code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def A__ ( UpperCAmelCase_ = 5_0 ): _UpperCamelCase : Union[str, Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
83
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A__ : List[str] =logging.get_logger(__name__) A__ : Any ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} A__ : Any ={ '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } A__ : Optional[int] ={ '''junnyu/roformer_chinese_small''': 15_36, '''junnyu/roformer_chinese_base''': 15_36, '''junnyu/roformer_chinese_char_small''': 5_12, '''junnyu/roformer_chinese_char_base''': 5_12, '''junnyu/roformer_small_discriminator''': 1_28, '''junnyu/roformer_small_generator''': 1_28, } A__ : Optional[int] ={ '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class UpperCAmelCase ( snake_case_ ): _lowercase: Optional[Any] = VOCAB_FILES_NAMES _lowercase: Tuple = PRETRAINED_VOCAB_FILES_MAP _lowercase: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase: str = PRETRAINED_INIT_CONFIGURATION _lowercase: List[Any] = RoFormerTokenizer def __init__( self : Dict , __snake_case : str=None , __snake_case : Tuple=None , __snake_case : List[Any]=True , __snake_case : str="[UNK]" , __snake_case : Tuple="[SEP]" , __snake_case : str="[PAD]" , __snake_case : str="[CLS]" , __snake_case : Any="[MASK]" , __snake_case : Dict=True , __snake_case : str=None , **__snake_case : Optional[Any] , ) -> Union[str, Any]: super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , tokenize_chinese_chars=__snake_case , strip_accents=__snake_case , **__snake_case , ) _lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , __snake_case ) != do_lower_case or pre_tok_state.get("""strip_accents""" , __snake_case ) != strip_accents ): _lowerCAmelCase = getattr(__snake_case , pre_tok_state.pop("""type""" ) ) _lowerCAmelCase = do_lower_case _lowerCAmelCase = strip_accents _lowerCAmelCase = pre_tok_class(**__snake_case ) _lowerCAmelCase = do_lower_case def __getstate__( self : int ) -> Optional[int]: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = BertPreTokenizer() return state def __setstate__( self : Tuple , __snake_case : Tuple ) -> List[str]: _lowerCAmelCase = d _lowerCAmelCase = self.__dict__["""_tokenizer"""].get_vocab() _lowerCAmelCase = PreTokenizer.custom(JiebaPreTokenizer(__snake_case ) ) def lowercase__ ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[int]=None ) -> Optional[Any]: _lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : int , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: _lowerCAmelCase = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case ) def lowercase__ ( self : Dict , __snake_case : Dict , __snake_case : int=None , __snake_case : List[Any]=None , __snake_case : List[Any]=False , **__snake_case : Dict , ) -> str: _lowerCAmelCase = BertPreTokenizer() return super().save_pretrained(__snake_case , __snake_case , __snake_case , __snake_case , **__snake_case )
70
0
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict=1_3 , _lowerCAmelCase : int=7 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : int=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[int]=9_9 , _lowerCAmelCase : Union[str, Any]=6_4 , _lowerCAmelCase : Dict=5 , _lowerCAmelCase : List[str]=4 , _lowerCAmelCase : Union[str, Any]=6_4 , _lowerCAmelCase : Any="gelu" , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Optional[int]=5_1_2 , _lowerCAmelCase : List[str]=1_6 , _lowerCAmelCase : int=2 , _lowerCAmelCase : Optional[Any]=0.02 , _lowerCAmelCase : int=3 , _lowerCAmelCase : Optional[Any]=4 , _lowerCAmelCase : Dict=None , ): '''simple docstring''' __lowercase =parent __lowercase =batch_size __lowercase =seq_length __lowercase =is_training __lowercase =use_input_mask __lowercase =use_token_type_ids __lowercase =use_labels __lowercase =vocab_size __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =num_attention_heads __lowercase =intermediate_size __lowercase =hidden_act __lowercase =hidden_dropout_prob __lowercase =attention_probs_dropout_prob __lowercase =max_position_embeddings __lowercase =type_vocab_size __lowercase =type_sequence_label_size __lowercase =initializer_range __lowercase =num_labels __lowercase =num_choices __lowercase =scope def __lowerCamelCase ( self : List[Any]): '''simple docstring''' return MPNetConfig.from_pretrained('microsoft/mpnet-base') def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __lowercase =None if self.use_input_mask: __lowercase =random_attention_mask([self.batch_size, self.seq_length]) __lowercase =None __lowercase =None __lowercase =None if self.use_labels: __lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size) __lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __lowercase =ids_tensor([self.batch_size] , self.num_choices) __lowercase =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self : str): '''simple docstring''' return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : int): '''simple docstring''' __lowercase =MPNetModel(config=_a) model.to(_a) model.eval() __lowercase =model(_a , _a) __lowercase =model(_a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]): '''simple docstring''' __lowercase =MPNetForQuestionAnswering(config=_a) model.to(_a) model.eval() __lowercase =model( _a , attention_mask=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple): '''simple docstring''' __lowercase =self.num_labels __lowercase =MPNetForSequenceClassification(_a) model.to(_a) model.eval() __lowercase =model(_a , attention_mask=_a , labels=_a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __lowerCamelCase ( self : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]): '''simple docstring''' __lowercase =self.num_choices __lowercase =MPNetForMultipleChoice(config=_a) model.to(_a) model.eval() __lowercase =input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowercase =input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowercase =model( _a , attention_mask=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __lowerCamelCase ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]): '''simple docstring''' __lowercase =self.num_labels __lowercase =MPNetForTokenClassification(config=_a) model.to(_a) model.eval() __lowercase =model(_a , attention_mask=_a , labels=_a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =self.prepare_config_and_inputs() (__lowercase) =config_and_inputs __lowercase ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) lowerCAmelCase__ = ( { '''feature-extraction''': MPNetModel, '''fill-mask''': MPNetForMaskedLM, '''question-answering''': MPNetForQuestionAnswering, '''text-classification''': MPNetForSequenceClassification, '''token-classification''': MPNetForTokenClassification, '''zero-shot''': MPNetForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = True def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =MPNetModelTester(self) __lowercase =ConfigTester(self , config_class=_a , hidden_size=3_7) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*_a) def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*_a) def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*_a) def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*_a) def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*_a) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =MPNetModel.from_pretrained('microsoft/mpnet-base') __lowercase =torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) __lowercase =model(_a)[0] __lowercase =torch.Size((1, 1_1, 7_6_8)) self.assertEqual(output.shape , _a) __lowercase =torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]]) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1e-4))
355
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = ["""image_processor""", """tokenizer"""] lowerCAmelCase__ = """BridgeTowerImageProcessor""" lowerCAmelCase__ = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any]): '''simple docstring''' super().__init__(_lowerCAmelCase , _lowerCAmelCase) def __call__( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , _lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : int = 0 , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , **_lowerCAmelCase : Optional[Any] , ): '''simple docstring''' __lowercase =self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) # add pixel_values + pixel_mask __lowercase =self.image_processor( _lowerCAmelCase , return_tensors=_lowerCAmelCase , do_normalize=_lowerCAmelCase , do_center_crop=_lowerCAmelCase , **_lowerCAmelCase) encoding.update(_lowerCAmelCase) return encoding def __lowerCamelCase ( self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : str): '''simple docstring''' return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : Optional[Any] , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : Union[str, Any]): '''simple docstring''' return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase) @property def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =self.tokenizer.model_input_names __lowercase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
48
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case :Dict = logging.get_logger(__name__) __snake_case :Optional[Any] = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class _A ( __UpperCAmelCase ): UpperCamelCase__ : List[str] = '''conditional_detr''' UpperCamelCase__ : List[Any] = ['''past_key_values'''] UpperCamelCase__ : Dict = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : int=3 , __SCREAMING_SNAKE_CASE : Optional[int]=300 , __SCREAMING_SNAKE_CASE : Union[str, Any]=6 , __SCREAMING_SNAKE_CASE : Dict=2_048 , __SCREAMING_SNAKE_CASE : Tuple=8 , __SCREAMING_SNAKE_CASE : Optional[Any]=6 , __SCREAMING_SNAKE_CASE : Optional[int]=2_048 , __SCREAMING_SNAKE_CASE : int=8 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : List[str]="relu" , __SCREAMING_SNAKE_CASE : Tuple=256 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Any=0.0 , __SCREAMING_SNAKE_CASE : List[str]=0.0 , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : Any=1.0 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Optional[int]="sine" , __SCREAMING_SNAKE_CASE : int="resnet50" , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=5 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Any=1 , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Dict=2 , __SCREAMING_SNAKE_CASE : List[Any]=5 , __SCREAMING_SNAKE_CASE : Dict=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.25 , **__SCREAMING_SNAKE_CASE : Dict , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') __a = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = backbone_config.get('''model_type''') __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(__SCREAMING_SNAKE_CASE) __a = use_timm_backbone __a = backbone_config __a = num_channels __a = num_queries __a = d_model __a = encoder_ffn_dim __a = encoder_layers __a = encoder_attention_heads __a = decoder_ffn_dim __a = decoder_layers __a = decoder_attention_heads __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = init_xavier_std __a = encoder_layerdrop __a = decoder_layerdrop __a = encoder_layers __a = auxiliary_loss __a = position_embedding_type __a = backbone __a = use_pretrained_backbone __a = dilation # Hungarian matcher __a = class_cost __a = bbox_cost __a = giou_cost # Loss coefficients __a = mask_loss_coefficient __a = dice_loss_coefficient __a = cls_loss_coefficient __a = bbox_loss_coefficient __a = giou_loss_coefficient __a = focal_alpha super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) @property def _lowerCamelCase ( self : List[str]): '''simple docstring''' return self.encoder_attention_heads @property def _lowerCamelCase ( self : Any): '''simple docstring''' return self.d_model def _lowerCamelCase ( self : int): '''simple docstring''' __a = copy.deepcopy(self.__dict__) if self.backbone_config is not None: __a = self.backbone_config.to_dict() __a = self.__class__.model_type return output class _A ( __UpperCAmelCase ): UpperCamelCase__ : int = version.parse('''1.11''' ) @property def _lowerCamelCase ( self : int): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def _lowerCamelCase ( self : str): '''simple docstring''' return 1E-5 @property def _lowerCamelCase ( self : int): '''simple docstring''' return 12
49
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __snake_case ( _UpperCAmelCase = "isbn/0140328726" ): __a = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: __a = f'{olid} is not a valid Open Library olid' raise ValueError(_UpperCAmelCase ) return requests.get(f'https://openlibrary.org/{new_olid}.json' ).json() def __snake_case ( _UpperCAmelCase ): __a = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } __a = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __a = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] __a = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a = ''', '''.join(_UpperCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __snake_case :List[Any] = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.') continue print(f'\nSearching Open Library for ISBN: {isbn}...\n') try: __snake_case :Optional[Any] = summarize_book(get_openlibrary_data(f'isbn/{isbn}')) print('''\n'''.join(f'{key}: {value}' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'Sorry, there are no results for ISBN: {isbn}.')
49
1
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=9_9 , lowerCamelCase__=1_3 , lowerCamelCase__=1_6 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=2 , lowerCamelCase__=3_2 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=3_0 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , lowerCamelCase__=None , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = decoder_seq_length # For common tests _lowerCamelCase = self.decoder_seq_length _lowerCamelCase = is_training _lowerCamelCase = use_attention_mask _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = d_model _lowerCamelCase = d_model _lowerCamelCase = decoder_layers _lowerCamelCase = decoder_layers _lowerCamelCase = decoder_ffn_dim _lowerCamelCase = decoder_attention_heads _lowerCamelCase = decoder_attention_heads _lowerCamelCase = eos_token_id _lowerCamelCase = bos_token_id _lowerCamelCase = pad_token_id _lowerCamelCase = decoder_start_token_id _lowerCamelCase = use_cache _lowerCamelCase = max_position_embeddings _lowerCamelCase = None _lowerCamelCase = decoder_seq_length _lowerCamelCase = 2 _lowerCamelCase = 1 def snake_case__ ( self ): _lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCamelCase = None if self.use_attention_mask: _lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCamelCase = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): _lowerCamelCase = True _lowerCamelCase = TrOCRDecoder(config=lowerCamelCase__ ).to(lowerCamelCase__ ).eval() _lowerCamelCase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _lowerCamelCase = model(lowerCamelCase__ , use_cache=lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ , use_cache=lowerCamelCase__ ) self.parent.assertTrue(len(lowerCamelCase__ ) == len(lowerCamelCase__ ) ) self.parent.assertTrue(len(lowerCamelCase__ ) == len(lowerCamelCase__ ) + 1 ) _lowerCamelCase = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids _lowerCamelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCamelCase = model(lowerCamelCase__ )['last_hidden_state'] _lowerCamelCase = model(lowerCamelCase__ , past_key_values=lowerCamelCase__ )['last_hidden_state'] # select random slice _lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCamelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) def snake_case__ ( self ): _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase = config_and_inputs _lowerCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class lowerCamelCase_( A__, A__, A__, unittest.TestCase ): '''simple docstring''' lowercase__ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowercase__ : Any = (TrOCRForCausalLM,) if is_torch_available() else () lowercase__ : Optional[int] = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} lowercase__ : Any = True lowercase__ : Any = False def snake_case__ ( self ): _lowerCamelCase = TrOCRStandaloneDecoderModelTester(self , is_training=lowerCamelCase__ ) _lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ ) def snake_case__ ( self ): pass def snake_case__ ( self ): pass def snake_case__ ( self ): pass def snake_case__ ( self ): self.config_tester.run_common_tests() def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*lowerCamelCase__ ) def snake_case__ ( self ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def snake_case__ ( self ): pass
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
73
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @dataclass class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Any = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : List[str] ,**lowerCamelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE = deprecated_arg[3:] setattr(self ,lowerCamelCase__ ,not kwargs.pop(lowerCamelCase__ ) ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) SCREAMING_SNAKE_CASE = kwargs.pop("""torchscript""" ,self.torchscript ) SCREAMING_SNAKE_CASE = kwargs.pop("""torch_xla_tpu_print_metrics""" ,self.torch_xla_tpu_print_metrics ) SCREAMING_SNAKE_CASE = kwargs.pop("""fp16_opt_level""" ,self.fpaa_opt_level ) super().__init__(**lowerCamelCase__ ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Trace the models using torchscript"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) __snake_case : str = field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple["torch.device", int]: '''simple docstring''' requires_backends(self ,["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: SCREAMING_SNAKE_CASE = torch.device("""cpu""" ) SCREAMING_SNAKE_CASE = 0 elif is_torch_tpu_available(): SCREAMING_SNAKE_CASE = xm.xla_device() SCREAMING_SNAKE_CASE = 0 else: SCREAMING_SNAKE_CASE = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) SCREAMING_SNAKE_CASE = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: '''simple docstring''' requires_backends(self ,["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> "torch.device": '''simple docstring''' requires_backends(self ,["""torch"""] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[str]: '''simple docstring''' requires_backends(self ,["""torch"""] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: '''simple docstring''' return self.n_gpu > 0
296
from collections import defaultdict from math import gcd def __lowercase ( _SCREAMING_SNAKE_CASE = 1_50_00_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = defaultdict(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , _SCREAMING_SNAKE_CASE , 2 ): if gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) > 1: continue SCREAMING_SNAKE_CASE = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_SCREAMING_SNAKE_CASE , limit + 1 , _SCREAMING_SNAKE_CASE ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'''{solution() = }''')
296
1
def A__ ( lowerCamelCase ) -> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
223
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList lowerCamelCase_ : str = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : Optional[int] , snake_case_ : List[str] , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any]=None , snake_case_ : str=1 ): UpperCamelCase_: List[str] = tokenizer UpperCamelCase_: str = dataset UpperCamelCase_: List[str] = len(snake_case_ ) if n_tasks is None else n_tasks UpperCamelCase_: str = n_copies def __iter__( self : Tuple ): UpperCamelCase_: Optional[int] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["""prompt"""].strip() ) UpperCamelCase_: List[str] = self.tokenizer(snake_case_ , padding=snake_case_ , return_tensors="""pt""" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : Any , snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : int ): UpperCamelCase_: Union[str, Any] = start_length UpperCamelCase_: Dict = eof_strings UpperCamelCase_: List[str] = tokenizer def __call__( self : Tuple , snake_case_ : List[str] , snake_case_ : Optional[Any] , **snake_case_ : int ): UpperCamelCase_: Union[str, Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) UpperCamelCase_: Dict = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(snake_case_ ) def A__ ( lowerCamelCase ) -> Optional[int]: UpperCamelCase_: str = re.split("""(%s)""" % """|""".join(lowerCamelCase ) , lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=20 , **lowerCamelCase ) -> int: UpperCamelCase_: str = defaultdict(lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(lowerCamelCase ) ): with torch.no_grad(): UpperCamelCase_: Optional[int] = batch["""ids"""].shape[-1] UpperCamelCase_: Dict = accelerator.unwrap_model(lowerCamelCase ).generate( input_ids=batch["""ids"""][:, : batch["""input_len"""]] , num_return_sequences=lowerCamelCase , **lowerCamelCase ) # each task is generated batch_size times UpperCamelCase_: Optional[int] = batch["""task_id"""].repeat(lowerCamelCase ) UpperCamelCase_: int = accelerator.pad_across_processes( lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) UpperCamelCase_, UpperCamelCase_: Tuple = accelerator.gather((generated_tokens, generated_tasks) ) UpperCamelCase_: Tuple = generated_tokens.cpu().numpy() UpperCamelCase_: Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(lowerCamelCase , lowerCamelCase ): gen_token_dict[task].append(lowerCamelCase ) UpperCamelCase_: Dict = [[] for _ in range(lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: UpperCamelCase_: Any = tokenizer.decode(lowerCamelCase , skip_special_tokens=lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase ) code_gens[task].append(remove_last_block(lowerCamelCase ) ) return code_gens def A__ ( ) -> Union[str, Any]: # Setup configuration UpperCamelCase_: Optional[Any] = HfArgumentParser(lowerCamelCase ) UpperCamelCase_: str = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric UpperCamelCase_: List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing UpperCamelCase_: Union[str, Any] = """false""" if args.num_workers is None: UpperCamelCase_: Dict = multiprocessing.cpu_count() # Use dataset load to feed to accelerate UpperCamelCase_: List[Any] = Accelerator() set_seed(args.seed , device_specific=lowerCamelCase ) # Load model and tokenizer UpperCamelCase_: Any = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCamelCase_: Union[str, Any] = tokenizer.eos_token UpperCamelCase_: Optional[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings UpperCamelCase_: Union[str, Any] = { """do_sample""": args.do_sample, """temperature""": args.temperature, """max_new_tokens""": args.max_new_tokens, """top_p""": args.top_p, """top_k""": args.top_k, """stopping_criteria""": StoppingCriteriaList([EndOfFunctionCriteria(0 , lowerCamelCase , lowerCamelCase )] ), } # Load evaluation dataset and metric UpperCamelCase_: Any = load_dataset("""openai_humaneval""" ) UpperCamelCase_: Union[str, Any] = load_metric("""code_eval""" ) UpperCamelCase_: Union[str, Any] = args.num_tasks if args.num_tasks is not None else len(human_eval["""test"""] ) UpperCamelCase_: List[Any] = args.n_samples // args.batch_size UpperCamelCase_: Any = TokenizedDataset(lowerCamelCase , human_eval["""test"""] , n_copies=lowerCamelCase , n_tasks=lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences UpperCamelCase_: Optional[int] = DataLoader(lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: UpperCamelCase_: List[str] = code_eval_metric.compute(references=[""""""] , predictions=[[""""""]] ) except ValueError as exception: print( """Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`""" """ flag to enable code evaluation.""" ) raise exception UpperCamelCase_, UpperCamelCase_: Dict = accelerator.prepare(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = complete_code( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , n_tasks=lowerCamelCase , batch_size=args.batch_size , **lowerCamelCase , ) if accelerator.is_main_process: UpperCamelCase_: List[Any] = [] for task in tqdm(range(lowerCamelCase ) ): UpperCamelCase_: Optional[Any] = human_eval["""test"""][task]["""test"""] UpperCamelCase_: Optional[int] = F'''check({human_eval["test"][task]["entry_point"]})''' references.append("""\n""" + test_func + """\n""" + entry_point ) # Evaluate completions with "code_eval" metric UpperCamelCase_, UpperCamelCase_: str = code_eval_metric.compute( references=lowerCamelCase , predictions=lowerCamelCase , num_workers=args.num_workers ) print(F'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , """w""" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
223
1
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = (IPNDMScheduler,) lowerCAmelCase_ = (('''num_inference_steps''', 50),) def UpperCAmelCase__ ( self : List[Any] , **_A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = {'''num_train_timesteps''': 1000} config.update(**_A ) return config def UpperCAmelCase__ ( self : Tuple , _A : Dict=0 , **_A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = dict(self.forward_default_kwargs ) __SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop('''num_inference_steps''' , _A ) __SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample __SCREAMING_SNAKE_CASE : str = 0.1 * sample __SCREAMING_SNAKE_CASE : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __SCREAMING_SNAKE_CASE : int = self.get_scheduler_config(**_A ) __SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals __SCREAMING_SNAKE_CASE : Optional[int] = dummy_past_residuals[:] if time_step is None: __SCREAMING_SNAKE_CASE : Optional[int] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) __SCREAMING_SNAKE_CASE : Tuple = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals __SCREAMING_SNAKE_CASE : int = dummy_past_residuals[:] __SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_A , _A , _A , **_A ).prev_sample __SCREAMING_SNAKE_CASE : List[str] = new_scheduler.step(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __SCREAMING_SNAKE_CASE : Any = scheduler.step(_A , _A , _A , **_A ).prev_sample __SCREAMING_SNAKE_CASE : List[Any] = new_scheduler.step(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : int ): """simple docstring""" pass def UpperCAmelCase__ ( self : Optional[int] , _A : Tuple=0 , **_A : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = dict(self.forward_default_kwargs ) __SCREAMING_SNAKE_CASE : str = kwargs.pop('''num_inference_steps''' , _A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample __SCREAMING_SNAKE_CASE : Optional[Any] = 0.1 * sample __SCREAMING_SNAKE_CASE : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __SCREAMING_SNAKE_CASE : int = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) __SCREAMING_SNAKE_CASE : List[str] = dummy_past_residuals[:] if time_step is None: __SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) __SCREAMING_SNAKE_CASE : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) __SCREAMING_SNAKE_CASE : int = dummy_past_residuals[:] __SCREAMING_SNAKE_CASE : Tuple = scheduler.step(_A , _A , _A , **_A ).prev_sample __SCREAMING_SNAKE_CASE : int = new_scheduler.step(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __SCREAMING_SNAKE_CASE : Tuple = scheduler.step(_A , _A , _A , **_A ).prev_sample __SCREAMING_SNAKE_CASE : Union[str, Any] = new_scheduler.step(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : Tuple , **_A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : int = self.get_scheduler_config(**_A ) __SCREAMING_SNAKE_CASE : str = scheduler_class(**_A ) __SCREAMING_SNAKE_CASE : Any = 10 __SCREAMING_SNAKE_CASE : Dict = self.dummy_model() __SCREAMING_SNAKE_CASE : Tuple = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): __SCREAMING_SNAKE_CASE : Optional[int] = model(_A , _A ) __SCREAMING_SNAKE_CASE : Any = scheduler.step(_A , _A , _A ).prev_sample for i, t in enumerate(scheduler.timesteps ): __SCREAMING_SNAKE_CASE : Tuple = model(_A , _A ) __SCREAMING_SNAKE_CASE : Dict = scheduler.step(_A , _A , _A ).prev_sample return sample def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = dict(self.forward_default_kwargs ) __SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''num_inference_steps''' , _A ) for scheduler_class in self.scheduler_classes: __SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : Dict = scheduler_class(**_A ) __SCREAMING_SNAKE_CASE : Any = self.dummy_sample __SCREAMING_SNAKE_CASE : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A , '''set_timesteps''' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A , '''set_timesteps''' ): __SCREAMING_SNAKE_CASE : Optional[int] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __SCREAMING_SNAKE_CASE : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __SCREAMING_SNAKE_CASE : Union[str, Any] = dummy_past_residuals[:] __SCREAMING_SNAKE_CASE : int = scheduler.timesteps[5] __SCREAMING_SNAKE_CASE : str = scheduler.timesteps[6] __SCREAMING_SNAKE_CASE : List[str] = scheduler.step(_A , _A , _A , **_A ).prev_sample __SCREAMING_SNAKE_CASE : List[str] = scheduler.step(_A , _A , _A , **_A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __SCREAMING_SNAKE_CASE : List[Any] = scheduler.step(_A , _A , _A , **_A ).prev_sample __SCREAMING_SNAKE_CASE : Any = scheduler.step(_A , _A , _A , **_A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_A , time_step=_A ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_A , time_step=_A ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.full_loop() __SCREAMING_SNAKE_CASE : List[Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 254_0529 ) < 10
303
def a__ ( snake_case = 1_000_000 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 __SCREAMING_SNAKE_CASE : Optional[Any] = 1 __SCREAMING_SNAKE_CASE : Optional[int] = {1: 1} for inputa in range(2 , snake_case ): __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : Optional[Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __SCREAMING_SNAKE_CASE : List[Any] = (3 * number) + 1 counter += 1 if inputa not in counters: __SCREAMING_SNAKE_CASE : str = counter if counter > pre_counter: __SCREAMING_SNAKE_CASE : Optional[int] = inputa __SCREAMING_SNAKE_CASE : str = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
303
1
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowercase__ ( unittest.TestCase): def __init__( self : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : str=2 , UpperCamelCase__ : Optional[int]=56 , UpperCamelCase__ : str=True , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Optional[int]=99 , UpperCamelCase__ : Any=32 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Optional[int]=7 , UpperCamelCase__ : List[Any]="gelu_new" , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Union[str, Any]=512 , UpperCamelCase__ : int=16 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : List[str]=4 , UpperCamelCase__ : Any="block_sparse" , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Optional[Any]=3 , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : str = seq_length SCREAMING_SNAKE_CASE : Tuple = is_training SCREAMING_SNAKE_CASE : List[str] = use_attention_mask SCREAMING_SNAKE_CASE : List[Any] = use_token_type_ids SCREAMING_SNAKE_CASE : int = use_labels SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : List[Any] = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = rescale_embeddings SCREAMING_SNAKE_CASE : List[str] = attention_type SCREAMING_SNAKE_CASE : Optional[int] = use_bias SCREAMING_SNAKE_CASE : Dict = block_size SCREAMING_SNAKE_CASE : str = num_random_blocks def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Any = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = config_and_inputs SCREAMING_SNAKE_CASE : List[str] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class lowercase__ ( UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCamelCase_ = False UpperCamelCase_ = False def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __A ( self : Union[str, Any] ): '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __A ( self : Any ): '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __A ( self : Any ): '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __A ( self : Any ): '''simple docstring''' super().test_hidden_states_output() @slow def __A ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = model_class_name.from_pretrained('''google/bigbird-roberta-base''' ) self.assertIsNotNone(UpperCamelCase__ ) def __A ( self : Union[str, Any] ): '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE : str = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = model_class(UpperCamelCase__ ) @jax.jit def model_jitted(UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict=None , **UpperCamelCase__ : Union[str, Any] ): return model(input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ , **UpperCamelCase__ ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = model_jitted(**UpperCamelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE : List[Any] = model_jitted(**UpperCamelCase__ ).to_tuple() self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) for jitted_output, output in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def __A ( self : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict=1E-5 , UpperCamelCase__ : Optional[Any]="outputs" , UpperCamelCase__ : Union[str, Any]=None ): '''simple docstring''' if name.startswith('''outputs.attentions''' ): return else: super().check_pt_flax_outputs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
258
