__ ).read() _check_sql_dataset(snake_case__ , snake_case__ ) def UpperCamelCase ( snake_case__ : Dict ) -> Tuple: with contextlib.closing(sqlitea.connect(snake_case__ ) ) as con: UpperCamelCase : List[str] = con.cursor() cur.execute('SELECT * FROM dataset' ) for row in cur: yield row @require_sqlalchemy def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Any ) -> Optional[Any]: UpperCamelCase : Any = tmp_path / 'cache' UpperCamelCase : Any = os.path.join(snake_case__ , 'tmp.sql' ) UpperCamelCase : Tuple = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=snake_case__ ).read() SqlDatasetWriter(snake_case__ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=1 ).write() UpperCamelCase : Dict = iter_sql_file(snake_case__ ) UpperCamelCase : Optional[int] = iter_sql_file(snake_case__ ) for rowa, rowa in zip(snake_case__ , snake_case__ ): assert rowa == rowa @require_sqlalchemy def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Dict ) -> Union[str, Any]: UpperCamelCase : List[str] = tmp_path / 'cache' UpperCamelCase : List[Any] = os.path.join(snake_case__ , 'tmp.sql' ) UpperCamelCase : Union[str, Any] = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=snake_case__ ).read() SqlDatasetWriter(snake_case__ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=2 ).write() UpperCamelCase : Tuple = iter_sql_file(snake_case__ ) UpperCamelCase : List[str] = iter_sql_file(snake_case__ ) for rowa, rowa in zip(snake_case__ , snake_case__ ): assert rowa == rowa @require_sqlalchemy def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : str , snake_case__ : List[str] ) -> List[Any]: UpperCamelCase : List[Any] = tmp_path / 'cache' UpperCamelCase : Tuple = os.path.join(snake_case__ , 'tmp.sql' ) UpperCamelCase : int = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=snake_case__ ).read() with pytest.raises(snake_case__ ): SqlDatasetWriter(snake_case__ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=0 ).write()
119
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=18, SCREAMING_SNAKE_CASE_=30, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, ) -> Union[str, Any]: UpperCamelCase : str = size if size is not None else {'height': 18, 'width': 18} UpperCamelCase : int = parent UpperCamelCase : List[Any] = batch_size UpperCamelCase : int = num_channels UpperCamelCase : Any = image_size UpperCamelCase : Optional[int] = min_resolution UpperCamelCase : Optional[Any] = max_resolution UpperCamelCase : Union[str, Any] = do_resize UpperCamelCase : List[Any] = size UpperCamelCase : int = do_normalize def snake_case_ ( self ) -> Tuple: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Any = ImageGPTImageProcessor if is_vision_available() else None def snake_case_ ( self ) -> int: UpperCamelCase : str = ImageGPTImageProcessingTester(self ) @property def snake_case_ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self ) -> str: UpperCamelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'clusters' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'size' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'do_normalize' ) ) def snake_case_ ( self ) -> str: UpperCamelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'height': 18, 'width': 18} ) UpperCamelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {'height': 42, 'width': 42} ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : str = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase : int = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_, obj[key] ) ) else: self.assertEqual(obj[key], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase : List[str] = os.path.join(SCREAMING_SNAKE_CASE_, 'image_processor.json' ) image_processor_first.to_json_file(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = self.image_processing_class.from_json_file(SCREAMING_SNAKE_CASE_ ).to_dict() UpperCamelCase : List[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_, image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = self.image_processing_class.from_pretrained(SCREAMING_SNAKE_CASE_ ).to_dict() UpperCamelCase : Union[str, Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_, image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key], SCREAMING_SNAKE_CASE_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def snake_case_ ( self ) -> str: pass def UpperCamelCase ( ) -> int: UpperCamelCase : Optional[int] = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) UpperCamelCase : int = Image.open(dataset[4]['file'] ) UpperCamelCase : Optional[Any] = Image.open(dataset[5]['file'] ) UpperCamelCase : str = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> str: UpperCamelCase : List[str] = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) UpperCamelCase : List[str] = prepare_images() # test non-batched UpperCamelCase : int = image_processing(images[0], return_tensors='pt' ) self.assertIsInstance(encoding.input_ids, torch.LongTensor ) self.assertEqual(encoding.input_ids.shape, (1, 1024) ) UpperCamelCase : Union[str, Any] = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist(), SCREAMING_SNAKE_CASE_ ) # test batched UpperCamelCase : Tuple = image_processing(SCREAMING_SNAKE_CASE_, return_tensors='pt' ) self.assertIsInstance(encoding.input_ids, torch.LongTensor ) self.assertEqual(encoding.input_ids.shape, (2, 1024) ) UpperCamelCase : Optional[Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist(), SCREAMING_SNAKE_CASE_ )
119
1
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) A_ : List[str] =_symbol_database.Default() A_ : List[str] =_descriptor_pool.Default().AddSerializedFile( B"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) A_ : str =globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: A_ : str =None A_ : Union[str, Any] =B"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" A_ : Dict =4_5 A_ : Tuple =1_5_8_1 A_ : str =1_5_1_7 A_ : int =1_5_7_0 A_ : List[str] =1_5_8_4 A_ : Dict =1_7_9_3 A_ : Union[str, Any] =1_7_9_5 A_ : Any =1_9_1_6 A_ : Union[str, Any] =1_8_6_4 A_ : str =1_9_0_5 A_ : List[Any] =1_9_1_9 A_ : Dict =2_4_2_9 A_ : Tuple =2_2_0_8 A_ : str =2_4_1_8 A_ : List[str] =2_3_2_3 A_ : Union[str, Any] =2_4_0_7 # @@protoc_insertion_point(module_scope)
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Any ={ """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] =[ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys A_ : Optional[int] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
80
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] ) -> str: '''simple docstring''' if not is_accelerate_available(): return method A__ = version.parse(accelerate.__version__ ).base_version if version.parse(SCREAMING_SNAKE_CASE_ ) < version.parse("0.17.0" ): return method def wrapper(self: Union[str, Any] , *SCREAMING_SNAKE_CASE_: int , **SCREAMING_SNAKE_CASE_: int ): if hasattr(self , "_hf_hook" ) and hasattr(self._hf_hook , "pre_forward" ): self._hf_hook.pre_forward(self ) return method(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return wrapper
68
'''simple docstring''' # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :Optional[int] , _A :str , _A :Dict ) -> Any: '''simple docstring''' super().__init__() self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self :List[str] , _A :int = 1 , _A :Optional[torch.Generator] = None , _A :int = 50 , _A :Optional[str] = "pil" , _A :bool = True , **_A :Tuple , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' __A = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_A , ) __A = image.to(self.device ) # set step values self.scheduler.set_timesteps(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __A = self.unet(_A , _A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __A = self.scheduler.step(_A , _A , _A ).prev_sample __A = (image / 2 + 0.5).clamp(0 , 1 ) __A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __A = self.numpy_to_pil(_A ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=_A ), "This is a local test"
161
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: str = IFInpaintingSuperResolutionPipeline lowercase__: int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} lowercase__: Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) lowercase__: List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def lowercase__ ( self : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : int=0 ) -> Optional[int]: """simple docstring""" if str(__magic_name__ ).startswith("""mps""" ): __snake_case : Any = torch.manual_seed(__magic_name__ ) else: __snake_case : Optional[int] = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowercase__ ( self : int ) -> Tuple: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowercase__ ( self : int ) -> Tuple: """simple docstring""" self._test_save_load_local() def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
367
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" __snake_case : int = len(_lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , ) def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCamelCase ) print("""""" ) print(len(_lowerCamelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
13
0
"""simple docstring""" _snake_case = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _snake_case = [{'type': 'code', 'content': INSTALL_CONTENT}] _snake_case = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
294
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar _snake_case = TypeVar('_T') class UpperCamelCase ( Generic[_T] ): def __init__( self : Optional[int] , UpperCAmelCase__ : Iterable[_T] | None = None ) -> None: _a : list[_T] = list(iterable or [] ) _a : list[_T] = [] def __len__( self : str ) -> int: return len(self._stacka ) + len(self._stacka ) def __repr__( self : List[str] ) -> str: return f"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : _T ) -> None: self._stacka.append(UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) -> _T: _a : Any = self._stacka.pop _a : Union[str, Any] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("""Queue is empty""" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
294
1
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = torch.nn.Linear(2 , 4 ) A = torch.optim.AdamW(model.parameters() , lr=1.0 ) A = torch.optim.lr_scheduler.OneCycleLR(_lowerCAmelCase , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) A = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) A = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_lowerCAmelCase ) class __UpperCamelCase ( _A ): @require_cuda def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(_lowerCAmelCase): A = Accelerator(cpu=_lowerCAmelCase) def SCREAMING_SNAKE_CASE__ (self : Tuple): A = Accelerator() A = GradientState() assert state.num_steps == 1 A = 4 assert state.num_steps == 4 assert state.sync_gradients is True A = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE__ (self : List[str]): A = Accelerator() A , A , A , A , A = create_components() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) self.assertTrue(prepared_model in accelerator._models) self.assertTrue(prepared_optimizer in accelerator._optimizers) self.assertTrue(prepared_scheduler in accelerator._schedulers) self.assertTrue(prepared_train_dl in accelerator._dataloaders) self.assertTrue(prepared_valid_dl in accelerator._dataloaders) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = Accelerator() A , A , A , A , A = create_components() accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) accelerator.free_memory() self.assertTrue(len(accelerator._models) == 0) self.assertTrue(len(accelerator._optimizers) == 0) self.assertTrue(len(accelerator._schedulers) == 0) self.assertTrue(len(accelerator._dataloaders) == 0) def SCREAMING_SNAKE_CASE__ (self : Any): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : Optional[int]): pass with patch("torch.cuda.set_device" , _lowerCAmelCase), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64"): A = Accelerator() self.assertEqual(str(accelerator.state.device) , "cuda:64") def SCREAMING_SNAKE_CASE__ (self : int): A = Accelerator() A , A , A , A , A = create_components() accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) A = get_signature(_lowerCAmelCase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowerCAmelCase) # make sure random weights don't match load_random_weights(_lowerCAmelCase) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase)) > 1E-3) # make sure loaded weights match accelerator.load_state(_lowerCAmelCase) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase)) < 1E-3) def SCREAMING_SNAKE_CASE__ (self : Tuple): A = Accelerator() A , A , A , A , A = create_components() accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) A = get_signature(_lowerCAmelCase) # saving hook def save_config(__SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int]): A = {"class_name": models[0].__class__.__name__} with open(os.path.join(_lowerCAmelCase , "data.json") , "w") as f: json.dump(_lowerCAmelCase , _lowerCAmelCase) # loading hook def load_config(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]): with open(os.path.join(_lowerCAmelCase , "data.json") , "r") as f: A = json.load(_lowerCAmelCase) A = config["class_name"] A = accelerator.register_save_state_pre_hook(_lowerCAmelCase) A = accelerator.register_load_state_pre_hook(_lowerCAmelCase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowerCAmelCase) # make sure random weights don't match with hooks load_random_weights(_lowerCAmelCase) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase)) > 1E-3) # random class name to verify correct one is loaded A = "random" # make sure loaded weights match with hooks accelerator.load_state(_lowerCAmelCase) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase)) < 1E-3) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowerCAmelCase) # make sure random weights don't match with hooks removed load_random_weights(_lowerCAmelCase) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase)) > 1E-3) # random class name to verify correct one is loaded A = "random" # make sure loaded weights match with hooks removed accelerator.load_state(_lowerCAmelCase) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase)) < 1E-3) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__) def SCREAMING_SNAKE_CASE__ (self : List[str]): A = Accelerator() A , A , A , A , A = create_components() A = None # This should work A , A , A , A , A , A = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) self.assertTrue(dummy_obj is None) def SCREAMING_SNAKE_CASE__ (self : int): A = Accelerator() A , A , A , A , A = create_components() A = [1, 2, 3] # This should work A , A , A , A , A , A = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase) , _lowerCAmelCase , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase) , _lowerCAmelCase , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase) , _lowerCAmelCase , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase) , _lowerCAmelCase , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase) , _lowerCAmelCase , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase) , _lowerCAmelCase , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): from transformers import AutoModelForCausalLM A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=_lowerCAmelCase , device_map={"": 0} , ) A = Accelerator() # This should work A = accelerator.prepare(_lowerCAmelCase) @slow @require_bnb def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): from transformers import AutoModelForCausalLM A = Accelerator() with init_empty_weights(): A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() A = infer_auto_device_map(_lowerCAmelCase) A = "cpu" A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=_lowerCAmelCase , load_in_abit=_lowerCAmelCase , llm_inta_enable_fpaa_cpu_offload=_lowerCAmelCase) # This should not work and get value error with self.assertRaises(_lowerCAmelCase): A = accelerator.prepare(_lowerCAmelCase) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE__ (self : Dict): from transformers import AutoModelForCausalLM A = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() A = infer_auto_device_map(_lowerCAmelCase) A = 1 A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=_lowerCAmelCase , device_map=_lowerCAmelCase , ) A = Accelerator() # This should not work and get value error with self.assertRaises(_lowerCAmelCase): A = accelerator.prepare(_lowerCAmelCase) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): from transformers import AutoModelForCausalLM with init_empty_weights(): A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) A = infer_auto_device_map(_lowerCAmelCase) A = 1 A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=_lowerCAmelCase , device_map=_lowerCAmelCase , ) A = Accelerator() # This should work A = accelerator.prepare(_lowerCAmelCase) @require_cuda def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = torch.nn.Linear(1_0 , 1_0) A = torch.optim.SGD(model.parameters() , lr=0.0_1) A = Accelerator(cpu=_lowerCAmelCase) A = accelerator.prepare(_lowerCAmelCase)
354
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" # Load configuration defined in the metadata file with open(lowercase__ ) as metadata_file: A = json.load(lowercase__ ) A = LukeConfig(use_entity_aware_attention=lowercase__ , **metadata["model_config"] ) # Load in the weights from the checkpoint_path A = torch.load(lowercase__ , map_location="cpu" ) # Load the entity vocab file A = load_entity_vocab(lowercase__ ) A = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks A = AddedToken("<ent>" , lstrip=lowercase__ , rstrip=lowercase__ ) A = AddedToken("<ent2>" , lstrip=lowercase__ , rstrip=lowercase__ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase__ ) with open(os.path.join(lowercase__ , LukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase__ , lowercase__ ) A = LukeTokenizer.from_pretrained(lowercase__ ) # Initialize the embeddings of the special tokens A = state_dict["embeddings.word_embeddings.weight"] A = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) A = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) A = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A = F"""encoder.layer.{layer_index}.attention.self.""" A = state_dict[prefix + matrix_name] A = state_dict[prefix + matrix_name] A = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A = state_dict["entity_embeddings.entity_embeddings.weight"] A = entity_emb[entity_vocab["[MASK]"]] A = LukeModel(config=lowercase__ ).eval() A , A = model.load_state_dict(lowercase__ , strict=lowercase__ ) if not (len(lowercase__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F"""Missing keys {", ".join(lowercase__ )}. Expected only missing embeddings.position_ids""" ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" F""" {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}""" ) # Check outputs A = LukeTokenizer.from_pretrained(lowercase__ , task="entity_classification" ) A = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) A = (39, 42) A = tokenizer(lowercase__ , entity_spans=[span] , add_prefix_space=lowercase__ , return_tensors="pt" ) A = model(**lowercase__ ) # Verify word hidden states if model_size == "large": A = torch.Size((1, 42, 1_024) ) A = torch.tensor( [[0.01_33, 0.08_65, 0.00_95], [0.30_93, -0.25_76, -0.74_18], [-0.17_20, -0.21_17, -0.28_69]] ) else: # base A = torch.Size((1, 42, 768) ) A = torch.tensor([[0.00_37, 0.13_68, -0.00_91], [0.10_99, 0.33_29, -0.10_95], [0.07_65, 0.53_35, 0.11_79]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": A = torch.Size((1, 1, 1_024) ) A = torch.tensor([[0.04_66, -0.01_06, -0.01_79]] ) else: # base A = torch.Size((1, 1, 768) ) A = torch.tensor([[0.14_57, 0.10_44, 0.01_74]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase__ , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase__ ) ) model.save_pretrained(lowercase__ ) def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = {} with open(lowercase__ , "r" , encoding="utf-8" ) as f: for index, line in enumerate(lowercase__ ): A , A = line.rstrip().split("\t" ) A = index return entity_vocab if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) __A : int = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
57
0
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def UpperCAmelCase_ ( __lowerCamelCase : str ): def decorator(__lowerCamelCase : List[str] ): lowercase_ :Union[str, Any] = getattr(__lowerCamelCase ,"handle_key" ,[] ) handle += [key] setattr(__lowerCamelCase ,"handle_key" ,__lowerCamelCase ) return func return decorator def UpperCAmelCase_ ( *__lowerCamelCase : List[str] ): def decorator(__lowerCamelCase : Union[str, Any] ): lowercase_ :List[Any] = getattr(__lowerCamelCase ,"handle_key" ,[] ) handle += keys setattr(__lowerCamelCase ,"handle_key" ,__lowerCamelCase ) return func return decorator class a_ ( _lowerCAmelCase ): def __new__( cls : str , lowercase : Optional[int] , lowercase : int , lowercase : Optional[Any] ): """simple docstring""" lowercase_ :List[Any] = super().__new__(cls , lowercase , lowercase , lowercase ) if not hasattr(lowercase , "key_handler" ): setattr(lowercase , "key_handler" , {} ) setattr(lowercase , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): lowercase_ :List[str] = getattr(lowercase , "handle_key" , [] ) for key in handled_keys: lowercase_ :Union[str, Any] = value return new_cls @staticmethod def lowercase__ ( cls : str ): """simple docstring""" lowercase_ :List[str] = get_character() if char != KEYMAP["undefined"]: lowercase_ :int = ord(lowercase ) lowercase_ :str = cls.key_handler.get(lowercase ) if handler: lowercase_ :int = char return handler(cls ) else: return None def UpperCAmelCase_ ( cls : List[Any] ): return KeyHandler(cls.__name__ ,cls.__bases__ ,cls.__dict__.copy() )
223
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[str] ='''▁''' lowerCAmelCase : List[str] ={ '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCAmelCase : Optional[Any] ={ '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } lowerCAmelCase : int ={ '''facebook/m2m100_418M''': 1_024, } # fmt: off lowerCAmelCase : str ={ '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class a_ ( _lowerCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = PRETRAINED_VOCAB_FILES_MAP __A = ["input_ids", "attention_mask"] __A = [] __A = [] def __init__( self : Any , lowercase : Any , lowercase : List[Any] , lowercase : int=None , lowercase : Optional[Any]=None , lowercase : Union[str, Any]="<s>" , lowercase : Any="</s>" , lowercase : Optional[int]="</s>" , lowercase : List[Any]="<pad>" , lowercase : Optional[int]="<unk>" , lowercase : Optional[int]="m2m100" , lowercase : Optional[Dict[str, Any]] = None , lowercase : Any=8 , **lowercase : int , ): """simple docstring""" lowercase_ :Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs lowercase_ :Optional[Any] = language_codes lowercase_ :Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] lowercase_ :List[Any] = {lang_code: F'__{lang_code}__' for lang_code in fairseq_language_code} lowercase_ :Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(lowercase ) for lang_code in fairseq_language_code if self.get_lang_token(lowercase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowercase , tgt_lang=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , unk_token=lowercase , pad_token=lowercase , language_codes=lowercase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=lowercase , **lowercase , ) lowercase_ :Optional[int] = vocab_file lowercase_ :Any = load_json(lowercase ) lowercase_ :Optional[Any] = {v: k for k, v in self.encoder.items()} lowercase_ :List[str] = spm_file lowercase_ :List[str] = load_spm(lowercase , self.sp_model_kwargs ) lowercase_ :Optional[int] = len(self.encoder ) lowercase_ :int = { self.get_lang_token(lowercase ): self.encoder_size + i for i, lang_code in enumerate(lowercase ) } lowercase_ :List[Any] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(lowercase )} lowercase_ :List[Any] = {v: k for k, v in self.lang_token_to_id.items()} lowercase_ :int = src_lang if src_lang is not None else "en" lowercase_ :Union[str, Any] = tgt_lang lowercase_ :List[Any] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) lowercase_ :int = num_madeup_words @property def lowercase__ ( self : List[str] ): """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def lowercase__ ( self : Any ): """simple docstring""" return self._src_lang @src_lang.setter def lowercase__ ( self : Optional[int] , lowercase : str ): """simple docstring""" lowercase_ :str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase__ ( self : Dict , lowercase : str ): """simple docstring""" return self.sp_model.encode(lowercase , out_type=lowercase ) def lowercase__ ( self : Tuple , lowercase : Dict ): """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(lowercase , self.encoder[self.unk_token] ) def lowercase__ ( self : Any , lowercase : int ): """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(lowercase , self.unk_token ) def lowercase__ ( self : int , lowercase : int ): """simple docstring""" lowercase_ :Optional[Any] = [] lowercase_ :Any = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase ) + token lowercase_ :str = [] else: current_sub_tokens.append(lowercase ) out_string += self.sp_model.decode(lowercase ) return out_string.strip() def lowercase__ ( self : Any , lowercase : List[int] , lowercase : Optional[List[int]] = None , lowercase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) lowercase_ :List[Any] = [1] * len(self.prefix_tokens ) lowercase_ :List[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase )) + suffix_ones return prefix_ones + ([0] * len(lowercase )) + ([0] * len(lowercase )) + suffix_ones def lowercase__ ( self : Union[str, Any] , lowercase : List[int] , lowercase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :str = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): """simple docstring""" lowercase_ :Any = self.__dict__.copy() lowercase_ :str = None return state def __setstate__( self : Tuple , lowercase : Dict ): """simple docstring""" lowercase_ :int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase_ :List[str] = {} lowercase_ :List[Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase__ ( self : str , lowercase : str , lowercase : Optional[str] = None ): """simple docstring""" lowercase_ :Dict = Path(lowercase ) if not save_dir.is_dir(): raise OSError(F'{save_directory} should be a directory' ) lowercase_ :Dict = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) lowercase_ :Dict = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , lowercase ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowercase ) elif not os.path.isfile(self.spm_file ): with open(lowercase , "wb" ) as fi: lowercase_ :List[str] = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (str(lowercase ), str(lowercase )) def lowercase__ ( self : List[str] , lowercase : List[str] , lowercase : str = "en" , lowercase : Optional[List[str]] = None , lowercase : str = "ro" , **lowercase : Optional[int] , ): """simple docstring""" lowercase_ :int = src_lang lowercase_ :Optional[int] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def lowercase__ ( self : List[Any] , lowercase : Any , lowercase : Optional[str] , lowercase : Optional[str] , **lowercase : Union[str, Any] ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowercase_ :List[str] = src_lang lowercase_ :Union[str, Any] = self(lowercase , add_special_tokens=lowercase , **lowercase ) lowercase_ :str = self.get_lang_id(lowercase ) lowercase_ :Union[str, Any] = tgt_lang_id return inputs def lowercase__ ( self : str ): """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def lowercase__ ( self : Tuple ): """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase__ ( self : str , lowercase : str ): """simple docstring""" lowercase_ :List[str] = self.get_lang_token(lowercase ) lowercase_ :List[str] = self.lang_token_to_id[lang_token] lowercase_ :List[Any] = [self.cur_lang_id] lowercase_ :str = [self.eos_token_id] def lowercase__ ( self : str , lowercase : str ): """simple docstring""" lowercase_ :Optional[int] = self.get_lang_token(lowercase ) lowercase_ :Tuple = self.lang_token_to_id[lang_token] lowercase_ :Dict = [self.cur_lang_id] lowercase_ :List[Any] = [self.eos_token_id] def lowercase__ ( self : Union[str, Any] , lowercase : str ): """simple docstring""" return self.lang_code_to_token[lang] def lowercase__ ( self : Dict , lowercase : str ): """simple docstring""" lowercase_ :Union[str, Any] = self.get_lang_token(lowercase ) return self.lang_token_to_id[lang_token] def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : Dict[str, Any] ): lowercase_ :List[str] = sentencepiece.SentencePieceProcessor(**__lowerCamelCase ) spm.Load(str(__lowerCamelCase ) ) return spm def UpperCAmelCase_ ( __lowerCamelCase : str ): with open(__lowerCamelCase ,"r" ) as f: return json.load(__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : str ): with open(__lowerCamelCase ,"w" ) as f: json.dump(__lowerCamelCase ,__lowerCamelCase ,indent=2 )
223
1
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = CLIPConfig __magic_name__ = ['CLIPEncoderLayer'] def __init__( self , __snake_case ): super().__init__(__snake_case ) snake_case = CLIPVisionModelWithProjection(config.vision_config ) snake_case = nn.Linear(config.vision_config.projection_dim , 1 ) snake_case = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def a_ ( self , __snake_case , __snake_case , __snake_case=0.5 , __snake_case=0.5 ): snake_case = self.vision_model(__snake_case )[0] snake_case = self.p_head(__snake_case ) snake_case = nsfw_detected.flatten() snake_case = nsfw_detected > p_threshold snake_case = nsfw_detected.tolist() if any(__snake_case ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(__snake_case ): if nsfw_detected_: snake_case = np.zeros(images[idx].shape ) snake_case = self.w_head(__snake_case ) snake_case = watermark_detected.flatten() snake_case = watermark_detected > w_threshold snake_case = watermark_detected.tolist() if any(__snake_case ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(__snake_case ): if watermark_detected_: snake_case = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
357
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _SCREAMING_SNAKE_CASE : str = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def UpperCAmelCase__ (UpperCamelCase_ = "mumbai" ): """simple docstring""" snake_case = BeautifulSoup(requests.get(url + location ).content ,'''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' ,attrs={'''data-tn-component''': '''organicJob'''} ): snake_case = job.find('''a''' ,attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() snake_case = job.find('''span''' ,{'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
213
0
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(_lowerCamelCase) class A__ ( _lowerCamelCase): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) self.check_model_type(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase , __lowerCAmelCase : List[Any] = {}, {} if padding is not None: __lowerCAmelCase : List[Any] = padding if truncation is not None: __lowerCAmelCase : Tuple = truncation if top_k is not None: __lowerCAmelCase : List[str] = top_k return preprocess_params, {}, postprocess_params def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , (Image.Image, str) ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = {'image': image, 'question': question} else: __lowerCAmelCase : str = image __lowerCAmelCase : Tuple = super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return results def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowerCAmelCase : Tuple = load_image(inputs['image'] ) __lowerCAmelCase : List[Any] = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) model_inputs.update(_SCREAMING_SNAKE_CASE ) return model_inputs def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = self.model(**_SCREAMING_SNAKE_CASE ) return model_outputs def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=5 ): if top_k > self.model.config.num_labels: __lowerCAmelCase : Any = self.model.config.num_labels if self.framework == "pt": __lowerCAmelCase : List[Any] = model_outputs.logits.sigmoid()[0] __lowerCAmelCase , __lowerCAmelCase : Dict = probs.topk(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) __lowerCAmelCase : int = scores.tolist() __lowerCAmelCase : Tuple = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
86
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer a__ : int = logging.get_logger(__name__) a__ : List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__ : List[Any] = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } a__ : Optional[Any] = { 'junnyu/roformer_chinese_small': 1_5_3_6, 'junnyu/roformer_chinese_base': 1_5_3_6, 'junnyu/roformer_chinese_char_small': 5_1_2, 'junnyu/roformer_chinese_char_base': 5_1_2, 'junnyu/roformer_small_discriminator': 1_2_8, 'junnyu/roformer_small_generator': 1_2_8, } a__ : str = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class lowercase_ ( a__ ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase = RoFormerTokenizer def __init__( self , a=None , a=None , a=True , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a=True , a=None , **a , ): super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) UpperCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase" , a ) != do_lower_case or pre_tok_state.get("strip_accents" , a ) != strip_accents ): UpperCamelCase__ = getattr(a , pre_tok_state.pop("type" ) ) UpperCamelCase__ = do_lower_case UpperCamelCase__ = strip_accents UpperCamelCase__ = pre_tok_class(**a ) UpperCamelCase__ = do_lower_case def __getstate__( self ): UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = BertPreTokenizer() return state def __setstate__( self , a ): UpperCamelCase__ = d UpperCamelCase__ = self.__dict__["_tokenizer"].get_vocab() UpperCamelCase__ = PreTokenizer.custom(JiebaPreTokenizer(a ) ) def __a ( self , a , a=None ): UpperCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , a , a = None ): UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , a , a = None ): UpperCamelCase__ = self._tokenizer.model.save(a , name=a ) return tuple(a ) def __a ( self , a , a=None , a=None , a=False , **a , ): UpperCamelCase__ = BertPreTokenizer() return super().save_pretrained(a , a , a , a , **a )
80
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCAmelCase_ = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = "albert" def __init__( self : Optional[int] ,_snake_case : List[str]=30_000 ,_snake_case : Tuple=128 ,_snake_case : str=4_096 ,_snake_case : Optional[Any]=12 ,_snake_case : int=1 ,_snake_case : Tuple=64 ,_snake_case : str=16_384 ,_snake_case : Union[str, Any]=1 ,_snake_case : str="gelu_new" ,_snake_case : Optional[Any]=0 ,_snake_case : str=0 ,_snake_case : Dict=512 ,_snake_case : Optional[int]=2 ,_snake_case : Tuple=0.02 ,_snake_case : List[Any]=1e-12 ,_snake_case : List[str]=0.1 ,_snake_case : Optional[int]="absolute" ,_snake_case : Union[str, Any]=0 ,_snake_case : Any=2 ,_snake_case : str=3 ,**_snake_case : Tuple ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,bos_token_id=_snake_case ,eos_token_id=_snake_case ,**_snake_case ) lowercase__ : Tuple = vocab_size lowercase__ : Dict = embedding_size lowercase__ : str = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : int = num_hidden_groups lowercase__ : Tuple = num_attention_heads lowercase__ : str = inner_group_num lowercase__ : Union[str, Any] = hidden_act lowercase__ : List[str] = intermediate_size lowercase__ : int = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Optional[Any] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : int = initializer_range lowercase__ : List[Any] = layer_norm_eps lowercase__ : List[str] = classifier_dropout_prob lowercase__ : Any = position_embedding_type class __A ( A_ ): '''simple docstring''' @property def UpperCAmelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__ : List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
355
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCAmelCase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' lowerCAmelCase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' lowerCAmelCase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/krishnap25/mauve''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/krishnap25/mauve'''] ,reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] ,) def UpperCAmelCase ( self : Dict ,_snake_case : Optional[Any] ,_snake_case : Any ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,_snake_case : List[Any]=None ,_snake_case : Any=None ,_snake_case : Optional[int]="auto" ,_snake_case : Optional[int]=-1 ,_snake_case : Optional[int]=0.9 ,_snake_case : Any=5 ,_snake_case : Dict=500 ,_snake_case : Optional[int]="gpt2-large" ,_snake_case : Optional[Any]=-1 ,_snake_case : Tuple=1_024 ,_snake_case : Optional[int]=25 ,_snake_case : Dict=5 ,_snake_case : int=True ,_snake_case : Union[str, Any]=25 ,) -> Any: """simple docstring""" lowercase__ : Any = compute_mauve( p_text=_snake_case ,q_text=_snake_case ,p_features=_snake_case ,q_features=_snake_case ,p_tokens=_snake_case ,q_tokens=_snake_case ,num_buckets=_snake_case ,pca_max_data=_snake_case ,kmeans_explained_var=_snake_case ,kmeans_num_redo=_snake_case ,kmeans_max_iter=_snake_case ,featurize_model_name=_snake_case ,device_id=_snake_case ,max_text_length=_snake_case ,divergence_curve_discretization_size=_snake_case ,mauve_scaling_factor=_snake_case ,verbose=_snake_case ,seed=_snake_case ,) return out
302
0
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } _snake_case = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } _snake_case = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = set() _A : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A : List[Any] = char _A : Dict = set(_UpperCAmelCase ) return pairs class lowercase ( UpperCAmelCase_ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _a , _a , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , **_a , ) -> List[Any]: super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) _A : Union[str, Any] = vocab_file _A : Optional[int] = merges_file _A : List[str] = {} _A : Optional[Any] = 0 _A : Optional[int] = 1 _A : Dict = 2 _A : Optional[Any] = 3 self.add_from_file(lowerCAmelCase__ ) _A : int = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: _A : int = merges_handle.read().split("""\n""" )[:-1] _A : int = [tuple(merge.split()[:-1] ) for merge in merges] _A : Tuple = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) _A : Dict = {} def a__ ( self , _a , _a = None ) -> str: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A : List[Any] = [self.cls_token_id] _A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self , _a , _a = None , _a = False ) -> Union[str, Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def a__ ( self , _a , _a = None ) -> int: _A : Dict = [self.sep_token_id] _A : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a__ ( self ) -> int: return len(self.encoder ) def a__ ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self , _a ) -> Dict: if token in self.cache: return self.cache[token] _A : Optional[int] = tuple(lowerCAmelCase__ ) _A : Dict = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) _A : Tuple = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: _A : int = min(lowerCAmelCase__ , key=lambda _a : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _A : Dict = bigram _A : Dict = [] _A : Tuple = 0 while i < len(lowerCAmelCase__ ): try: _A : List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A : List[Any] = tuple(lowerCAmelCase__ ) _A : int = new_word if len(lowerCAmelCase__ ) == 1: break else: _A : Dict = get_pairs(lowerCAmelCase__ ) _A : List[str] = "@@ ".join(lowerCAmelCase__ ) _A : Tuple = word[:-4] _A : int = word return word def a__ ( self , _a ) -> Tuple: _A : Dict = [] _A : Optional[int] = re.findall(R"""\S+\n?""" , lowerCAmelCase__ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase__ ).split(""" """ ) ) ) return split_tokens def a__ ( self , _a ) -> Optional[Any]: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def a__ ( self , _a ) -> Any: return self.decoder.get(lowerCAmelCase__ , self.unk_token ) def a__ ( self , _a ) -> List[Any]: _A : int = " ".join(lowerCAmelCase__ ).replace("""@@ """ , """""" ).strip() return out_string def a__ ( self , _a , _a = None ) -> Optional[int]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _A : Optional[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.merges_file , lowerCAmelCase__ ) return out_vocab_file, out_merge_file def a__ ( self , _a ) -> Union[str, Any]: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): try: with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(lowerCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return _A : Any = f.readlines() for lineTmp in lines: _A : str = lineTmp.strip() _A : Any = line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) _A : Optional[int] = line[:idx] _A : int = len(self.encoder )