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = """encodec""" def __init__( self : int , UpperCamelCase__ : Optional[Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , UpperCamelCase__ : List[str]=2_4000 , UpperCamelCase__ : str=1 , UpperCamelCase__ : str=False , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Union[str, Any]=128 , UpperCamelCase__ : int=32 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Any=[8, 5, 4, 2] , UpperCamelCase__ : Optional[Any]="weight_norm" , UpperCamelCase__ : Optional[Any]=7 , UpperCamelCase__ : int=7 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]="reflect" , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Tuple=1.0 , UpperCamelCase__ : Dict=1024 , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Optional[Any]=True , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = target_bandwidths SCREAMING_SNAKE_CASE : int = sampling_rate SCREAMING_SNAKE_CASE : List[Any] = audio_channels SCREAMING_SNAKE_CASE : List[str] = normalize SCREAMING_SNAKE_CASE : Any = chunk_length_s SCREAMING_SNAKE_CASE : Optional[int] = overlap SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : List[Any] = num_filters SCREAMING_SNAKE_CASE : int = num_residual_layers SCREAMING_SNAKE_CASE : List[Any] = upsampling_ratios SCREAMING_SNAKE_CASE : Dict = norm_type SCREAMING_SNAKE_CASE : List[Any] = kernel_size SCREAMING_SNAKE_CASE : int = last_kernel_size SCREAMING_SNAKE_CASE : str = residual_kernel_size SCREAMING_SNAKE_CASE : int = dilation_growth_rate SCREAMING_SNAKE_CASE : List[Any] = use_causal_conv SCREAMING_SNAKE_CASE : List[Any] = pad_mode SCREAMING_SNAKE_CASE : str = compress SCREAMING_SNAKE_CASE : Dict = num_lstm_layers SCREAMING_SNAKE_CASE : List[str] = trim_right_ratio SCREAMING_SNAKE_CASE : Optional[int] = codebook_size SCREAMING_SNAKE_CASE : Optional[Any] = codebook_dim if codebook_dim is not None else hidden_size SCREAMING_SNAKE_CASE : List[str] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**UpperCamelCase__ ) @property def __A ( self : List[str] ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __A ( self : Dict ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __A ( self : Optional[Any] ): '''simple docstring''' return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
258
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : str = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class A ( __snake_case ): __magic_name__ = '''bert''' def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="absolute" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Optional[int] = vocab_size A : Optional[Any] = hidden_size A : List[Any] = num_hidden_layers A : List[str] = num_attention_heads A : Dict = hidden_act A : Optional[Any] = intermediate_size A : List[Any] = hidden_dropout_prob A : List[Any] = attention_probs_dropout_prob A : Optional[Any] = max_position_embeddings A : List[str] = type_vocab_size A : Dict = initializer_range A : str = layer_norm_eps A : int = position_embedding_type A : Dict = use_cache A : str = classifier_dropout class A ( __snake_case ): @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": A : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A : Optional[int] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
3
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) lowerCamelCase : str = (boundary[1] - boundary[0]) / steps lowerCamelCase : List[str] = boundary[0] lowerCamelCase : Union[str, Any] = boundary[1] lowerCamelCase : int = make_points(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[str] = 0.0 y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) for i in x_i: # print(i) y += h * f(_SCREAMING_SNAKE_CASE ) y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) return y def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: lowerCamelCase : int = a + h while x < (b - h): yield x lowerCamelCase : List[str] = x + h def A ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: # enter your function here lowerCamelCase : str = (x - 0) * (x - 0) return y def A ( ) -> int: lowerCamelCase : int = 0.0 # Lower bound of integration lowerCamelCase : int = 1.0 # Upper bound of integration lowerCamelCase : Dict = 10.0 # define number of steps or resolution lowerCamelCase : int = [a, b] # define boundary of integration lowerCamelCase : str = method_a(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
48
0
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class a__ : A__ : Any = LEDConfig A__ : Optional[Any] = {} A__ : Union[str, Any] = 'gelu' def __init__( self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=4 , ) -> Optional[Any]: __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = eos_token_id __a = pad_token_id __a = bos_token_id __a = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __a = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __a = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: __a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __a = tf.concat([input_ids, eos_tensor] , axis=1 ) __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __a = prepare_led_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __a = tf.concat( [tf.zeros_like(UpperCAmelCase )[:, :-1], tf.ones_like(UpperCAmelCase )[:, -1:]] , axis=-1 , ) __a = global_attention_mask return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase ) -> Tuple: __a = TFLEDModel(config=UpperCAmelCase ).get_decoder() __a = inputs_dict['input_ids'] __a = input_ids[:1, :] __a = inputs_dict['attention_mask'][:1, :] __a = 1 # first forward pass __a = model(UpperCAmelCase , attention_mask=UpperCAmelCase , use_cache=UpperCAmelCase ) __a , __a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 3) , config.vocab_size ) __a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __a = tf.concat([input_ids, next_tokens] , axis=-1 ) __a = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __a = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] __a = model(UpperCAmelCase , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __a = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __a = output_from_no_past[:, -3:, random_slice_idx] __a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , rtol=1e-3 ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ): if attention_mask is None: __a = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __a = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __a = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class a__ ( __snake_case , __snake_case , unittest.TestCase ): A__ : Dict = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () A__ : Tuple = (TFLEDForConditionalGeneration,) if is_tf_available() else () A__ : List[str] = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) A__ : List[str] = True A__ : Union[str, Any] = False A__ : Any = False A__ : Any = False def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = TFLEDModelTester(self ) __a = ConfigTester(self , config_class=UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> int: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> int: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = tf.zeros_like(inputs_dict['attention_mask'] ) __a = 2 __a = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) __a = True __a = self.model_tester.seq_length __a = self.model_tester.encoder_seq_length def check_decoder_attentions_output(UpperCAmelCase ): __a = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(UpperCAmelCase ): __a = [t.numpy() for t in outputs.encoder_attentions] __a = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __a = True __a = False __a = False __a = model_class(UpperCAmelCase ) __a = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) __a = len(UpperCAmelCase ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) if self.is_encoder_decoder: __a = model_class(UpperCAmelCase ) __a = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_decoder_attentions_output(UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __a = True __a = model_class(UpperCAmelCase ) __a = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) # Check attention is always last and order is fine __a = True __a = True __a = model_class(UpperCAmelCase ) __a = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # TODO: Head-masking not yet implement pass def lowerCAmelCase( __lowerCamelCase ): return tf.constant(__lowerCamelCase , dtype=tf.intaa ) lowerCamelCase_ : Union[str, Any] = 1E-4 @slow @require_tf class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here __a = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __a = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __a = prepare_led_inputs_dict(model.config , UpperCAmelCase , UpperCAmelCase ) __a = model(**UpperCAmelCase )[0] __a = (1, 1_0_2_4, 7_6_8) self.assertEqual(output.shape , UpperCAmelCase ) # change to expected output here __a = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-3 ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here __a = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __a = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __a = prepare_led_inputs_dict(model.config , UpperCAmelCase , UpperCAmelCase ) __a = model(**UpperCAmelCase )[0] __a = (1, 1_0_2_4, model.config.vocab_size) self.assertEqual(output.shape , UpperCAmelCase ) # change to expected output here __a = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-3 , rtol=1e-3 )
197
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class a__ ( __snake_case ): A__ : Any = 'Wav2Vec2FeatureExtractor' A__ : str = 'AutoTokenizer' def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: super().__init__(UpperCAmelCase , UpperCAmelCase ) __a = self.feature_extractor __a = False @classmethod def __SCREAMING_SNAKE_CASE ( cls , UpperCAmelCase , **UpperCAmelCase ) -> Dict: try: return super().from_pretrained(UpperCAmelCase , **UpperCAmelCase ) except OSError: warnings.warn( f'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' , UpperCAmelCase , ) __a = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) __a = WavaVecaCTCTokenizer.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) return cls(feature_extractor=UpperCAmelCase , tokenizer=UpperCAmelCase ) def __call__( self , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCAmelCase , **UpperCAmelCase ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) __a = kwargs.pop('raw_speech' ) else: __a = kwargs.pop('audio' , UpperCAmelCase ) __a = kwargs.pop('sampling_rate' , UpperCAmelCase ) __a = kwargs.pop('text' , UpperCAmelCase ) if len(UpperCAmelCase ) > 0: __a = args[0] __a = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: __a = self.feature_extractor(UpperCAmelCase , *UpperCAmelCase , sampling_rate=UpperCAmelCase , **UpperCAmelCase ) if text is not None: __a = self.tokenizer(UpperCAmelCase , **UpperCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: __a = encodings['input_ids'] return inputs def __SCREAMING_SNAKE_CASE ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*UpperCAmelCase , **UpperCAmelCase ) __a = kwargs.pop('input_features' , UpperCAmelCase ) __a = kwargs.pop('labels' , UpperCAmelCase ) if len(UpperCAmelCase ) > 0: __a = args[0] __a = args[1:] if input_features is not None: __a = self.feature_extractor.pad(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) if labels is not None: __a = self.tokenizer.pad(UpperCAmelCase , **UpperCAmelCase ) if labels is None: return input_features elif input_features is None: return labels else: __a = labels['input_ids'] return input_features def __SCREAMING_SNAKE_CASE ( self , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @contextmanager def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) __a = True __a = self.tokenizer yield __a = self.feature_extractor __a = False
197
1
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Optional[Any]=10 , UpperCAmelCase_ : str=[10, 20, 30, 40] , UpperCAmelCase_ : Union[str, Any]=[1, 1, 2, 1] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[str]="relu" , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : Tuple=None , ) ->Tuple: '''simple docstring''' lowerCamelCase__: Any =parent lowerCamelCase__: List[Any] =batch_size lowerCamelCase__: int =image_size lowerCamelCase__: Optional[Any] =num_channels lowerCamelCase__: List[Any] =embeddings_size lowerCamelCase__: Any =hidden_sizes lowerCamelCase__: List[Any] =depths lowerCamelCase__: List[Any] =is_training lowerCamelCase__: Tuple =use_labels lowerCamelCase__: Any =hidden_act lowerCamelCase__: int =num_labels lowerCamelCase__: List[str] =scope lowerCamelCase__: str =len(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Tuple =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCamelCase__: Union[str, Any] =None if self.use_labels: lowerCamelCase__: Dict =ids_tensor([self.batch_size] , self.num_labels) lowerCamelCase__: Tuple =self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict) ->List[str]: '''simple docstring''' lowerCamelCase__: int =TFRegNetModel(config=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =model(UpperCAmelCase_ , training=UpperCAmelCase_) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.num_labels lowerCamelCase__: List[str] =TFRegNetForImageClassification(UpperCAmelCase_) lowerCamelCase__: List[str] =model(UpperCAmelCase_ , labels=UpperCAmelCase_ , training=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[Any] =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =config_and_inputs lowerCamelCase__: int ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowercase_ = ( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' lowerCamelCase__: List[Any] =TFRegNetModelTester(self) lowerCamelCase__: Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' return @unittest.skip(reason="RegNet does not use inputs_embeds") def SCREAMING_SNAKE_CASE_ (self : Tuple) ->int: '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def SCREAMING_SNAKE_CASE_ (self : Dict) ->int: '''simple docstring''' super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings") def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: str =model_class(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__: Dict =[*signature.parameters.keys()] lowerCamelCase__: Optional[int] =["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]): lowerCamelCase__: List[str] =model_class(UpperCAmelCase_) lowerCamelCase__: List[str] =model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) , training=UpperCAmelCase_) lowerCamelCase__: List[Any] =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__: Optional[int] =self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase_) , expected_num_stages + 1) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowerCamelCase__ , lowerCamelCase__: Tuple =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__: int =["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase__: Any =layer_type lowerCamelCase__: str =True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__: str =True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: int =self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int]={}): lowerCamelCase__: int =model(UpperCAmelCase_ , return_dict=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , return_dict=UpperCAmelCase_ , **UpperCAmelCase_).to_tuple() def recursive_check(UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any]): if isinstance(UpperCAmelCase_ , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase_ , UpperCAmelCase_): recursive_check(UpperCAmelCase_ , UpperCAmelCase_) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(UpperCAmelCase_ , UpperCAmelCase_)) , msg=( "Tuple and dict output are not equal. Difference:" F""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}""" ) , ) recursive_check(UpperCAmelCase_ , UpperCAmelCase_) for model_class in self.all_model_classes: lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_) lowerCamelCase__: List[Any] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: int =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: List[Any] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) lowerCamelCase__: int =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , {"output_hidden_states": True}) lowerCamelCase__: Union[str, Any] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , {"output_hidden_states": True}) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->str: '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: Optional[Any] =TFRegNetModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" lowerCamelCase__: Union[str, Any] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE_ (self : str) ->List[Any]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) lowerCamelCase__: Union[str, Any] =self.default_image_processor lowerCamelCase__: Union[str, Any] =prepare_img() lowerCamelCase__: Any =image_processor(images=UpperCAmelCase_ , return_tensors="tf") # forward pass lowerCamelCase__: Tuple =model(**UpperCAmelCase_ , training=UpperCAmelCase_) # verify the logits lowerCamelCase__: List[str] =tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) lowerCamelCase__: int =tf.constant([-0.4180, -1.5051, -3.4836]) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4)
10
from __future__ import annotations from scipy.special import comb # type: ignore class A_ : def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : list[tuple[float, float]]): __lowerCamelCase : Union[str, Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowerCamelCase : int = len(SCREAMING_SNAKE_CASE__) - 1 def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : float): assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points)): # basis function for each i output_values.append( comb(self.degree ,SCREAMING_SNAKE_CASE__) * ((1 - t) ** (self.degree - i)) * (t**i)) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(SCREAMING_SNAKE_CASE__) ,5) == 1 return output_values def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : float): assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowerCamelCase : Tuple = self.basis_function(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = 0.0 __lowerCamelCase : Optional[Any] = 0.0 for i in range(len(self.list_of_points)): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : float = 0.01): from matplotlib import pyplot as plt # type: ignore __lowerCamelCase : list[float] = [] # x coordinates of points to plot __lowerCamelCase : list[float] = [] # y coordinates of points to plot __lowerCamelCase : Any = 0.0 while t <= 1: __lowerCamelCase : List[Any] = self.bezier_curve_function(SCREAMING_SNAKE_CASE__) to_plot_x.append(value[0]) to_plot_y.append(value[1]) t += step_size __lowerCamelCase : Optional[Any] = [i[0] for i in self.list_of_points] __lowerCamelCase : List[str] = [i[1] for i in self.list_of_points] plt.plot( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,color='blue' ,label='Curve of Degree ' + str(self.degree) ,) plt.scatter(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,color='red' ,label='Control Points') plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
73
0
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer snake_case__ : List[str] = '''bart''' snake_case__ : Optional[Any] = True @st.cache(allow_output_mutation=lowerCamelCase_ ) def _lowerCamelCase ( ): """simple docstring""" if LOAD_DENSE_INDEX: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) UpperCAmelCase_ : Union[str, Any] = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) UpperCAmelCase_ : int = qar_model.eval() else: UpperCAmelCase_ : List[Any] = (None, None) if MODEL_TYPE == "bart": UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) UpperCAmelCase_ : Any = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) UpperCAmelCase_ : Union[str, Any] = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) UpperCAmelCase_ : Union[str, Any] = sas_model.eval() else: UpperCAmelCase_ : Optional[Any] = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowerCamelCase_ ) def _lowerCamelCase ( ): """simple docstring""" if LOAD_DENSE_INDEX: UpperCAmelCase_ : Optional[Any] = faiss.StandardGpuResources() UpperCAmelCase_ : Tuple = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] UpperCAmelCase_ : Optional[Any] = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , ) UpperCAmelCase_ : str = faiss.IndexFlatIP(128 ) UpperCAmelCase_ : Union[str, Any] = faiss.index_cpu_to_gpu(lowerCamelCase_ , 1 , lowerCamelCase_ ) wikiaab_gpu_index_flat.add(lowerCamelCase_ ) # TODO fix for larger GPU else: UpperCAmelCase_ : str = (None, None) UpperCAmelCase_ : str = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowerCamelCase_ ) def _lowerCamelCase ( ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = datasets.load_dataset('eli5' , name='LFQA_reddit' ) UpperCAmelCase_ : List[str] = elia['train_eli5'] UpperCAmelCase_ : Any = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128) ) UpperCAmelCase_ : Tuple = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(lowerCamelCase_ ) return (elia_train, eli5_train_q_index) snake_case__ : List[str] = load_indexes() snake_case__ : Optional[int] = load_models() snake_case__ : int = load_train_data() def _lowerCamelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Dict=10 ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = embed_questions_for_retrieval([question] , lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = eli5_train_q_index.search(lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase_ : Tuple = [elia_train[int(lowerCamelCase_ )] for i in I[0]] return nn_examples def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any]="wiki40b" , lowerCamelCase_ : int="dense" , lowerCamelCase_ : List[Any]=10 ): """simple docstring""" if source == "none": UpperCAmelCase_ : Optional[int] = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": UpperCAmelCase_ : Any = query_qa_dense_index( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: UpperCAmelCase_ : Dict = query_es_index( lowerCamelCase_ , lowerCamelCase_ , index_name='english_wiki40b_snippets_100w' , n_results=lowerCamelCase_ , ) UpperCAmelCase_ : Tuple = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] UpperCAmelCase_ : Optional[int] = 'question: {} context: {}'.format(lowerCamelCase_ , lowerCamelCase_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowerCamelCase_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowerCamelCase_ : None), } ) def _lowerCamelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str=64 , lowerCamelCase_ : List[str]=256 , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : int=2 , lowerCamelCase_ : List[Any]=0.95 , lowerCamelCase_ : Union[str, Any]=0.8 ): """simple docstring""" with torch.no_grad(): UpperCAmelCase_ : List[Any] = qa_sas_generate( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , num_answers=1 , num_beams=lowerCamelCase_ , min_len=lowerCamelCase_ , max_len=lowerCamelCase_ , do_sample=lowerCamelCase_ , temp=lowerCamelCase_ , top_p=lowerCamelCase_ , top_k=lowerCamelCase_ , max_input_length=1024 , device='cuda:0' , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar snake_case__ : Tuple = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' snake_case__ : List[str] = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia snake_case__ : Union[str, Any] = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) snake_case__ : Dict = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] snake_case__ : List[Any] = st.sidebar.checkbox('''Demo options''') if demo_options: snake_case__ : Any = st.sidebar.selectbox( '''''', action_list, index=3, ) snake_case__ : Any = action_list.index(action_st) snake_case__ : Any = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) snake_case__ : Optional[int] = show_type == '''Show full text of passages''' else: snake_case__ : Optional[Any] = 3 snake_case__ : Optional[Any] = True snake_case__ : Optional[Any] = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: snake_case__ : int = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) snake_case__ : int = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) snake_case__ : List[str] = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: snake_case__ : Tuple = '''wiki40b''' snake_case__ : Any = '''dense''' snake_case__ : Optional[Any] = '''beam''' snake_case__ : List[Any] = 2 snake_case__ : Tuple = 64 snake_case__ : List[Any] = 256 snake_case__ : Tuple = None snake_case__ : int = None snake_case__ : Union[str, Any] = st.sidebar.checkbox('''Generation options''') if generate_options: snake_case__ : Optional[int] = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) snake_case__ : str = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) snake_case__ : Optional[Any] = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) snake_case__ : List[str] = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": snake_case__ : Optional[Any] = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: snake_case__ : str = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) snake_case__ : Union[str, Any] = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) snake_case__ : Any = None # start main text snake_case__ : Optional[Any] = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] snake_case__ : Optional[int] = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": snake_case__ : Any = st.text_input('''Enter your question here:''', '''''') else: snake_case__ : List[str] = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": snake_case__ : Optional[int] = make_support(question, source=wiki_source, method='''dense''', n_results=10) snake_case__ : str = make_support(question, source=wiki_source, method='''sparse''', n_results=10) snake_case__ : str = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] snake_case__ : int = support_list[:10] snake_case__ : List[Any] = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: snake_case__ : str = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: snake_case__ : str = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): snake_case__ : Dict = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) snake_case__ : Optional[Any] = res[1].strip() if sec_titles == "": snake_case__ : Optional[Any] = '''[{}]({})'''.format(res[0], wiki_url) else: snake_case__ : Any = sec_titles.split(''' & ''') snake_case__ : str = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: snake_case__ : str = find_nearest_training(question) snake_case__ : Dict = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) snake_case__ : int = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) snake_case__ : List[Any] = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
365
'''simple docstring''' snake_case__ : Optional[Any] = tuple[float, float, float] snake_case__ : Tuple = tuple[float, float, float] def _lowerCamelCase ( lowerCamelCase_ : Pointad , lowerCamelCase_ : Pointad ): """simple docstring""" UpperCAmelCase_ : Any = end_pointa[0] - end_pointa[0] UpperCAmelCase_ : Optional[Any] = end_pointa[1] - end_pointa[1] UpperCAmelCase_ : Any = end_pointa[2] - end_pointa[2] return (x, y, z) def _lowerCamelCase ( lowerCamelCase_ : Vectorad , lowerCamelCase_ : Vectorad ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = ab[1] * ac[2] - ab[2] * ac[1] # *i UpperCAmelCase_ : Optional[Any] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j UpperCAmelCase_ : Dict = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _lowerCamelCase ( lowerCamelCase_ : Vectorad , lowerCamelCase_ : int ): """simple docstring""" return tuple(round(lowerCamelCase_ , lowerCamelCase_ ) for x in vector ) == (0, 0, 0) def _lowerCamelCase ( lowerCamelCase_ : Pointad , lowerCamelCase_ : Pointad , lowerCamelCase_ : Pointad , lowerCamelCase_ : int = 10 ): """simple docstring""" UpperCAmelCase_ : List[str] = create_vector(lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = create_vector(lowerCamelCase_ , lowerCamelCase_ ) return is_zero_vector(get_ad_vectors_cross(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ )
274
0
'''simple docstring''' # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) lowerCAmelCase : Dict[Optional[str], Type[Formatter]] ={} lowerCAmelCase : Dict[Optional[str], str] ={} lowerCAmelCase : Dict[Optional[str], Exception] ={} def UpperCAmelCase_ ( __lowerCamelCase : type ,__lowerCamelCase : Optional[str] ,__lowerCamelCase : Optional[List[str]] = None ,): lowercase_ :Optional[Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) lowercase_ :Tuple = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) lowercase_ :Optional[int] = format_type def UpperCAmelCase_ ( __lowerCamelCase : Exception ,__lowerCamelCase : Optional[str] ,__lowerCamelCase : Optional[List[str]] = None ): lowercase_ :Dict = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): lowercase_ :Union[str, Any] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: lowerCAmelCase : Optional[Any] =ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: lowerCAmelCase : List[str] =ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: lowerCAmelCase : Optional[int] =ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def UpperCAmelCase_ ( __lowerCamelCase : Optional[str] ): if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCAmelCase_ ( __lowerCamelCase : Optional[str] ,**__lowerCamelCase : Dict ): lowercase_ :Any = get_format_type_from_alias(__lowerCamelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__lowerCamelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
223
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase_ ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : List[str] ,__lowerCamelCase : Dict=True ,__lowerCamelCase : List[Any]="pt" ): lowercase_ :Dict = {"add_prefix_space": True} if isinstance(__lowerCamelCase ,__lowerCamelCase ) and not line.startswith(" " ) else {} lowercase_ :str = padding_side return tokenizer( [line] ,max_length=__lowerCamelCase ,padding="max_length" if pad_to_max_length else None ,truncation=__lowerCamelCase ,return_tensors=__lowerCamelCase ,add_special_tokens=__lowerCamelCase ,**__lowerCamelCase ,) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : Dict ,__lowerCamelCase : str=None ,): lowercase_ :Optional[int] = input_ids.ne(__lowerCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class a_ ( _lowerCAmelCase ): def __init__( self : Optional[int] , lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Tuple , lowercase : str="train" , lowercase : Dict=None , lowercase : Tuple=None , lowercase : List[str]=None , lowercase : int="" , ): """simple docstring""" super().__init__() lowercase_ :List[Any] = Path(lowercase ).joinpath(type_path + ".source" ) lowercase_ :Dict = Path(lowercase ).joinpath(type_path + ".target" ) lowercase_ :Optional[int] = self.get_char_lens(self.src_file ) lowercase_ :List[str] = max_source_length lowercase_ :str = max_target_length assert min(self.src_lens ) > 0, F'found empty line in {self.src_file}' lowercase_ :int = tokenizer lowercase_ :Dict = prefix if n_obs is not None: lowercase_ :Union[str, Any] = self.src_lens[:n_obs] lowercase_ :Optional[int] = src_lang lowercase_ :str = tgt_lang def __len__( self : Tuple ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : str , lowercase : Dict ): """simple docstring""" lowercase_ :Tuple = index + 1 # linecache starts at 1 lowercase_ :Optional[Any] = self.prefix + linecache.getline(str(self.src_file ) , lowercase ).rstrip("\n" ) lowercase_ :List[str] = linecache.getline(str(self.tgt_file ) , lowercase ).rstrip("\n" ) assert source_line, F'empty source line for index {index}' assert tgt_line, F'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowercase_ :List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowercase ) else self.tokenizer ) lowercase_ :int = self.tokenizer.generator if isinstance(self.tokenizer , lowercase ) else self.tokenizer lowercase_ :List[str] = encode_line(lowercase , lowercase , self.max_source_length , "right" ) lowercase_ :Any = encode_line(lowercase , lowercase , self.max_target_length , "right" ) lowercase_ :Dict = source_inputs["input_ids"].squeeze() lowercase_ :Tuple = target_inputs["input_ids"].squeeze() lowercase_ :Optional[int] = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowercase__ ( lowercase : Union[str, Any] ): """simple docstring""" return [len(lowercase ) for x in Path(lowercase ).open().readlines()] def lowercase__ ( self : str , lowercase : List[Any] ): """simple docstring""" lowercase_ :Optional[int] = torch.stack([x["input_ids"] for x in batch] ) lowercase_ :Dict = torch.stack([x["attention_mask"] for x in batch] ) lowercase_ :List[str] = torch.stack([x["decoder_input_ids"] for x in batch] ) lowercase_ :Any = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowercase ) else self.tokenizer.pad_token_id ) lowercase_ :str = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowercase ) else self.tokenizer.pad_token_id ) lowercase_ :Union[str, Any] = trim_batch(lowercase , lowercase ) lowercase_ , lowercase_ :Optional[Any] = trim_batch(lowercase , lowercase , attention_mask=lowercase ) lowercase_ :Tuple = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch lowerCAmelCase : List[str] =getLogger(__name__) def UpperCAmelCase_ ( __lowerCamelCase : List[List] ): return list(itertools.chain.from_iterable(__lowerCamelCase ) ) def UpperCAmelCase_ ( __lowerCamelCase : str ): lowercase_ :List[str] = get_git_info() save_json(__lowerCamelCase ,os.path.join(__lowerCamelCase ,"git_log.json" ) ) def UpperCAmelCase_ ( __lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : List[Any]=4 ,**__lowerCamelCase : List[str] ): with open(__lowerCamelCase ,"w" ) as f: json.dump(__lowerCamelCase ,__lowerCamelCase ,indent=__lowerCamelCase ,**__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : Tuple ): with open(__lowerCamelCase ) as f: return json.load(__lowerCamelCase ) def UpperCAmelCase_ ( ): lowercase_ :Dict = git.Repo(search_parent_directories=__lowerCamelCase ) lowercase_ :List[str] = { "repo_id": str(__lowerCamelCase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def UpperCAmelCase_ ( __lowerCamelCase : Callable ,__lowerCamelCase : Iterable ): return list(map(__lowerCamelCase ,__lowerCamelCase ) ) def UpperCAmelCase_ ( __lowerCamelCase : Union[str, Any] ,__lowerCamelCase : List[str] ): with open(__lowerCamelCase ,"wb" ) as f: return pickle.dump(__lowerCamelCase ,__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : str ): def remove_articles(__lowerCamelCase : Optional[int] ): return re.sub(r"\b(a|an|the)\b" ," " ,__lowerCamelCase ) def white_space_fix(__lowerCamelCase : Dict ): return " ".join(text.split() ) def remove_punc(__lowerCamelCase : Optional[Any] ): lowercase_ :Any = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCamelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCamelCase ) ) ) ) def UpperCAmelCase_ ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[int] ): lowercase_ :Tuple = normalize_answer(__lowerCamelCase ).split() lowercase_ :Dict = normalize_answer(__lowerCamelCase ).split() lowercase_ :Tuple = Counter(__lowerCamelCase ) & Counter(__lowerCamelCase ) lowercase_ :Tuple = sum(common.values() ) if num_same == 0: return 0 lowercase_ :Union[str, Any] = 1.0 * num_same / len(__lowerCamelCase ) lowercase_ :List[Any] = 1.0 * num_same / len(__lowerCamelCase ) lowercase_ :Tuple = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : Union[str, Any] ): return normalize_answer(__lowerCamelCase ) == normalize_answer(__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : List[str] ): assert len(__lowerCamelCase ) == len(__lowerCamelCase ) lowercase_ :Any = 0 for hypo, pred in zip(__lowerCamelCase ,__lowerCamelCase ): em += exact_match_score(__lowerCamelCase ,__lowerCamelCase ) if len(__lowerCamelCase ) > 0: em /= len(__lowerCamelCase ) return {"em": em} def UpperCAmelCase_ ( __lowerCamelCase : str ): return model_prefix.startswith("rag" ) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : int ): lowercase_ :Dict = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowercase_ :List[str] = "dropout_rate" for p in extra_params: if getattr(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ): if not hasattr(__lowerCamelCase ,__lowerCamelCase ) and not hasattr(__lowerCamelCase ,equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(__lowerCamelCase ) ) delattr(__lowerCamelCase ,__lowerCamelCase ) continue lowercase_ :List[Any] = p if hasattr(__lowerCamelCase ,__lowerCamelCase ) else equivalent_param[p] setattr(__lowerCamelCase ,__lowerCamelCase ,getattr(__lowerCamelCase ,__lowerCamelCase ) ) delattr(__lowerCamelCase ,__lowerCamelCase ) return hparams, config
223
1
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase : Tuple = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_28, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase ( cls : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = TOKEN HfFolder.save_token(__a ) @classmethod def lowerCAmelCase ( cls : str ) -> Optional[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-config-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-config""" ) except HTTPError: pass def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""test-config""" , use_auth_token=self._token ) __lowercase : str = BertConfig.from_pretrained(F"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a , repo_id="""test-config""" , push_to_hub=__a , use_auth_token=self._token ) __lowercase : List[str] = BertConfig.from_pretrained(F"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""valid_org/test-config-org""" , use_auth_token=self._token ) __lowercase : Tuple = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __a , repo_id="""valid_org/test-config-org""" , push_to_hub=__a , use_auth_token=self._token ) __lowercase : List[str] = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" CustomConfig.register_for_auto_class() __lowercase : int = CustomConfig(attribute=42 ) config.push_to_hub("""test-dynamic-config""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"""AutoConfig""": """custom_configuration.CustomConfig"""} ) __lowercase : Optional[int] = AutoConfig.from_pretrained(F"{USER}/test-dynamic-config" , trust_remote_code=__a ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , """CustomConfig""" ) self.assertEqual(new_config.attribute , 42 ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __lowercase : List[str] = c.n_embd + 1 # int __lowercase : Union[str, Any] = c.resid_pdrop + 1.0 # float __lowercase : List[str] = not c.scale_attn_weights # bool __lowercase : int = c.summary_type + """foo""" # str c.update_from_string( F"n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}" ) self.assertEqual(__a , c.n_embd , """mismatch for key: n_embd""" ) self.assertEqual(__a , c.resid_pdrop , """mismatch for key: resid_pdrop""" ) self.assertEqual(__a , c.scale_attn_weights , """mismatch for key: scale_attn_weights""" ) self.assertEqual(__a , c.summary_type , """mismatch for key: summary_type""" ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : int = PretrainedConfig() __lowercase : Any = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __a , ["""is_encoder_decoder""", """_name_or_path""", """_commit_hash""", """transformers_version"""] ) __lowercase : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(__a , __a )] if len(__a ) > 0: raise ValueError( """The following keys are set with the default values in""" """ `test_configuration_common.config_common_kwargs` pick another value for them:""" F" {', '.join(__a )}." ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" with self.assertRaises(__a ): # config is in subfolder, the following should not work without specifying the subfolder __lowercase : List[str] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" ) __lowercase : List[Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" , subfolder="""bert""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : Dict = mock.Mock() __lowercase : Dict = 500 __lowercase : List[str] = {} __lowercase : List[Any] = HTTPError __lowercase : List[str] = {} # Download this model to make sure it's in the cache. __lowercase : int = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=__a ) as mock_head: __lowercase : Union[str, Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" __lowercase : List[str] = BertConfig.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json""" ) def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" __lowercase : Dict = AutoConfig.from_pretrained("""bert-base-cased""" ) __lowercase : Optional[int] = ["""config.4.0.0.json"""] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__a ) __lowercase : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(__a , """config.4.0.0.json""" ) , """w""" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __lowercase : List[Any] = AutoConfig.from_pretrained(__a ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __lowercase : Union[str, Any] = ["""config.42.0.0.json"""] __lowercase : List[str] = 768 configuration.save_pretrained(__a ) shutil.move(os.path.join(__a , """config.4.0.0.json""" ) , os.path.join(__a , """config.42.0.0.json""" ) ) __lowercase : List[str] = AutoConfig.from_pretrained(__a ) self.assertEqual(new_configuration.hidden_size , 768 ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" __lowercase : Union[str, Any] = """hf-internal-testing/test-two-configs""" import transformers as new_transformers __lowercase : int = """v4.0.0""" __lowercase , __lowercase : Optional[int] = new_transformers.models.auto.AutoConfig.from_pretrained( __a , return_unused_kwargs=__a ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__a , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __lowercase : str = """v3.0.0""" __lowercase : Tuple = old_transformers.models.auto.AutoConfig.from_pretrained(__a ) self.assertEqual(old_configuration.hidden_size , 768 )
306
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = (DPMSolverSDEScheduler,) _A : Dict = 10 def lowerCAmelCase ( self : Optional[int] , **__a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__a ) return config def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : List[str] = self.get_scheduler_config() __lowercase : Any = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[Any] = self.dummy_model() __lowercase : str = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Optional[Any] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Union[str, Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Optional[Any] = scheduler.step(__a , __a , __a ) __lowercase : str = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Union[str, Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase : int = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[int] = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Dict = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Dict = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[int] = model(__a , __a ) __lowercase : Optional[int] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : List[str] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : int = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase : int = scheduler.scale_model_input(__a , __a ) __lowercase : List[str] = model(__a , __a ) __lowercase : List[str] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : List[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : str = self.scheduler_classes[0] __lowercase : List[Any] = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**__a , use_karras_sigmas=__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : List[str] = self.dummy_model() __lowercase : Optional[int] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma __lowercase : str = sample.to(__a ) for t in scheduler.timesteps: __lowercase : List[Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Any = scheduler.step(__a , __a , __a ) __lowercase : Optional[Any] = output.prev_sample __lowercase : Any = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
306
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : List[str]=18 , _lowerCAmelCase : str=30 , _lowerCAmelCase : Any=400 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[Any]=True , ): A = size if size is not None else {"""height""": 18, """width""": 18} A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size A = apply_ocr def A (self : str ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def A (self : Tuple ): A = LayoutLMvaImageProcessingTester(self ) @property def A (self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def A (self : Dict ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """apply_ocr""" ) ) def A (self : Tuple ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def A (self : Optional[int] ): pass def A (self : int ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , _lowerCAmelCase ) self.assertIsInstance(encoding.boxes , _lowerCAmelCase ) # Test batched A = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def A (self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def A (self : Dict ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def A (self : Union[str, Any] ): # with apply_OCR = True A = LayoutLMvaImageProcessor() from datasets import load_dataset A = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) A = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) A = image_processing(_lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 A = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 A = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _lowerCAmelCase ) self.assertListEqual(encoding.boxes , _lowerCAmelCase ) # with apply_OCR = False A = LayoutLMvaImageProcessor(apply_ocr=_lowerCAmelCase ) A = image_processing(_lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
258
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan _lowerCamelCase : List[Any] = 6_3_7_8_1_3_7.0 _lowerCamelCase : List[Any] = 6_3_5_6_7_5_2.3_1_4_2_4_5 _lowerCamelCase : Optional[int] = 637_8137 def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" A = (AXIS_A - AXIS_B) / AXIS_A A = atan((1 - flattening) * tan(radians(UpperCAmelCase ) ) ) A = atan((1 - flattening) * tan(radians(UpperCAmelCase ) ) ) A = radians(UpperCAmelCase ) A = radians(UpperCAmelCase ) # Equation A = sin((phi_a - phi_a) / 2 ) A = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda A = sqrt(sin_sq_phi + (cos(UpperCAmelCase ) * cos(UpperCAmelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
258
1
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline __UpperCAmelCase = { "n_samples": 64, "horizon": 32, "num_inference_steps": 20, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": __UpperCAmelCase = "hopper-medium-v2" __UpperCAmelCase = gym.make(env_name) __UpperCAmelCase = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) __UpperCAmelCase = env.reset() __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = 10_00 __UpperCAmelCase = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy __UpperCAmelCase = pipeline(obs, planning_horizon=32) # execute action in environment __UpperCAmelCase = env.step(denorm_actions) __UpperCAmelCase = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" f""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) __UpperCAmelCase = next_observation except KeyboardInterrupt: pass print(f"""Total reward: {total_reward}""")
359
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __UpperCAmelCase = 5_00_00 __UpperCAmelCase = 50_00 __UpperCAmelCase , __UpperCAmelCase = os.path.split(__file__) __UpperCAmelCase = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def __lowerCamelCase ( __magic_name__ : datasets.Dataset , __magic_name__ : int ): for i in range(__magic_name__ ): a__: int =dataset[i] @get_duration def __lowerCamelCase ( __magic_name__ : datasets.Dataset , __magic_name__ : Any , __magic_name__ : Union[str, Any] ): for i in range(0 , len(__magic_name__ ) , __magic_name__ ): a__: List[str] =dataset[i : i + batch_size] @get_duration def __lowerCamelCase ( __magic_name__ : datasets.Dataset , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] ): with dataset.formatted_as(type=__magic_name__ ): for i in range(__magic_name__ ): a__: Optional[Any] =dataset[i] @get_duration def __lowerCamelCase ( __magic_name__ : datasets.Dataset , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] ): with dataset.formatted_as(type=__magic_name__ ): for i in range(0 , __magic_name__ , __magic_name__ ): a__: List[Any] =dataset[i : i + batch_size] def __lowerCamelCase ( ): a__: Union[str, Any] ={"num examples": SPEED_TEST_N_EXAMPLES} a__: int =[ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_000}), ] a__: Optional[Any] =[ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) a__: str =datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) a__: List[str] =generate_example_dataset( os.path.join(__magic_name__ , "dataset.arrow" ) , __magic_name__ , num_examples=__magic_name__ , seq_shapes={"list": (100,)} , ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ , str(__magic_name__ ) ) a__: str =func(__magic_name__ , **__magic_name__ ) print("shuffling dataset" ) a__: List[str] =dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " , func.__name__ , str(__magic_name__ ) ) a__: Optional[int] =func( __magic_name__ , **__magic_name__ ) with open(__magic_name__ , "wb" ) as f: f.write(json.dumps(__magic_name__ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
42
0
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def UpperCAmelCase__ ( lowerCAmelCase__ :np.ndarray ) -> np.ndarray: '''simple docstring''' lowercase , lowercase , lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def UpperCAmelCase__ ( lowerCAmelCase__ :np.ndarray ) -> np.ndarray: '''simple docstring''' return (gray > 1_2_7) & (gray <= 2_5_5) def UpperCAmelCase__ ( lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :np.ndarray ) -> np.ndarray: '''simple docstring''' lowercase = np.zeros_like(lowerCAmelCase__ ) lowercase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image lowercase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): lowercase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() lowercase = int(summation > 0 ) return output if __name__ == "__main__": # read original image __lowerCAmelCase : Tuple =Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" __lowerCAmelCase : int =np.array(Image.open(lena_path)) # kernel to be applied __lowerCAmelCase : List[Any] =np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __lowerCAmelCase : List[str] =dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __lowerCAmelCase : Optional[Any] =Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
197
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 __lowerCAmelCase : Union[str, Any] =0B1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 __lowerCAmelCase : Optional[int] =[int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _A : def __init__( self ): """simple docstring""" lowercase = WATERMARK_BITS lowercase = WatermarkEncoder() self.encoder.set_watermark("""bits""" , self.watermark ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" if images.shape[-1] < 256: return images lowercase = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase = [self.encoder.encode(__lowerCAmelCase , """dwtDct""" ) for image in images] lowercase = torch.from_numpy(np.array(__lowerCAmelCase ) ).permute(0 , 3 , 1 , 2 ) lowercase = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
197
1
import glob import os import random from string import ascii_lowercase, digits import cva __UpperCAmelCase = '''''' __UpperCAmelCase = '''''' __UpperCAmelCase = '''''' __UpperCAmelCase = 1 # (0 is vertical, 1 is horizontal) def __lowerCamelCase ( ): a__ , a__: Optional[int] =get_dataset(__magic_name__ , __magic_name__ ) print("Processing..." ) a__ , a__ , a__: Optional[int] =update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ ) for index, image in enumerate(__magic_name__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' a__: Dict =random_chars(32 ) a__: int =paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] a__: Optional[Any] =F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(F"/{file_root}.jpg" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Success {index+1}/{len(__magic_name__ )} with {file_name}" ) a__: str =[] for anno in new_annos[index]: a__: int =F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(__magic_name__ ) with open(F"/{file_root}.txt" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : str ): a__: Any =[] a__: Tuple =[] for label_file in glob.glob(os.path.join(__magic_name__ , "*.txt" ) ): a__: int =label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(__magic_name__ ) as in_file: a__: int =in_file.readlines() a__: str =os.path.join(__magic_name__ , F"{label_name}.jpg" ) a__: Dict =[] for obj_list in obj_lists: a__: List[str] =obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__magic_name__ ) labels.append(__magic_name__ ) return img_paths, labels def __lowerCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ): a__: List[Any] =[] a__: Optional[int] =[] a__: Optional[Any] =[] for idx in range(len(__magic_name__ ) ): a__: List[Any] =[] a__: List[str] =img_list[idx] path_list.append(__magic_name__ ) a__: List[Any] =anno_list[idx] a__: List[Any] =cva.imread(__magic_name__ ) if flip_type == 1: a__: Union[str, Any] =cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: a__: Optional[Any] =1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: a__: List[Any] =cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: a__: List[str] =1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__magic_name__ ) new_imgs_list.append(__magic_name__ ) return new_imgs_list, new_annos_lists, path_list def __lowerCamelCase ( __magic_name__ : int = 32 ): assert number_char > 1, "The number of character should greater than 1" a__: List[Any] =ascii_lowercase + digits return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
42
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase__ ( _a ): @require_torch def _lowerCamelCase ( self : Union[str, Any] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched a__: Dict ="\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " a__: Union[str, Any] ="\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " a__: Dict ="\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache a__: Tuple ="hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(_a ) BertModel.from_pretrained(_a ) BertTokenizer.from_pretrained(_a ) pipeline(task="fill-mask" , model=_a ) # baseline - just load from_pretrained with normal network a__: Optional[int] =[sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed a__: str =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files a__: Union[str, Any] ="1" a__: Any =subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def _lowerCamelCase ( self : str ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched a__: Optional[int] ="\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " a__: Tuple ="\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " a__: List[Any] ="\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache a__: str ="hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(_a ) BertModel.from_pretrained(_a ) BertTokenizer.from_pretrained(_a ) pipeline(task="fill-mask" , model=_a ) # baseline - just load from_pretrained with normal network a__: Any =[sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed a__: Optional[Any] =self.get_env() a__: Union[str, Any] =subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def _lowerCamelCase ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched a__: Tuple ="\nfrom transformers import BertConfig, BertModel, BertTokenizer\n " a__: str ="\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n " a__: int ="\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " # baseline - just load from_pretrained with normal network a__: Union[str, Any] =[sys.executable, "-c", "\n".join([load, run] )] # should succeed a__: Optional[Any] =self.get_env() a__: Optional[Any] =subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # next emulate no network a__: int =[sys.executable, "-c", "\n".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files a__: Tuple ="1" a__: Dict =subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def _lowerCamelCase ( self : Optional[Any] ): a__: Dict ="\nfrom transformers import pipeline\n " a__: Union[str, Any] ="\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n " a__: List[str] ="\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " a__: Dict =self.get_env() a__: Optional[Any] ="1" a__: Dict =[sys.executable, "-c", "\n".join([load, mock, run] )] a__: Optional[int] =subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( "You cannot infer task automatically within `pipeline` when using offline mode" , result.stderr.decode().replace("\n" , "" ) , ) @require_torch def _lowerCamelCase ( self : Optional[int] ): a__: Optional[Any] ="\nfrom transformers import AutoModel\n " a__: str ="\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n " # baseline - just load from_pretrained with normal network a__: Tuple =[sys.executable, "-c", "\n".join([load, run] )] # should succeed a__: Any =self.get_env() a__: int =subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files a__: List[Any] ="1" a__: int =subprocess.run(_a , env=_a , check=_a , capture_output=_a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() )
42
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __a(SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' _lowerCAmelCase = create_tensor(__a ) _lowerCAmelCase = gather(__a ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __a(SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = [state.process_index] _lowerCAmelCase = gather_object(__a ) assert len(__a ) == state.num_processes, F'''{gathered_obj}, {len(__a )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), F'''{gathered_obj} != {list(range(state.num_processes ) )}''' def __a(SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' _lowerCAmelCase = create_tensor(__a ) _lowerCAmelCase = broadcast(__a ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __a(SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' if state.is_main_process: _lowerCAmelCase = torch.arange(state.num_processes + 1 ).to(state.device ) else: _lowerCAmelCase = torch.arange(state.num_processes ).to(state.device ) _lowerCAmelCase = pad_across_processes(__a ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __a(SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' if state.num_processes != 2: return _lowerCAmelCase = create_tensor(__a ) _lowerCAmelCase = reduce(__a , "sum" ) _lowerCAmelCase = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__a , __a ), F'''{reduced_tensor} != {truth_tensor}''' def __a(SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' if state.num_processes != 2: return _lowerCAmelCase = create_tensor(__a ) _lowerCAmelCase = reduce(__a , "mean" ) _lowerCAmelCase = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__a , __a ), F'''{reduced_tensor} != {truth_tensor}''' def __a(SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' main() def __a(): '''simple docstring''' _lowerCAmelCase = PartialState() state.print(F'''State: {state}''' ) state.print("testing gather" ) test_gather(__a ) state.print("testing gather_object" ) test_gather_object(__a ) state.print("testing broadcast" ) test_broadcast(__a ) state.print("testing pad_across_processes" ) test_pad_across_processes(__a ) state.print("testing reduce_sum" ) test_reduce_sum(__a ) state.print("testing reduce_mean" ) test_reduce_mean(__a ) if __name__ == "__main__": main()
158
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean A : str = 0 A : Any = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right A : Union[str, Any] = tuple[int, int] class A : '''simple docstring''' def __init__( self : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Node | None , ) -> None: """simple docstring""" A__ = pos_x A__ = pos_y A__ = (pos_y, pos_x) A__ = goal_x A__ = goal_y A__ = g_cost A__ = parent A__ = self.calculate_heuristic() A__ = self.g_cost + self.h_cost def a_ ( self : Dict ) -> float: """simple docstring""" A__ = self.pos_x - self.goal_x A__ = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(__lowerCAmelCase ) + abs(__lowerCAmelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : int , __lowerCAmelCase : Node ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class A : '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCAmelCase : TPosition , __lowerCAmelCase : TPosition ) -> Tuple: """simple docstring""" A__ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __lowerCAmelCase ) A__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , __lowerCAmelCase ) A__ = [self.start] A__ = [] A__ = False def a_ ( self : List[str] ) -> list[TPosition]: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() A__ = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(__lowerCAmelCase ) self.closed_nodes.append(__lowerCAmelCase ) A__ = self.get_successors(__lowerCAmelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__lowerCAmelCase ) else: # retrieve the best current path A__ = self.open_nodes.pop(self.open_nodes.index(__lowerCAmelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__lowerCAmelCase ) else: self.open_nodes.append(__lowerCAmelCase ) return [self.start.pos] def a_ ( self : Optional[Any] , __lowerCAmelCase : Node ) -> list[Node]: """simple docstring""" A__ = [] for action in delta: A__ = parent.pos_x + action[1] A__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __lowerCAmelCase , __lowerCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __lowerCAmelCase , ) ) return successors def a_ ( self : List[Any] , __lowerCAmelCase : Node | None ) -> list[TPosition]: """simple docstring""" A__ = node A__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) A__ = current_node.parent path.reverse() return path class A : '''simple docstring''' def __init__( self : Optional[Any] , __lowerCAmelCase : TPosition , __lowerCAmelCase : TPosition ) -> None: """simple docstring""" A__ = AStar(__lowerCAmelCase , __lowerCAmelCase ) A__ = AStar(__lowerCAmelCase , __lowerCAmelCase ) A__ = False def a_ ( self : int ) -> list[TPosition]: """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() A__ = self.fwd_astar.open_nodes.pop(0 ) A__ = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( __lowerCAmelCase , __lowerCAmelCase ) self.fwd_astar.closed_nodes.append(__lowerCAmelCase ) self.bwd_astar.closed_nodes.append(__lowerCAmelCase ) A__ = current_bwd_node A__ = current_fwd_node A__ = { self.fwd_astar: self.fwd_astar.get_successors(__lowerCAmelCase ), self.bwd_astar: self.bwd_astar.get_successors(__lowerCAmelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(__lowerCAmelCase ) else: # retrieve the best current path A__ = astar.open_nodes.pop( astar.open_nodes.index(__lowerCAmelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(__lowerCAmelCase ) else: astar.open_nodes.append(__lowerCAmelCase ) return [self.fwd_astar.start.pos] def a_ ( self : List[str] , __lowerCAmelCase : Node , __lowerCAmelCase : Node ) -> list[TPosition]: """simple docstring""" A__ = self.fwd_astar.retrace_path(__lowerCAmelCase ) A__ = self.bwd_astar.retrace_path(__lowerCAmelCase ) bwd_path.pop() bwd_path.reverse() A__ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] A : Optional[int] = (0, 0) A : int = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) A : Dict = time.time() A : Optional[Any] = AStar(init, goal) A : Optional[int] = a_star.search() A : Optional[int] = time.time() - start_time print(F'''AStar execution time = {end_time:f} seconds''') A : Dict = time.time() A : Tuple = BidirectionalAStar(init, goal) A : List[Any] = time.time() - bd_start_time print(F'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
274
0
import socket def lowerCamelCase__ ( ) -> List[str]: UpperCamelCase_ = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) UpperCamelCase_ = socket.gethostname() UpperCamelCase_ = 1_2312 sock.connect((host, port) ) sock.send(b"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: UpperCamelCase_ = sock.recv(1024 ) if not data: break out_file.write(a__ ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
261
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowerCamelCase__ ( a__ : Dataset , a__ : Dict[str, str] ) -> int: UpperCamelCase_ = args.log_outputs UpperCamelCase_ = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric UpperCamelCase_ = load_metric("""wer""" ) UpperCamelCase_ = load_metric("""cer""" ) # compute metrics UpperCamelCase_ = wer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) UpperCamelCase_ = cer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) # print & log results UpperCamelCase_ = f'''WER: {wer_result}\nCER: {cer_result}''' print(a__ ) with open(f'''{dataset_id}_eval_results.txt''' , """w""" ) as f: f.write(a__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCamelCase_ = f'''log_{dataset_id}_predictions.txt''' UpperCamelCase_ = f'''log_{dataset_id}_targets.txt''' with open(a__ , """w""" ) as p, open(a__ , """w""" ) as t: # mapping function to write output def write_to_file(a__ : List[str] , a__ : Any ): p.write(f'''{i}''' + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(f'''{i}''' + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(a__ , with_indices=a__ ) def lowerCamelCase__ ( a__ : str ) -> str: UpperCamelCase_ = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCamelCase_ = re.sub(a__ , """""" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCamelCase_ = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: UpperCamelCase_ = """ """.join(text.split(a__ ) ) return text def lowerCamelCase__ ( a__ : Optional[int] ) -> Union[str, Any]: # load dataset UpperCamelCase_ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=a__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCamelCase_ = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCamelCase_ = feature_extractor.sampling_rate # resample audio UpperCamelCase_ = dataset.cast_column("""audio""" , Audio(sampling_rate=a__ ) ) # load eval pipeline if args.device is None: UpperCamelCase_ = 0 if torch.cuda.is_available() else -1 UpperCamelCase_ = pipeline("""automatic-speech-recognition""" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(a__ : Optional[Any] ): UpperCamelCase_ = asr( batch["""audio"""]["""array"""] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCamelCase_ = prediction["""text"""] UpperCamelCase_ = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples UpperCamelCase_ = dataset.map(a__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(a__ , a__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) _A = parser.parse_args() main(args)
261
1
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = 0 @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(UpperCAmelCase_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(UpperCAmelCase_ ) , 0 ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) # Check that tokenizer_type ≠ model_type _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(UpperCAmelCase_ , """vocab.txt""" ) ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , tokenizer_type="""bert""" , use_fast=UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(UpperCAmelCase_ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(UpperCAmelCase_ , """merges.txt""" ) ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , tokenizer_type="""gpt2""" , use_fast=UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) @require_tokenizers def UpperCamelCase ( self: Any ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(UpperCAmelCase_ , """vocab.txt""" ) ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , tokenizer_type="""bert""" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(UpperCAmelCase_ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(UpperCAmelCase_ , """merges.txt""" ) ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , tokenizer_type="""gpt2""" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: int ): '''simple docstring''' with pytest.raises(UpperCAmelCase_ ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def UpperCamelCase ( self: int ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: _SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , UpperCAmelCase_ ) else: self.assertEqual(tokenizer.do_lower_case , UpperCAmelCase_ ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def UpperCamelCase ( self: List[str] ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( UpperCAmelCase_ , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): _SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TOKENIZER_MAPPING.values() _SCREAMING_SNAKE_CASE = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(UpperCAmelCase_ ) @require_tokenizers def UpperCamelCase ( self: Any ): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , UpperCAmelCase_ ) @require_tokenizers def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """Hello, world. How are you?""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase_ ) self.assertEqual("""[UNK]""" , tokens[0] ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase_ ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30_000 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = get_tokenizer_config("""bert-base-cased""" ) _SCREAMING_SNAKE_CASE = config.pop("""_commit_hash""" , UpperCAmelCase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(UpperCAmelCase_ , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. _SCREAMING_SNAKE_CASE = get_tokenizer_config(UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = get_tokenizer_config(UpperCAmelCase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' try: AutoConfig.register("""custom""" , UpperCAmelCase_ ) AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CustomTokenizer.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def UpperCamelCase ( self: Any ): '''simple docstring''' try: AutoConfig.register("""custom""" , UpperCAmelCase_ ) # Can register in two steps AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(UpperCAmelCase_ , fast_tokenizer_class=UpperCAmelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ , fast_tokenizer_class=UpperCAmelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoTokenizer.register(UpperCAmelCase_ , fast_tokenizer_class=UpperCAmelCase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: _SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained(UpperCAmelCase_ ) bert_tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CustomTokenizerFast.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCamelCase ( self: Dict ): '''simple docstring''' with self.assertRaises(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , trust_remote_code=UpperCAmelCase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def UpperCamelCase ( self: Dict ): '''simple docstring''' class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = False class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Optional[int] = NewTokenizer __snake_case : Optional[Any] = False try: AutoConfig.register("""custom""" , UpperCAmelCase_ ) AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) AutoTokenizer.register(UpperCAmelCase_ , fast_tokenizer_class=UpperCAmelCase_ ) # If remote code is not set, the default is to use local _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=UpperCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""bert-base""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , revision="""aaaaaa""" ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