26
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = [0] * len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCAmelCase ) ): if indegree[i] == 0: queue.append(_UpperCAmelCase ) while queue: SCREAMING_SNAKE_CASE_: Optional[int] = queue.pop(0 ) cnt += 1 topo.append(_UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_UpperCAmelCase ) if cnt != len(_UpperCAmelCase ): print("Cycle exists" ) else: print(_UpperCAmelCase ) # Adjacency List of Graph lowerCAmelCase : Any = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
13
0
from ..utils import DummyObject, requires_backends class lowercase_ ( metaclass=__lowercase ): UpperCamelCase_ : Optional[int] = ["speech"] def __init__( self : str , *A__ : List[str] , **A__ : Tuple ) -> Optional[Any]: requires_backends(self , ['''speech'''] ) class lowercase_ ( metaclass=__lowercase ): UpperCamelCase_ : Optional[Any] = ["speech"] def __init__( self : Dict , *A__ : int , **A__ : int ) -> Tuple: requires_backends(self , ['''speech'''] )
278
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
278
1
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase = tmp_path / """cache""" lowerCAmelCase = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase = tmp_path / """cache""" lowerCAmelCase = {"""text""": """string"""} lowerCAmelCase = features.copy() if features else default_expected_features lowerCAmelCase = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase = TextDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase = tmp_path / """cache""" lowerCAmelCase = {"""text""": """string"""} lowerCAmelCase = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = text_path elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = [text_path] lowerCAmelCase = tmp_path / """cache""" lowerCAmelCase = {"""text""": """string"""} lowerCAmelCase = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple=("train",) ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for split in splits: lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase = tmp_path / """cache""" lowerCAmelCase = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" lowerCAmelCase = {"""text""": """string"""} lowerCAmelCase = features.copy() if features else default_expected_features lowerCAmelCase = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' if split: lowerCAmelCase = {split: text_path} else: lowerCAmelCase = """train""" lowerCAmelCase = {"""train""": text_path, """test""": text_path} lowerCAmelCase = tmp_path / """cache""" lowerCAmelCase = {"""text""": """string"""} lowerCAmelCase = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
46
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class _UpperCamelCase : '''simple docstring''' pass
57
0
"""simple docstring""" from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : int = num_of_nodes lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : dict[int, int] = {} def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase : Optional[int] = self.find_component(snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if component_size[u_node] <= component_size[v_node]: lowerCAmelCase : Any = v_node component_size[v_node] += component_size[u_node] self.set_component(snake_case__ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase : str = self.find_component(snake_case__ ) component_size[u_node] += component_size[v_node] self.set_component(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = [] lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase : List[Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase : Any = edge lowerCAmelCase : Optional[int] = self.m_component[u] lowerCAmelCase : List[Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = edge lowerCAmelCase : List[str] = self.m_component[u] lowerCAmelCase : List[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(snake_case__ , snake_case__ , snake_case__ ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 lowerCAmelCase : Union[str, Any] = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def a__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : """simple docstring""" @staticmethod def lowercase__ ( *snake_case__ , **snake_case__ ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a : Optional[Any] =MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : str = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) lowerCAmelCase : Dict = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = object_detector(examples[0] , threshold=0.0 ) lowerCAmelCase : Dict = len(snake_case__ ) self.assertGreater(snake_case__ , 0 ) self.assertEqual( snake_case__ , [ { "score": ANY(snake_case__ ), "label": ANY(snake_case__ ), "box": {"xmin": ANY(snake_case__ ), "ymin": ANY(snake_case__ ), "xmax": ANY(snake_case__ ), "ymax": ANY(snake_case__ )}, } for i in range(snake_case__ ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowercase__ ( self ): """simple docstring""" pass @require_torch def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) lowerCAmelCase : Tuple = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] , ) lowerCAmelCase : Optional[Any] = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] ] , ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = pipeline("zero-shot-object-detection" ) lowerCAmelCase : Dict = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ] , ) lowerCAmelCase : Dict = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowercase__ ( self ): """simple docstring""" pass @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = 0.2 lowerCAmelCase : List[Any] = pipeline("zero-shot-object-detection" ) lowerCAmelCase : Union[str, Any] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=snake_case__ , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, ] , ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = 2 lowerCAmelCase : Any = pipeline("zero-shot-object-detection" ) lowerCAmelCase : Any = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=snake_case__ , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, ] , )
133
0
"""simple docstring""" import math def __magic_name__ ( __snake_case : int ) -> Any: lowercase : Dict = [True] * n lowercase : Union[str, Any] = False lowercase : Tuple = False lowercase : Dict = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): lowercase : Optional[int] = i * 2 while index < n: lowercase : Dict = False lowercase : Optional[int] = index + i lowercase : Union[str, Any] = [2] for i in range(3 , __SCREAMING_SNAKE_CASE , 2 ): if is_prime[i]: primes.append(__SCREAMING_SNAKE_CASE ) return primes def __magic_name__ ( __snake_case : int = 9999_6666_3333 ) -> Dict: lowercase : Optional[int] = math.floor(math.sqrt(__SCREAMING_SNAKE_CASE ) ) + 100 lowercase : Tuple = prime_sieve(__SCREAMING_SNAKE_CASE ) lowercase : List[Any] = 0 lowercase : str = 0 lowercase : Dict = primes[prime_index] while (last_prime**2) <= limit: lowercase : Optional[Any] = primes[prime_index + 1] lowercase : List[Any] = last_prime**2 lowercase : Optional[Any] = next_prime**2 # Get numbers divisible by lps(current) lowercase : Tuple = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowercase : Optional[int] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowercase : Optional[int] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowercase : Tuple = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
202
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase : @staticmethod def _UpperCAmelCase ( *__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class UpperCamelCase ( unittest.TestCase ): lowercase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : int = pipeline( 'zero-shot-object-detection' ,model='hf-internal-testing/tiny-random-owlvit-object-detection' ) lowercase_ : Optional[int] = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Tuple = object_detector(examples[0] ,threshold=0.0 ) lowercase_ : Any = len(__UpperCamelCase ) self.assertGreater(__UpperCamelCase ,0 ) self.assertEqual( __UpperCamelCase ,[ { 'score': ANY(__UpperCamelCase ), 'label': ANY(__UpperCamelCase ), 'box': {'xmin': ANY(__UpperCamelCase ), 'ymin': ANY(__UpperCamelCase ), 'xmax': ANY(__UpperCamelCase ), 'ymax': ANY(__UpperCamelCase )}, } for i in range(__UpperCamelCase ) ] ,) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @require_torch def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : List[Any] = pipeline( 'zero-shot-object-detection' ,model='hf-internal-testing/tiny-random-owlvit-object-detection' ) lowercase_ : Optional[int] = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' ,candidate_labels=['cat', 'remote', 'couch'] ,threshold=0.64 ,) self.assertEqual( nested_simplify(__UpperCamelCase ,decimals=4 ) ,[ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] ,) lowercase_ : Union[str, Any] = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] ,threshold=0.64 ,) self.assertEqual( nested_simplify(__UpperCamelCase ,decimals=4 ) ,[ [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] ] ,) @require_torch @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Any = pipeline('zero-shot-object-detection' ) lowercase_ : List[str] = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' ,candidate_labels=['cat', 'remote', 'couch'] ,) self.assertEqual( nested_simplify(__UpperCamelCase ,decimals=4 ) ,[ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ] ,) lowercase_ : Union[str, Any] = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] ,) self.assertEqual( nested_simplify(__UpperCamelCase ,decimals=4 ) ,[ [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], ] ,) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @require_torch @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = 0.2 lowercase_ : Any = pipeline('zero-shot-object-detection' ) lowercase_ : str = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' ,candidate_labels=['cat', 'remote', 'couch'] ,threshold=__UpperCamelCase ,) self.assertEqual( nested_simplify(__UpperCamelCase ,decimals=4 ) ,[ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, ] ,) @require_torch @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Tuple = 2 lowercase_ : Optional[Any] = pipeline('zero-shot-object-detection' ) lowercase_ : List[Any] = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' ,candidate_labels=['cat', 'remote', 'couch'] ,top_k=__UpperCamelCase ,) self.assertEqual( nested_simplify(__UpperCamelCase ,decimals=4 ) ,[ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, ] ,)
213
0
"""simple docstring""" import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : List[str] , snake_case__ : Optional[Any] , snake_case__ : Any=2 , snake_case__ : Optional[Any]=5_6 , snake_case__ : Tuple=True , snake_case__ : List[str]=True , snake_case__ : str=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=9_9 , snake_case__ : Optional[int]=3_2 , snake_case__ : List[str]=2 , snake_case__ : List[str]=2 , snake_case__ : Union[str, Any]=7 , snake_case__ : Optional[int]="gelu_new" , snake_case__ : Optional[Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : int=5_1_2 , snake_case__ : Union[str, Any]=1_6 , snake_case__ : Optional[Any]=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Optional[Any]=4 , snake_case__ : str="block_sparse" , snake_case__ : Union[str, Any]=True , snake_case__ : Union[str, Any]=False , snake_case__ : Union[str, Any]=2 , snake_case__ : Dict=3 , ): '''simple docstring''' UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : Optional[int] = batch_size UpperCAmelCase__ : List[str] = seq_length UpperCAmelCase__ : Optional[Any] = is_training UpperCAmelCase__ : List[str] = use_attention_mask UpperCAmelCase__ : List[Any] = use_token_type_ids UpperCAmelCase__ : Union[str, Any] = use_labels UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : Dict = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : str = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : int = max_position_embeddings UpperCAmelCase__ : Dict = type_vocab_size UpperCAmelCase__ : Optional[Any] = type_sequence_label_size UpperCAmelCase__ : Optional[Any] = initializer_range UpperCAmelCase__ : int = num_choices UpperCAmelCase__ : List[Any] = rescale_embeddings UpperCAmelCase__ : Tuple = attention_type UpperCAmelCase__ : Union[str, Any] = use_bias UpperCAmelCase__ : Optional[int] = block_size UpperCAmelCase__ : List[Any] = num_random_blocks def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : str = None if self.use_attention_mask: UpperCAmelCase__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : List[str] = None if self.use_token_type_ids: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : Any = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = config_and_inputs UpperCAmelCase__ : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self : Union[str, Any] ): '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self : List[Any] ): '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self : Tuple ): '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self : int ): '''simple docstring''' super().test_hidden_states_output() @slow def __a ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(snake_case__ ) def __a ( self : Optional[int] ): '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : List[str] = self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase__ : str = model_class(snake_case__ ) @jax.jit def model_jitted(snake_case__ : str , snake_case__ : List[str]=None , **snake_case__ : Optional[int] ): return model(input_ids=snake_case__ , attention_mask=snake_case__ , **snake_case__ ) with self.subTest("JIT Enabled" ): UpperCAmelCase__ : List[str] = model_jitted(**snake_case__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase__ : List[str] = model_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ , snake_case__ ): self.assertEqual(jitted_output.shape , output.shape ) def __a ( self : Tuple , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any]=1e-5 , snake_case__ : str="outputs" , snake_case__ : Any=None ): '''simple docstring''' # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
298
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE__ ( snake_case : Dataset , snake_case : Dict[str, str] )-> Any: '''simple docstring''' UpperCAmelCase__ : str = args.log_outputs UpperCAmelCase__ : str = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric UpperCAmelCase__ : List[str] = load_metric("wer" ) UpperCAmelCase__ : Tuple = load_metric("cer" ) # compute metrics UpperCAmelCase__ : List[str] = wer.compute(references=result["target"] , predictions=result["prediction"] ) UpperCAmelCase__ : Tuple = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results UpperCAmelCase__ : Union[str, Any] = f'WER: {wer_result}\nCER: {cer_result}' print(snake_case ) with open(f'{dataset_id}_eval_results.txt' , "w" ) as f: f.write(snake_case ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCAmelCase__ : str = f'log_{dataset_id}_predictions.txt' UpperCAmelCase__ : List[str] = f'log_{dataset_id}_targets.txt' with open(snake_case , "w" ) as p, open(snake_case , "w" ) as t: # mapping function to write output def write_to_file(snake_case : List[Any] , snake_case : List[str] ): p.write(f'{i}' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(f'{i}' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case , with_indices=snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str: '''simple docstring''' UpperCAmelCase__ : str = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCAmelCase__ : str = re.sub(snake_case , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCAmelCase__ : Tuple = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: UpperCAmelCase__ : List[Any] = " ".join(text.split(snake_case ) ) return text def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCAmelCase__ : str = feature_extractor.sampling_rate # resample audio UpperCAmelCase__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case ) ) # load eval pipeline if args.device is None: UpperCAmelCase__ : List[str] = 0 if torch.cuda.is_available() else -1 UpperCAmelCase__ : Optional[int] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case : Any ): UpperCAmelCase__ : List[str] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCAmelCase__ : List[Any] = prediction["text"] UpperCAmelCase__ : Optional[int] = normalize_text(batch["sentence"] ) return batch # run inference on all examples UpperCAmelCase__ : Dict = dataset.map(snake_case , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case , snake_case ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCAmelCase : Tuple = parser.parse_args() main(args)
298
1
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowercase : def __init__( self: int , UpperCamelCase__: Optional[Any] , UpperCamelCase__: int=13 , UpperCamelCase__: int=32 , UpperCamelCase__: str=3 , UpperCamelCase__: List[str]=4 , UpperCamelCase__: Dict=[10, 20, 30, 40] , UpperCamelCase__: str=[2, 2, 3, 2] , UpperCamelCase__: str=True , UpperCamelCase__: Union[str, Any]=True , UpperCamelCase__: Optional[int]=37 , UpperCamelCase__: Dict="gelu" , UpperCamelCase__: Dict=10 , UpperCamelCase__: Any=0.02 , UpperCamelCase__: Tuple=["stage2", "stage3", "stage4"] , UpperCamelCase__: int=[2, 3, 4] , UpperCamelCase__: List[str]=None , ): lowerCamelCase__ : List[str] = parent lowerCamelCase__ : Any = batch_size lowerCamelCase__ : Any = image_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : Any = num_stages lowerCamelCase__ : str = hidden_sizes lowerCamelCase__ : List[str] = depths lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : int = use_labels lowerCamelCase__ : Dict = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : List[str] = num_labels lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : str = out_features lowerCamelCase__ : str = out_indices lowerCamelCase__ : List[str] = scope def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__ : str = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Union[str, Any] ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowercase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase_ ( self: Any , UpperCamelCase__: Tuple , UpperCamelCase__: List[Any] , UpperCamelCase__: Tuple ): lowerCamelCase__ : Any = ConvNextVaModel(config=__lowercase ) model.to(__lowercase ) model.eval() lowerCamelCase__ : Dict = model(__lowercase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self: Any , UpperCamelCase__: Dict , UpperCamelCase__: Dict , UpperCamelCase__: List[Any] ): lowerCamelCase__ : Tuple = ConvNextVaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() lowerCamelCase__ : Optional[int] = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str] , UpperCamelCase__: Tuple ): lowerCamelCase__ : str = ConvNextVaBackbone(config=__lowercase ) model.to(__lowercase ) model.eval() lowerCamelCase__ : int = model(__lowercase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase__ : List[Any] = None lowerCamelCase__ : List[str] = ConvNextVaBackbone(config=__lowercase ) model.to(__lowercase ) model.eval() lowerCamelCase__ : Optional[int] = model(__lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Optional[int] = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = config_and_inputs lowerCamelCase__ : int = {"""pixel_values""": pixel_values} return config, inputs_dict def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Optional[int] = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = config_and_inputs lowerCamelCase__ : List[Any] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class _lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): a = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) a = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) a = False a = False a = False a = False a = False def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : str = ConvNextVaModelTester(self ) lowerCamelCase__ : Tuple = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def lowerCamelCase_ ( self: Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self: str ): return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def lowerCamelCase_ ( self: List[Any] ): pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def lowerCamelCase_ ( self: Tuple ): pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def lowerCamelCase_ ( self: List[Any] ): pass def lowerCamelCase_ ( self: List[Any] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCamelCase__ , lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_with_labels() lowerCamelCase__ : Tuple = True if model_class.__name__ in [ *get_values(__lowercase ), *get_values(__lowercase ), ]: continue lowerCamelCase__ : str = model_class(__lowercase ) model.to(__lowercase ) model.train() lowerCamelCase__ : str = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) lowerCamelCase__ : Dict = model(**__lowercase ).loss loss.backward() def lowerCamelCase_ ( self: Dict ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() lowerCamelCase__ : List[str] = False lowerCamelCase__ : int = True if ( model_class.__name__ in [*get_values(__lowercase ), *get_values(__lowercase )] or not model_class.supports_gradient_checkpointing ): continue lowerCamelCase__ : Dict = model_class(__lowercase ) model.to(__lowercase ) model.gradient_checkpointing_enable() model.train() lowerCamelCase__ : Any = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) lowerCamelCase__ : Optional[int] = model(**__lowercase ).loss loss.backward() def lowerCamelCase_ ( self: int ): lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : int = model_class(__lowercase ) lowerCamelCase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : List[Any] = [*signature.parameters.keys()] lowerCamelCase__ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def lowerCamelCase_ ( self: Optional[Any] ): def check_hidden_states_output(UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[Any] ): lowerCamelCase__ : Union[str, Any] = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): lowerCamelCase__ : Dict = model(**self._prepare_for_class(__lowercase , __lowercase ) ) lowerCamelCase__ : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ : Any = self.model_tester.num_stages self.assertEqual(len(__lowercase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[str] = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : Dict = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) @slow def lowerCamelCase_ ( self: Optional[int] ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Optional[Any] = ConvNextVaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def SCREAMING_SNAKE_CASE_ () -> int: lowerCamelCase__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: str ): return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : List[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(__lowercase ) lowerCamelCase__ : Optional[Any] = self.default_image_processor lowerCamelCase__ : Tuple = prepare_img() lowerCamelCase__ : str = preprocessor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): lowerCamelCase__ : int = model(**__lowercase ) # verify the logits lowerCamelCase__ : Dict = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __lowercase ) lowerCamelCase__ : Dict = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) )
41
import random def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" __a , __a , __a = [], [], [] for element in data: if element < pivot: less.append(_SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(_SCREAMING_SNAKE_CASE ) else: equal.append(_SCREAMING_SNAKE_CASE ) return less, equal, greater def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if index >= len(_SCREAMING_SNAKE_CASE ) or index < 0: return None __a = items[random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 )] __a = 0 __a , __a , __a = _partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = len(_SCREAMING_SNAKE_CASE ) __a = len(_SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(_SCREAMING_SNAKE_CASE , index - (m + count) )
302
0
from __future__ import annotations import math from collections.abc import Callable def lowerCAmelCase_ ( _lowercase : Optional[Any] , _lowercase : str , _lowercase : List[Any] , _lowercase : List[str] = 100 , ) -> int: """simple docstring""" a__ : int = x_start a__ : Tuple = fnc(_A) a__ : List[Any] = 0.0 for _ in range(_A): # Approximates curve as a sequence of linear lines and sums their length a__ : str = (x_end - x_start) / steps + xa a__ : Optional[int] = fnc(_A) length += math.hypot(xa - xa , fxa - fxa) # Increment step a__ : Optional[Any] = xa a__ : List[str] = fxa return length if __name__ == "__main__": def lowerCAmelCase_ ( _lowercase : Optional[Any]) -> Any: """simple docstring""" return math.sin(10 * x) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") _lowercase : Optional[Any] =10 while i <= 10_0000: print(f'With {i} steps: {line_length(f, -10, 10, i)}') i *= 10
358
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ (A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :Union[str, Any] = ProphetNetTokenizer __lowerCAmelCase :Any = False def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" super().setUp() a__ : Optional[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str: """simple docstring""" a__ : Any = """UNwant\u00E9d,running""" a__ : Dict = """unwanted, running""" return input_text, output_text def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : Tuple = self.tokenizer_class(self.vocab_file ) a__ : int = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__lowercase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" a__ : int = BasicTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : str = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : List[str] = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Optional[Any] = BasicTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : List[str] = BasicTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : str = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : List[str] = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Union[str, Any] = BasicTokenizer(do_lower_case=__lowercase , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] a__ : Dict = {} for i, token in enumerate(__lowercase ): a__ : Optional[Any] = i a__ : str = WordpieceTokenizer(vocab=__lowercase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) @require_torch def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : List[Any] = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) a__ : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] a__ : Optional[Any] = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] a__ : List[Any] = tokenizer(__lowercase , padding=__lowercase , return_tensors="""pt""" ) self.assertIsInstance(__lowercase , __lowercase ) a__ : Optional[int] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowercase , __lowercase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) @slow def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Optional[Any] = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) a__ : Dict = tokenizer.encode("""sequence builders""" , add_special_tokens=__lowercase ) a__ : str = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__lowercase ) a__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__lowercase ) a__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
266
0
def __UpperCamelCase ( _A ): for i in range(len(_A ) - 1 , 0 , -1 ): lowerCAmelCase_ = False for j in range(_A , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowerCAmelCase_ , lowerCAmelCase_ = unsorted[j - 1], unsorted[j] lowerCAmelCase_ = True for j in range(_A ): if unsorted[j] > unsorted[j + 1]: lowerCAmelCase_ , lowerCAmelCase_ = unsorted[j + 1], unsorted[j] lowerCAmelCase_ = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() _A = input('''Enter numbers separated by a comma:\n''').strip() _A = [int(item) for item in user_input.split(''',''')] print(f"{cocktail_shaker_sort(unsorted) = }")
278
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=('''DownBlock2D''', '''AttnDownBlock2D'''), up_block_types=('''AttnUpBlock2D''', '''UpBlock2D'''), ) return model def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.dummy_uncond_unet lowerCAmelCase_ = KarrasVeScheduler() lowerCAmelCase_ = KarrasVePipeline(unet=UpperCamelCase__, scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(num_inference_steps=2, generator=UpperCamelCase__, output_type='''numpy''' ).images lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(num_inference_steps=2, generator=UpperCamelCase__, output_type='''numpy''', return_dict=UpperCamelCase__ )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = '''google/ncsnpp-celebahq-256''' lowerCAmelCase_ = UNetaDModel.from_pretrained(UpperCamelCase__ ) lowerCAmelCase_ = KarrasVeScheduler() lowerCAmelCase_ = KarrasVePipeline(unet=UpperCamelCase__, scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(num_inference_steps=20, generator=UpperCamelCase__, output_type='''numpy''' ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase_ = np.array([0.578, 0.5_811, 0.5_924, 0.5_809, 0.587, 0.5_886, 0.5_861, 0.5_802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
278
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ShapEPipeline snake_case_ = ['''prompt'''] snake_case_ = ['''prompt'''] snake_case_ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] snake_case_ = False @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Any: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def lowercase_ ( self ) -> int: '''simple docstring''' return 8 @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(lowerCamelCase__ ) @property def lowercase_ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __lowerCamelCase = PriorTransformer(**lowerCamelCase__ ) return model @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**lowerCamelCase__ ) return model def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=lowerCamelCase__ , clip_sample=lowerCamelCase__ , clip_sample_range=1.0 , ) __lowerCamelCase = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> Optional[Any]: '''simple docstring''' if str(lowerCamelCase__ ).startswith('mps' ): __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) else: __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __lowerCamelCase = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**lowerCamelCase__ ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = torch_device == 'cpu' __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCamelCase__ , relax_max_difference=lowerCamelCase__ , ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**lowerCamelCase__ ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> int: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __lowerCamelCase = ShapEPipeline.from_pretrained('openai/shap-e' ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( 'a shark' , generator=lowerCamelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
348
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __lowerCamelCase = tokenizer('Hello there' , return_tensors='pt' ).input_ids __lowerCamelCase = tokenizer('Hi I am' , return_tensors='pt' ).input_ids __lowerCamelCase = model(input_ids.to(lowerCamelCase__ ) , labels=labels.to(lowerCamelCase__ ) ).loss __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
1
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCAmelCase_ ( _lowerCamelCase: Any , _lowerCamelCase: Dict , _lowerCamelCase: Optional[int] , _lowerCamelCase: List[Any] , _lowerCamelCase: Any=True , _lowerCamelCase: Any="pt" ): __SCREAMING_SNAKE_CASE : str = {"""add_prefix_space""": True} if isinstance(snake_case_ , snake_case_ ) and not line.startswith(""" """ ) else {} __SCREAMING_SNAKE_CASE : Dict = padding_side return tokenizer( [line] , max_length=snake_case_ , padding="""max_length""" if pad_to_max_length else None , truncation=snake_case_ , return_tensors=snake_case_ , add_special_tokens=snake_case_ , **snake_case_ , ) def lowerCAmelCase_ ( _lowerCamelCase: List[Any] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: List[str]=None , ): __SCREAMING_SNAKE_CASE : Any = input_ids.ne(snake_case_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _UpperCamelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]="train" , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[str]="" , ): """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE : Union[str, Any] = Path(snake_case__ ).joinpath(type_path + """.source""" ) __SCREAMING_SNAKE_CASE : str = Path(snake_case__ ).joinpath(type_path + """.target""" ) __SCREAMING_SNAKE_CASE : str = self.get_char_lens(self.src_file ) __SCREAMING_SNAKE_CASE : Any = max_source_length __SCREAMING_SNAKE_CASE : Optional[int] = max_target_length assert min(self.src_lens ) > 0, F"found empty line in {self.src_file}" __SCREAMING_SNAKE_CASE : Tuple = tokenizer __SCREAMING_SNAKE_CASE : str = prefix if n_obs is not None: __SCREAMING_SNAKE_CASE : Dict = self.src_lens[:n_obs] __SCREAMING_SNAKE_CASE : List[Any] = src_lang __SCREAMING_SNAKE_CASE : str = tgt_lang def __len__( self : Optional[int] ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : Optional[Any] , lowerCAmelCase__ : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = index + 1 # linecache starts at 1 __SCREAMING_SNAKE_CASE : Optional[Any] = self.prefix + linecache.getline(str(self.src_file ) , snake_case__ ).rstrip("""\n""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = linecache.getline(str(self.tgt_file ) , snake_case__ ).rstrip("""\n""" ) assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , snake_case__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __SCREAMING_SNAKE_CASE : Dict = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer ) __SCREAMING_SNAKE_CASE : Any = self.tokenizer.generator if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer __SCREAMING_SNAKE_CASE : str = encode_line(snake_case__ , snake_case__ , self.max_source_length , """right""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = encode_line(snake_case__ , snake_case__ , self.max_target_length , """right""" ) __SCREAMING_SNAKE_CASE : int = source_inputs["""input_ids"""].squeeze() __SCREAMING_SNAKE_CASE : str = target_inputs["""input_ids"""].squeeze() __SCREAMING_SNAKE_CASE : Optional[int] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCamelCase__ ( lowerCAmelCase__ : Optional[Any] ): """simple docstring""" return [len(snake_case__ ) for x in Path(snake_case__ ).open().readlines()] def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = torch.stack([x["""input_ids"""] for x in batch] ) __SCREAMING_SNAKE_CASE : Any = torch.stack([x["""attention_mask"""] for x in batch] ) __SCREAMING_SNAKE_CASE : str = torch.stack([x["""decoder_input_ids"""] for x in batch] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) __SCREAMING_SNAKE_CASE : List[Any] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) __SCREAMING_SNAKE_CASE : int = trim_batch(snake_case__ , snake_case__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = trim_batch(snake_case__ , snake_case__ , attention_mask=snake_case__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch UpperCamelCase__ : Dict = getLogger(__name__) def lowerCAmelCase_ ( _lowerCamelCase: str ): return list(itertools.chain.from_iterable(snake_case_ ) ) def lowerCAmelCase_ ( _lowerCamelCase: List[str] ): __SCREAMING_SNAKE_CASE : Tuple = get_git_info() save_json(snake_case_ , os.path.join(snake_case_ , """git_log.json""" ) ) def lowerCAmelCase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: str , _lowerCamelCase: Optional[Any]=4 , **_lowerCamelCase: int ): with open(snake_case_ , """w""" ) as f: json.dump(snake_case_ , snake_case_ , indent=snake_case_ , **snake_case_ ) def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] ): with open(snake_case_ ) as f: return json.load(snake_case_ ) def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : List[str] = git.Repo(search_parent_directories=snake_case_ ) __SCREAMING_SNAKE_CASE : List[str] = { """repo_id""": str(snake_case_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Union[str, Any] ): return list(map(snake_case_ , snake_case_ ) ) def lowerCAmelCase_ ( _lowerCamelCase: Dict , _lowerCamelCase: Union[str, Any] ): with open(snake_case_ , """wb""" ) as f: return pickle.dump(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( _lowerCamelCase: Dict ): def remove_articles(_lowerCamelCase: str ): return re.sub(r"""\b(a|an|the)\b""" , """ """ , snake_case_ ) def white_space_fix(_lowerCamelCase: Optional[Any] ): return " ".join(text.split() ) def remove_punc(_lowerCamelCase: Union[str, Any] ): __SCREAMING_SNAKE_CASE : Any = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCamelCase: Optional[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case_ ) ) ) ) def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Union[str, Any] ): __SCREAMING_SNAKE_CASE : str = normalize_answer(snake_case_ ).split() __SCREAMING_SNAKE_CASE : Optional[Any] = normalize_answer(snake_case_ ).split() __SCREAMING_SNAKE_CASE : Union[str, Any] = Counter(snake_case_ ) & Counter(snake_case_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = sum(common.values() ) if num_same == 0: return 0 __SCREAMING_SNAKE_CASE : str = 1.0 * num_same / len(snake_case_ ) __SCREAMING_SNAKE_CASE : str = 1.0 * num_same / len(snake_case_ ) __SCREAMING_SNAKE_CASE : Optional[int] = (2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Any ): return normalize_answer(snake_case_ ) == normalize_answer(snake_case_ ) def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: Optional[Any] ): assert len(snake_case_ ) == len(snake_case_ ) __SCREAMING_SNAKE_CASE : Dict = 0 for hypo, pred in zip(snake_case_ , snake_case_ ): em += exact_match_score(snake_case_ , snake_case_ ) if len(snake_case_ ) > 0: em /= len(snake_case_ ) return {"em": em} def lowerCAmelCase_ ( _lowerCamelCase: Dict ): return model_prefix.startswith("""rag""" ) def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Optional[int] , _lowerCamelCase: Union[str, Any] ): __SCREAMING_SNAKE_CASE : int = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __SCREAMING_SNAKE_CASE : Dict = """dropout_rate""" for p in extra_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): if not hasattr(snake_case_ , snake_case_ ) and not hasattr(snake_case_ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(snake_case_ ) ) delattr(snake_case_ , snake_case_ ) continue __SCREAMING_SNAKE_CASE : Optional[int] = p if hasattr(snake_case_ , snake_case_ ) else equivalent_param[p] setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) delattr(snake_case_ , snake_case_ ) return hparams, config