306
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length, 2) ,snake_case__ ) else: _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length) ,snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _SCREAMING_SNAKE_CASE = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : PreTrainedTokenizerBase __snake_case : Union[bool, str, PaddingStrategy] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : int = -100 __snake_case : str = "pt" def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' import torch _SCREAMING_SNAKE_CASE = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""] ).shape[1] _SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: _SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] _SCREAMING_SNAKE_CASE = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
1
"""simple docstring""" import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = mock.Mock() _lowerCamelCase = 5_0_0 _lowerCamelCase = {} _lowerCamelCase = HTTPError _lowerCamelCase = {} # Download this model to make sure it's in the cache. _lowerCamelCase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=snake_case__ ) as mock_head: _lowerCamelCase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def snake_case__ ( self ): _lowerCamelCase = mock.Mock() _lowerCamelCase = 5_0_0 _lowerCamelCase = {} _lowerCamelCase = HTTPError _lowerCamelCase = {} # Download this model to make sure it's in the cache. _lowerCamelCase = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=snake_case__ ) as mock_head: _lowerCamelCase = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def snake_case__ ( self ): try: _lowerCamelCase = tempfile.mktemp() with open(snake_case__ , '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , snake_case__ ) _lowerCamelCase = AlbertTokenizer.from_pretrained(snake_case__ ) finally: os.remove(snake_case__ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , snake_case__ ) _lowerCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_0_0_0 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def snake_case__ ( self ): _lowerCamelCase = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' lowercase__ : List[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def snake_case__ ( cls ): _lowerCamelCase = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def snake_case__ ( cls ): try: delete_repo(token=cls._token , repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def snake_case__ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase = os.path.join(snake_case__ , '''vocab.txt''' ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) _lowerCamelCase = BertTokenizer(snake_case__ ) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token ) _lowerCamelCase = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ , repo_id='''test-tokenizer''' , push_to_hub=snake_case__ , use_auth_token=self._token ) _lowerCamelCase = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def snake_case__ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase = os.path.join(snake_case__ , '''vocab.txt''' ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) _lowerCamelCase = BertTokenizer(snake_case__ ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token ) _lowerCamelCase = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( snake_case__ , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=snake_case__ , use_auth_token=self._token ) _lowerCamelCase = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def snake_case__ ( self ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase = os.path.join(snake_case__ , '''vocab.txt''' ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) _lowerCamelCase = CustomTokenizer(snake_case__ ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) _lowerCamelCase = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase = os.path.join(snake_case__ , '''vocab.txt''' ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) _lowerCamelCase = BertTokenizerFast.from_pretrained(snake_case__ ) bert_tokenizer.save_pretrained(snake_case__ ) _lowerCamelCase = CustomTokenizerFast.from_pretrained(snake_case__ ) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) _lowerCamelCase = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''' ) _lowerCamelCase = AutoTokenizer.from_pretrained( F"""{USER}/test-dynamic-tokenizer""" , use_fast=snake_case__ , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def snake_case__ ( self ): _lowerCamelCase = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def snake_case__ ( self ): _lowerCamelCase = Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ) , ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ) , ['''BC''', '''A'''] ) def snake_case__ ( self ): _lowerCamelCase = Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def snake_case__ ( self ): _lowerCamelCase = Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def snake_case__ ( self ): _lowerCamelCase = Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ) , ['''AB''', '''C'''] ) def snake_case__ ( self ): _lowerCamelCase = Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ) , ['''ABC''', '''D'''] ) def snake_case__ ( self ): _lowerCamelCase = Trie() _lowerCamelCase = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(snake_case__ , ['''AB''', '''C'''] )
361
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : Optional[Any] = 'trocr' lowercase__ : Union[str, Any] = ['past_key_values'] lowercase__ : str = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self , lowerCamelCase__=5_0_2_6_5 , lowerCamelCase__=1_0_2_4 , lowerCamelCase__=1_2 , lowerCamelCase__=1_6 , lowerCamelCase__=4_0_9_6 , lowerCamelCase__="gelu" , lowerCamelCase__=5_1_2 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=2 , lowerCamelCase__=0.0_2 , lowerCamelCase__=0.0 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , **lowerCamelCase__ , ): _lowerCamelCase = vocab_size _lowerCamelCase = d_model _lowerCamelCase = decoder_layers _lowerCamelCase = decoder_attention_heads _lowerCamelCase = decoder_ffn_dim _lowerCamelCase = activation_function _lowerCamelCase = max_position_embeddings _lowerCamelCase = dropout _lowerCamelCase = attention_dropout _lowerCamelCase = activation_dropout _lowerCamelCase = init_std _lowerCamelCase = decoder_layerdrop _lowerCamelCase = use_cache _lowerCamelCase = scale_embedding _lowerCamelCase = use_learned_position_embeddings _lowerCamelCase = layernorm_embedding super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
73
0
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowercase__: """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , ) -> Any: lowercase_ = parent lowercase_ = 1_3 lowercase_ = 7 lowercase_ = True lowercase_ = True lowercase_ = True lowercase_ = 9_9 lowercase_ = 3_2 lowercase_ = 2 lowercase_ = 4 lowercase_ = 3_7 lowercase_ = '''gelu''' lowercase_ = 0.1 lowercase_ = 0.1 lowercase_ = 5_1_2 lowercase_ = 1_6 lowercase_ = 2 lowercase_ = 0.02 lowercase_ = 3 lowercase_ = 4 lowercase_ = None def _lowercase ( self : Optional[int] ) -> Tuple: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Any ) -> Optional[Any]: ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = self.prepare_config_and_inputs() lowercase_ = True lowercase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> List[str]: lowercase_ = TFEsmModel(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase_ = model(SCREAMING_SNAKE_CASE_ ) lowercase_ = [input_ids, input_mask] lowercase_ = model(SCREAMING_SNAKE_CASE_ ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , ) -> Union[str, Any]: lowercase_ = True lowercase_ = TFEsmModel(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } lowercase_ = model(SCREAMING_SNAKE_CASE_ ) lowercase_ = [input_ids, input_mask] lowercase_ = model(SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ) # Also check the case where encoder outputs are not passed lowercase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any ) -> Any: lowercase_ = TFEsmForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> int: lowercase_ = self.num_labels lowercase_ = TFEsmForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Tuple ) -> str: lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase__( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :str = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) a :Union[str, Any] = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) a :Union[str, Any] = False a :Dict = False def _lowercase ( self : List[str] ) -> List[Any]: lowercase_ = TFEsmModelTester(self ) lowercase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 ) def _lowercase ( self : Optional[int] ) -> str: self.config_tester.run_common_tests() def _lowercase ( self : str ) -> int: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Any ) -> Union[str, Any]: lowercase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : str ) -> Optional[int]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> List[str]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def _lowercase ( self : int ) -> List[str]: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = TFEsmModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip('''Protein models do not support embedding resizing.''' ) def _lowercase ( self : str ) -> Tuple: pass @unittest.skip('''Protein models do not support embedding resizing.''' ) def _lowercase ( self : List[Any] ) -> Any: pass def _lowercase ( self : List[str] ) -> Any: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowercase_ = model.get_bias() assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for k, v in name.items(): assert isinstance(SCREAMING_SNAKE_CASE_ , tf.Variable ) else: lowercase_ = model.get_output_embeddings() assert x is None lowercase_ = model.get_bias() assert name is None @require_tf class lowercase__( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : str ) -> Optional[int]: lowercase_ = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) lowercase_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase_ = model(SCREAMING_SNAKE_CASE_ )[0] lowercase_ = [1, 6, 3_3] self.assertEqual(list(output.numpy().shape ) , SCREAMING_SNAKE_CASE_ ) # compare the actual values for a slice. lowercase_ = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def _lowercase ( self : int ) -> Union[str, Any]: lowercase_ = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) lowercase_ = tf.constant([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) lowercase_ = model(SCREAMING_SNAKE_CASE_ )[0] # compare the actual values for a slice. lowercase_ = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
30
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : Union[str, Any] = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """xlnet""" __lowercase = ["""mems"""] __lowercase = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCAmelCase_=3_20_00 , lowerCAmelCase_=10_24 , lowerCAmelCase_=24 , lowerCAmelCase_=16 , lowerCAmelCase_=40_96 , lowerCAmelCase_="gelu" , lowerCAmelCase_=True , lowerCAmelCase_="bi" , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-12 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_12 , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=-1 , lowerCAmelCase_=False , lowerCAmelCase_="last" , lowerCAmelCase_=True , lowerCAmelCase_="tanh" , lowerCAmelCase_=0.1 , lowerCAmelCase_=5 , lowerCAmelCase_=5 , lowerCAmelCase_=5 , lowerCAmelCase_=1 , lowerCAmelCase_=2 , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = vocab_size _snake_case = d_model _snake_case = n_layer _snake_case = n_head if d_model % n_head != 0: raise ValueError(F'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) _snake_case = d_model // n_head _snake_case = ff_activation _snake_case = d_inner _snake_case = untie_r _snake_case = attn_type _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = dropout _snake_case = mem_len _snake_case = reuse_len _snake_case = bi_data _snake_case = clamp_len _snake_case = same_length _snake_case = summary_type _snake_case = summary_use_proj _snake_case = summary_activation _snake_case = summary_last_dropout _snake_case = start_n_top _snake_case = end_n_top _snake_case = bos_token_id _snake_case = pad_token_id _snake_case = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , lowerCAmelCase_ , ) _snake_case = kwargs['use_cache'] _snake_case = use_mems_eval _snake_case = use_mems_train super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowerCamelCase ( self ): """simple docstring""" logger.info(F'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" raise NotImplementedError( F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
42
0
"""simple docstring""" _lowerCAmelCase :Any = tuple[float, float, float] _lowerCAmelCase :Optional[Any] = tuple[float, float, float] def lowerCamelCase_ (UpperCamelCase__ : Pointad , UpperCamelCase__ : Pointad ): _UpperCAmelCase : str = end_pointa[0] - end_pointa[0] _UpperCAmelCase : Optional[int] = end_pointa[1] - end_pointa[1] _UpperCAmelCase : Union[str, Any] = end_pointa[2] - end_pointa[2] return (x, y, z) def lowerCamelCase_ (UpperCamelCase__ : Vectorad , UpperCamelCase__ : Vectorad ): _UpperCAmelCase : int = ab[1] * ac[2] - ab[2] * ac[1] # *i _UpperCAmelCase : int = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _UpperCAmelCase : Union[str, Any] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def lowerCamelCase_ (UpperCamelCase__ : Vectorad , UpperCamelCase__ : int ): return tuple(round(UpperCamelCase__ , UpperCamelCase__ ) for x in vector ) == (0, 0, 0) def lowerCamelCase_ (UpperCamelCase__ : Pointad , UpperCamelCase__ : Pointad , UpperCamelCase__ : Pointad , UpperCamelCase__ : int = 10 ): _UpperCAmelCase : Union[str, Any] = create_vector(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase : Tuple = create_vector(UpperCamelCase__ , UpperCamelCase__ ) return is_zero_vector(get_ad_vectors_cross(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ )
68
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ (UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _UpperCAmelCase , _UpperCAmelCase : int = array[indexa], array[indexa] def lowerCamelCase_ (UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): if length > 1: _UpperCAmelCase : str = int(length / 2 ) for i in range(UpperCamelCase__ , low + middle ): comp_and_swap(UpperCamelCase__ , UpperCamelCase__ , i + middle , UpperCamelCase__ ) bitonic_merge(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) bitonic_merge(UpperCamelCase__ , low + middle , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): if length > 1: _UpperCAmelCase : str = int(length / 2 ) bitonic_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , 1 ) bitonic_sort(UpperCamelCase__ , low + middle , UpperCamelCase__ , 0 ) bitonic_merge(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": _lowerCAmelCase :Any = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase :Tuple = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
68
1
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowercase : List[Any] = datasets.logging.get_logger(__name__) lowercase : List[str] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowercase : Union[str, Any] = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowercase : Tuple = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def SCREAMING_SNAKE_CASE__ ( __A , __A , __A=False , __A=False , __A=True , __A=False , __A="dummy_doc" ) -> str: _snake_case = {doc: key_lines} _snake_case = {doc: sys_lines} _snake_case = {} _snake_case = 0 _snake_case = 0 _snake_case = 0 _snake_case = 0 _snake_case = 0 _snake_case = 0 _snake_case , _snake_case = reader.get_doc_mentions(__A , key_doc_lines[doc] , __A ) key_singletons_num += singletons_num if NP_only or min_span: _snake_case = reader.set_annotated_parse_trees(__A , key_doc_lines[doc] , __A , __A ) _snake_case , _snake_case = reader.get_doc_mentions(__A , sys_doc_lines[doc] , __A ) sys_singletons_num += singletons_num if NP_only or min_span: _snake_case = reader.set_annotated_parse_trees(__A , key_doc_lines[doc] , __A , __A ) if remove_nested: _snake_case , _snake_case = reader.remove_nested_coref_mentions(__A , __A ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _snake_case , _snake_case = reader.remove_nested_coref_mentions(__A , __A ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _snake_case = reader.get_mention_assignments(__A , __A ) _snake_case = reader.get_mention_assignments(__A , __A ) _snake_case = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( 'Number of resulting singleton clusters in the key ' F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' 'files, respectively' ) return doc_coref_infos def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A , __A , __A , __A ) -> Any: _snake_case = get_coref_infos(__A , __A , __A , __A , __A , __A ) _snake_case = {} _snake_case = 0 _snake_case = 0 for name, metric in metrics: _snake_case , _snake_case , _snake_case = evaluator.evaluate_documents(__A , __A , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: _snake_case = (conll / 3) * 100 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({'conll_score': conll} ) return output_scores def SCREAMING_SNAKE_CASE__ ( __A ) -> List[Any]: _snake_case = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: _snake_case = line.split()[5] if not parse_col == "-": _snake_case = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): def lowerCamelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False ): """simple docstring""" _snake_case = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: _snake_case = util.check_gold_parse_annotation(lowerCAmelCase_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _snake_case = evaluate( key_lines=lowerCAmelCase_ , sys_lines=lowerCAmelCase_ , metrics=lowerCAmelCase_ , NP_only=lowerCAmelCase_ , remove_nested=lowerCAmelCase_ , keep_singletons=lowerCAmelCase_ , min_span=lowerCAmelCase_ , ) return score
42
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A = 100 ) -> int: _snake_case = n * (n + 1) * (2 * n + 1) / 6 _snake_case = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'''{solution() = }''')
42
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = ViTImageProcessor if is_vision_available() else None @property def SCREAMING_SNAKE_CASE_ (self : str) ->Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =(3, 32, 128) lowerCamelCase__: Optional[Any] =tempfile.mkdtemp() # fmt: off lowerCamelCase__: str =["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowerCamelCase__: Optional[Any] =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(UpperCAmelCase_) + "\n") lowerCamelCase__: List[Any] ={ "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 32, "width": 128}, } lowerCamelCase__: int =os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , "w" , encoding="utf-8") as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , **UpperCAmelCase_ : Any) ->List[str]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str , **UpperCAmelCase_ : Optional[int]) ->List[Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Tuple =np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) lowerCamelCase__: List[Any] =Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) return image_input def SCREAMING_SNAKE_CASE_ (self : Any) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] =self.get_tokenizer() lowerCamelCase__: Dict =self.get_image_processor() lowerCamelCase__: Optional[Any] =MgpstrProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor.save_pretrained(self.tmpdirname) lowerCamelCase__: List[str] =MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: str =self.get_tokenizer() lowerCamelCase__: Optional[int] =self.get_image_processor() lowerCamelCase__: Optional[int] =MgpstrProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor.save_pretrained(self.tmpdirname) lowerCamelCase__: Union[str, Any] =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)") lowerCamelCase__: Optional[int] =self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) lowerCamelCase__: Optional[Any] =MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Any =self.get_image_processor() lowerCamelCase__: Dict =self.get_tokenizer() lowerCamelCase__: Any =MgpstrProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) lowerCamelCase__: str =self.prepare_image_inputs() lowerCamelCase__: int =image_processor(UpperCAmelCase_ , return_tensors="np") lowerCamelCase__: Any =processor(images=UpperCAmelCase_ , return_tensors="np") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.get_image_processor() lowerCamelCase__: Union[str, Any] =self.get_tokenizer() lowerCamelCase__: str =MgpstrProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) lowerCamelCase__: Tuple ="test" lowerCamelCase__: str =processor(text=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def SCREAMING_SNAKE_CASE_ (self : int) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: int =self.get_image_processor() lowerCamelCase__: int =self.get_tokenizer() lowerCamelCase__: Optional[int] =MgpstrProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) lowerCamelCase__: str ="test" lowerCamelCase__: Optional[Any] =self.prepare_image_inputs() lowerCamelCase__: int =processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ["pixel_values", "labels"]) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: str =self.get_image_processor() lowerCamelCase__: List[str] =self.get_tokenizer() lowerCamelCase__: Optional[Any] =MgpstrProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) lowerCamelCase__: List[str] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__: Any =processor.char_decode(UpperCAmelCase_) lowerCamelCase__: Optional[int] =tokenizer.batch_decode(UpperCAmelCase_) lowerCamelCase__: List[Any] =[seq.replace(" " , "") for seq in decoded_tok] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Dict =self.get_image_processor() lowerCamelCase__: Optional[Any] =self.get_tokenizer() lowerCamelCase__: Optional[int] =MgpstrProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) lowerCamelCase__: List[str] =None lowerCamelCase__: Union[str, Any] =self.prepare_image_inputs() lowerCamelCase__: Union[str, Any] =processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict: '''simple docstring''' lowerCamelCase__: str =self.get_image_processor() lowerCamelCase__: List[str] =self.get_tokenizer() lowerCamelCase__: Optional[Any] =MgpstrProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =torch.randn(1 , 27 , 38) lowerCamelCase__: str =torch.randn(1 , 27 , 50_257) lowerCamelCase__: Union[str, Any] =torch.randn(1 , 27 , 30_522) lowerCamelCase__: List[Any] =processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"])
273
import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __A = logging.getLogger(__name__) if __name__ == "__main__": __A = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=3_0522, type=int) __A = parser.parse_args() logger.info(f'Loading data from {args.data_file}') with open(args.data_file, "rb") as fp: __A = pickle.load(fp) logger.info("Counting occurrences for MLM.") __A = Counter() for tk_ids in data: counter.update(tk_ids) __A = [0] * args.vocab_size for k, v in counter.items(): __A = v logger.info(f'Dump to {args.token_counts_dump}') with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
273
1
"""simple docstring""" import numpy as np def _lowerCamelCase( a ): return 1 / (1 + np.exp(-vector )) def _lowerCamelCase( a ): return vector * sigmoid(1.7_02 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
261
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available SCREAMING_SNAKE_CASE__:List[str] = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Dict = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Dict = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__:Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
261
1
def snake_case_ ( lowerCAmelCase_ : int = 10**9 ): __lowercase : Tuple = 1 __lowercase : Union[str, Any] = 2 __lowercase : Union[str, Any] = 0 __lowercase : Dict = 0 __lowercase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __lowercase : Optional[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
306
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ): __lowercase : Tuple = s.rsplit(lowerCAmelCase_ , lowerCAmelCase_ ) return new.join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = {} __lowercase : Tuple = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowercase : List[str] = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: __lowercase : List[Any] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): __lowercase : Union[str, Any] = rreplace(lowerCAmelCase_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): __lowercase : Tuple = rreplace(lowerCAmelCase_ , """.b""" , """.bias""" , 1 ) __lowercase : Dict = value.float() return upgrade @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=True ): from dall_e import Encoder __lowercase : Any = Encoder() if os.path.exists(lowerCAmelCase_ ): __lowercase : List[Any] = torch.load(lowerCAmelCase_ ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase_ ) if config_path is not None: __lowercase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase_ ) else: __lowercase : List[str] = FlavaImageCodebookConfig() __lowercase : Optional[Any] = FlavaImageCodebook(lowerCAmelCase_ ).eval() __lowercase : List[Any] = encoder.state_dict() __lowercase : Union[str, Any] = upgrade_state_dict(lowerCAmelCase_ ) hf_model.load_state_dict(lowerCAmelCase_ ) __lowercase : Dict = hf_model.state_dict() __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
306
1
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class _UpperCamelCase ( __A , __A ): '''simple docstring''' lowerCamelCase__ =1 @register_to_config def __init__( self : Dict , a : int = 1000 , a : Optional[Union[np.ndarray, List[float]]] = None ) -> Any: """simple docstring""" self.set_timesteps(a ) # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE : int = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. SCREAMING_SNAKE_CASE : str = 4 # running values SCREAMING_SNAKE_CASE : Optional[int] = [] def __UpperCamelCase ( self : Tuple , a : int , a : Union[str, torch.device] = None ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = num_inference_steps SCREAMING_SNAKE_CASE : Tuple = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] SCREAMING_SNAKE_CASE : Dict = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE : Tuple = torch.sin(steps * math.pi / 2 ) ** 2 SCREAMING_SNAKE_CASE : Any = (1.0 - self.betas**2) ** 0.5 SCREAMING_SNAKE_CASE : List[Any] = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] SCREAMING_SNAKE_CASE : Optional[Any] = timesteps.to(a ) SCREAMING_SNAKE_CASE : str = [] def __UpperCamelCase ( self : int , a : torch.FloatTensor , a : int , a : torch.FloatTensor , a : bool = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) SCREAMING_SNAKE_CASE : Dict = (self.timesteps == timestep).nonzero().item() SCREAMING_SNAKE_CASE : Tuple = timestep_index + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(a ) if len(self.ets ) == 1: SCREAMING_SNAKE_CASE : List[Any] = self.ets[-1] elif len(self.ets ) == 2: SCREAMING_SNAKE_CASE : Tuple = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: SCREAMING_SNAKE_CASE : int = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: SCREAMING_SNAKE_CASE : Optional[int] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) SCREAMING_SNAKE_CASE : List[str] = self._get_prev_sample(a , a , a , a ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a ) def __UpperCamelCase ( self : Optional[int] , a : torch.FloatTensor , *a : Union[str, Any] , **a : Union[str, Any] ) -> torch.FloatTensor: """simple docstring""" return sample def __UpperCamelCase ( self : List[Any] , a : str , a : Tuple , a : Any , a : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.alphas[timestep_index] SCREAMING_SNAKE_CASE : Any = self.betas[timestep_index] SCREAMING_SNAKE_CASE : str = self.alphas[prev_timestep_index] SCREAMING_SNAKE_CASE : str = self.betas[prev_timestep_index] SCREAMING_SNAKE_CASE : List[Any] = (sample - sigma * ets) / max(a , 1e-8 ) SCREAMING_SNAKE_CASE : Optional[int] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.config.num_train_timesteps
76
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets a ="""\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } """ a ="""\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. """ a =""" Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for 'cvit-mkb-clsr' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for 'cvit-mkb-clsr' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"precision\": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'precision@10': 1.0} """ def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: return float((preds == labels).mean() ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: __lowerCamelCase : Optional[Any] = simple_accuracy(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : Tuple = float(fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: __lowerCamelCase : Any = np.array(lowerCamelCase__ ) __lowerCamelCase : List[Any] = np.array(lowerCamelCase__ ) __lowerCamelCase : Any = en_sentvecs.shape[0] # mean centering __lowerCamelCase : Union[str, Any] = en_sentvecs - np.mean(lowerCamelCase__ , axis=0 ) __lowerCamelCase : Dict = in_sentvecs - np.mean(lowerCamelCase__ , axis=0 ) __lowerCamelCase : Optional[int] = cdist(lowerCamelCase__ , lowerCamelCase__ , 'cosine' ) __lowerCamelCase : Optional[Any] = np.array(range(lowerCamelCase__ ) ) __lowerCamelCase : Dict = sim.argsort(axis=1 )[:, :1_0] __lowerCamelCase : Optional[int] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def lowerCAmelCase ( self : Optional[Any]): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]') return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), 'references': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), }) ,codebase_urls=[] ,reference_urls=[] ,format='numpy' if self.config_name != 'cvit-mkb-clsr' else None ,) def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[Any]): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)} elif self.config_name in ["wiki-ner"]: return acc_and_fa(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)} else: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]')
73
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING A : Union[str, Any] = logging.get_logger(__name__) class A (_lowerCamelCase ): '''simple docstring''' __lowerCamelCase : List[Any] = '''upernet''' def __init__( self : Optional[int] , __lowerCAmelCase : int=None , __lowerCAmelCase : Tuple=5_12 , __lowerCAmelCase : Dict=0.0_2 , __lowerCAmelCase : Optional[int]=[1, 2, 3, 6] , __lowerCAmelCase : str=True , __lowerCAmelCase : Tuple=0.4 , __lowerCAmelCase : List[str]=3_84 , __lowerCAmelCase : Optional[int]=2_56 , __lowerCAmelCase : Optional[Any]=1 , __lowerCAmelCase : Any=False , __lowerCAmelCase : Dict=2_55 , **__lowerCAmelCase : List[Any] , ) -> Tuple: """simple docstring""" super().__init__(**lowercase_ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): A__ = backbone_config.get("""model_type""" ) A__ = CONFIG_MAPPING[backbone_model_type] A__ = config_class.from_dict(lowercase_ ) A__ = backbone_config A__ = hidden_size A__ = initializer_range A__ = pool_scales A__ = use_auxiliary_head A__ = auxiliary_loss_weight A__ = auxiliary_in_channels A__ = auxiliary_channels A__ = auxiliary_num_convs A__ = auxiliary_concat_input A__ = loss_ignore_index def a_ ( self : int ) -> Optional[Any]: """simple docstring""" A__ = copy.deepcopy(self.__dict__ ) A__ = self.backbone_config.to_dict() A__ = self.__class__.model_type return output
356
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
276
0
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase__ = get_logger(__name__) class a__ : """simple docstring""" __lowerCamelCase = 'dummy_data' __lowerCamelCase = 'datasets' __lowerCamelCase = False def __init__( self , lowercase , lowercase , lowercase , lowercase = None , lowercase = False , lowercase = True , lowercase = None , ) -> Dict: '''simple docstring''' A__ = 0 A__ = dataset_name A__ = cache_dir A__ = use_local_dummy_data A__ = config # download_callbacks take a single url as input A__ = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root A__ = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general A__ = str(lowercase ) # to be downloaded A__ = None A__ = None @property def UpperCamelCase ( self ) -> Dict: '''simple docstring''' if self._dummy_file is None: A__ = self.download_dummy_data() return self._dummy_file @property def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def UpperCamelCase ( self ) -> Any: '''simple docstring''' return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) A__ = cached_path( lowercase , cache_dir=self.cache_dir , extract_compressed_file=lowercase , force_extract=lowercase ) return os.path.join(lowercase , self.dummy_file_name ) @property def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def UpperCamelCase ( self ) -> int: '''simple docstring''' if self._bucket_url is None: A__ = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def UpperCamelCase ( self ) -> Any: '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def UpperCamelCase ( self , lowercase , *lowercase ) -> Any: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested A__ = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned A__ = self.dummy_file_name # special case when data_url is a dict if isinstance(lowercase , lowercase ): return self.create_dummy_data_dict(lowercase , lowercase ) elif isinstance(lowercase , (list, tuple) ): return self.create_dummy_data_list(lowercase , lowercase ) else: return self.create_dummy_data_single(lowercase , lowercase ) def UpperCamelCase ( self , lowercase , *lowercase ) -> Dict: '''simple docstring''' return self.download_and_extract(lowercase ) def UpperCamelCase ( self , lowercase , lowercase ) -> Tuple: '''simple docstring''' return self.download_and_extract(lowercase ) def UpperCamelCase ( self , lowercase , *lowercase , **lowercase ) -> Optional[int]: '''simple docstring''' return path def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' return {} def UpperCamelCase ( self , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' A__ = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(lowercase , lowercase ): for single_url in single_urls: download_callback(lowercase ) else: A__ = single_urls download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(lowercase , lowercase ): A__ = [os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase ).name ) ) for x in single_urls] else: A__ = single_urls A__ = os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase ).name ) ) A__ = value # make sure that values are unique if all(isinstance(lowercase , lowercase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique A__ = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCamelCase ( self , lowercase , lowercase ) -> Dict: '''simple docstring''' A__ = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one A__ = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , lowercase ) ) for url in data_url ) A__ = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): A__ = [data_url[0]] * len(lowercase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus A__ = os.path.join(lowercase , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(lowercase ) return dummy_data_list def UpperCamelCase ( self , lowercase , lowercase ) -> List[str]: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus A__ = os.path.join(lowercase , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(lowercase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCamelCase ( self ) -> int: '''simple docstring''' pass def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass def UpperCamelCase ( self , lowercase ) -> Optional[Any]: '''simple docstring''' def _iter_archive_members(lowercase ): # this preserves the order of the members inside the ZIP archive A__ = Path(self.dummy_file ).parent A__ = path.relative_to(lowercase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: A__ = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(lowercase ) A__ = Path(lowercase ) A__ = _iter_archive_members(lowercase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(lowercase ).as_posix(), file_path.open("rb" ) def UpperCamelCase ( self , lowercase ) -> Dict: '''simple docstring''' if not isinstance(lowercase , lowercase ): A__ = [paths] for path in paths: if os.path.isfile(lowercase ): if os.path.basename(lowercase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(lowercase ): if os.path.basename(lowercase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(lowercase ): if filename.startswith((".", "__") ): continue yield os.path.join(lowercase , lowercase )
68
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
68
1
import fire from utils import calculate_rouge, save_json def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ): __a = [x.strip() for x in open(_UpperCAmelCase ).readlines()] __a = [x.strip() for x in open(_UpperCAmelCase ).readlines()][: len(_UpperCAmelCase )] __a = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) if save_path is not None: save_json(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
131
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __snake_case ( _UpperCAmelCase ): if isinstance(_UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class _A : def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' pass def _lowerCamelCase ( self : Any): '''simple docstring''' pass def _lowerCamelCase ( self : Dict): '''simple docstring''' pass def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim)) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim)) def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int]=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = {'''vision_model''': vision_model, '''text_model''': text_model} __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim)) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = after_output[0].numpy() __a = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-5) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE) __a = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __a = to_atuple(vision_model.config.image_size) __a = to_atuple(vision_model.config.patch_size) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __a = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) __a = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : float): '''simple docstring''' __a = np.abs((a - b)).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , F'Difference between torch and flax is {diff} (>= {tol}).') def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_save_load(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a , __a = self.get_pretrained_model_and_inputs() __a = model_a(**__SCREAMING_SNAKE_CASE) __a = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = model_a(**__SCREAMING_SNAKE_CASE) __a = after_outputs[0].numpy() __a = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-5) @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = TFViTModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFBertModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = TFViTModelTester(self) __a = TFBertModelTester(self) __a = vit_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Any): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE) __a = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , vision_config.num_hidden_layers) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __a = to_atuple(vision_model.config.image_size) __a = to_atuple(vision_model.config.patch_size) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __a = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) __a = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = TFDeiTModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFRobertaModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = TFDeiTModelTester(self) __a = TFRobertaModelTester(self) __a = vit_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Any): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = TFCLIPVisionModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFBertModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = TFCLIPVisionModelTester(self) __a = TFBertModelTester(self) __a = clip_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _A ( unittest.TestCase ): @slow def _lowerCamelCase ( self : str): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=__SCREAMING_SNAKE_CASE) __a = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''') __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') __a = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='''np''') __a = model(**__SCREAMING_SNAKE_CASE) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __a = np.array([[1.2_28_47_27, 0.3_10_41_22]]) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __SCREAMING_SNAKE_CASE , atol=1E-3))
131
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A_ : UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> int: '''simple docstring''' if root is None: return 0 # Validation def count_nodes(UpperCamelCase__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(UpperCamelCase__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(UpperCamelCase__ ) != count_coins(UpperCamelCase__ ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(UpperCamelCase__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCAmelCase , UpperCAmelCase = get_distrib(node.left ) UpperCAmelCase , UpperCAmelCase = get_distrib(node.right ) UpperCAmelCase = 1 - left_distrib_excess UpperCAmelCase = 1 - right_distrib_excess UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(UpperCamelCase__ ) + abs(UpperCamelCase__ ) ) UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(UpperCamelCase__ , UpperCamelCase__ ) return get_distrib(UpperCamelCase__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
273
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer __A : Dict = logging.get_logger(__name__) __A : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A : Tuple = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } __A : List[Any] = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } __A : List[Any] = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class A_ (a_ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = SqueezeBertTokenizer def __init__( self , _A=None , _A=None , _A=True , _A="[UNK]" , _A="[SEP]" , _A="[PAD]" , _A="[CLS]" , _A="[MASK]" , _A=True , _A=None , **_A , ): '''simple docstring''' super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _A ) != do_lower_case or normalizer_state.get('''strip_accents''' , _A ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _A ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(_A , normalizer_state.pop('''type''' ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**_A ) UpperCAmelCase = do_lower_case def _lowercase ( self , _A , _A=None ): '''simple docstring''' UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , _A , _A = None ): '''simple docstring''' UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , _A , _A = None ): '''simple docstring''' UpperCAmelCase = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
273
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
229
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase=13 , _lowercase=32 , _lowercase=3 , _lowercase=4 , _lowercase=[10, 20, 30, 40] , _lowercase=[2, 2, 3, 2] , _lowercase=True , _lowercase=True , _lowercase=37 , _lowercase="gelu" , _lowercase=10 , _lowercase=0.02 , _lowercase=["stage2", "stage3", "stage4"] , _lowercase=3 , _lowercase=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_stages _lowerCAmelCase = hidden_sizes _lowerCAmelCase = depths _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = out_features _lowerCAmelCase = num_labels _lowerCAmelCase = scope _lowerCAmelCase = num_stages def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def _lowercase ( self ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _lowercase ( self ): """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowercase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowercase , loss_ignore_index=255 , num_labels=self.num_labels , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = UperNetForSemanticSegmentation(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Dict = (UperNetForSemanticSegmentation,) if is_torch_available() else () _lowercase : Dict = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} _lowercase : Dict = False _lowercase : Optional[Any] = False _lowercase : List[str] = False _lowercase : Union[str, Any] = False _lowercase : List[str] = False _lowercase : List[Any] = False def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = UperNetModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self ): """simple docstring""" return def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowercase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _lowercase ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): _lowerCAmelCase = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) ) _lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(_lowercase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = _config_zero_init(_lowercase ) _lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _lowerCAmelCase = model_class(config=_lowercase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def _lowercase ( self ): """simple docstring""" pass @slow def _lowercase ( self ): """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def A (): _lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _lowerCAmelCase = Image.open(__lowerCamelCase ).convert("""RGB""" ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(_lowercase ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = processor(images=_lowercase , return_tensors="""pt""" ).to(_lowercase ) with torch.no_grad(): _lowerCAmelCase = model(**_lowercase ) _lowerCAmelCase = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowercase ) _lowerCAmelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowercase , atol=1e-4 ) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(_lowercase ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = processor(images=_lowercase , return_tensors="""pt""" ).to(_lowercase ) with torch.no_grad(): _lowerCAmelCase = model(**_lowercase ) _lowerCAmelCase = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowercase ) _lowerCAmelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowercase , atol=1e-4 ) )
229
1
def __lowerCamelCase ( snake_case__ ) -> list[int]: """simple docstring""" if num <= 0: raise ValueError("""Input must be a positive integer""" ) _SCREAMING_SNAKE_CASE = [True] * (num + 1) _SCREAMING_SNAKE_CASE = 2 while p * p <= num: if primes[p]: for i in range(p * p ,num + 1 ,snake_case__ ): _SCREAMING_SNAKE_CASE = False p += 1 return [prime for prime in range(2 ,num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
306
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
1
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( a__ , a__ , a__ ): lowerCAmelCase :Dict = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 5_0257 , _lowerCamelCase = 1024 , _lowerCamelCase = 768 , _lowerCamelCase = 12 , _lowerCamelCase = 12 , _lowerCamelCase = None , _lowerCamelCase = "gelu_new" , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , _lowerCamelCase = 1e-5 , _lowerCamelCase = 0.02 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = False , _lowerCamelCase = False , ): super().__init__() UpperCAmelCase__ : str = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''') UpperCAmelCase__ : int = prefix_inner_dim UpperCAmelCase__ : Optional[Any] = prefix_hidden_dim UpperCAmelCase__ : int = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCAmelCase__ : Tuple = ( nn.Linear(self.prefix_hidden_dim , _lowerCamelCase) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCAmelCase__ : Optional[Any] = GPTaConfig( vocab_size=_lowerCamelCase , n_positions=_lowerCamelCase , n_embd=_lowerCamelCase , n_layer=_lowerCamelCase , n_head=_lowerCamelCase , n_inner=_lowerCamelCase , activation_function=_lowerCamelCase , resid_pdrop=_lowerCamelCase , embd_pdrop=_lowerCamelCase , attn_pdrop=_lowerCamelCase , layer_norm_epsilon=_lowerCamelCase , initializer_range=_lowerCamelCase , scale_attn_weights=_lowerCamelCase , use_cache=_lowerCamelCase , scale_attn_by_inverse_layer_idx=_lowerCamelCase , reorder_and_upcast_attn=_lowerCamelCase , ) UpperCAmelCase__ : int = GPTaLMHeadModel(_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , ): UpperCAmelCase__ : Union[str, Any] = self.transformer.transformer.wte(_lowerCamelCase) UpperCAmelCase__ : int = self.encode_prefix(_lowerCamelCase) UpperCAmelCase__ : List[str] = self.decode_prefix(_lowerCamelCase) UpperCAmelCase__ : str = torch.cat((prefix_embeds, embedding_text) , dim=1) if labels is not None: UpperCAmelCase__ : List[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device) UpperCAmelCase__ : Optional[int] = torch.cat((dummy_token, input_ids) , dim=1) UpperCAmelCase__ : List[Any] = self.transformer(inputs_embeds=_lowerCamelCase , labels=_lowerCamelCase , attention_mask=_lowerCamelCase) if self.prefix_hidden_dim is not None: return out, hidden else: return out def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase): return torch.zeros(_lowerCamelCase , self.prefix_length , dtype=torch.intaa , device=_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase): return self.encode_prefix(_lowerCamelCase) @torch.no_grad() def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : int = torch.split(_lowerCamelCase , 1 , dim=0) UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Union[str, Any] = [] for feature in features: UpperCAmelCase__ : Dict = self.decode_prefix(feature.to(_lowerCamelCase)) # back to the clip feature # Only support beam search for now UpperCAmelCase__ : int = self.generate_beam( input_embeds=_lowerCamelCase , device=_lowerCamelCase , eos_token_id=_lowerCamelCase) generated_tokens.append(output_tokens[0]) generated_seq_lengths.append(seq_lengths[0]) UpperCAmelCase__ : Dict = torch.stack(_lowerCamelCase) UpperCAmelCase__ : Any = torch.stack(_lowerCamelCase) return generated_tokens, generated_seq_lengths @torch.no_grad() def snake_case__ ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = 5 , _lowerCamelCase = 67 , _lowerCamelCase = 1.0 , _lowerCamelCase = None , ): UpperCAmelCase__ : Union[str, Any] = eos_token_id UpperCAmelCase__ : Dict = None UpperCAmelCase__ : Any = None UpperCAmelCase__ : Dict = torch.ones(_lowerCamelCase , device=_lowerCamelCase , dtype=torch.int) UpperCAmelCase__ : List[str] = torch.zeros(_lowerCamelCase , device=_lowerCamelCase , dtype=torch.bool) if input_embeds is not None: UpperCAmelCase__ : str = input_embeds else: UpperCAmelCase__ : int = self.transformer.transformer.wte(_lowerCamelCase) for i in range(_lowerCamelCase): UpperCAmelCase__ : str = self.transformer(inputs_embeds=_lowerCamelCase) UpperCAmelCase__ : Tuple = outputs.logits UpperCAmelCase__ : List[str] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) UpperCAmelCase__ : Any = logits.softmax(-1).log() if scores is None: UpperCAmelCase__ : List[Any] = logits.topk(_lowerCamelCase , -1) UpperCAmelCase__ : int = generated.expand(_lowerCamelCase , *generated.shape[1:]) UpperCAmelCase__ : str = next_tokens.permute(1 , 0), scores.squeeze(0) if tokens is None: UpperCAmelCase__ : Union[str, Any] = next_tokens else: UpperCAmelCase__ : List[Any] = tokens.expand(_lowerCamelCase , *tokens.shape[1:]) UpperCAmelCase__ : Optional[Any] = torch.cat((tokens, next_tokens) , dim=1) else: UpperCAmelCase__ : Optional[int] = -float(np.inf) UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Union[str, Any] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 UpperCAmelCase__ : Optional[Any] = scores_sum / seq_lengths[:, None] UpperCAmelCase__ : Dict = scores_sum_average.view(-1).topk(_lowerCamelCase , -1) UpperCAmelCase__ : Optional[int] = next_tokens // scores_sum.shape[1] UpperCAmelCase__ : int = seq_lengths[next_tokens_source] UpperCAmelCase__ : Union[str, Any] = next_tokens % scores_sum.shape[1] UpperCAmelCase__ : Any = next_tokens.unsqueeze(1) UpperCAmelCase__ : str = tokens[next_tokens_source] UpperCAmelCase__ : Dict = torch.cat((tokens, next_tokens) , dim=1) UpperCAmelCase__ : Union[str, Any] = generated[next_tokens_source] UpperCAmelCase__ : Tuple = scores_sum_average * seq_lengths UpperCAmelCase__ : int = is_stopped[next_tokens_source] UpperCAmelCase__ : List[str] = self.transformer.transformer.wte(next_tokens.squeeze()).view(generated.shape[0] , 1 , -1) UpperCAmelCase__ : Dict = torch.cat((generated, next_token_embed) , dim=1) UpperCAmelCase__ : List[Any] = is_stopped + next_tokens.eq(_lowerCamelCase).squeeze() if is_stopped.all(): break UpperCAmelCase__ : Dict = scores / seq_lengths UpperCAmelCase__ : Dict = scores.argsort(descending=_lowerCamelCase) # tokens tensors are already padded to max_seq_length UpperCAmelCase__ : List[str] = [tokens[i] for i in order] UpperCAmelCase__ : Optional[Any] = torch.stack(_lowerCamelCase , dim=0) UpperCAmelCase__ : Tuple = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype) return output_texts, seq_lengths
356
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __A =logging.get_logger(__name__) __A ={'vocab_file': 'spiece.model'} __A ={ 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class _snake_case ( a__ ): def __init__( self , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<sep>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<cls>" , _lowerCamelCase="<mask>" , _lowerCamelCase=["<eop>", "<eod>"] , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCAmelCase__ : Dict = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase) if isinstance(_lowerCamelCase , _lowerCamelCase) else mask_token UpperCAmelCase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : str = do_lower_case UpperCAmelCase__ : Tuple = remove_space UpperCAmelCase__ : List[str] = keep_accents UpperCAmelCase__ : Any = vocab_file UpperCAmelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowerCamelCase) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""") UpperCAmelCase__ : Union[str, Any] = jieba UpperCAmelCase__ : int = str.maketrans(""" \n""" , """\u2582\u2583""") @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def snake_case__ ( self): return len(self.sp_model) def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = {self.convert_ids_to_tokens(_lowerCamelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self): UpperCAmelCase__ : List[str] = self.__dict__.copy() UpperCAmelCase__ : Optional[int] = None return state def __setstate__( self , _lowerCamelCase): UpperCAmelCase__ : Optional[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs"""): UpperCAmelCase__ : Tuple = {} UpperCAmelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def snake_case__ ( self , _lowerCamelCase): if self.remove_space: UpperCAmelCase__ : Tuple = """ """.join(inputs.strip().split()) else: UpperCAmelCase__ : str = inputs UpperCAmelCase__ : List[Any] = outputs.replace("""``""" , """\"""").replace("""''""" , """\"""") if not self.keep_accents: UpperCAmelCase__ : str = unicodedata.normalize("""NFKD""" , _lowerCamelCase) UpperCAmelCase__ : Any = """""".join([c for c in outputs if not unicodedata.combining(_lowerCamelCase)]) if self.do_lower_case: UpperCAmelCase__ : Optional[int] = outputs.lower() return outputs def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : List[str] = self.preprocess_text(_lowerCamelCase) UpperCAmelCase__ : Dict = self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase) UpperCAmelCase__ : List[Any] = [] for piece in pieces: if len(_lowerCamelCase) > 1 and piece[-1] == str(""",""") and piece[-2].isdigit(): UpperCAmelCase__ : str = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCamelCase , """""")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCAmelCase__ : Optional[int] = cur_pieces[1:] else: UpperCAmelCase__ : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowerCamelCase) else: new_pieces.append(_lowerCamelCase) return new_pieces def snake_case__ ( self , _lowerCamelCase): return self.sp_model.PieceToId(_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase): return self.sp_model.IdToPiece(_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : str = """""".join(_lowerCamelCase).replace(_lowerCamelCase , """ """).strip() return out_string def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None): UpperCAmelCase__ : Optional[Any] = [self.sep_token_id] UpperCAmelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase) if token_ids_a is not None: return ([0] * len(_lowerCamelCase)) + [1] + ([0] * len(_lowerCamelCase)) + [1, 1] return ([0] * len(_lowerCamelCase)) + [1, 1] def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None): UpperCAmelCase__ : int = [self.sep_token_id] UpperCAmelCase__ : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None): if not os.path.isdir(_lowerCamelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return UpperCAmelCase__ : str = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowerCamelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowerCamelCase) elif not os.path.isfile(self.vocab_file): with open(_lowerCamelCase , """wb""") as fi: UpperCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase) return (out_vocab_file,) def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = super()._decode(*_lowerCamelCase , **_lowerCamelCase) UpperCAmelCase__ : Any = text.replace(""" """ , """""").replace("""\u2582""" , """ """).replace("""\u2583""" , """\n""") return text
283
0
import math def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' return math.sqrt(__A ) * math.sqrt(__A ) == num def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = n while left <= right: UpperCAmelCase__ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: UpperCAmelCase__ = mid - 1 else: UpperCAmelCase__ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
65
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class A__ ( UpperCAmelCase__ ): __UpperCamelCase : torch.FloatTensor class A__ ( UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self :Optional[Any] , SCREAMING_SNAKE_CASE :int = 3 , SCREAMING_SNAKE_CASE :int = 3 , SCREAMING_SNAKE_CASE :Tuple[str] = ("DownEncoderBlock2D",) , SCREAMING_SNAKE_CASE :Tuple[str] = ("UpDecoderBlock2D",) , SCREAMING_SNAKE_CASE :Tuple[int] = (6_4,) , SCREAMING_SNAKE_CASE :int = 1 , SCREAMING_SNAKE_CASE :str = "silu" , SCREAMING_SNAKE_CASE :int = 3 , SCREAMING_SNAKE_CASE :int = 3_2 , SCREAMING_SNAKE_CASE :int = 2_5_6 , SCREAMING_SNAKE_CASE :int = 3_2 , SCREAMING_SNAKE_CASE :Optional[int] = None , SCREAMING_SNAKE_CASE :float = 0.18_215 , SCREAMING_SNAKE_CASE :str = "group" , ) -> Optional[int]: '''simple docstring''' super().__init__() # pass init params to Encoder _a : Union[str, Any] =Encoder( in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , down_block_types=SCREAMING_SNAKE_CASE , block_out_channels=SCREAMING_SNAKE_CASE , layers_per_block=SCREAMING_SNAKE_CASE , act_fn=SCREAMING_SNAKE_CASE , norm_num_groups=SCREAMING_SNAKE_CASE , double_z=SCREAMING_SNAKE_CASE , ) _a : Optional[int] =vq_embed_dim if vq_embed_dim is not None else latent_channels _a : Optional[int] =nn.Convad(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 1 ) _a : str =VectorQuantizer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , beta=0.25 , remap=SCREAMING_SNAKE_CASE , sane_index_shape=SCREAMING_SNAKE_CASE ) _a : List[str] =nn.Convad(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 1 ) # pass init params to Decoder _a : List[str] =Decoder( in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , up_block_types=SCREAMING_SNAKE_CASE , block_out_channels=SCREAMING_SNAKE_CASE , layers_per_block=SCREAMING_SNAKE_CASE , act_fn=SCREAMING_SNAKE_CASE , norm_num_groups=SCREAMING_SNAKE_CASE , norm_type=SCREAMING_SNAKE_CASE , ) @apply_forward_hook def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :torch.FloatTensor , SCREAMING_SNAKE_CASE :bool = True ) -> VQEncoderOutput: '''simple docstring''' _a : Optional[int] =self.encoder(SCREAMING_SNAKE_CASE ) _a : int =self.quant_conv(SCREAMING_SNAKE_CASE ) if not return_dict: return (h,) return VQEncoderOutput(latents=SCREAMING_SNAKE_CASE ) @apply_forward_hook def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :torch.FloatTensor , SCREAMING_SNAKE_CASE :bool = False , SCREAMING_SNAKE_CASE :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' # also go through quantization layer if not force_not_quantize: _a , _a , _a : Tuple =self.quantize(SCREAMING_SNAKE_CASE ) else: _a : str =h _a : Dict =self.post_quant_conv(SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =self.decoder(SCREAMING_SNAKE_CASE , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :torch.FloatTensor , SCREAMING_SNAKE_CASE :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' _a : Tuple =sample _a : int =self.encode(SCREAMING_SNAKE_CASE ).latents _a : List[Any] =self.decode(SCREAMING_SNAKE_CASE ).sample if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE )
276
0
import os from math import logaa def A ( lowercase = "base_exp.txt" ) -> int: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowercase ) , lowercase ) ) ): UpperCamelCase , UpperCamelCase = list(map(lowercase , line.split(',' ) ) ) if x * logaa(lowercase ) > largest: UpperCamelCase = x * logaa(lowercase ) UpperCamelCase = i + 1 return result if __name__ == "__main__": print(solution())
110
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Any = CTRLTokenizer __lowercase : Any = False __lowercase : Union[str, Any] = False def __UpperCamelCase ( self ) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] UpperCamelCase = {'unk_token': '<unk>'} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def __UpperCamelCase ( self , **A_ ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A_ ) def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = 'adapt react readapt apt' UpperCamelCase = 'adapt react readapt apt' return input_text, output_text def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase = 'adapt react readapt apt' UpperCamelCase = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ )
110
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
131
def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Any = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key lowerCAmelCase__ : Union[str, Any] = remove_duplicates(key.upper() ) lowerCAmelCase__ : Dict = len(_a ) # First fill cipher with key characters lowerCAmelCase__ : Any = {alphabet[i]: char for i, char in enumerate(_a )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_a ) , 26 ): lowerCAmelCase__ : List[str] = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 lowerCAmelCase__ : str = alphabet[i - offset] lowerCAmelCase__ : Dict = char return cipher_alphabet def lowerCamelCase_ ( _a , _a ): """simple docstring""" return "".join(cipher_map.get(_a , _a ) for ch in message.upper() ) def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : int = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_a , _a ) for ch in message.upper() ) def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Any = input('''Enter message to encode or decode: ''' ).strip() lowerCAmelCase__ : Tuple = input('''Enter keyword: ''' ).strip() lowerCAmelCase__ : List[str] = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: lowerCAmelCase__ : List[Any] = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) lowerCAmelCase__ : Dict = create_cipher_map(_a ) print(func(_a , _a ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
131
1
'''simple docstring''' import math def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __A ='Enter the base and the power separated by a comma: ' __A , __A =map(int, input(prompt).split(',')) __A , __A =map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. __A =res(xa, ya) __A =res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
370
'''simple docstring''' import colorsys from PIL import Image # type: ignore def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Optional[Any] = x UpperCAmelCase__ : Optional[int] = y for step in range(UpperCamelCase__ ): # noqa: B007 UpperCAmelCase__ : List[str] = a * a - b * b + x UpperCAmelCase__ : Optional[int] = 2 * a * b + y UpperCAmelCase__ : int = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _UpperCamelCase ( UpperCamelCase__ ): if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def _UpperCamelCase ( UpperCamelCase__ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(UpperCamelCase__ , 1 , 1 ) ) def _UpperCamelCase ( UpperCamelCase__ = 8_0_0 , UpperCamelCase__ = 6_0_0 , UpperCamelCase__ = -0.6 , UpperCamelCase__ = 0 , UpperCamelCase__ = 3.2 , UpperCamelCase__ = 5_0 , UpperCamelCase__ = True , ): UpperCAmelCase__ : str = Image.new("""RGB""" , (image_width, image_height) ) UpperCAmelCase__ : Optional[int] = img.load() # loop through the image-coordinates for image_x in range(UpperCamelCase__ ): for image_y in range(UpperCamelCase__ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase__ : Union[str, Any] = figure_width / image_width * image_height UpperCAmelCase__ : Union[str, Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase__ : Tuple = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase__ : List[str] = get_distance(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase__ : Any = get_color_coded_rgb(UpperCamelCase__ ) else: UpperCAmelCase__ : Tuple = get_black_and_white_rgb(UpperCamelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __A =get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
283
0