112
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class __lowerCAmelCase ( UpperCAmelCase__ ): snake_case_ : str = "Wav2Vec2FeatureExtractor" snake_case_ : Dict = "AutoTokenizer" def __init__( self : Tuple , snake_case__ : Optional[Any] , snake_case__ : Dict ): """simple docstring""" super().__init__(snake_case__ , snake_case__ ) _UpperCAmelCase = self.feature_extractor _UpperCAmelCase = False @classmethod def UpperCamelCase ( cls : List[Any] , snake_case__ : Optional[Any] , **snake_case__ : Any ): """simple docstring""" try: return super().from_pretrained(snake_case__ , **snake_case__ ) except OSError: warnings.warn( F"""Loading a tokenizer inside {cls.__name__} from a config that does not""" " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , snake_case__ , ) _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(snake_case__ , **snake_case__ ) _UpperCAmelCase = WavaVecaCTCTokenizer.from_pretrained(snake_case__ , **snake_case__ ) return cls(feature_extractor=snake_case__ , tokenizer=snake_case__ ) def __call__( self : int , *snake_case__ : Tuple , **snake_case__ : List[str] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*snake_case__ , **snake_case__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) _UpperCAmelCase = kwargs.pop("raw_speech" ) else: _UpperCAmelCase = kwargs.pop("audio" , snake_case__ ) _UpperCAmelCase = kwargs.pop("sampling_rate" , snake_case__ ) _UpperCAmelCase = kwargs.pop("text" , snake_case__ ) if len(snake_case__ ) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: _UpperCAmelCase = self.feature_extractor(snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) if text is not None: _UpperCAmelCase = self.tokenizer(snake_case__ , **snake_case__ ) if text is None: return inputs elif audio is None: return encodings else: _UpperCAmelCase = encodings["input_ids"] return inputs def UpperCamelCase ( self : List[str] , *snake_case__ : Any , **snake_case__ : Dict ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*snake_case__ , **snake_case__ ) _UpperCAmelCase = kwargs.pop("input_features" , snake_case__ ) _UpperCAmelCase = kwargs.pop("labels" , snake_case__ ) if len(snake_case__ ) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if input_features is not None: _UpperCAmelCase = self.feature_extractor.pad(snake_case__ , *snake_case__ , **snake_case__ ) if labels is not None: _UpperCAmelCase = self.tokenizer.pad(snake_case__ , **snake_case__ ) if labels is None: return input_features elif input_features is None: return labels else: _UpperCAmelCase = labels["input_ids"] return input_features def UpperCamelCase ( self : str , *snake_case__ : List[str] , **snake_case__ : Dict ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , *snake_case__ : List[str] , **snake_case__ : Union[str, Any] ): """simple docstring""" return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @contextmanager def UpperCamelCase ( self : Tuple ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) _UpperCAmelCase = True _UpperCAmelCase = self.tokenizer yield _UpperCAmelCase = self.feature_extractor _UpperCAmelCase = False
133
0
def __UpperCAmelCase ( __a : int ,__a : int ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def __UpperCAmelCase ( ) -> None: """simple docstring""" assert xnor_gate(0 ,0 ) == 1 assert xnor_gate(0 ,1 ) == 0 assert xnor_gate(1 ,0 ) == 0 assert xnor_gate(1 ,1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
15
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def __UpperCAmelCase ( __a : List[Any] ,__a : Optional[int] ,__a : Optional[int] ,__a : List[str] ,__a : List[Any] ) -> Union[str, Any]: """simple docstring""" for attribute in key.split('''.''' ): _a : Optional[Any] = getattr(__a ,__a ) if weight_type is not None: _a : Dict = getattr(__a ,__a ).shape else: _a : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _a : List[Any] = value elif weight_type == "weight_g": _a : Any = value elif weight_type == "weight_v": _a : Union[str, Any] = value elif weight_type == "bias": _a : Optional[int] = value else: _a : List[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __UpperCAmelCase ( __a : Any ,__a : Union[str, Any] ,__a : Union[str, Any] ) -> int: """simple docstring""" _a : Union[str, Any] = [] _a : Union[str, Any] = fairseq_model.state_dict() _a : Union[str, Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _a : int = False if "conv_layers" in name: load_conv_layer( __a ,__a ,__a ,__a ,hf_model.config.feat_extract_norm == '''group''' ,) _a : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): _a : Union[str, Any] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): _a : Any = True if "*" in mapped_key: _a : Optional[int] = name.split(__a )[0].split('''.''' )[-2] _a : Any = mapped_key.replace('''*''' ,__a ) if "weight_g" in name: _a : List[Any] = '''weight_g''' elif "weight_v" in name: _a : List[str] = '''weight_v''' elif "weight" in name: _a : Any = '''weight''' elif "bias" in name: _a : str = '''bias''' else: _a : Any = None set_recursively(__a ,__a ,__a ,__a ,__a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( __a : int ,__a : Optional[Any] ,__a : Dict ,__a : List[str] ,__a : Any ) -> Tuple: """simple docstring""" _a : int = full_name.split('''conv_layers.''' )[-1] _a : Any = name.split('''.''' ) _a : List[Any] = int(items[0] ) _a : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _a : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _a : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _a : int = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _a : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def __UpperCAmelCase ( __a : Dict ,__a : List[Any] ,__a : List[str]=None ,__a : Optional[int]=None ,__a : int=True ) -> List[Any]: """simple docstring""" if config_path is not None: _a : Tuple = HubertConfig.from_pretrained(__a ) else: _a : Any = HubertConfig() if is_finetuned: if dict_path: _a : Tuple = Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a : Any = target_dict.pad_index _a : Tuple = target_dict.bos_index _a : Optional[int] = target_dict.eos_index _a : Optional[Any] = len(target_dict.symbols ) _a : Tuple = os.path.join(__a ,'''vocab.json''' ) if not os.path.isdir(__a ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__a ) ) return os.makedirs(__a ,exist_ok=__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices ,__a ) _a : Tuple = WavaVecaCTCTokenizer( __a ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='''|''' ,do_lower_case=__a ,) _a : Tuple = True if config.feat_extract_norm == '''layer''' else False _a : List[Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__a ,return_attention_mask=__a ,) _a : List[Any] = WavaVecaProcessor(feature_extractor=__a ,tokenizer=__a ) processor.save_pretrained(__a ) _a : Tuple = HubertForCTC(__a ) else: _a : Tuple = HubertModel(__a ) if is_finetuned: _a , _a , _a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _a , _a , _a : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _a : Any = model[0].eval() recursively_load_weights(__a ,__a ,__a ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
15
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''', } class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A = "git_vision_model" def __init__(self , _UpperCAmelCase=7_6_8 , _UpperCAmelCase=3_0_7_2 , _UpperCAmelCase=1_2 , _UpperCAmelCase=1_2 , _UpperCAmelCase=3 , _UpperCAmelCase=2_2_4 , _UpperCAmelCase=1_6 , _UpperCAmelCase="quick_gelu" , _UpperCAmelCase=1E-5 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , **_UpperCAmelCase , ) -> Optional[int]: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : Union[str, Any] = hidden_size __UpperCamelCase : Tuple = intermediate_size __UpperCamelCase : str = num_hidden_layers __UpperCamelCase : str = num_attention_heads __UpperCamelCase : List[str] = num_channels __UpperCamelCase : Any = patch_size __UpperCamelCase : Optional[Any] = image_size __UpperCamelCase : Optional[int] = initializer_range __UpperCamelCase : int = attention_dropout __UpperCamelCase : List[Any] = layer_norm_eps __UpperCamelCase : Union[str, Any] = hidden_act @classmethod def a_ (cls , _UpperCAmelCase , **_UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(_UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase : int = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": __UpperCamelCase : Any = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A = "git" def __init__(self , _UpperCAmelCase=None , _UpperCAmelCase=3_0_5_2_2 , _UpperCAmelCase=7_6_8 , _UpperCAmelCase=6 , _UpperCAmelCase=1_2 , _UpperCAmelCase=3_0_7_2 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1_0_2_4 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=1_0_1 , _UpperCAmelCase=1_0_2 , _UpperCAmelCase=None , **_UpperCAmelCase , ) -> Optional[Any]: super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) if vision_config is None: __UpperCamelCase : Optional[int] = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) __UpperCamelCase : List[Any] = GitVisionConfig(**_UpperCAmelCase ) __UpperCamelCase : str = vocab_size __UpperCamelCase : Union[str, Any] = hidden_size __UpperCamelCase : Any = num_hidden_layers __UpperCamelCase : Tuple = num_attention_heads __UpperCamelCase : Union[str, Any] = hidden_act __UpperCamelCase : Tuple = intermediate_size __UpperCamelCase : List[Any] = hidden_dropout_prob __UpperCamelCase : List[Any] = attention_probs_dropout_prob __UpperCamelCase : Tuple = max_position_embeddings __UpperCamelCase : int = initializer_range __UpperCamelCase : List[str] = layer_norm_eps __UpperCamelCase : List[Any] = position_embedding_type __UpperCamelCase : Dict = use_cache __UpperCamelCase : str = tie_word_embeddings __UpperCamelCase : Any = num_image_with_embedding __UpperCamelCase : str = bos_token_id __UpperCamelCase : str = eos_token_id def a_ (self ) -> List[Any]: __UpperCamelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) __UpperCamelCase : List[str] = self.vision_config.to_dict() __UpperCamelCase : List[str] = self.__class__.model_type return output
298
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = '''Hello, World!''' _lowerCAmelCase = '''en_XX''' def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Union[str, Any] = Path("data_bin" ) __UpperCamelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(snake_case__ ).parent ) , checkpoint_file=Path(snake_case__ ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(snake_case__ ) , bpe="sentencepiece" , sentencepiece_model=str(Path(snake_case__ ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(snake_case__ ) __UpperCamelCase : List[str] = xmod.model.encoder.sentence_encoder __UpperCamelCase : Optional[int] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __UpperCamelCase : Any = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , snake_case__ ) __UpperCamelCase : Dict = XmodForSequenceClassification(snake_case__ ) if classification_head else XmodForMaskedLM(snake_case__ ) model.eval() # Now let's copy all the weights. # Embeddings __UpperCamelCase : List[Any] = xmod_sent_encoder.embed_tokens.weight __UpperCamelCase : List[Any] = xmod_sent_encoder.embed_positions.weight __UpperCamelCase : str = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __UpperCamelCase : Any = xmod_sent_encoder.layernorm_embedding.weight __UpperCamelCase : str = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __UpperCamelCase : int = model.roberta.encoder.layer[i] __UpperCamelCase : Any = xmod_sent_encoder.layers[i] # self attention __UpperCamelCase : List[str] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) __UpperCamelCase : Dict = xmod_layer.self_attn.q_proj.weight __UpperCamelCase : Optional[Any] = xmod_layer.self_attn.q_proj.bias __UpperCamelCase : Any = xmod_layer.self_attn.k_proj.weight __UpperCamelCase : Tuple = xmod_layer.self_attn.k_proj.bias __UpperCamelCase : Union[str, Any] = xmod_layer.self_attn.v_proj.weight __UpperCamelCase : Any = xmod_layer.self_attn.v_proj.bias # self-attention output __UpperCamelCase : Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) __UpperCamelCase : Union[str, Any] = xmod_layer.self_attn.out_proj.weight __UpperCamelCase : str = xmod_layer.self_attn.out_proj.bias __UpperCamelCase : Dict = xmod_layer.self_attn_layer_norm.weight __UpperCamelCase : Any = xmod_layer.self_attn_layer_norm.bias # intermediate __UpperCamelCase : Dict = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) __UpperCamelCase : List[Any] = xmod_layer.fca.weight __UpperCamelCase : Optional[int] = xmod_layer.fca.bias # output __UpperCamelCase : List[Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) __UpperCamelCase : Tuple = xmod_layer.fca.weight __UpperCamelCase : int = xmod_layer.fca.bias __UpperCamelCase : Dict = xmod_layer.final_layer_norm.weight __UpperCamelCase : int = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __UpperCamelCase : Any = xmod_layer.adapter_layer_norm.weight __UpperCamelCase : int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __UpperCamelCase : Any = bert_output.adapter_modules[lang_code] __UpperCamelCase : Dict = xmod_layer.adapter_modules[lang_code] __UpperCamelCase : int = from_adapter.fca.weight __UpperCamelCase : Dict = from_adapter.fca.bias __UpperCamelCase : List[Any] = from_adapter.fca.weight __UpperCamelCase : int = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __UpperCamelCase : Tuple = xmod_sent_encoder.layer_norm.weight __UpperCamelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: __UpperCamelCase : Optional[Any] = xmod.model.classification_heads["mnli"].dense.weight __UpperCamelCase : Any = xmod.model.classification_heads["mnli"].dense.bias __UpperCamelCase : Tuple = xmod.model.classification_heads["mnli"].out_proj.weight __UpperCamelCase : List[Any] = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head __UpperCamelCase : Any = xmod.model.encoder.lm_head.dense.weight __UpperCamelCase : Optional[Any] = xmod.model.encoder.lm_head.dense.bias __UpperCamelCase : Tuple = xmod.model.encoder.lm_head.layer_norm.weight __UpperCamelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias __UpperCamelCase : Tuple = xmod.model.encoder.lm_head.weight __UpperCamelCase : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __UpperCamelCase : Any = xmod.encode(snake_case__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(snake_case__ ) __UpperCamelCase : Optional[Any] = model(snake_case__ )[0] if classification_head: __UpperCamelCase : int = xmod.model.classification_heads["mnli"](xmod.extract_features(snake_case__ ) ) else: __UpperCamelCase : Optional[Any] = xmod.model(snake_case__ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __UpperCamelCase : Dict = torch.max(torch.abs(our_output - their_output ) ).item() print(F"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 __UpperCamelCase : Union[str, Any] = torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(snake_case__ ).mkdir(parents=snake_case__ , exist_ok=snake_case__ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) _lowerCAmelCase = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
298
1
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> int: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: __snake_case : Any = os.path.abspath(_lowerCamelCase ) logger.info(F'''Loading PyTorch weights from {pt_path}''' ) __snake_case : Union[str, Any] = torch.load(_lowerCamelCase , map_location="""cpu""" ) logger.info(F'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' ) __snake_case : Optional[Any] = convert_pytorch_state_dict_to_flax(_lowerCamelCase , _lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files __snake_case : Union[str, Any] = convert_pytorch_sharded_state_dict_to_flax(_lowerCamelCase , _lowerCamelCase ) return flax_state_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> (Tuple[str], np.ndarray): """simple docstring""" def is_key_or_prefix_key_in_dict(_lowerCamelCase ) -> bool: return len(set(_lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm __snake_case : Dict = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean __snake_case : Dict = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var __snake_case : Union[str, Any] = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding __snake_case : Tuple = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer __snake_case : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): __snake_case : Union[str, Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __snake_case : str = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): __snake_case : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __snake_case : str = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __snake_case : List[str] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 __snake_case : List[Any] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): __snake_case : Union[str, Any] = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): __snake_case : str = pt_tuple_key[-2] + "_v" if name is not None: __snake_case : Union[str, Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = {k: v.numpy() for k, v in pt_state_dict.items()} __snake_case : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: __snake_case : List[str] = flax_model.params["params"] else: __snake_case : Dict = flax_model.params __snake_case : List[str] = flatten_dict(_lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __snake_case : str = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(_lowerCamelCase ) __snake_case : str = {} __snake_case : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) __snake_case : List[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __snake_case : List[Any] = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary __snake_case : Optional[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __snake_case : int = pt_tuple_key[1:] # Correctly rename weight parameters __snake_case : Any = rename_key_and_reshape_tensor( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # add model prefix if necessary __snake_case : int = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __snake_case : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: __snake_case : str = jnp.asarray(_lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) continue # also add unexpected weight so that warning is thrown __snake_case : Union[str, Any] = jnp.asarray(_lowerCamelCase ) else: # also add unexpected weight so that warning is thrown __snake_case : str = jnp.asarray(_lowerCamelCase ) return unflatten_dict(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" import torch # Load the index __snake_case : Any = {} for shard_file in shard_filenames: # load using msgpack utils __snake_case : Union[str, Any] = torch.load(_lowerCamelCase ) __snake_case : List[str] = {k: v.numpy() for k, v in pt_state_dict.items()} __snake_case : List[str] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __snake_case : List[Any] = flax_model.params["params"] __snake_case : Optional[int] = flatten_dict(_lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: __snake_case : int = flax_model.params __snake_case : List[str] = flatten_dict(_lowerCamelCase ) __snake_case : Any = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) __snake_case : Tuple = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __snake_case : List[Any] = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary __snake_case : Optional[int] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __snake_case : int = pt_tuple_key[1:] # Correctly rename weight parameters __snake_case : Dict = rename_key_and_reshape_tensor( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # add model prefix if necessary __snake_case : List[Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __snake_case : Optional[int] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: __snake_case : Dict = jnp.asarray(_lowerCamelCase ) continue if "var" in flax_key[-1]: __snake_case : Any = jnp.asarray(_lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) continue # also add unexpected weight so that warning is thrown __snake_case : Optional[Any] = jnp.asarray(_lowerCamelCase ) else: # also add unexpected weight so that warning is thrown __snake_case : str = jnp.asarray(_lowerCamelCase ) return unflatten_dict(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Tuple = os.path.abspath(_lowerCamelCase ) logger.info(F'''Loading Flax weights from {flax_checkpoint_path}''' ) # import correct flax class __snake_case : Union[str, Any] = getattr(_lowerCamelCase , """Flax""" + model.