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def a ( self : int ) -> Optional[Any]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def a ( self : List[Any] ) -> Any: __lowerCAmelCase = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] ) -> Tuple: __lowerCAmelCase = self._create_example_records() __lowerCAmelCase = Dataset.from_list(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(SCREAMING_SNAKE_CASE__ ): self.assertDictEqual(SCREAMING_SNAKE_CASE__ , example_records[i] ) def a ( self : Tuple ) -> List[str]: __lowerCAmelCase = self._create_example_records() __lowerCAmelCase = Dataset.from_list(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def a ( self : List[str] ) -> List[str]: # checks what happens with missing columns __lowerCAmelCase = [{"""col_1""": 1}, {"""col_2""": """x"""}] __lowerCAmelCase = Dataset.from_list(SCREAMING_SNAKE_CASE__ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def a ( self : Dict ) -> Optional[int]: # checks if the type can be inferred from the second record __lowerCAmelCase = [{"""col_1""": []}, {"""col_1""": [1, 2]}] __lowerCAmelCase = Dataset.from_list(SCREAMING_SNAKE_CASE__ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def a ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase = Dataset.from_list([] ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
229
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowercase ( unittest.TestCase ): '''simple docstring''' @property def a ( self : Any ) -> int: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def a ( self : Dict ) -> int: __lowerCAmelCase = self.dummy_uncond_unet __lowerCAmelCase = PNDMScheduler() __lowerCAmelCase = PNDMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pndm.to(SCREAMING_SNAKE_CASE__ ) pndm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pndm(generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=20 , output_type="""numpy""" ).images __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pndm(generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=20 , output_type="""numpy""" , return_dict=SCREAMING_SNAKE_CASE__ )[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def a ( self : Any ) -> Any: __lowerCAmelCase = """google/ddpm-cifar10-32""" __lowerCAmelCase = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = PNDMScheduler() __lowerCAmelCase = PNDMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pndm.to(SCREAMING_SNAKE_CASE__ ) pndm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pndm(generator=SCREAMING_SNAKE_CASE__ , output_type="""numpy""" ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
229
1
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase (__lowerCamelCase ): """simple docstring""" @require_torch def A_ ( self : Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " SCREAMING_SNAKE_CASE__ : List[Any] = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " SCREAMING_SNAKE_CASE__ : Optional[Any] = "\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE__ : str = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(lowercase_ ) BertModel.from_pretrained(lowercase_ ) BertTokenizer.from_pretrained(lowercase_ ) pipeline(task="fill-mask", model=lowercase_ ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE__ : Optional[int] = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE__ : Any = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE__ : Union[str, Any] = "1" SCREAMING_SNAKE_CASE__ : Any = subprocess.run(lowercase_, env=lowercase_, check=lowercase_, capture_output=lowercase_ ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn("success", result.stdout.decode() ) @require_torch def A_ ( self : List[str] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " SCREAMING_SNAKE_CASE__ : List[Any] = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " SCREAMING_SNAKE_CASE__ : int = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE__ : Optional[Any] = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(lowercase_ ) BertModel.from_pretrained(lowercase_ ) BertTokenizer.from_pretrained(lowercase_ ) pipeline(task="fill-mask", model=lowercase_ ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE__ : str = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE__ : List[str] = self.get_env() SCREAMING_SNAKE_CASE__ : str = subprocess.run(lowercase_, env=lowercase_, check=lowercase_, capture_output=lowercase_ ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn("success", result.stdout.decode() ) @require_torch def A_ ( self : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = "\nfrom transformers import BertConfig, BertModel, BertTokenizer\n " SCREAMING_SNAKE_CASE__ : List[str] = "\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n " SCREAMING_SNAKE_CASE__ : Tuple = "\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE__ : Optional[Any] = [sys.executable, "-c", "\n".join([load, run] )] # should succeed SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_env() SCREAMING_SNAKE_CASE__ : Tuple = subprocess.run(lowercase_, env=lowercase_, check=lowercase_, capture_output=lowercase_ ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn("success", result.stdout.decode() ) # next emulate no network SCREAMING_SNAKE_CASE__ : List[str] = [sys.executable, "-c", "\n".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE__ : Any = "1" SCREAMING_SNAKE_CASE__ : Optional[Any] = subprocess.run(lowercase_, env=lowercase_, check=lowercase_, capture_output=lowercase_ ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn("success", result.stdout.decode() ) @require_torch def A_ ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = "\nfrom transformers import pipeline\n " SCREAMING_SNAKE_CASE__ : Any = "\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n " SCREAMING_SNAKE_CASE__ : Any = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_env() SCREAMING_SNAKE_CASE__ : Union[str, Any] = "1" SCREAMING_SNAKE_CASE__ : int = [sys.executable, "-c", "\n".join([load, mock, run] )] SCREAMING_SNAKE_CASE__ : Optional[Any] = subprocess.run(lowercase_, env=lowercase_, check=lowercase_, capture_output=lowercase_ ) self.assertEqual(result.returncode, 1, result.stderr ) self.assertIn( "You cannot infer task automatically within `pipeline` when using offline mode", result.stderr.decode().replace("\n", "" ), ) @require_torch def A_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = "\nfrom transformers import AutoModel\n " SCREAMING_SNAKE_CASE__ : Tuple = "\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n " # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE__ : List[Any] = [sys.executable, "-c", "\n".join([load, run] )] # should succeed SCREAMING_SNAKE_CASE__ : List[Any] = self.get_env() SCREAMING_SNAKE_CASE__ : Tuple = subprocess.run(lowercase_, env=lowercase_, check=lowercase_, capture_output=lowercase_ ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn("success", result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE__ : List[Any] = "1" SCREAMING_SNAKE_CASE__ : str = subprocess.run(lowercase_, env=lowercase_, check=lowercase_, capture_output=lowercase_ ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn("success", result.stdout.decode() )
369
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : """simple docstring""" def __init__( self : List[Any], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : List[Any]=1_3, _UpperCAmelCase : Optional[Any]=3_0, _UpperCAmelCase : List[str]=2, _UpperCAmelCase : str=3, _UpperCAmelCase : Optional[int]=True, _UpperCAmelCase : Optional[int]=True, _UpperCAmelCase : Optional[Any]=3_2, _UpperCAmelCase : Any=5, _UpperCAmelCase : Optional[Any]=4, _UpperCAmelCase : List[Any]=3_7, _UpperCAmelCase : Optional[int]="gelu", _UpperCAmelCase : int=0.1, _UpperCAmelCase : List[str]=0.1, _UpperCAmelCase : List[str]=1_0, _UpperCAmelCase : List[Any]=0.02, _UpperCAmelCase : List[Any]=None, ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = parent SCREAMING_SNAKE_CASE__ : Optional[Any] = batch_size SCREAMING_SNAKE_CASE__ : str = image_size SCREAMING_SNAKE_CASE__ : Optional[int] = patch_size SCREAMING_SNAKE_CASE__ : Optional[int] = num_channels SCREAMING_SNAKE_CASE__ : List[str] = is_training SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : List[Any] = hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : str = num_attention_heads SCREAMING_SNAKE_CASE__ : str = intermediate_size SCREAMING_SNAKE_CASE__ : List[Any] = hidden_act SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Any = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Any = initializer_range SCREAMING_SNAKE_CASE__ : Any = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ : str = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ : str = num_patches + 1 def A_ ( self : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : int = self.get_config() return config, pixel_values, labels def A_ ( self : int ) -> Tuple: """simple docstring""" return ViTMSNConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, ) def A_ ( self : Dict, _UpperCAmelCase : List[str], _UpperCAmelCase : List[Any], _UpperCAmelCase : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = ViTMSNModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : int, _UpperCAmelCase : Dict, _UpperCAmelCase : List[Any], _UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.type_sequence_label_size SCREAMING_SNAKE_CASE__ : Tuple = ViTMSNForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : int = model(_UpperCAmelCase, labels=_UpperCAmelCase ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = ViTMSNForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def A_ ( self : str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Tuple = config_and_inputs SCREAMING_SNAKE_CASE__ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () UpperCAmelCase_ = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def A_ ( self : Any ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = ViTMSNModelTester(self ) SCREAMING_SNAKE_CASE__ : str = ConfigTester(self, config_class=_UpperCAmelCase, has_text_modality=_UpperCAmelCase, hidden_size=3_7 ) def A_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def A_ ( self : List[str] ) -> Tuple: """simple docstring""" pass def A_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) SCREAMING_SNAKE_CASE__ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase, nn.Linear ) ) def A_ ( self : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : int = model_class(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : int = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : str = ["pixel_values"] self.assertListEqual(arg_names[:1], _UpperCAmelCase ) def A_ ( self : Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def A_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> List[Any]: """simple docstring""" for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Optional[Any] = ViTMSNModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _a ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def A_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def A_ ( self : Any ) -> Dict: """simple docstring""" torch.manual_seed(2 ) SCREAMING_SNAKE_CASE__ : List[str] = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = self.default_image_processor SCREAMING_SNAKE_CASE__ : List[Any] = prepare_img() SCREAMING_SNAKE_CASE__ : Dict = image_processor(images=_UpperCAmelCase, return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Dict = model(**_UpperCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE__ : Tuple = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], _UpperCAmelCase, atol=1E-4 ) )
191
0
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a ( a_ ): UpperCAmelCase_ : int =["image_processor", "tokenizer"] UpperCAmelCase_ : Optional[int] ="Pix2StructImageProcessor" UpperCAmelCase_ : Union[str, Any] =("T5Tokenizer", "T5TokenizerFast") def __init__( self , _lowerCamelCase , _lowerCamelCase ): lowercase = False super().__init__(__A , __A ) def __call__( self , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 2_0_4_8 , _lowerCamelCase = 0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = None , **_lowerCamelCase , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: lowercase = self.tokenizer lowercase = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowercase = self.image_processor( __A , return_tensors=__A , max_patches=__A , **__A ) else: # add pixel_values and bbox lowercase = self.image_processor( __A , return_tensors=__A , max_patches=__A , header_text=__A , **__A ) if text is not None and not self.image_processor.is_vqa: lowercase = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) if "attention_mask" in text_encoding: lowercase = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: lowercase = text_encoding.pop('input_ids' ) else: lowercase = None if text_encoding is not None: encoding_image_processor.update(__A ) return encoding_image_processor def UpperCamelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase_ ( self ): lowercase = self.tokenizer.model_input_names lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
220
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCAmelCase_ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' __A : Tuple = StableUnCLIPPipeline __A : Optional[int] = TEXT_TO_IMAGE_PARAMS __A : str = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A : Union[str, Any] = False def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = 32 lowerCamelCase : Dict = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCamelCase : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCamelCase : Optional[int] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__A , projection_dim=__A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase : List[Any] = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__A , num_layers=1 , ) torch.manual_seed(0 ) lowerCamelCase : Dict = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1000 , clip_sample=__A , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowerCamelCase : Optional[int] = StableUnCLIPImageNormalizer(embedding_dim=__A ) lowerCamelCase : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowerCamelCase : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCamelCase : str = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase : Any = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__A , layers_per_block=1 , upcast_attention=__A , use_linear_projection=__A , ) torch.manual_seed(0 ) lowerCamelCase : int = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=__A , steps_offset=1 , ) torch.manual_seed(0 ) lowerCamelCase : Optional[Any] = AutoencoderKL() lowerCamelCase : Optional[int] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def _snake_case ( self , __A , __A=0 ): """simple docstring""" if str(__A ).startswith("mps" ): lowerCamelCase : Optional[int] = torch.manual_seed(__A ) else: lowerCamelCase : Optional[Any] = torch.Generator(device=__A ).manual_seed(__A ) lowerCamelCase : Tuple = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=__A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=__A ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowerCamelCase : str = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase : List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase : Dict = pipe("anime turle" , generator=__A , output_type="np" ) lowerCamelCase : Dict = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__A , __A ) def _snake_case ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase : int = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowerCamelCase : Union[str, Any] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase : Any = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowerCamelCase : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
283
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, 'torch.Tensor', Mapping] ): def __init__(self : Optional[int] , a__ : Tuple=None , **a__ : Optional[int] ): """simple docstring""" super().__init__(features=a__ ) __snake_case = torch_tensor_kwargs import torch # noqa import torch at initialization def a (self : Union[str, Any] , a__ : Union[str, Any] ): """simple docstring""" import torch if isinstance(a__ , a__ ) and column: if all( isinstance(a__ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(a__ ) return column def a (self : Optional[Any] , a__ : str ): """simple docstring""" import torch if isinstance(a__ , (str, bytes, type(a__ )) ): return value elif isinstance(a__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __snake_case = {} if isinstance(a__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __snake_case = {'''dtype''': torch.intaa} elif isinstance(a__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __snake_case = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a__ , PIL.Image.Image ): __snake_case = np.asarray(a__ ) return torch.tensor(a__ , **{**default_dtype, **self.torch_tensor_kwargs} ) def a (self : Optional[int] , a__ : str ): """simple docstring""" import torch # support for torch, tf, jax etc. if hasattr(a__ , '''__array__''' ) and not isinstance(a__ , torch.Tensor ): __snake_case = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a__ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a__ ) for substruct in data_struct] ) elif isinstance(a__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a__ ) for substruct in data_struct] ) return self._tensorize(a__ ) def a (self : Optional[Any] , a__ : dict ): """simple docstring""" return map_nested(self._recursive_tensorize , a__ , map_list=a__ ) def a (self : Optional[int] , a__ : pa.Table ): """simple docstring""" __snake_case = self.numpy_arrow_extractor().extract_row(a__ ) __snake_case = self.python_features_decoder.decode_row(a__ ) return self.recursive_tensorize(a__ ) def a (self : List[Any] , a__ : pa.Table ): """simple docstring""" __snake_case = self.numpy_arrow_extractor().extract_column(a__ ) __snake_case = self.python_features_decoder.decode_column(a__ , pa_table.column_names[0] ) __snake_case = self.recursive_tensorize(a__ ) __snake_case = self._consolidate(a__ ) return column def a (self : Optional[int] , a__ : pa.Table ): """simple docstring""" __snake_case = self.numpy_arrow_extractor().extract_batch(a__ ) __snake_case = self.python_features_decoder.decode_batch(a__ ) __snake_case = self.recursive_tensorize(a__ ) for column_name in batch: __snake_case = self._consolidate(batch[column_name] ) return batch
238
def lowerCamelCase__ ( snake_case_ : int = 1000 ) -> int: __snake_case = 2**power __snake_case = str(snake_case_ ) __snake_case = list(snake_case_ ) __snake_case = 0 for i in list_num: sum_of_num += int(snake_case_ ) return sum_of_num if __name__ == "__main__": snake_case_ = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) snake_case_ = solution(power) print('Sum of the digits is: ', result)
238
1
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if "img_encoder.pos_embed" in name: lowercase__ = name.replace('''img_encoder.pos_embed''' , '''vision_model.embeddings.position_embeddings''' ) if "img_encoder.patch_embed.proj" in name: lowercase__ = name.replace('''img_encoder.patch_embed.proj''' , '''vision_model.embeddings.patch_embeddings.projection''' ) if "img_encoder.patch_embed.norm" in name: lowercase__ = name.replace('''img_encoder.patch_embed.norm''' , '''vision_model.embeddings.layernorm''' ) if "img_encoder.layers" in name: lowercase__ = name.replace('''img_encoder.layers''' , '''vision_model.encoder.stages''' ) if "blocks" in name and "res" not in name: lowercase__ = name.replace('''blocks''' , '''layers''' ) if "attn" in name and "pre_assign" not in name: lowercase__ = name.replace('''attn''' , '''self_attn''' ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase__ = name.replace('''proj''' , '''out_proj''' ) if "pre_assign_attn.attn.proj" in name: lowercase__ = name.replace('''pre_assign_attn.attn.proj''' , '''pre_assign_attn.attn.out_proj''' ) if "norm1" in name: lowercase__ = name.replace('''norm1''' , '''layer_norm1''' ) if "norm2" in name and "pre_assign" not in name: lowercase__ = name.replace('''norm2''' , '''layer_norm2''' ) if "img_encoder.norm" in name: lowercase__ = name.replace('''img_encoder.norm''' , '''vision_model.layernorm''' ) # text encoder if "text_encoder.token_embedding" in name: lowercase__ = name.replace('''text_encoder.token_embedding''' , '''text_model.embeddings.token_embedding''' ) if "text_encoder.positional_embedding" in name: lowercase__ = name.replace('''text_encoder.positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "text_encoder.transformer.resblocks." in name: lowercase__ = name.replace('''text_encoder.transformer.resblocks.''' , '''text_model.encoder.layers.''' ) if "ln_1" in name: lowercase__ = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: lowercase__ = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: lowercase__ = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: lowercase__ = name.replace('''c_proj''' , '''fc2''' ) if "text_encoder" in name: lowercase__ = name.replace('''text_encoder''' , '''text_model''' ) if "ln_final" in name: lowercase__ = name.replace('''ln_final''' , '''final_layer_norm''' ) # projection layers if "img_projector.linear_hidden." in name: lowercase__ = name.replace('''img_projector.linear_hidden.''' , '''visual_projection.''' ) if "img_projector.linear_out." in name: lowercase__ = name.replace('''img_projector.linear_out.''' , '''visual_projection.3.''' ) if "text_projector.linear_hidden" in name: lowercase__ = name.replace('''text_projector.linear_hidden''' , '''text_projection''' ) if "text_projector.linear_out" in name: lowercase__ = name.replace('''text_projector.linear_out''' , '''text_projection.3''' ) return name def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase__ = key.split('''.''' ) lowercase__ , lowercase__ = int(key_split[2] ), int(key_split[4] ) lowercase__ = config.vision_config.hidden_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase__ = key.split('''.''' ) lowercase__ = int(key_split[3] ) lowercase__ = config.text_config.hidden_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[ dim : dim * 2, : ] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] else: lowercase__ = rename_key(SCREAMING_SNAKE_CASE ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase__ = val.squeeze_() else: lowercase__ = val return orig_state_dict def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="groupvit-gcc-yfcc" , SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase__ = GroupViTConfig() lowercase__ = GroupViTModel(SCREAMING_SNAKE_CASE ).eval() lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model'''] lowercase__ = convert_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(SCREAMING_SNAKE_CASE ) == 0) # verify result lowercase__ = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) lowercase__ = prepare_img() lowercase__ = processor(text=['''a photo of a cat''', '''a photo of a dog'''] , images=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) with torch.no_grad(): lowercase__ = model(**SCREAMING_SNAKE_CASE ) if model_name == "groupvit-gcc-yfcc": lowercase__ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase__ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , SCREAMING_SNAKE_CASE , atol=1E-3 ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print('''Successfully saved processor and model to''' , SCREAMING_SNAKE_CASE ) if push_to_hub: print('''Pushing to the hub...''' ) processor.push_to_hub(SCREAMING_SNAKE_CASE , organization='''nielsr''' ) model.push_to_hub(SCREAMING_SNAKE_CASE , organization='''nielsr''' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) lowerCAmelCase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
110
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = credit_card_number lowercase__ = 0 lowercase__ = len(SCREAMING_SNAKE_CASE ) - 2 for i in range(SCREAMING_SNAKE_CASE , -1 , -2 ): # double the value of every second digit lowercase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 lowercase__ = cc_number[:i] + str(SCREAMING_SNAKE_CASE ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(SCREAMING_SNAKE_CASE ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(SCREAMING_SNAKE_CASE ) <= 16: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(SCREAMING_SNAKE_CASE ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(SCREAMING_SNAKE_CASE ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
110
1
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[list[list[float] | float]]: '''simple docstring''' if dataset.ndim != value_array.ndim: SCREAMING_SNAKE_CASE = ( """Wrong input data's dimensions... """ F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(_SCREAMING_SNAKE_CASE ) try: if dataset.shape[1] != value_array.shape[1]: SCREAMING_SNAKE_CASE = ( """Wrong input data's shape... """ F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(_SCREAMING_SNAKE_CASE ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: SCREAMING_SNAKE_CASE = ( """Input data have different datatype... """ F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = [] for value in value_array: SCREAMING_SNAKE_CASE = euclidean(_SCREAMING_SNAKE_CASE , dataset[0] ) SCREAMING_SNAKE_CASE = dataset[0].tolist() for dataset_value in dataset[1:]: SCREAMING_SNAKE_CASE = euclidean(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if dist > temp_dist: SCREAMING_SNAKE_CASE = temp_dist SCREAMING_SNAKE_CASE = dataset_value.tolist() answer.append([vector, dist] ) return answer def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' return np.dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) / (norm(_SCREAMING_SNAKE_CASE ) * norm(_SCREAMING_SNAKE_CASE )) if __name__ == "__main__": import doctest doctest.testmod()
369
from __future__ import annotations def __lowercase ( _SCREAMING_SNAKE_CASE ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_SCREAMING_SNAKE_CASE ) if n > 1: factors.append(_SCREAMING_SNAKE_CASE ) return factors if __name__ == "__main__": import doctest doctest.testmod()
193
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() a_ : Any = logging.get_logger(__name__) a_ : Optional[int] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } a_ : List[str] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def __snake_case ( UpperCAmelCase_ : List[str] ): lowerCamelCase_ = {} with open(SCREAMING_SNAKE_CASE_ , "r" ) as file: for line_number, line in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = line.strip() if line: lowerCamelCase_ = line.split() lowerCamelCase_ = line_number lowerCamelCase_ = words[0] lowerCamelCase_ = value return result def __snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] ): for attribute in key.split("." ): lowerCamelCase_ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = PARAM_MAPPING[full_name.split("." )[-1]] lowerCamelCase_ = "param" if weight_type is not None and weight_type != "param": lowerCamelCase_ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).shape elif weight_type is not None and weight_type == "param": lowerCamelCase_ = hf_pointer for attribute in hf_param_name.split("." ): lowerCamelCase_ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = shape_pointer.shape # let's reduce dimension lowerCamelCase_ = value[0] else: lowerCamelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCamelCase_ = value elif weight_type == "weight_g": lowerCamelCase_ = value elif weight_type == "weight_v": lowerCamelCase_ = value elif weight_type == "bias": lowerCamelCase_ = value elif weight_type == "param": for attribute in hf_param_name.split("." ): lowerCamelCase_ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = value else: lowerCamelCase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __snake_case ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict ): lowerCamelCase_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = PARAM_MAPPING[full_name.split("." )[-1]] lowerCamelCase_ = "param" if weight_type is not None and weight_type != "param": lowerCamelCase_ = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": lowerCamelCase_ = ".".join([key, hf_param_name] ) else: lowerCamelCase_ = key lowerCamelCase_ = value if "lm_head" in full_key else value[0] a_ : List[str] = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def __snake_case ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[int]=None ): lowerCamelCase_ = False for key, mapped_key in MAPPING.items(): lowerCamelCase_ = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase_ = True if "*" in mapped_key: lowerCamelCase_ = name.split(SCREAMING_SNAKE_CASE_ )[0].split("." )[-2] lowerCamelCase_ = mapped_key.replace("*" , SCREAMING_SNAKE_CASE_ ) if "weight_g" in name: lowerCamelCase_ = "weight_g" elif "weight_v" in name: lowerCamelCase_ = "weight_v" elif "bias" in name: lowerCamelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase_ = "weight" else: lowerCamelCase_ = None if hf_dict is not None: rename_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: set_recursively(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return is_used return is_used def __snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] ): lowerCamelCase_ = [] lowerCamelCase_ = fairseq_model.state_dict() lowerCamelCase_ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase_ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase_ = True else: lowerCamelCase_ = load_wavaveca_layer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] ): lowerCamelCase_ = full_name.split("conv_layers." )[-1] lowerCamelCase_ = name.split("." ) lowerCamelCase_ = int(items[0] ) lowerCamelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __snake_case ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=False ): if config_path is not None: lowerCamelCase_ = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase_ = WavaVecaConfig() if is_seq_class: lowerCamelCase_ = read_txt_into_dict(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = idalabel lowerCamelCase_ = WavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ ) elif is_finetuned: if dict_path: lowerCamelCase_ = Dictionary.load(SCREAMING_SNAKE_CASE_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase_ = target_dict.pad_index lowerCamelCase_ = target_dict.bos_index lowerCamelCase_ = target_dict.eos_index lowerCamelCase_ = len(target_dict.symbols ) lowerCamelCase_ = os.path.join(SCREAMING_SNAKE_CASE_ , "vocab.json" ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(SCREAMING_SNAKE_CASE_ ) ) return os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase_ = 0 lowerCamelCase_ = 1 with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=SCREAMING_SNAKE_CASE_ , ) lowerCamelCase_ = True if config.feat_extract_norm == "layer" else False lowerCamelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ) lowerCamelCase_ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = WavaVecaForCTC(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase_ = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE_ ) if is_finetuned or is_seq_class: lowerCamelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowerCamelCase_ = argparse.Namespace(task="audio_pretraining" ) lowerCamelCase_ = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , not is_finetuned ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) a_ : Optional[int] = parser.parse_args() a_ : Optional[int] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
55
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if "model" in orig_key: lowerCamelCase : Dict = orig_key.replace("model." , "" ) if "norm1" in orig_key: lowerCamelCase : Union[str, Any] = orig_key.replace("norm1" , "attention.output.LayerNorm" ) if "norm2" in orig_key: lowerCamelCase : Union[str, Any] = orig_key.replace("norm2" , "output.LayerNorm" ) if "norm" in orig_key: lowerCamelCase : Optional[Any] = orig_key.replace("norm" , "LayerNorm" ) if "transformer" in orig_key: lowerCamelCase : int = orig_key.split("." )[0].split("_" )[-1] lowerCamelCase : Dict = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowerCamelCase : List[str] = orig_key.replace("mha.attn" , "attention.self" ) if "mha" in orig_key: lowerCamelCase : List[Any] = orig_key.replace("mha" , "attention" ) if "W_q" in orig_key: lowerCamelCase : Optional[int] = orig_key.replace("W_q" , "self.query" ) if "W_k" in orig_key: lowerCamelCase : List[Any] = orig_key.replace("W_k" , "self.key" ) if "W_v" in orig_key: lowerCamelCase : Union[str, Any] = orig_key.replace("W_v" , "self.value" ) if "ff1" in orig_key: lowerCamelCase : Union[str, Any] = orig_key.replace("ff1" , "intermediate.dense" ) if "ff2" in orig_key: lowerCamelCase : Optional[int] = orig_key.replace("ff2" , "output.dense" ) if "ff" in orig_key: lowerCamelCase : Optional[int] = orig_key.replace("ff" , "output.dense" ) if "mlm_class" in orig_key: lowerCamelCase : Dict = orig_key.replace("mlm.mlm_class" , "cls.predictions.decoder" ) if "mlm" in orig_key: lowerCamelCase : List[Any] = orig_key.replace("mlm" , "cls.predictions.transform" ) if "cls" not in orig_key: lowerCamelCase : int = "yoso." + orig_key return orig_key def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCamelCase : List[str] = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if ("pooler" in key) or ("sen_class" in key): continue else: lowerCamelCase : Dict = val lowerCamelCase : Dict = orig_state_dict["cls.predictions.decoder.bias"] lowerCamelCase : Dict = torch.arange(SCREAMING_SNAKE_CASE_ ).expand((1, -1) ) + 2 return orig_state_dict def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : List[Any] = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" )["model_state_dict"] lowerCamelCase : List[str] = YosoConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Any = YosoForMaskedLM(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[Any] = convert_checkpoint_helper(config.max_position_embeddings , SCREAMING_SNAKE_CASE_ ) print(model.load_state_dict(SCREAMING_SNAKE_CASE_ ) ) model.eval() model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _snake_case = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
283
0
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = [] lowercase_ , lowercase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) lowercase_ = result + left + right return input_list def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list ): '''simple docstring''' if len(__lowerCamelCase ) <= 1: return input_list lowercase_ = list(__lowerCamelCase ) # iteration for two-way merging lowercase_ = 2 while p <= len(__lowerCamelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ): lowercase_ = i lowercase_ = i + p - 1 lowercase_ = (low + high + 1) // 2 lowercase_ = merge(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # final merge of last two parts if p * 2 >= len(__lowerCamelCase ): lowercase_ = i lowercase_ = merge(__lowerCamelCase , 0 , __lowerCamelCase , len(__lowerCamelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": SCREAMING_SNAKE_CASE__ = [] else: SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
297
from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE__ = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ SCREAMING_SNAKE_CASE__ = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ SCREAMING_SNAKE_CASE__ = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> int: '''simple docstring''' if return_pvalue: lowercase_ = pearsonr(UpperCAmelCase , UpperCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCAmelCase , UpperCAmelCase )[0] )}
297
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class UpperCAmelCase ( A_ ): A__ : Optional[Any] = "longformer" def __init__(self : Optional[Any] , snake_case__ : Union[List[int], int] = 5_12 , snake_case__ : int = 2 , snake_case__ : int = 1 , snake_case__ : int = 0 , snake_case__ : int = 2 , snake_case__ : int = 3_05_22 , snake_case__ : int = 7_68 , snake_case__ : int = 12 , snake_case__ : int = 12 , snake_case__ : int = 30_72 , snake_case__ : str = "gelu" , snake_case__ : float = 0.1 , snake_case__ : float = 0.1 , snake_case__ : int = 5_12 , snake_case__ : int = 2 , snake_case__ : float = 0.02 , snake_case__ : float = 1e-12 , snake_case__ : bool = False , **snake_case__ : List[Any] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) snake_case : List[Any] = attention_window snake_case : Any = sep_token_id snake_case : str = bos_token_id snake_case : List[str] = eos_token_id snake_case : Optional[Any] = vocab_size snake_case : List[str] = hidden_size snake_case : Dict = num_hidden_layers snake_case : Tuple = num_attention_heads snake_case : str = hidden_act snake_case : List[str] = intermediate_size snake_case : Any = hidden_dropout_prob snake_case : Union[str, Any] = attention_probs_dropout_prob snake_case : int = max_position_embeddings snake_case : int = type_vocab_size snake_case : Dict = initializer_range snake_case : Union[str, Any] = layer_norm_eps snake_case : List[str] = onnx_export class UpperCAmelCase ( A_ ): def __init__(self : Dict , snake_case__ : "PretrainedConfig" , snake_case__ : str = "default" , snake_case__ : "List[PatchingSpec]" = None ) -> Dict: '''simple docstring''' super().__init__(snake_case__ , snake_case__ , snake_case__ ) snake_case : int = True @property def _SCREAMING_SNAKE_CASE (self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' snake_case : Any = super().outputs if self.task == "default": snake_case : List[Any] = {0: "batch"} return outputs @property def _SCREAMING_SNAKE_CASE (self : int ) -> float: '''simple docstring''' return 1e-4 @property def _SCREAMING_SNAKE_CASE (self : str ) -> int: '''simple docstring''' return max(super().default_onnx_opset , 14 ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : "PreTrainedTokenizerBase" , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case : int = super().generate_dummy_inputs( preprocessor=snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly snake_case : Optional[int] = torch.zeros_like(inputs["input_ids"] ) # make every second token global snake_case : Union[str, Any] = 1 return inputs
59
"""simple docstring""" from collections.abc import Callable import numpy as np def __lowerCamelCase ( a_ : Callable , a_ : float , a_ : float , a_ : float , a_ : float ) -> np.ndarray: __SCREAMING_SNAKE_CASE :List[Any] = int(np.ceil((x_end - xa) / step_size ) ) __SCREAMING_SNAKE_CASE :Optional[Any] = np.zeros((n + 1,) ) __SCREAMING_SNAKE_CASE :int = ya __SCREAMING_SNAKE_CASE :str = xa for k in range(a_ ): __SCREAMING_SNAKE_CASE :Optional[int] = y[k] + step_size * ode_func(a_ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
191
0
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase ( A__ , unittest.TestCase ): '''simple docstring''' a_ : Optional[Any] = FunnelTokenizer a_ : Dict = FunnelTokenizerFast a_ : Any = True a_ : Tuple = True def lowerCamelCase ( self : List[Any] ): super().setUp() lowerCAmelCase_ : Optional[Any] = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCamelCase ( self : Any , **a_ : List[str] ): return FunnelTokenizer.from_pretrained(self.tmpdirname , **a_ ) def lowerCamelCase ( self : Union[str, Any] , **a_ : Optional[int] ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **a_ ) def lowerCamelCase ( self : Optional[Any] , a_ : Any ): lowerCAmelCase_ : str = "UNwant\u00E9d,running" lowerCAmelCase_ : Any = "unwanted, running" return input_text, output_text def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : str = self.tokenizer_class(self.vocab_file ) lowerCAmelCase_ : str = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(a_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , [7, 4, 5, 10, 8, 9] ) def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : int = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: lowerCAmelCase_ : int = tokenizer("UNwant\u00E9d,running" ) lowerCAmelCase_ : List[Any] = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) lowerCAmelCase_ : Dict = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
161
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowercase__ = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } lowercase__ = {"""facebook/blenderbot-3B""": 128} class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Dict = VOCAB_FILES_NAMES a_ : Tuple = PRETRAINED_VOCAB_FILES_MAP a_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[int] = ["""input_ids""", """attention_mask"""] a_ : int = BlenderbotTokenizer def __init__( self : Optional[Any] , a_ : Union[str, Any]=None , a_ : Any=None , a_ : int=None , a_ : str="replace" , a_ : Tuple="<s>" , a_ : Optional[int]="</s>" , a_ : Union[str, Any]="</s>" , a_ : Union[str, Any]="<s>" , a_ : Optional[Any]="<unk>" , a_ : str="<pad>" , a_ : List[Any]="<mask>" , a_ : Tuple=False , a_ : Dict=True , **a_ : str , ): super().__init__( a_ , a_ , tokenizer_file=a_ , errors=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , add_prefix_space=a_ , trim_offsets=a_ , **a_ , ) lowerCAmelCase_ : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , a_ ) != add_prefix_space: lowerCAmelCase_ : str = getattr(a_ , pre_tok_state.pop("type" ) ) lowerCAmelCase_ : int = add_prefix_space lowerCAmelCase_ : List[Any] = pre_tok_class(**a_ ) lowerCAmelCase_ : Any = add_prefix_space lowerCAmelCase_ : str = "post_processor" lowerCAmelCase_ : str = getattr(self.backend_tokenizer , a_ , a_ ) if tokenizer_component_instance: lowerCAmelCase_ : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase_ : Dict = tuple(state["sep"] ) if "cls" in state: lowerCAmelCase_ : Optional[int] = tuple(state["cls"] ) lowerCAmelCase_ : Optional[int] = False if state.get("add_prefix_space" , a_ ) != add_prefix_space: lowerCAmelCase_ : List[str] = add_prefix_space lowerCAmelCase_ : Any = True if state.get("trim_offsets" , a_ ) != trim_offsets: lowerCAmelCase_ : int = trim_offsets lowerCAmelCase_ : List[str] = True if changes_to_apply: lowerCAmelCase_ : Optional[Any] = getattr(a_ , state.pop("type" ) ) lowerCAmelCase_ : Tuple = component_class(**a_ ) setattr(self.backend_tokenizer , a_ , a_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase ( self : int ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase ( self : int , a_ : List[Any] ): lowerCAmelCase_ : Optional[Any] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else value lowerCAmelCase_ : Tuple = value def lowerCamelCase ( self : int , *a_ : List[str] , **a_ : Optional[int] ): lowerCAmelCase_ : Tuple = kwargs.get("is_split_into_words" , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_ , **a_ ) def lowerCamelCase ( self : str , *a_ : Union[str, Any] , **a_ : List[str] ): lowerCAmelCase_ : Tuple = kwargs.get("is_split_into_words" , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*a_ , **a_ ) def lowerCamelCase ( self : int , a_ : str , a_ : Optional[str] = None ): lowerCAmelCase_ : str = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ ) def lowerCamelCase ( self : int , a_ : List[int] , a_ : Optional[List[int]] = None ): lowerCAmelCase_ : Optional[int] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase ( self : List[Any] , a_ : List[int] , a_ : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase ( self : Union[str, Any] , a_ : "Conversation" ): lowerCAmelCase_ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(a_ ) lowerCAmelCase_ : Tuple = " ".join(a_ ) lowerCAmelCase_ : Any = self.encode(a_ ) if len(a_ ) > self.model_max_length: lowerCAmelCase_ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
161
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Dict = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
238
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] ): """simple docstring""" # Construct model if gpta_config_file == "": lowerCamelCase__ : Dict =GPTaConfig() else: lowerCamelCase__ : Tuple =GPTaConfig.from_json_file(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] =GPTaModel(__lowerCamelCase ) # Load weights from numpy load_tf_weights_in_gpta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model lowerCamelCase__ : List[str] =pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowerCamelCase__ : int =pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , __lowerCamelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) _lowercase : Any = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
238
1
'''simple docstring''' def a__ ( lowercase : Dict = 100 ) -> int: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = 0 for i in range(1, n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
369
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any]=13 , lowerCAmelCase__ : Union[str, Any]=7 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=99 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : str=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : str=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Optional[int]=512 , lowerCAmelCase__ : Dict=16 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Union[str, Any]=4 , ) -> Dict: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_attention_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_choices def snake_case__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_attention_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self : Optional[int] ) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def snake_case__ ( self : List[str] ) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = True _UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = True _snake_case : Optional[Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self : Dict ) -> List[Any]: '''simple docstring''' _UpperCamelCase = FlaxRobertaModelTester(self ) @slow def snake_case__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''roberta-base''' , from_pt=lowerCAmelCase__ ) _UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ )
287
0
"""simple docstring""" import numpy as np def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase : Optional[Any] = int(np.ceil((x_end - xa) / h ) ) lowercase : Optional[int] = np.zeros((n + 1,) ) lowercase : int = ya lowercase : Dict = xa for k in range(UpperCamelCase__ ): lowercase : int = f(UpperCamelCase__ , y[k] ) lowercase : Optional[int] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowercase : List[str] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowercase : List[str] = f(x + h , y[k] + h * ka ) lowercase : int = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
255
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__( UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : int )->int: # Initialise PyTorch model A__ = BertConfig.from_json_file(UpperCamelCase__ ) print(f"Building PyTorch model from configuration: {config}" ) A__ = BertForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": a__: str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a__: Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
193
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['''YolosFeatureExtractor'''] lowerCAmelCase = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
304
def _lowerCamelCase( lowercase__ = 1_0_0_0 ) -> int: '''simple docstring''' __lowercase= 2**power __lowercase= str(lowercase__ ) __lowercase= list(lowercase__ ) __lowercase= 0 for i in list_num: sum_of_num += int(lowercase__ ) return sum_of_num if __name__ == "__main__": lowerCAmelCase = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) lowerCAmelCase = solution(power) print('''Sum of the digits is: ''', result)
304
1
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowerCAmelCase: Dict = TypeVar('T') class a__( Generic[T] ): def __init__( self : str , __snake_case : bool = True ): a : dict[T, list[T]] = {} # dictionary of lists a : Any = directed def lowercase_ ( self : str , __snake_case : T , __snake_case : T ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) self.adj_list[destination_vertex].append(__snake_case ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) a : Dict = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(__snake_case ) a : List[str] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: a : Optional[int] = [destination_vertex] a : List[Any] = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) a : List[Any] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: a : Optional[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: a : int = [destination_vertex] a : str = [] return self def __repr__( self : int ): return pformat(self.adj_list )
297
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase: Any = logging.get_logger(__name__) lowerCAmelCase: Any = {'vocab_file': 'vocab.txt'} lowerCAmelCase: List[Any] = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase: str = { 'openbmb/cpm-ant-10b': 1_0_2_4, } def lowerCamelCase__ ( _A ): a : Union[str, Any] = collections.OrderedDict() with open(_A , 'r' , encoding='utf-8' ) as reader: a : int = reader.readlines() for index, token in enumerate(_A ): a : int = token.rstrip('\n' ) a : List[Any] = index return vocab class a__( lowerCamelCase__ ): def __init__( self : Dict , __snake_case : Any , __snake_case : Dict="<unk>" , __snake_case : str=2_00 ): a : List[Any] = vocab a : Any = unk_token a : List[str] = max_input_chars_per_word def lowercase_ ( self : Optional[int] , __snake_case : Union[str, Any] ): a : Optional[Any] = list(__snake_case ) if len(__snake_case ) > self.max_input_chars_per_word: return [self.unk_token] a : Any = 0 a : Optional[Any] = [] while start < len(__snake_case ): a : Optional[int] = len(__snake_case ) a : str = None while start < end: a : Optional[Any] = ''.join(chars[start:end] ) if substr in self.vocab: a : List[str] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__snake_case ) a : List[str] = end return sub_tokens class a__( lowerCamelCase__ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = False def __init__( self : Any , __snake_case : str , __snake_case : Tuple="<d>" , __snake_case : List[str]="</d>" , __snake_case : Dict="<s>" , __snake_case : List[Any]="</s>" , __snake_case : int="<pad>" , __snake_case : Any="<unk>" , __snake_case : List[str]="</n>" , __snake_case : int="</_>" , __snake_case : Optional[Any]="left" , **__snake_case : Dict , ): requires_backends(self , ['jieba'] ) super().__init__( bod_token=__snake_case , eod_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , unk_token=__snake_case , line_token=__snake_case , space_token=__snake_case , padding_side=__snake_case , **__snake_case , ) a : Union[str, Any] = bod_token a : Any = eod_token a : List[str] = load_vocab(__snake_case ) a : Optional[int] = self.encoder[space_token] a : str = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] a : str = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) a : Tuple = {v: k for k, v in self.encoder.items()} a : List[str] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowercase_ ( self : Optional[int] ): return self.encoder[self.bod_token] @property def lowercase_ ( self : Dict ): return self.encoder[self.eod_token] @property def lowercase_ ( self : Any ): return self.encoder["\n"] @property def lowercase_ ( self : Tuple ): return len(self.encoder ) def lowercase_ ( self : str ): return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self : Union[str, Any] , __snake_case : List[str] ): a : List[str] = [] for x in jieba.cut(__snake_case , cut_all=__snake_case ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__snake_case ) ) return output_tokens def lowercase_ ( self : Union[str, Any] , __snake_case : Optional[Any] , **__snake_case : Optional[Any] ): a : Optional[int] = [i for i in token_ids if i >= 0] a : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__snake_case , **__snake_case ) def lowercase_ ( self : Optional[int] , __snake_case : int ): return token in self.encoder def lowercase_ ( self : int , __snake_case : List[str] ): return "".join(__snake_case ) def lowercase_ ( self : List[str] , __snake_case : Union[str, Any] ): return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def lowercase_ ( self : Tuple , __snake_case : List[str] ): return self.decoder.get(__snake_case , self.unk_token ) def lowercase_ ( self : Union[str, Any] , __snake_case : str , __snake_case : Optional[str] = None ): if os.path.isdir(__snake_case ): a : Optional[int] = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: a : int = (filename_prefix + '-' if filename_prefix else '') + save_directory a : Any = 0 if " " in self.encoder: a : Union[str, Any] = self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: a : Tuple = self.encoder['\n'] del self.encoder["\n"] a : Dict = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) with open(__snake_case , 'w' , encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) a : List[Any] = token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def lowercase_ ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : List[int] = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowercase_ ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) return [1] + ([0] * len(__snake_case ))
297
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { "naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class snake_case ( _UpperCamelCase): __UpperCamelCase = 'donut-swin' __UpperCamelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Dict , a__ : Optional[int]=2_24 , a__ : int=4 , a__ : Dict=3 , a__ : Optional[Any]=96 , a__ : Union[str, Any]=[2, 2, 6, 2] , a__ : List[Any]=[3, 6, 12, 24] , a__ : str=7 , a__ : Dict=4.0 , a__ : Optional[Any]=True , a__ : Optional[Any]=0.0 , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.1 , a__ : int="gelu" , a__ : Optional[Any]=False , a__ : List[Any]=0.0_2 , a__ : Optional[Any]=1E-5 , **a__ : Any , ) -> Optional[Any]: '''simple docstring''' super().__init__(**a__ ) _A = image_size _A = patch_size _A = num_channels _A = embed_dim _A = depths _A = len(a__ ) _A = num_heads _A = window_size _A = mlp_ratio _A = qkv_bias _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = drop_path_rate _A = hidden_act _A = use_absolute_embeddings _A = layer_norm_eps _A = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _A = int(embed_dim * 2 ** (len(a__ ) - 1) )
163
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class snake_case ( _UpperCamelCase): __UpperCamelCase = 'ctrl' __UpperCamelCase = ['past_key_values'] __UpperCamelCase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Tuple , a__ : Union[str, Any]=24_65_34 , a__ : int=2_56 , a__ : Any=12_80 , a__ : Optional[int]=81_92 , a__ : Union[str, Any]=48 , a__ : Optional[int]=16 , a__ : List[str]=0.1 , a__ : List[str]=0.1 , a__ : Optional[int]=1E-6 , a__ : Optional[int]=0.0_2 , a__ : Tuple=True , **a__ : List[Any] , ) -> Tuple: '''simple docstring''' _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = dff _A = resid_pdrop _A = embd_pdrop _A = layer_norm_epsilon _A = initializer_range _A = use_cache super().__init__(**a__ )
163
1
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def snake_case ( UpperCAmelCase )-> str: """simple docstring""" if not is_accelerate_available(): return method __A = version.parse(accelerate.__version__ ).base_version if version.parse(UpperCAmelCase ) < version.parse('0.17.0' ): return method def wrapper(self , *UpperCAmelCase , **UpperCAmelCase ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *UpperCAmelCase , **UpperCAmelCase ) return wrapper
161
'''simple docstring''' from __future__ import annotations def snake_case ( UpperCAmelCase )-> list[int]: """simple docstring""" __A = 2 __A = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(UpperCAmelCase ) if n > 1: factors.append(UpperCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
161
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') UpperCAmelCase_ = {'target_lang': 'fi', 'source_lang': 'en'} UpperCAmelCase_ = '>>zh<<' UpperCAmelCase_ = 'Helsinki-NLP/' if is_torch_available(): UpperCAmelCase_ = 'pt' elif is_tf_available(): UpperCAmelCase_ = 'tf' else: UpperCAmelCase_ = 'jax' @require_sentencepiece class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = MarianTokenizer UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : int = True def lowerCAmelCase__ ( self: Union[str, Any] ): super().setUp() __lowerCamelCase = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = Path(self.tmpdirname ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) __lowerCamelCase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self: Optional[Any] , **UpperCamelCase_: Any ): return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[int] ): return ( "This is a test", "This is a test", ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = """</s>""" __lowerCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase_ ) , 9 ) def lowerCAmelCase__ ( self: Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de' ) __lowerCamelCase = en_de_tokenizer(["""I am a small frog"""] , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(UpperCamelCase_ , batch.input_ids[0] ) __lowerCamelCase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = [x.name for x in Path(UpperCamelCase_ ).glob("""*""" )] self.assertIn("""source.spm""" , UpperCamelCase_ ) MarianTokenizer.from_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowerCAmelCase__ ( self: Optional[int] ): # fmt: off __lowerCamelCase = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) __lowerCamelCase = """Tämä on testi""" __lowerCamelCase = """This is a test""" __lowerCamelCase = [76, 7, 20_47, 2] __lowerCamelCase = [69, 12, 11, 9_40, 2] __lowerCamelCase = tokenizer(UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer(text_target=UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
350
def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [[0 for _ in range(A__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCamelCase = 1 for n in range(m + 1 ): for k in range(1 , A__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase_ = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: UpperCAmelCase_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
0
'''simple docstring''' # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter a : List[str] = logging.get_logger(__name__) a : Dict[Optional[str], Type[Formatter]] = {} a : Dict[Optional[str], str] = {} a : Dict[Optional[str], Exception] = {} def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase = None, ) -> List[Any]: '''simple docstring''' snake_case_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) snake_case_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) snake_case_ = format_type def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase = None ) -> Any: '''simple docstring''' snake_case_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): snake_case_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: a : Tuple = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: a : List[str] = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: a : Optional[int] = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def __magic_name__ ( __UpperCAmelCase ) -> Optional[str]: '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __magic_name__ ( __UpperCAmelCase, **__UpperCAmelCase ) -> Formatter: '''simple docstring''' snake_case_ = get_format_type_from_alias(__UpperCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__UpperCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
56
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _lowerCamelCase =logging.get_logger(__name__) class A__ ( __SCREAMING_SNAKE_CASE): def __init__( self , *__magic_name__ , **__magic_name__ ): warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
287
0
"""simple docstring""" class __lowerCAmelCase : '''simple docstring''' def __init__( self ): __a = {} def __UpperCAmelCase ( self ): print(self.vertex ) for i in self.vertex: print(_a , ''' -> ''' , ''' -> '''.join([str(_a ) for j in self.vertex[i]] ) ) def __UpperCAmelCase ( self , _a , _a ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_a ) else: # else make a new vertex __a = [to_vertex] def __UpperCAmelCase ( self ): # visited array for storing already visited nodes __a = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_a , _a ) def __UpperCAmelCase ( self , _a , _a ): # mark start vertex as visited __a = True print(_a , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_a , _a ) if __name__ == "__main__": lowercase_ = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
11
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } lowercase_ = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off lowercase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = ['input_ids', 'attention_mask'] __UpperCAmelCase : Optional[Any] = MBartTokenizer __UpperCAmelCase : List[int] = [] __UpperCAmelCase : List[int] = [] def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , **_a , ): # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , ) __a = vocab_file __a = False if not self.vocab_file else True __a = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __a = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __a = src_lang if src_lang is not None else '''en_XX''' __a = self.convert_tokens_to_ids(self._src_lang ) __a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self ): return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _a ): __a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _a , _a = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __a = src_lang __a = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) __a = self.convert_tokens_to_ids(_a ) __a = tgt_lang_id return inputs def __UpperCAmelCase ( self , _a , _a = "en_XX" , _a = None , _a = "ro_RO" , **_a , ): __a = src_lang __a = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def __UpperCAmelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a ): __a = self.convert_tokens_to_ids(_a ) __a = [] __a = [self.eos_token_id, self.cur_lang_code] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self , _a , _a = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return __a = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
11
1
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _UpperCamelCase : Any = '<<<<<<< This should probably be modified because it mentions: ' _UpperCamelCase : Optional[Any] = '=======\n>>>>>>>\n' _UpperCamelCase : List[Any] = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] _UpperCamelCase : str = [ # (pattern, replacement) # Order is important here for some replacements (R'tfds\.core', R'datasets'), (R'tf\.io\.gfile\.GFile', R'open'), (R'tf\.([\w\d]+)', R'datasets.Value(\'\1\')'), (R'tfds\.features\.Text\(\)', R'datasets.Value(\'string\')'), (R'tfds\.features\.Text\(', R'datasets.Value(\'string\'),'), (R'features\s*=\s*tfds.features.FeaturesDict\(', R'features=datasets.Features('), (R'tfds\.features\.FeaturesDict\(', R'dict('), (R'The TensorFlow Datasets Authors', R'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (R'tfds\.', R'datasets.'), (R'dl_manager\.manual_dir', R'self.config.data_dir'), (R'self\.builder_config', R'self.config'), ] def __UpperCAmelCase ( A : Namespace ) -> Dict: return ConvertCommand(args.tfds_path , args.datasets_directory ) class snake_case__ ( UpperCamelCase): @staticmethod def A ( _A : ArgumentParser ) -> Optional[Any]: UpperCAmelCase_ : int = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=_A , required=_A , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=_A , required=_A , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_A ) def __init__( self : Dict , _A : str , _A : str , *_A : Dict ) -> Optional[Any]: UpperCAmelCase_ : int = get_logger('''datasets-cli/converting''' ) UpperCAmelCase_ : Tuple = tfds_path UpperCAmelCase_ : List[str] = datasets_directory def A ( self : str ) -> Optional[Any]: if os.path.isdir(self._tfds_path ): UpperCAmelCase_ : Optional[int] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): UpperCAmelCase_ : List[str] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) UpperCAmelCase_ : Dict = os.path.abspath(self._datasets_directory ) self._logger.info(F"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : List[str] = {} if os.path.isdir(self._tfds_path ): UpperCAmelCase_ : Tuple = os.listdir(_A ) else: UpperCAmelCase_ : List[str] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"Looking at file {f_name}" ) UpperCAmelCase_ : Tuple = os.path.join(_A , _A ) UpperCAmelCase_ : Union[str, Any] = os.path.join(_A , _A ) if not os.path.isfile(_A ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_A , encoding='''utf-8''' ) as f: UpperCAmelCase_ : List[str] = f.readlines() UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : Dict = False UpperCAmelCase_ : Union[str, Any] = [] for line in lines: UpperCAmelCase_ : Any = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: UpperCAmelCase_ : Optional[Any] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here UpperCAmelCase_ : Optional[int] = '''''' continue elif "from absl import logging" in out_line: UpperCAmelCase_ : Tuple = '''from datasets import logging\n''' elif "getLogger" in out_line: UpperCAmelCase_ : int = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): UpperCAmelCase_ : Dict = True UpperCAmelCase_ : int = list(filter(lambda _A : e in out_line , _A ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_A ) + '''\n''' ) out_lines.append(_A ) out_lines.append(_A ) continue else: for pattern, replacement in TO_CONVERT: UpperCAmelCase_ : Optional[int] = re.sub(_A , _A , _A ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: UpperCAmelCase_ : Union[str, Any] = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _A ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) UpperCAmelCase_ : int = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: UpperCAmelCase_ : Dict = True out_lines.append(_A ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset UpperCAmelCase_ : Any = f_name.replace('''.py''' , '''''' ) UpperCAmelCase_ : str = os.path.join(_A , _A ) UpperCAmelCase_ : int = os.path.join(_A , _A ) os.makedirs(_A , exist_ok=_A ) self._logger.info(F"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_A ) if needs_manual_update: with_manual_update.append(_A ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.writelines(_A ) self._logger.info(F"Converted in {output_file}" ) for utils_file in utils_files: try: UpperCAmelCase_ : Optional[int] = os.path.basename(_A ) UpperCAmelCase_ : int = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"Moving {dest_folder} to {utils_file}" ) shutil.copy(_A , _A ) except KeyError: self._logger.error(F"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
304
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _UpperCamelCase : Any = logging.getLogger(__name__) class snake_case__ ( UpperCamelCase): a_ = "masked_bert" def __init__( self : str , _A : Dict=3_05_22 , _A : Dict=7_68 , _A : Union[str, Any]=12 , _A : str=12 , _A : str=30_72 , _A : Dict="gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : Any=5_12 , _A : Union[str, Any]=2 , _A : Union[str, Any]=0.02 , _A : int=1e-12 , _A : Any=0 , _A : Any="topK" , _A : List[str]="constant" , _A : Dict=0.0 , **_A : int , ) -> Union[str, Any]: super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = pruning_method UpperCAmelCase_ : Optional[int] = mask_init UpperCAmelCase_ : List[Any] = mask_scale
304
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) def __lowerCamelCase ( __UpperCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase_ : Any = """huggingface/label-files""" lowerCAmelCase_ : Any = """imagenet-1k-id2label.json""" lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) , "r" ) ) lowerCAmelCase_ : Tuple = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Any = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase_ : Any = BitConfig( conv_layer=__lowerCAmelCase , num_labels=1000 , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase , ) return config def __lowerCamelCase ( __UpperCamelCase ) -> Tuple: """simple docstring""" if "stem.conv" in name: lowerCAmelCase_ : Optional[Any] = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: lowerCAmelCase_ : Optional[Any] = name.replace("blocks" , "layers" ) if "head.fc" in name: lowerCAmelCase_ : List[str] = name.replace("head.fc" , "classifier.1" ) if name.startswith("norm" ): lowerCAmelCase_ : Optional[int] = """bit.""" + name if "bit" not in name and "classifier" not in name: lowerCAmelCase_ : Union[str, Any] = """bit.encoder.""" + name return name def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : Dict = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> Any: """simple docstring""" lowerCAmelCase_ : Dict = get_config(__lowerCAmelCase ) # load original model from timm lowerCAmelCase_ : str = create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model lowerCAmelCase_ : Optional[int] = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase_ : Optional[int] = state_dict.pop(__lowerCAmelCase ) lowerCAmelCase_ : Union[str, Any] = val.squeeze() if """head""" in key else val # load HuggingFace model lowerCAmelCase_ : List[Any] = BitForImageClassification(__lowerCAmelCase ) model.eval() model.load_state_dict(__lowerCAmelCase ) # create image processor lowerCAmelCase_ : List[Any] = create_transform(**resolve_data_config({} , model=__lowerCAmelCase ) ) lowerCAmelCase_ : Tuple = transform.transforms lowerCAmelCase_ : List[Any] = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCAmelCase_ : Optional[int] = BitImageProcessor( do_resize=__lowerCAmelCase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__lowerCAmelCase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=__lowerCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase_ : Optional[int] = prepare_img() lowerCAmelCase_ : int = transform(__lowerCAmelCase ).unsqueeze(0 ) lowerCAmelCase_ : Tuple = processor(__lowerCAmelCase , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase ) # verify logits with torch.no_grad(): lowerCAmelCase_ : Any = model(__lowerCAmelCase ) lowerCAmelCase_ : Optional[Any] = outputs.logits print("Logits:" , logits[0, :3] ) print("Predicted class:" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCAmelCase_ : List[str] = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) lowercase__ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase__ = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