__class__.__name__ ) # load flax weight dict with open(_lowerCamelCase , """rb""" ) as state_f: try: __snake_case : List[str] = from_bytes(_lowerCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights __snake_case : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda _lowerCamelCase : x.dtype == jnp.bfloataa , _lowerCamelCase ) ).values() if any(_lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) __snake_case : Any = jax.tree_util.tree_map( lambda _lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _lowerCamelCase ) __snake_case : Union[str, Any] = flatten_dict(_lowerCamelCase ) __snake_case : List[str] = pt_model.state_dict() __snake_case : Optional[Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) __snake_case : Any = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys __snake_case : Optional[Any] = [] __snake_case : Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __snake_case : Tuple = flax_key_tuple[0] == pt_model.base_model_prefix __snake_case : Dict = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: __snake_case : List[str] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: __snake_case : Tuple = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_lowerCamelCase ) not in pt_model_dict: # conv layer __snake_case : int = flax_key_tuple[:-1] + ("weight",) __snake_case : int = jnp.transpose(_lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCamelCase ) not in pt_model_dict: # linear layer __snake_case : Any = flax_key_tuple[:-1] + ("weight",) __snake_case : Tuple = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __snake_case : Optional[int] = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: __snake_case : Dict = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: __snake_case : int = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: __snake_case : List[str] = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: __snake_case : Optional[int] = ".".join(_lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. __snake_case : List[str] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: __snake_case : int = key.split(""".""" ) __snake_case : int = None if key_components[-3::2] == ["parametrizations", "original0"]: __snake_case : Union[str, Any] = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: __snake_case : Optional[Any] = key_components[-2] + "_v" if name is not None: __snake_case : List[Any] = key_components[:-3] + [name] __snake_case : List[Any] = ".".join(_lowerCamelCase ) __snake_case : List[Any] = key if flax_key in special_pt_names: __snake_case : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict __snake_case : Union[str, Any] = np.asarray(_lowerCamelCase ) if not isinstance(_lowerCamelCase , np.ndarray ) else flax_tensor __snake_case : List[Any] = torch.from_numpy(_lowerCamelCase ) # remove from missing keys missing_keys.remove(_lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_lowerCamelCase ) pt_model.load_state_dict(_lowerCamelCase ) # re-transform missing_keys to list __snake_case : int = list(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(F'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' ) if len(_lowerCamelCase ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' """ use it for predictions and inference.""" ) else: logger.warning( F'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n''' """If your task is similar to the task the model of the checkpoint was trained on, """ F'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' ) return pt_model
369
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __UpperCamelCase = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _A : lowercase__: str lowercase__: Optional[str] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None lowercase__: Optional[Union[str, int]] = None def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case , __snake_case , __snake_case : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return self.major, self.minor, self.patch def lowercase__ ( self : Any , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return Version(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): return other raise TypeError(f'''{other} (type {type(__magic_name__ )}) cannot be compared to version.''' ) def __eq__( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" try: __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = self._validate_operand(__magic_name__ ) return self.tuple < other.tuple def __hash__( self : Any ) -> Any: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase__ ( cls : List[str] , __magic_name__ : Tuple ) -> str: """simple docstring""" __snake_case : List[str] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase__ ( self : str ) -> str: """simple docstring""" return self.version_str def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : List[Any] = _VERSION_REG.match(_lowerCamelCase ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_lowerCamelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" return ".".join(str(_lowerCamelCase ) for v in version_tuple )
13
0
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ = 4000000 ) -> int: _a : Optional[Any] = [0, 1] _a : str = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 _a : List[Any] = 0 for j in range(len(lowerCAmelCase_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
89
"""simple docstring""" class snake_case : '''simple docstring''' def __init__( self : List[str], _lowerCamelCase : list[int] ): '''simple docstring''' __A = len(_lowerCamelCase ) __A = [0] * len_array if len_array > 0: __A = array[0] for i in range(1, _lowerCamelCase ): __A = self.prefix_sum[i - 1] + array[i] def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : int, _lowerCamelCase : int ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : int ): '''simple docstring''' __A = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(_lowerCamelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
266
0
import torch from diffusers import StableDiffusionPipeline lowerCamelCase : int = "path-to-your-trained-model" lowerCamelCase : Dict = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda") lowerCamelCase : List[str] = "A photo of sks dog in a bucket" lowerCamelCase : List[str] = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png")
208
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class A( unittest.TestCase ): '''simple docstring''' def __init__( self : str , A_ : int , A_ : Any=7 , A_ : Tuple=3 , A_ : Union[str, Any]=18 , A_ : Tuple=30 , A_ : Union[str, Any]=400 , A_ : Optional[int]=True , A_ : List[Any]=None , A_ : Dict=True , A_ : Union[str, Any]=None , A_ : Optional[int]=True , A_ : str=[0.48145466, 0.4578275, 0.40821073] , A_ : Tuple=[0.26862954, 0.26130258, 0.27577711] , A_ : Any=True , ) -> str: """simple docstring""" lowerCamelCase_ = size if size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = image_size lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean lowerCamelCase_ = image_std lowerCamelCase_ = do_convert_rgb def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def a__ ( self : Any , A_ : Any=False , A_ : Dict=False , A_ : str=False ) -> Union[str, Any]: """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: lowerCamelCase_ = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: lowerCamelCase_ = [] for i in range(self.batch_size ): lowerCamelCase_ , lowerCamelCase_ = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension lowerCamelCase_ = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] if torchify: lowerCamelCase_ = [torch.from_numpy(A_ ) for x in image_inputs] return image_inputs @require_torch @require_vision class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def a__ ( self : int ) -> Any: """simple docstring""" lowerCamelCase_ = ChineseCLIPImageProcessingTester(self , do_center_crop=A_ ) @property def a__ ( self : str ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_center_crop' ) ) self.assertTrue(hasattr(A_ , 'center_crop' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) self.assertTrue(hasattr(A_ , 'do_convert_rgb' ) ) def a__ ( self : Any ) -> Any: """simple docstring""" lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 224, 'width': 224} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def a__ ( self : str ) -> str: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def a__ ( self : str ) -> Dict: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) @require_torch @require_vision class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=A_ ) lowerCamelCase_ = 3 @property def a__ ( self : Any ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_center_crop' ) ) self.assertTrue(hasattr(A_ , 'center_crop' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) self.assertTrue(hasattr(A_ , 'do_convert_rgb' ) ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> int: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
208
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Any = ShapEPipeline __lowerCamelCase : Optional[int] = ["""prompt"""] __lowerCamelCase : Optional[int] = ["""prompt"""] __lowerCamelCase : Optional[int] = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] __lowerCamelCase : Dict = False @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return 8 @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[int] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Optional[int] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(snake_case__ ) @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any ={ '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } UpperCAmelCase : str =PriorTransformer(**snake_case__ ) return model @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any ={ '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } UpperCAmelCase : Any =ShapERenderer(**snake_case__ ) return model def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : str =self.dummy_prior UpperCAmelCase : Optional[int] =self.dummy_text_encoder UpperCAmelCase : List[Any] =self.dummy_tokenizer UpperCAmelCase : Tuple =self.dummy_renderer UpperCAmelCase : Union[str, Any] =HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=snake_case__ , clip_sample=snake_case__ , clip_sample_range=1.0 , ) UpperCAmelCase : Optional[int] ={ '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def UpperCAmelCase__ ( self , snake_case__ , snake_case__=0 ) -> Optional[Any]: '''simple docstring''' if str(snake_case__ ).startswith('''mps''' ): UpperCAmelCase : Optional[int] =torch.manual_seed(snake_case__ ) else: UpperCAmelCase : Tuple =torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase : Dict ={ '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[str] ='''cpu''' UpperCAmelCase : Optional[Any] =self.get_dummy_components() UpperCAmelCase : List[str] =self.pipeline_class(**snake_case__ ) UpperCAmelCase : Union[str, Any] =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : List[str] =pipe(**self.get_dummy_inputs(snake_case__ ) ) UpperCAmelCase : Tuple =output.images[0] UpperCAmelCase : Dict =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCAmelCase : List[Any] =np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] =torch_device == '''cpu''' UpperCAmelCase : Optional[int] =True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=snake_case__ , relax_max_difference=snake_case__ , ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Any =self.get_dummy_components() UpperCAmelCase : int =self.pipeline_class(**snake_case__ ) UpperCAmelCase : Union[str, Any] =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Optional[int] =1 UpperCAmelCase : Any =2 UpperCAmelCase : Optional[int] =self.get_dummy_inputs(snake_case__ ) for key in inputs.keys(): if key in self.batch_params: UpperCAmelCase : List[str] =batch_size * [inputs[key]] UpperCAmelCase : List[Any] =pipe(**snake_case__ , num_images_per_prompt=snake_case__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Dict =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) UpperCAmelCase : int =ShapEPipeline.from_pretrained('''openai/shap-e''' ) UpperCAmelCase : Optional[Any] =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Dict =torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase : Optional[Any] =pipe( '''a shark''' , generator=snake_case__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
348
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __snake_case = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __snake_case = parser.parse_args() __snake_case = '''cpu''' __snake_case = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __snake_case = '''path-to-your-trained-model''' __snake_case = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __snake_case = pipe.to(device) # to channels last __snake_case = pipe.unet.to(memory_format=torch.channels_last) __snake_case = pipe.vae.to(memory_format=torch.channels_last) __snake_case = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __snake_case = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __snake_case = torch.randn(2, 4, 64, 64) __snake_case = torch.rand(1) * 9_99 __snake_case = torch.randn(2, 77, 7_68) __snake_case = (sample, timestep, encoder_hidden_status) try: __snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __snake_case = 6_66 __snake_case = torch.Generator(device).manual_seed(seed) __snake_case = {'''generator''': generator} if args.steps is not None: __snake_case = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __snake_case = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
348
1
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCamelCase (__lowerCamelCase ): """simple docstring""" def __init__( self : List[str], _UpperCAmelCase : NestedDataStructureLike[PathLike], _UpperCAmelCase : Optional[NamedSplit] = None, _UpperCAmelCase : Optional[Features] = None, _UpperCAmelCase : str = None, _UpperCAmelCase : bool = False, _UpperCAmelCase : bool = False, _UpperCAmelCase : Optional[int] = None, **_UpperCAmelCase : Optional[int], ) -> int: """simple docstring""" super().__init__( _UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : str = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE__ : Dict = Text( cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, ) def A_ ( self : int ) -> Dict: """simple docstring""" # Build iterable dataset if self.streaming: SCREAMING_SNAKE_CASE__ : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Any = None self.builder.download_and_prepare( download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.builder.as_dataset( split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory ) return dataset
356
def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> int: '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError("String lengths must match!" ) SCREAMING_SNAKE_CASE__ : Dict = 0 for chara, chara in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
191
0
def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def UpperCAmelCase ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
15
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): SCREAMING_SNAKE_CASE :Any = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: SCREAMING_SNAKE_CASE :int = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" __A = (images / 2 + 0.5).clamp(0 , 1 ) __A = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __A = numpy_to_pil(a_ ) return images def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if images.ndim == 3: __A = images[None, ...] __A = (images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __A = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: __A = [Image.fromarray(a_ ) for image in images] return pil_images
15
1
'''simple docstring''' def _A (lowerCAmelCase__ :int = 1_00 ) -> int: '''simple docstring''' _a = set() _a = 0 _a = n + 1 # maximum limit for a in range(2 , lowerCAmelCase__ ): for b in range(2 , lowerCAmelCase__ ): _a = a**b # calculates the current power collect_powers.add(lowerCAmelCase__ ) # adds the result to the set return len(lowerCAmelCase__ ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
369
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : Union[str, Any] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "spiece.model"} a_ : List[Any] = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } a_ : Dict = {"bert_for_seq_generation": 5_1_2} class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = [] _lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self , __magic_name__ , __magic_name__="<s>" , __magic_name__="</s>" , __magic_name__="<unk>" , __magic_name__="<pad>" , __magic_name__="<::::>" , __magic_name__ = None , **__magic_name__ , ) -> None: _a = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , sep_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) _a = vocab_file _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__magic_name__ ) @property def __UpperCAmelCase ( self ) -> Dict: return self.sp_model.get_piece_size() def __UpperCAmelCase ( self ) -> str: _a = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Any: _a = self.__dict__.copy() _a = None return state def __setstate__( self , __magic_name__ ) -> int: _a = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self , __magic_name__ ) -> List[str]: return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> List[str]: return self.sp_model.piece_to_id(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> List[str]: _a = self.sp_model.IdToPiece(__magic_name__ ) return token def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[Any]: _a = [] _a = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__magic_name__ ) + token _a = [] else: current_sub_tokens.append(__magic_name__ ) out_string += self.sp_model.decode(__magic_name__ ) return out_string.strip() def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> Tuple[str]: if not os.path.isdir(__magic_name__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _a = os.path.join( __magic_name__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , 'wb' ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,)
104
0
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy A_ = logging.getLogger(__name__) A_ = '''pytorch_model.bin''' @dataclasses.dataclass class lowercase: '''simple docstring''' lowercase__ = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) lowercase__ = dataclasses.field( default=__a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class lowercase: '''simple docstring''' lowercase__ = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) lowercase__ = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) lowercase__ = dataclasses.field( default=__a , metadata={"help": "A csv or a json file containing the validation data."} ) lowercase__ = dataclasses.field( default=__a , metadata={"help": "The name of the task to train on."} , ) lowercase__ = dataclasses.field( default=__a , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class lowercase: '''simple docstring''' lowercase__ = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) lowercase__ = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) lowercase__ = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) lowercase__ = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) lowercase__ = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) lowercase__ = dataclasses.field( default=__a , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) lowercase__ = dataclasses.field( default=__a , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) lowercase__ = dataclasses.field( default=__a , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) lowercase__ = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) lowercase__ = dataclasses.field( default=1_00 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) lowercase__ = dataclasses.field( default=__a , metadata={"help": "Random seed for initialization."} , ) def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Optional[int] ): """simple docstring""" _snake_case : int = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _snake_case : str = dataset.filter(lambda snake_case__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _snake_case : Optional[Any] = int(eval_result * len(snake_case__ ) ) print(snake_case__ ) _snake_case : Union[str, Any] = dataset.sort("""probability""" , reverse=snake_case__ ) _snake_case : int = dataset.select(range(snake_case__ ) ) _snake_case : Dict = dataset.remove_columns(["""label""", """probability"""] ) _snake_case : int = dataset.rename_column("""prediction""" , """label""" ) _snake_case : Dict = dataset.map(lambda snake_case__ : {"label": idalabel[example["label"]]} ) _snake_case : Optional[int] = dataset.shuffle(seed=args.seed ) _snake_case : List[Any] = os.path.join(snake_case__ , F"train_pseudo.{args.data_file_extension}" ) if args.data_file_extension == "csv": dataset.to_csv(snake_case__ , index=snake_case__ ) else: dataset.to_json(snake_case__ ) def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : int , snake_case__ : List[Any] , **snake_case__ : int ): """simple docstring""" _snake_case : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _snake_case : List[str] = STModelArguments(model_name_or_path=snake_case__ ) _snake_case : Union[str, Any] = STDataArguments(train_file=snake_case__ , infer_file=snake_case__ ) _snake_case : List[Any] = STTrainingArguments(output_dir=snake_case__ ) _snake_case : int = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(snake_case__ ).items(): setattr(snake_case__ , snake_case__ , snake_case__ ) for key, value in kwargs.items(): if hasattr(snake_case__ , snake_case__ ): setattr(snake_case__ , snake_case__ , snake_case__ ) # Sanity checks _snake_case : str = {} _snake_case : int = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _snake_case : Any = args.train_file _snake_case : List[str] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _snake_case : Tuple = args.eval_file for key in data_files: _snake_case : Tuple = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"`{key}_file` should be a csv or a json file." if args.data_file_extension is None: _snake_case : Tuple = extension else: assert extension == args.data_file_extension, F"`{key}_file` should be a {args.data_file_extension} file`." assert ( args.eval_metric in datasets.list_metrics() ), F"{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}." # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _snake_case : Any = F"{args.output_dir}/self-train_iter-{{}}".format _snake_case : Optional[int] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=snake_case__ ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) accelerator.wait_for_everyone() _snake_case : str = None _snake_case : Union[str, Any] = None _snake_case : Optional[int] = 0 _snake_case : Optional[Any] = False # Show the progress bar _snake_case : Optional[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _snake_case : List[str] = data_dir_format(snake_case__ ) assert os.path.exists(snake_case__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _snake_case : Optional[int] = os.path.join(snake_case__ , """stage-1""" ) _snake_case : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(snake_case__ , snake_case__ ): arguments_dict.update({key: value} ) _snake_case : List[str] = os.path.join(snake_case__ , """best-checkpoint""" , snake_case__ ) if os.path.exists(snake_case__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , snake_case__ , snake_case__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , snake_case__ ) finetune(**snake_case__ ) accelerator.wait_for_everyone() assert os.path.exists(snake_case__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , snake_case__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _snake_case : Any = os.path.join(snake_case__ , """best-checkpoint""" ) _snake_case : List[str] = os.path.join(snake_case__ , """stage-2""" ) # Update arguments_dict _snake_case : Union[str, Any] = model_path _snake_case : Union[str, Any] = data_files["""train"""] _snake_case : Union[str, Any] = current_output_dir _snake_case : Dict = os.path.join(snake_case__ , """best-checkpoint""" , snake_case__ ) if os.path.exists(snake_case__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , snake_case__ , snake_case__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , snake_case__ ) finetune(**snake_case__ ) accelerator.wait_for_everyone() assert os.path.exists(snake_case__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , snake_case__ ) _snake_case : Any = iteration _snake_case : Any = data_dir_format(iteration + 1 ) _snake_case : Dict = AutoConfig.from_pretrained(os.path.join(snake_case__ , """best-checkpoint""" ) ) _snake_case : List[Any] = config.idalabel _snake_case : Optional[Any] = os.path.join(snake_case__ , """eval_results_best-checkpoint.json""" ) _snake_case : int = os.path.join(snake_case__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(snake_case__ ) with open(snake_case__ , """r""" ) as f: _snake_case : Any = float(json.load(snake_case__ )[args.eval_metric] ) _snake_case : List[str] = os.path.join(snake_case__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(snake_case__ ) # Loading the dataset from local csv or json files. _snake_case : List[str] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _snake_case : Optional[Any] = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(snake_case__ , exist_ok=snake_case__ ) shutil.copy(snake_case__ , os.path.join(snake_case__ , F"eval_results_iter-{iteration}.json" ) ) if os.path.exists(snake_case__ ): shutil.copy(snake_case__ , os.path.join(snake_case__ , F"test_results_iter-{iteration}.json" ) ) create_pseudo_labeled_data(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) accelerator.wait_for_everyone() _snake_case : Any = os.path.join(snake_case__ , F"train_pseudo.{args.data_file_extension}" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _snake_case : Union[str, Any] = eval_result if best_iteration is None: _snake_case : List[Any] = new_iteration _snake_case : List[Any] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _snake_case : Dict = new_iteration _snake_case : List[str] = new_eval_result _snake_case : Dict = 0 else: if new_eval_result == best_eval_result: _snake_case : Union[str, Any] = new_iteration _snake_case : int = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _snake_case : str = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , snake_case__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , snake_case__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(snake_case__ , F"eval_results_iter-{iteration}.json" ) , os.path.join(snake_case__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , snake_case__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(snake_case__ , F"eval_results_iter-{args.max_selftrain_iterations - 1}.json" ) , os.path.join(snake_case__ , """eval_results_best-iteration.json""" ) , )
64
from collections.abc import Callable class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Callable | None = None): # Stores actual heap items. SCREAMING_SNAKE_CASE_: list = [] # Stores indexes of each item for supporting updates and deletion. SCREAMING_SNAKE_CASE_: dict = {} # Stores current size of heap. SCREAMING_SNAKE_CASE_: Optional[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. SCREAMING_SNAKE_CASE_: Any = key or (lambda lowerCAmelCase__: x) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int): return int((i - 1) / 2) if i > 0 else None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 1) return left if 0 < left < self.size else None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 2) return right if 0 < right < self.size else None def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.arr[j], self.arr[i] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): return self.arr[i][1] < self.arr[j][1] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Any = self._left(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self._right(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = i if left is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[int] = left if right is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = right return valid_parent def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: List[Any] = self._parent(lowerCAmelCase__) while parent is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = parent, self._parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = self._get_valid_parent(lowerCAmelCase__) while valid_parent != index: self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = valid_parent, self._get_valid_parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Any = self.pos_map[item] SCREAMING_SNAKE_CASE_: int = [item, self.key(lowerCAmelCase__)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Optional[Any] = self.pos_map[item] del self.pos_map[item] SCREAMING_SNAKE_CASE_: List[str] = self.arr[self.size - 1] SCREAMING_SNAKE_CASE_: Tuple = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(lowerCAmelCase__)]) else: SCREAMING_SNAKE_CASE_: str = [item, self.key(lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.arr[0] if self.size else None def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def A_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
13
0
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __a ( __UpperCamelCase ,unittest.TestCase ): __snake_case : List[Any] = RoFormerTokenizer __snake_case : List[Any] = RoFormerTokenizerFast __snake_case : Any = True __snake_case : Tuple = True def A ( self : str ): super().setUp() def A ( self : Optional[int] , **UpperCAmelCase : List[Any] ): return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **UpperCAmelCase ) def A ( self : List[Any] , **UpperCAmelCase : Optional[Any] ): return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **UpperCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ : Dict = """永和服装饰品有限公司,今天天气非常好""" lowerCAmelCase_ : Tuple = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.get_tokenizer() lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.get_chinese_input_output_texts() lowerCAmelCase_ : str = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , output_text.split() ) lowerCAmelCase_ : str = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Optional[int] = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase ) def A ( self : Tuple ): lowerCAmelCase_ : str = self.get_rust_tokenizer() lowerCAmelCase_ , lowerCAmelCase_ : int = self.get_chinese_input_output_texts() lowerCAmelCase_ : int = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , output_text.split() ) lowerCAmelCase_ : Union[str, Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Union[str, Any] = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase ) def A ( self : Dict ): pass def A ( self : Dict ): pass def A ( self : Dict ): pass
28
from datetime import datetime as dt import os from github import Github __UpperCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" ) lowerCAmelCase_ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
28
1
'''simple docstring''' def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> str: if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) __lowerCamelCase : Dict = str(bin(_lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase : Tuple = str(bin(_lowerCAmelCase ) )[2:] __lowerCamelCase : Any = max(len(_lowerCAmelCase ) ,len(_lowerCAmelCase ) ) return "0b" + "".join( str(int('1' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(_lowerCAmelCase ) ,b_binary.zfill(_lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
208
'''simple docstring''' _UpperCamelCase = tuple[float, float, float] _UpperCamelCase = tuple[float, float, float] def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Vectorad: __lowerCamelCase : Any = end_pointa[0] - end_pointa[0] __lowerCamelCase : str = end_pointa[1] - end_pointa[1] __lowerCamelCase : Tuple = end_pointa[2] - end_pointa[2] return (x, y, z) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Vectorad: __lowerCamelCase : List[str] = ab[1] * ac[2] - ab[2] * ac[1] # *i __lowerCamelCase : Dict = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __lowerCamelCase : List[Any] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> bool: return tuple(round(_lowerCAmelCase ,_lowerCAmelCase ) for x in vector ) == (0, 0, 0) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = 10 ) -> bool: __lowerCamelCase : str = create_vector(_lowerCAmelCase ,_lowerCAmelCase ) __lowerCamelCase : Dict = create_vector(_lowerCAmelCase ,_lowerCAmelCase ) return is_zero_vector(get_ad_vectors_cross(_lowerCAmelCase ,_lowerCAmelCase ) ,_lowerCAmelCase )
208
1
from __future__ import annotations import collections import pprint from pathlib import Path def __snake_case ( _lowerCAmelCase : str ) -> List[str]: return "".join(sorted(__UpperCamelCase ) ) def __snake_case ( _lowerCAmelCase : str ) -> List[Any]: return word_by_signature[signature(__UpperCamelCase )] _lowerCAmelCase : Optional[Any] = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') _lowerCAmelCase : Tuple = sorted({word.strip().lower() for word in data.splitlines()}) _lowerCAmelCase : Tuple = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
368
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCAmelCase : Union[str, Any] = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class __magic_name__ ( unittest.TestCase ): """simple docstring""" @classmethod def SCREAMING_SNAKE_CASE ( cls :str ): '''simple docstring''' A_ : Tuple = TOKEN HfFolder.save_token(snake_case ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[str] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) A_ : Optional[Any] = BertConfig.from_pretrained(f"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case , getattr(snake_case , snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case , repo_id="test-config" , push_to_hub=snake_case , use_auth_token=self._token ) A_ : Any = BertConfig.from_pretrained(f"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case , getattr(snake_case , snake_case ) ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) A_ : Optional[Any] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case , getattr(snake_case , snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case , repo_id="valid_org/test-config-org" , push_to_hub=snake_case , use_auth_token=self._token ) A_ : Dict = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case , getattr(snake_case , snake_case ) ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' CustomConfig.register_for_auto_class() A_ : Union[str, Any] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) A_ : Optional[int] = AutoConfig.from_pretrained(f"{USER}/test-dynamic-config" , trust_remote_code=snake_case ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class __magic_name__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : List[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated A_ : Any = c.n_embd + 1 # int A_ : List[Any] = c.resid_pdrop + 1.0 # float A_ : Optional[int] = not c.scale_attn_weights # bool A_ : str = c.summary_type + "foo" # str c.update_from_string( f"n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}" ) self.assertEqual(snake_case , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case , c.summary_type , "mismatch for key: summary_type" ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Optional[int] = PretrainedConfig() A_ : Dict = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) A_ : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(snake_case , snake_case )] if len(snake_case ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f" {', '.join(snake_case )}." ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' with self.assertRaises(snake_case ): # config is in subfolder, the following should not work without specifying the subfolder A_ : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) A_ : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : int = mock.Mock() A_ : Tuple = 500 A_ : str = {} A_ : Dict = HTTPError A_ : Dict = {} # Download this model to make sure it's in the cache. A_ : Dict = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case ) as mock_head: A_ : List[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : List[str] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Tuple = AutoConfig.from_pretrained("bert-base-cased" ) A_ : Union[str, Any] = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case ) A_ : Union[str, Any] = 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 A_ : Dict = AutoConfig.from_pretrained(snake_case ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 A_ : Optional[Any] = ["config.42.0.0.json"] A_ : Optional[int] = 768 configuration.save_pretrained(snake_case ) shutil.move(os.path.join(snake_case , "config.4.0.0.json" ) , os.path.join(snake_case , "config.42.0.0.json" ) ) A_ : Dict = AutoConfig.from_pretrained(snake_case ) self.assertEqual(new_configuration.hidden_size , 768 ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = "hf-internal-testing/test-two-configs" import transformers as new_transformers A_ : Optional[int] = "v4.0.0" A_ , A_ : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( snake_case , return_unused_kwargs=snake_case ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers A_ : Union[str, Any] = "v3.0.0" A_ : Dict = old_transformers.models.auto.AutoConfig.from_pretrained(snake_case ) self.assertEqual(old_configuration.hidden_size , 768 )
70
0
"""simple docstring""" import baseaa def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> bytes: return baseaa.aaaencode(string.encode("utf-8" ) ) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: return baseaa.aaadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
247
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : torch.FloatTensor SCREAMING_SNAKE_CASE_ : torch.FloatTensor SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None class _SCREAMING_SNAKE_CASE( A , A ): SCREAMING_SNAKE_CASE_ : Any = 2 @register_to_config def __init__( self ,SCREAMING_SNAKE_CASE__ = 0.0_2 ,SCREAMING_SNAKE_CASE__ = 1_00 ,SCREAMING_SNAKE_CASE__ = 1.0_0_7 ,SCREAMING_SNAKE_CASE__ = 80 ,SCREAMING_SNAKE_CASE__ = 0.0_5 ,SCREAMING_SNAKE_CASE__ = 50 ,) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = sigma_max # setable values __SCREAMING_SNAKE_CASE :int = None __SCREAMING_SNAKE_CASE :np.IntTensor = None __SCREAMING_SNAKE_CASE :torch.FloatTensor = None # sigma(t_i) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> torch.FloatTensor: """simple docstring""" return sample def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = num_inference_steps __SCREAMING_SNAKE_CASE :int = np.arange(0 ,self.num_inference_steps )[::-1].copy() __SCREAMING_SNAKE_CASE :Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __SCREAMING_SNAKE_CASE :List[str] = torch.tensor(SCREAMING_SNAKE_CASE__ ,dtype=torch.floataa ,device=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> Tuple[torch.FloatTensor, float]: """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: __SCREAMING_SNAKE_CASE :List[str] = min(self.config.s_churn / self.num_inference_steps ,2**0.5 - 1 ) else: __SCREAMING_SNAKE_CASE :Optional[Any] = 0 # sample eps ~ N(0, S_noise^2 * I) __SCREAMING_SNAKE_CASE :Optional[int] = self.config.s_noise * randn_tensor(sample.shape ,generator=SCREAMING_SNAKE_CASE__ ).to(sample.device ) __SCREAMING_SNAKE_CASE :List[str] = sigma + gamma * sigma __SCREAMING_SNAKE_CASE :str = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = True ,) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = sample_hat + sigma_hat * model_output __SCREAMING_SNAKE_CASE :Tuple = (sample_hat - pred_original_sample) / sigma_hat __SCREAMING_SNAKE_CASE :List[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE__ ,derivative=SCREAMING_SNAKE_CASE__ ,pred_original_sample=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = True ,) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = sample_prev + sigma_prev * model_output __SCREAMING_SNAKE_CASE :List[Any] = (sample_prev - pred_original_sample) / sigma_prev __SCREAMING_SNAKE_CASE :Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE__ ,derivative=SCREAMING_SNAKE_CASE__ ,pred_original_sample=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError()
191
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=24 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2 , )-> Any: lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =patch_size lowerCamelCase_ =max_length lowerCamelCase_ =num_mel_bins lowerCamelCase_ =is_training lowerCamelCase_ =use_labels lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =scope lowerCamelCase_ =frequency_stride lowerCamelCase_ =time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCamelCase_ =(self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 lowerCamelCase_ =(self.max_length - self.patch_size) // self.time_stride + 1 lowerCamelCase_ =frequency_out_dimension * time_out_dimension lowerCamelCase_ =num_patches + 2 def _snake_case ( self )-> str: lowerCamelCase_ =floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ =self.get_config() return config, input_values, labels def _snake_case ( self )-> List[str]: return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Any: lowerCamelCase_ =ASTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self )-> Any: lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =config_and_inputs lowerCamelCase_ ={"""input_values""": input_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:str = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _UpperCamelCase:List[Any] = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) _UpperCamelCase:Optional[int] = False _UpperCamelCase:Union[str, Any] = False _UpperCamelCase:List[Any] = False _UpperCamelCase:Optional[int] = False def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Union[str, Any]: if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _snake_case ( self )-> Dict: lowerCamelCase_ =ASTModelTester(self ) lowerCamelCase_ =ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def _snake_case ( self )-> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""" ) def _snake_case ( self )-> Dict: pass def _snake_case ( self )-> Dict: lowerCamelCase_ , lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ =model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ , lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ =model_class(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ =[*signature.parameters.keys()] lowerCamelCase_ =["""input_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> str: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )-> int: for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =ASTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( ) ->Optional[int]: """simple docstring""" lowerCamelCase_ =hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) lowerCamelCase_ , lowerCamelCase_ =torchaudio.load(_A ) return audio, sampling_rate @require_torch @require_torchaudio class _SCREAMING_SNAKE_CASE ( unittest.TestCase): @cached_property def _snake_case ( self )-> Any: return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ) if is_torchaudio_available() else None ) @slow def _snake_case ( self )-> Dict: lowerCamelCase_ =self.default_feature_extractor lowerCamelCase_ =ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.default_feature_extractor lowerCamelCase_ , lowerCamelCase_ =prepare_audio() lowerCamelCase_ =audio.squeeze().numpy() lowerCamelCase_ =feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowerCamelCase_ =model(**_SCREAMING_SNAKE_CASE ) # verify the logits lowerCamelCase_ =torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
49
import math def __UpperCamelCase ( _A : int = 100 ) ->int: """simple docstring""" lowerCamelCase_ =sum(i * i for i in range(1 , n + 1 ) ) lowerCamelCase_ =int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
49
1
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ ): if not grid or not grid[0]: raise TypeError("""The grid does not contain the appropriate information""" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] UpperCAmelCase__ : Optional[int] = grid[0] for row_n in range(1 , len(A__ ) ): UpperCAmelCase__ : Union[str, Any] = grid[row_n] UpperCAmelCase__ : Any = fill_row(A__ , A__ ) UpperCAmelCase__ : Dict = grid[row_n] return grid[-1][-1] def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): current_row[0] += row_above[0] for cell_n in range(1 , len(A__ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
163
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : Optional[int]=1_3 ,lowercase__ : Any=7 ,lowercase__ : Union[str, Any]=True ,lowercase__ : Optional[int]=True ,lowercase__ : List[str]=True ,lowercase__ : str=True ,lowercase__ : Dict=9_9 ,lowercase__ : Union[str, Any]=3_2 ,lowercase__ : List[str]=5 ,lowercase__ : int=4 ,lowercase__ : Dict=3_7 ,lowercase__ : Union[str, Any]="gelu" ,lowercase__ : str=0.1 ,lowercase__ : List[str]=0.1 ,lowercase__ : Any=5_1_2 ,lowercase__ : Optional[int]=1_6 ,lowercase__ : Optional[int]=2 ,lowercase__ : Optional[int]=0.0_2 ,lowercase__ : Dict=False ,lowercase__ : Optional[int]=True ,lowercase__ : str="None" ,lowercase__ : Optional[int]=3 ,lowercase__ : List[Any]=4 ,lowercase__ : Union[str, Any]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = relative_attention __lowercase = position_biased_input __lowercase = pos_att_type __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return DebertaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,relative_attention=self.relative_attention ,position_biased_input=self.position_biased_input ,pos_att_type=self.pos_att_type ,) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.get_config() __lowercase = 3_0_0 return config def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[Any] ): self.parent.assertListEqual(list(result.loss.size() ) ,[] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Union[str, Any] ): __lowercase = DebertaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ )[0] __lowercase = model(lowercase__ ,token_type_ids=lowercase__ )[0] __lowercase = model(lowercase__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) ,[self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : str ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : Dict ,lowercase__ : int ,lowercase__ : Tuple ,lowercase__ : int ): __lowercase = DebertaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Optional[int] ,lowercase__ : Optional[int] ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = DebertaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertListEqual(list(result.logits.size() ) ,[self.batch_size, self.num_labels] ) self.check_loss_output(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Optional[int] ,lowercase__ : Optional[int] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.num_labels __lowercase = DebertaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Any ,lowercase__ : Any ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : List[str] ): __lowercase = DebertaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Union[str, Any] = ( { 'feature-extraction': DebertaModel, 'fill-mask': DebertaForMaskedLM, 'question-answering': DebertaForQuestionAnswering, 'text-classification': DebertaForSequenceClassification, 'token-classification': DebertaForTokenClassification, 'zero-shot': DebertaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = False def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = DebertaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = DebertaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @require_torch @require_sentencepiece @require_tokenizers class lowercase_ (unittest.TestCase ): """simple docstring""" @unittest.skip(reason='''Model not available yet''' ) def SCREAMING_SNAKE_CASE ( self : str ): pass @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) __lowercase = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] # compare the actual values for a slice. __lowercase = torch.tensor( [[[-0.5_9_8_6, -0.8_0_5_5, -0.8_4_6_2], [1.4_4_8_4, -0.9_3_4_8, -0.8_0_5_9], [0.3_1_2_3, 0.0_0_3_2, -1.4_1_3_1]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) ,F"{output[:, 1:4, 1:4]}" )
104
0
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path A_ = '''src/transformers''' # Matches is_xxx_available() A_ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} A_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] A_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available A_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") A_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] A_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", A_ = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], A_ = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo A_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: A_ = re.compile(r'''^\s*try:''') # Catches a line with else: A_ = re.compile(r'''^\s*else:''') def _lowerCAmelCase ( UpperCAmelCase__ : str ) ->Union[str, Any]: if _re_test_backend.search(UpperCAmelCase__ ) is None: return None A__ : Tuple = [b[0] for b in _re_backend.findall(UpperCAmelCase__ )] backends.sort() return "_and_".join(UpperCAmelCase__ ) def _lowerCAmelCase ( UpperCAmelCase__ : str ) ->str: with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : Union[str, Any] = f.readlines() A__ : List[str] = 0 while line_index < len(UpperCAmelCase__ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCAmelCase__ ): return None # First grab the objects without a specific backend in _import_structure A__ : List[Any] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: A__ : Optional[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCAmelCase__ ): A__ : Optional[int] = _re_one_line_import_struct.search(UpperCAmelCase__ ).groups()[0] A__ : int = re.findall("""\[([^\]]+)\]""", UpperCAmelCase__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue A__ : Optional[Any] = _re_import_struct_key_value.search(UpperCAmelCase__ ) if single_line_import_search is not None: A__ : List[str] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(UpperCAmelCase__ ) > 0] objects.extend(UpperCAmelCase__ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 A__ : str = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. A__ : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A__ : List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A__ : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): A__ : Any = lines[line_index] if _re_import_struct_add_one.search(UpperCAmelCase__ ) is not None: objects.append(_re_import_struct_add_one.search(UpperCAmelCase__ ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCAmelCase__ ) is not None: A__ : Optional[int] = _re_import_struct_add_many.search(UpperCAmelCase__ ).groups()[0].split(""", """ ) A__ : Tuple = [obj[1:-1] for obj in imports if len(UpperCAmelCase__ ) > 0] objects.extend(UpperCAmelCase__ ) elif _re_between_brackets.search(UpperCAmelCase__ ) is not None: A__ : Any = _re_between_brackets.search(UpperCAmelCase__ ).groups()[0].split(""", """ ) A__ : Tuple = [obj[1:-1] for obj in imports if len(UpperCAmelCase__ ) > 0] objects.extend(UpperCAmelCase__ ) elif _re_quote_object.search(UpperCAmelCase__ ) is not None: objects.append(_re_quote_object.search(UpperCAmelCase__ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 1_2 + """\"""" ): objects.append(line[1_3:-3] ) line_index += 1 A__ : str = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend A__ : Union[str, Any] = [] while ( line_index < len(UpperCAmelCase__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): A__ : Optional[Any] = lines[line_index] A__ : List[str] = _re_import.search(UpperCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 A__ : List[Any] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(UpperCAmelCase__ ): # If the line is an if is_backend_available, we grab all objects associated. A__ : Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A__ : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A__ : Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): A__ : int = lines[line_index] A__ : List[Any] = _re_import.search(UpperCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 A__ : Tuple = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->List[str]: def find_duplicates(UpperCAmelCase__ : str ): return [k for k, v in collections.Counter(UpperCAmelCase__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] A__ : int = [] for key in import_dict_objects.keys(): A__ : Tuple = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'Duplicate _import_structure definitions for: {duplicate_imports}' ) A__ : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): A__ : List[Any] = """base imports""" if key == """none""" else f'{key} backend' errors.append(f'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f' {a} in _import_structure but not in TYPE_HINT.' ) return errors def _lowerCAmelCase ( ) ->Optional[Any]: A__ : str = [] for root, _, files in os.walk(UpperCAmelCase__ ): if "__init__.py" in files: A__ : str = os.path.join(UpperCAmelCase__, """__init__.py""" ) A__ : Tuple = parse_init(UpperCAmelCase__ ) if objects is not None: A__ : str = analyze_results(*UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: A__ : Any = f'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append("""\n""".join(UpperCAmelCase__ ) ) if len(UpperCAmelCase__ ) > 0: raise ValueError("""\n\n""".join(UpperCAmelCase__ ) ) def _lowerCAmelCase ( ) ->Optional[int]: A__ : List[Any] = [] for path, directories, files in os.walk(UpperCAmelCase__ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(UpperCAmelCase__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCAmelCase__ ) / folder).glob("""*.py""" ) ) ) == 0: continue A__ : Any = str((Path(UpperCAmelCase__ ) / folder).relative_to(UpperCAmelCase__ ) ) A__ : Optional[int] = short_path.replace(os.path.sep, """.""" ) submodules.append(UpperCAmelCase__ ) for fname in files: if fname == "__init__.py": continue A__ : Union[str, Any] = str((Path(UpperCAmelCase__ ) / fname).relative_to(UpperCAmelCase__ ) ) A__ : Any = short_path.replace(""".py""", """""" ).replace(os.path.sep, """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(UpperCAmelCase__ ) return submodules A_ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _lowerCAmelCase ( ) ->Optional[int]: # This is to make sure the transformers module imported is the one in the repo. A__ : Dict = importlib.util.spec_from_file_location( """transformers""", os.path.join(UpperCAmelCase__, """__init__.py""" ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A__ : Any = spec.loader.load_module() A__ : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(UpperCAmelCase__ ) > 0: A__ : Any = """\n""".join(f'- {module}' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" f'{list_of_modules}\n' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
296
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets A_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' A_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' A_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def _UpperCamelCase ( self : Dict ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _UpperCamelCase ( self : List[str] , snake_case : Dict , snake_case : List[Any] , snake_case : List[str]=None , snake_case : List[Any]="uniform_average" , snake_case : int=True ): '''simple docstring''' A__ : Optional[int] = mean_squared_error( snake_case , snake_case , sample_weight=snake_case , multioutput=snake_case , squared=snake_case ) return {"mse": mse}
296
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCamelCase : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration _lowerCamelCase : List[str] = 5_0000 _lowerCamelCase : Optional[int] = 5000 _lowerCamelCase ,_lowerCamelCase : int = os.path.split(__file__) _lowerCamelCase : str = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" for i in range(A__ ): UpperCamelCase = dataset[i] @get_duration def __lowerCamelCase ( A__ , A__ , A__ ) -> int: """simple docstring""" for i in range(0 , len(A__ ) , A__ ): UpperCamelCase = dataset[i : i + batch_size] @get_duration def __lowerCamelCase ( A__ , A__ , A__ ) -> List[Any]: """simple docstring""" with dataset.formatted_as(type=A__ ): for i in range(A__ ): UpperCamelCase = dataset[i] @get_duration def __lowerCamelCase ( A__ , A__ , A__ , A__ ) -> int: """simple docstring""" with dataset.formatted_as(type=A__ ): for i in range(0 , A__ , A__ ): UpperCamelCase = dataset[i : i + batch_size] def __lowerCamelCase ( ) -> List[str]: """simple docstring""" UpperCamelCase = {'num examples': SPEED_TEST_N_EXAMPLES} UpperCamelCase = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_000}), ] UpperCamelCase = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) UpperCamelCase = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) UpperCamelCase = generate_example_dataset( os.path.join(A__ , 'dataset.arrow' ) , A__ , num_examples=A__ , seq_shapes={'list': (100,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(A__ ) ) UpperCamelCase = func(A__ , **A__ ) print('shuffling dataset' ) UpperCamelCase = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(A__ ) ) UpperCamelCase = func( A__ , **A__ ) with open(A__ , 'wb' ) as f: f.write(json.dumps(A__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
28
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] a_ = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } a_ = F'''{src_lang}-{tgt_lang}''' a_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=UpperCAmelCase , exist_ok=UpperCAmelCase ) a_ = os.path.join(UpperCAmelCase , "README.md" ) print(F'''Generating {path}''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(UpperCAmelCase ) # make sure we are under the root of the project UpperCamelCase_ = Path(__file__).resolve().parent.parent.parent UpperCamelCase_ = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCamelCase_ = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
303
1