161
0
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) __A =logging.getLogger() def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Union[str, Any] = """\n""".join(UpperCamelCase__ ) Path(UpperCamelCase__ ).open("""w""" ).writelines(UpperCamelCase__ ) __A ='patrickvonplaten/t5-tiny-random' __A ='sshleifer/bart-tiny-random' __A ='sshleifer/tiny-mbart' __A =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _snake_case ( a__ ): def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : Any = Path(self.get_auto_remove_tmp_dir()) / """utest_input.source""" UpperCAmelCase__ : Dict = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() UpperCAmelCase__ : Any = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""] _dump_articles(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : Optional[Any] = str(Path(self.get_auto_remove_tmp_dir()) / """scores.json""") UpperCAmelCase__ : int = """translation_en_to_de""" if model == T5_TINY else """summarization""" UpperCAmelCase__ : Union[str, Any] = f''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(_lowerCamelCase , """argv""" , _lowerCamelCase): run_generate() assert Path(_lowerCamelCase).exists() # os.remove(Path(output_file_name)) def snake_case__ ( self): self.run_eval_tester(_lowerCamelCase) @parameterized.expand([BART_TINY, MBART_TINY]) @slow def snake_case__ ( self , _lowerCamelCase): self.run_eval_tester(_lowerCamelCase) @parameterized.expand([T5_TINY, MBART_TINY]) @slow def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : Optional[Any] = Path(self.get_auto_remove_tmp_dir()) / """utest_input.source""" UpperCAmelCase__ : List[str] = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() UpperCAmelCase__ : int = { """en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""], """de""": [ """Maschinelles Lernen ist großartig, oder?""", """Ich esse gerne Bananen""", """Morgen ist wieder ein toller Tag!""", ], } UpperCAmelCase__ : int = Path(self.get_auto_remove_tmp_dir()) UpperCAmelCase__ : Any = str(tmp_dir / """scores.json""") UpperCAmelCase__ : List[str] = str(tmp_dir / """val.target""") _dump_articles(_lowerCamelCase , text["""en"""]) _dump_articles(_lowerCamelCase , text["""de"""]) UpperCAmelCase__ : int = """translation_en_to_de""" if model == T5_TINY else """summarization""" UpperCAmelCase__ : List[Any] = f''' run_eval_search.py {model} {str(_lowerCamelCase)} {str(_lowerCamelCase)} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""]) with patch.object(_lowerCamelCase , """argv""" , _lowerCamelCase): with CaptureStdout() as cs: run_search() UpperCAmelCase__ : Optional[Any] = [""" num_beams | length_penalty""", model, """Best score args"""] UpperCAmelCase__ : Any = ["""Info"""] if "translation" in task: expected_strings.append("""bleu""") else: expected_strings.extend(_lowerCamelCase) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(_lowerCamelCase).exists() os.remove(Path(_lowerCamelCase))
163
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants __A =3_00 # TEMPERATURE (unit = K) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
163
1
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename UpperCamelCase__ = 'http://www.mocksite.com/file1.txt' UpperCamelCase__ = '"text": ["foo", "foo"]' UpperCamelCase__ = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class A : __UpperCAmelCase : Union[str, Any] = 2_00 __UpperCAmelCase : Union[str, Any] = {'Content-Length': '100'} __UpperCAmelCase : Any = {} def lowercase_ (self : Optional[int] , **__UpperCAmelCase : Dict ) -> Tuple: """simple docstring""" return [bytes(__UpperCAmelCase , "utf-8" )] def lowerCAmelCase_ ( *__A, **__A ) -> str: '''simple docstring''' return MockResponse() @pytest.mark.parametrize("urls_type", [str, list, dict] ) def lowerCAmelCase_ ( __A, __A, __A ) -> Optional[Any]: '''simple docstring''' import requests monkeypatch.setattr(__A, "request", __A ) UpperCAmelCase__ = URL if issubclass(__A, __A ): UpperCAmelCase__ = url elif issubclass(__A, __A ): UpperCAmelCase__ = [url] elif issubclass(__A, __A ): UpperCAmelCase__ = {"train": url} UpperCAmelCase__ = "dummy" UpperCAmelCase__ = "downloads" UpperCAmelCase__ = tmp_path UpperCAmelCase__ = DownloadConfig( cache_dir=os.path.join(__A, __A ), use_etag=__A, ) UpperCAmelCase__ = DownloadManager(dataset_name=__A, download_config=__A ) UpperCAmelCase__ = dl_manager.download(__A ) UpperCAmelCase__ = urls for downloaded_paths in [downloaded_paths]: if isinstance(__A, __A ): UpperCAmelCase__ = [downloaded_paths] UpperCAmelCase__ = [urls] elif isinstance(__A, __A ): assert "train" in downloaded_paths.keys() UpperCAmelCase__ = downloaded_paths.values() UpperCAmelCase__ = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__A, __A ): assert downloaded_path == dl_manager.downloaded_paths[input_url] UpperCAmelCase__ = Path(__A ) UpperCAmelCase__ = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() UpperCAmelCase__ = downloaded_path.read_text() assert content == CONTENT UpperCAmelCase__ = downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() UpperCAmelCase__ = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type", [str, list, dict] ) def lowerCAmelCase_ ( __A, __A, __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = str(__A ) if issubclass(__A, __A ): UpperCAmelCase__ = filename elif issubclass(__A, __A ): UpperCAmelCase__ = [filename] elif issubclass(__A, __A ): UpperCAmelCase__ = {"train": filename} UpperCAmelCase__ = "dummy" UpperCAmelCase__ = xz_file.parent UpperCAmelCase__ = "extracted" UpperCAmelCase__ = DownloadConfig( cache_dir=__A, use_etag=__A, ) UpperCAmelCase__ = DownloadManager(dataset_name=__A, download_config=__A ) UpperCAmelCase__ = dl_manager.extract(__A ) UpperCAmelCase__ = paths for extracted_paths in [extracted_paths]: if isinstance(__A, __A ): UpperCAmelCase__ = [extracted_paths] UpperCAmelCase__ = [paths] elif isinstance(__A, __A ): assert "train" in extracted_paths.keys() UpperCAmelCase__ = extracted_paths.values() UpperCAmelCase__ = paths.values() assert extracted_paths for extracted_path, input_path in zip(__A, __A ): assert extracted_path == dl_manager.extracted_paths[input_path] UpperCAmelCase__ = Path(__A ) UpperCAmelCase__ = extracted_path.parts assert parts[-1] == hash_url_to_filename(__A, etag=__A ) assert parts[-2] == extracted_subdir assert extracted_path.exists() UpperCAmelCase__ = extracted_path.read_text() UpperCAmelCase__ = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCAmelCase_ ( __A, __A ) -> Union[str, Any]: '''simple docstring''' assert path.endswith(".jsonl" ) for num_items, line in enumerate(__A, start=1 ): UpperCAmelCase__ = json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl", ["tar_jsonl_path", "zip_jsonl_path"] ) def lowerCAmelCase_ ( __A, __A ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ = request.getfixturevalue(__A ) UpperCAmelCase__ = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__A ), start=1 ): _test_jsonl(__A, __A ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl", ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def lowerCAmelCase_ ( __A, __A ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = request.getfixturevalue(__A ) UpperCAmelCase__ = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__A ), start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__A ), start=1 ): _test_jsonl(__A, __A ) assert num_tar == 1 assert num_jsonl == 2 def lowerCAmelCase_ ( __A ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__A ), start=1 ): assert os.path.basename(__A ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
143
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowerCAmelCase_ ( __A=None ) -> str: '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser(add_help=__A, allow_abbrev=__A ) # The main config parser UpperCAmelCase__ = config_command_parser(__A ) # The subparser to add commands to UpperCAmelCase__ = config_parser.add_subparsers(title="subcommands", dest="subcommand" ) # Then add other parsers with the parent parser default_command_parser(__A, parents=[parent_parser] ) update_command_parser(__A, parents=[parent_parser] ) return config_parser def lowerCAmelCase_ ( ) -> Any: '''simple docstring''' UpperCAmelCase__ = get_config_parser() UpperCAmelCase__ = config_parser.parse_args() if not hasattr(__A, "func" ): config_parser.print_help() exit(1 ) # Run args.func(__A ) if __name__ == "__main__": main()
143
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__ = logging.get_logger(__name__) # TODO: upload to AWS lowerCAmelCase__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class lowercase_ (_snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = '''retribert''' def __init__( self : List[Any] ,lowercase__ : Any=3_0_5_2_2 ,lowercase__ : Optional[Any]=7_6_8 ,lowercase__ : Optional[Any]=8 ,lowercase__ : List[Any]=1_2 ,lowercase__ : Tuple=3_0_7_2 ,lowercase__ : Union[str, Any]="gelu" ,lowercase__ : int=0.1 ,lowercase__ : int=0.1 ,lowercase__ : Tuple=5_1_2 ,lowercase__ : Tuple=2 ,lowercase__ : str=0.0_2 ,lowercase__ : int=1e-1_2 ,lowercase__ : Union[str, Any]=True ,lowercase__ : str=1_2_8 ,lowercase__ : Dict=0 ,**lowercase__ : Tuple ,): super().__init__(pad_token_id=_UpperCamelCase ,**_UpperCamelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = share_encoders __lowercase = projection_dim
104
def lowercase__ ( __snake_case : list ): '''simple docstring''' for i in range(len(__snake_case ) - 1 , 0 , -1 ): UpperCAmelCase_ : Dict = False for j in range(__snake_case , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: UpperCAmelCase_ , UpperCAmelCase_ : Any = unsorted[j - 1], unsorted[j] UpperCAmelCase_ : int = True for j in range(__snake_case ): if unsorted[j] > unsorted[j + 1]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = unsorted[j + 1], unsorted[j] UpperCAmelCase_ : Any = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() __UpperCAmelCase = [int(item) for item in user_input.split(',')] print(F'{cocktail_shaker_sort(unsorted) = }')
29
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A : Tuple = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys A : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
def __lowerCamelCase ( __a :float , __a :list[float] ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) A__ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__a ) ) return round(__a , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
276
1
class lowerCAmelCase__ : '''simple docstring''' def __init__( self) -> Optional[Any]: _A : Union[str, Any] = {} def _lowerCamelCase ( self) -> None: print(self.vertex) for i in self.vertex: print(__lowerCamelCase , " -> " , " -> ".join([str(__lowerCamelCase) for j in self.vertex[i]])) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__lowerCamelCase) else: # else make a new vertex _A : Optional[Any] = [to_vertex] def _lowerCamelCase ( self) -> None: # visited array for storing already visited nodes _A : List[Any] = [False] * len(self.vertex) # call the recursive helper function for i in range(len(self.vertex)): if not visited[i]: self.dfs_recursive(__lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> None: # mark start vertex as visited _A : str = True print(__lowerCamelCase , end=" ") # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__lowerCamelCase , __lowerCamelCase) if __name__ == "__main__": lowerCAmelCase__ = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
11
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @parameterized.expand([(None,), ("foo.json",)]) def _lowerCamelCase ( self , __lowerCamelCase) -> List[str]: _A : str = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase , config_name=__lowerCamelCase) _A : Tuple = GenerationConfig.from_pretrained(__lowerCamelCase , config_name=__lowerCamelCase) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __lowerCamelCase) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0) self.assertEqual(loaded_config.max_length , 2_0) self.assertEqual(loaded_config.max_time , __lowerCamelCase) def _lowerCamelCase ( self) -> Optional[int]: _A : Optional[int] = AutoConfig.from_pretrained("gpt2") _A : int = GenerationConfig.from_model_config(__lowerCamelCase) _A : List[Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__lowerCamelCase , __lowerCamelCase) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def _lowerCamelCase ( self) -> Optional[Any]: _A : Optional[Any] = GenerationConfig() _A : List[Any] = { "max_new_tokens": 1_0_2_4, "foo": "bar", } _A : List[str] = copy.deepcopy(__lowerCamelCase) _A : int = generation_config.update(**__lowerCamelCase) # update_kwargs was not modified (no side effects) self.assertEqual(__lowerCamelCase , __lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__lowerCamelCase , {"foo": "bar"}) def _lowerCamelCase ( self) -> Any: _A : int = GenerationConfig() _A : int = "bar" with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(__lowerCamelCase) _A : Any = GenerationConfig.from_pretrained(__lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar") _A : Optional[Any] = GenerationConfig.from_model_config(__lowerCamelCase) assert not hasattr(__lowerCamelCase , "foo") # no new kwargs should be initialized if from config def _lowerCamelCase ( self) -> List[str]: _A : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , __lowerCamelCase) self.assertEqual(default_config.num_beams , 1) _A : Optional[int] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , __lowerCamelCase) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase) _A : Optional[int] = GenerationConfig.from_pretrained(__lowerCamelCase , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , __lowerCamelCase) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @classmethod def _lowerCamelCase ( cls) -> Optional[int]: _A : Dict = TOKEN HfFolder.save_token(__lowerCamelCase) @classmethod def _lowerCamelCase ( cls) -> List[Any]: try: delete_repo(token=cls._token , repo_id="test-generation-config") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org") except HTTPError: pass def _lowerCamelCase ( self) -> Any: _A : Optional[int] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token) _A : Union[str, Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="test-generation-config" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Optional[Any] = GenerationConfig.from_pretrained(F"{USER}/test-generation-config") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Union[str, Any] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token) _A : int = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="valid_org/test-generation-config-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token) _A : Optional[int] = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase))
11
1
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class _A ( _a ): """simple docstring""" def __snake_case ( self : str): a : Optional[int] = tempfile.mkdtemp() a : Optional[int] = 8 # DPR tok a : List[str] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a : Optional[Any] = os.path.join(self.tmpdirname , "dpr_tokenizer") os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase) a : Dict = os.path.join(__UpperCAmelCase , DPR_VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) # BART tok a : List[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] a : Tuple = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase)))) a : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] a : List[Any] = {"unk_token": "<unk>"} a : Any = os.path.join(self.tmpdirname , "bart_tokenizer") os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase) a : Union[str, Any] = os.path.join(__UpperCAmelCase , BART_VOCAB_FILES_NAMES["vocab_file"]) a : Optional[int] = os.path.join(__UpperCAmelCase , BART_VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(__UpperCAmelCase) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(__UpperCAmelCase)) def __snake_case ( self : List[str]): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer")) def __snake_case ( self : str): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer")) def __snake_case ( self : Dict): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer")) def __snake_case ( self : Union[str, Any]): shutil.rmtree(self.tmpdirname) def __snake_case ( self : int): a : List[str] = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size), 2 * np.ones(self.retrieval_vector_size)], }) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT) return dataset def __snake_case ( self : str): a : Any = self.get_dummy_dataset() a : List[str] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset: a : Tuple = dataset a : int = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __snake_case ( self : Optional[int] , __UpperCAmelCase : bool): a : Tuple = self.get_dummy_dataset() a : Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: a : List[str] = os.path.join(self.tmpdirname , "dataset") a : List[str] = os.path.join(self.tmpdirname , "index.faiss") dataset.get_index("embeddings").save(os.path.join(self.tmpdirname , "index.faiss")) dataset.drop_index("embeddings") dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset")) del dataset a : List[str] = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: a : Tuple = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __UpperCAmelCase) , ) return retriever def __snake_case ( self : List[str]): a : List[Any] = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1), 2 * np.ones(self.retrieval_vector_size + 1)], }) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT) a : Tuple = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index") dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr") pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb")) a : Any = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl") a : Optional[Any] = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(__UpperCAmelCase , open(__UpperCAmelCase , "wb")) a : str = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) a : List[str] = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer()) return retriever def __snake_case ( self : Optional[Any]): a : Tuple = 1 a : List[str] = self.get_dummy_canonical_hf_index_retriever() a : Tuple = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) a : List[str] = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(__UpperCAmelCase) , 2) self.assertEqual(sorted(doc_dicts[0]) , ["embeddings", "id", "text", "title"]) self.assertEqual(len(doc_dicts[0]["id"]) , __UpperCAmelCase) self.assertEqual(doc_dicts[0]["id"][0] , "1") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def __snake_case ( self : Union[str, Any]): a : List[Any] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset: a : Union[str, Any] = self.get_dummy_dataset() retriever.save_pretrained(__UpperCAmelCase) a : Any = RagRetriever.from_pretrained(__UpperCAmelCase) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase) a : List[str] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) a : Optional[int] = retriever.retrieve(__UpperCAmelCase , n_docs=1) self.assertTrue(out is not None) def __snake_case ( self : Optional[Any]): a : List[str] = 1 a : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase) a : List[Any] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) a : Any = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(__UpperCAmelCase) , 2) self.assertEqual(sorted(doc_dicts[0]) , ["embeddings", "id", "text", "title"]) self.assertEqual(len(doc_dicts[0]["id"]) , __UpperCAmelCase) self.assertEqual(doc_dicts[0]["id"][0] , "1") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def __snake_case ( self : Optional[int]): a : int = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCAmelCase) a : Optional[int] = RagRetriever.from_pretrained(__UpperCAmelCase) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase) a : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) a : Tuple = retriever.retrieve(__UpperCAmelCase , n_docs=1) self.assertTrue(out is not None) def __snake_case ( self : Any): a : Dict = 1 a : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase) a : Tuple = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) a : Union[str, Any] = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(__UpperCAmelCase) , 2) self.assertEqual(sorted(doc_dicts[0]) , ["embeddings", "id", "text", "title"]) self.assertEqual(len(doc_dicts[0]["id"]) , __UpperCAmelCase) self.assertEqual(doc_dicts[0]["id"][0] , "1") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def __snake_case ( self : Any): a : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCAmelCase) a : Dict = RagRetriever.from_pretrained(__UpperCAmelCase) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase) a : Any = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) a : int = retriever.retrieve(__UpperCAmelCase , n_docs=1) self.assertTrue(out is not None) def __snake_case ( self : str): a : Dict = 1 a : str = self.get_dummy_legacy_index_retriever() a : List[str] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) a : Any = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(__UpperCAmelCase) , 2) self.assertEqual(sorted(doc_dicts[0]) , ["text", "title"]) self.assertEqual(len(doc_dicts[0]["text"]) , __UpperCAmelCase) self.assertEqual(doc_dicts[0]["text"][0] , "bar") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def __snake_case ( self : List[str]): a : Any = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCAmelCase) a : Optional[Any] = RagRetriever.from_pretrained(__UpperCAmelCase) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase) a : List[str] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) a : str = retriever.retrieve(__UpperCAmelCase , n_docs=1) self.assertTrue(out is not None) @require_torch @require_tokenizers @require_sentencepiece def __snake_case ( self : Tuple): import torch a : Dict = 1 a : Optional[int] = self.get_dummy_canonical_hf_index_retriever() a : int = [[5, 7], [10, 11]] a : Dict = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) a : Any = retriever(__UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase) a : Optional[Any] = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase) self.assertIsInstance(__UpperCAmelCase , np.ndarray) a : Optional[int] = retriever( __UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase , return_tensors="pt" , ) a : str = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertIsInstance(__UpperCAmelCase , torch.Tensor) self.assertIsInstance(__UpperCAmelCase , torch.Tensor) self.assertIsInstance(__UpperCAmelCase , torch.Tensor) @require_torch @require_tokenizers @require_sentencepiece def __snake_case ( self : Tuple): a : Tuple = self.get_dpr_ctx_encoder_tokenizer() a : int = 1 a : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase) retriever.set_ctx_encoder_tokenizer(__UpperCAmelCase) a : List[str] = [[5, 7], [10, 11]] a : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) a : Dict = retriever(__UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase) self.assertEqual( len(__UpperCAmelCase) , 6) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask")) , __UpperCAmelCase) # check for doc token related keys in dictionary.
351
"""simple docstring""" from __future__ import annotations class _A : """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : List[Any]=None): a : int = data a : Dict = None def __repr__( self : Dict): a : List[Any] = [] a : str = self while temp: string_rep.append(f'''{temp.data}''') a : Tuple = temp.next return "->".join(__UpperCAmelCase) def lowercase ( A_ )-> Any: '''simple docstring''' if not elements_list: raise Exception("The Elements List is empty" ) a : Any = Node(elements_list[0] ) for i in range(1 , len(A_ ) ): a : int = Node(elements_list[i] ) a : Optional[Any] = current.next return head def lowercase ( A_ )-> None: '''simple docstring''' if head_node is not None and isinstance(A_ , A_ ): print_reverse(head_node.next ) print(head_node.data ) def lowercase ( )-> List[Any]: '''simple docstring''' from doctest import testmod testmod() a : Union[str, Any] = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(A_ ) print("Elements in Reverse:" ) print_reverse(A_ ) if __name__ == "__main__": main()
226
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): a__ : Any ='''pt''' elif is_tf_available(): a__ : Tuple ='''tf''' else: a__ : List[str] ='''jax''' class snake_case ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =PerceiverTokenizer SCREAMING_SNAKE_CASE_ : Optional[int] =False def _lowerCamelCase ( self : int ): super().setUp() __UpperCamelCase = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self : Optional[Any] ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def _lowerCamelCase ( self : str , **__A : Tuple ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **__A ) def _lowerCamelCase ( self : List[str] , __A : Union[str, Any] , __A : Dict=False , __A : Any=2_0 , __A : Tuple=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __UpperCamelCase = [] for i in range(len(__A ) ): try: __UpperCamelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=__A ) except UnicodeDecodeError: pass toks.append((i, tok) ) __UpperCamelCase = list(filter(lambda __A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , __A ) ) __UpperCamelCase = list(filter(lambda __A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__A ) , __A ) ) if max_length is not None and len(__A ) > max_length: __UpperCamelCase = toks[:max_length] if min_length is not None and len(__A ) < min_length and len(__A ) > 0: while len(__A ) < min_length: __UpperCamelCase = toks + toks # toks_str = [t[1] for t in toks] __UpperCamelCase = [t[0] for t in toks] # Ensure consistency __UpperCamelCase = tokenizer.decode(__A , clean_up_tokenization_spaces=__A ) if " " not in output_txt and len(__A ) > 1: __UpperCamelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__A ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__A ) ) if with_prefix_space: __UpperCamelCase = ' ' + output_txt __UpperCamelCase = tokenizer.encode(__A , add_special_tokens=__A ) return output_txt, output_ids def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = self.perceiver_tokenizer __UpperCamelCase = 'Unicode €.' __UpperCamelCase = tokenizer(__A ) __UpperCamelCase = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , __A ) # decoding __UpperCamelCase = tokenizer.decode(__A ) self.assertEqual(__A , '[CLS]Unicode €.[SEP]' ) __UpperCamelCase = tokenizer('e è é ê ë' ) __UpperCamelCase = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , __A ) # decoding __UpperCamelCase = tokenizer.decode(__A ) self.assertEqual(__A , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = self.perceiver_tokenizer __UpperCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __UpperCamelCase = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on __UpperCamelCase = tokenizer(__A , padding=__A , return_tensors=__A ) self.assertIsInstance(__A , __A ) if FRAMEWORK != "jax": __UpperCamelCase = list(batch.input_ids.numpy()[0] ) else: __UpperCamelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__A , __A ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.perceiver_tokenizer __UpperCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __UpperCamelCase = tokenizer(__A , padding=__A , return_tensors=__A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , __A ) self.assertIn('attention_mask' , __A ) self.assertNotIn('decoder_input_ids' , __A ) self.assertNotIn('decoder_attention_mask' , __A ) def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = self.perceiver_tokenizer __UpperCamelCase = [ 'Summary of the text.', 'Another summary.', ] __UpperCamelCase = tokenizer( text_target=__A , max_length=3_2 , padding='max_length' , truncation=__A , return_tensors=__A ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def _lowerCamelCase ( self : Dict ): # safety check on max_len default value so we are sure the test works __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = ' He is very happy, UNwant\u00E9d,running' __UpperCamelCase = tokenizer.encode(__A , add_special_tokens=__A ) tokenizer.save_pretrained(__A ) __UpperCamelCase = tokenizer.__class__.from_pretrained(__A ) __UpperCamelCase = after_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) shutil.rmtree(__A ) __UpperCamelCase = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __UpperCamelCase = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __UpperCamelCase = tokenizer.encode(__A , add_special_tokens=__A ) tokenizer.save_pretrained(__A ) __UpperCamelCase = tokenizer.__class__.from_pretrained(__A ) __UpperCamelCase = after_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) __UpperCamelCase = tokenizer.__class__.from_pretrained(__A , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(__A ) def _lowerCamelCase ( self : Any ): __UpperCamelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__A ) with open(os.path.join(__A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __UpperCamelCase = json.load(__A ) with open(os.path.join(__A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __UpperCamelCase = json.load(__A ) __UpperCamelCase = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] __UpperCamelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] __UpperCamelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(__A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(__A , __A ) with open(os.path.join(__A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(__A , __A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCamelCase = tokenizer_class.from_pretrained( __A , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCamelCase = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=__A )] __UpperCamelCase = tokenizer_class.from_pretrained( __A , additional_special_tokens=__A , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '�' ) def _lowerCamelCase ( self : Dict ): pass def _lowerCamelCase ( self : List[str] ): pass def _lowerCamelCase ( self : Tuple ): pass def _lowerCamelCase ( self : Optional[Any] ): pass def _lowerCamelCase ( self : str ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __UpperCamelCase = self.get_tokenizers(fast=__A , do_lower_case=__A ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __UpperCamelCase = tokenizer.convert_tokens_to_string(__A ) self.assertIsInstance(__A , __A )
53
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() a__ : Any = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] a__ : Dict = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def snake_case ( UpperCAmelCase , UpperCAmelCase )-> List[str]: """simple docstring""" __A = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks __A = int(re.match(R'.*layer_(\d*).*' , UpperCAmelCase )[1] ) layer_number -= 3 return f'h.{layer_number}.' + key def snake_case ( UpperCAmelCase )-> Any: """simple docstring""" if dtype == torch.bool: return 1 / 8 __A = re.search(R'[^\d](\d+)$' , str(UpperCAmelCase ) ) if bit_search is None: raise ValueError(f'`dtype` is not a valid dtype: {dtype}.' ) __A = int(bit_search.groups()[0] ) return bit_size // 8 def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> str: """simple docstring""" # Construct model if bloom_config_file == "": __A = BloomConfig() else: __A = BloomConfig.from_json_file(UpperCAmelCase ) if shard_model: __A = os.listdir(UpperCAmelCase ) __A = sorted(filter(lambda UpperCAmelCase : s.startswith('layer' ) and "model_00" in s , UpperCAmelCase ) ) __A = {'weight_map': {}, 'metadata': {}} __A = 0 __A = None __A = BloomConfig() for j, file in enumerate(UpperCAmelCase ): print('Processing file: {}'.format(UpperCAmelCase ) ) __A = None for i in range(UpperCAmelCase ): # load all TP files __A = file.replace('model_00' , f'model_0{i}' ) __A = torch.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) , map_location='cpu' ) # Rename keys in the transformers names __A = list(temp.keys() ) for key in keys: __A = temp.pop(UpperCAmelCase ) if tensors is None: __A = temp else: for key in tensors.keys(): if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __A = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __A = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __A = tensors[key] / pretraining_tp torch.save( UpperCAmelCase , os.path.join( UpperCAmelCase , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): __A = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: __A = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase ) ).zfill(5 ) ) __A = BloomConfig() __A = pytorch_dump_folder_path + '/' + CONFIG_NAME __A = total_size with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(UpperCAmelCase , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: __A = json.dumps(UpperCAmelCase , indent=2 , sort_keys=UpperCAmelCase ) + '\n' f.write(UpperCAmelCase ) else: __A = BloomModel(UpperCAmelCase ) __A = os.listdir(UpperCAmelCase ) __A = sorted(filter(lambda UpperCAmelCase : s.startswith('layer' ) and "model_00" in s , UpperCAmelCase ) ) __A = None for i, file in enumerate(UpperCAmelCase ): __A = None for i in range(UpperCAmelCase ): # load all TP files __A = file.replace('model_00' , f'model_0{i}' ) __A = torch.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) , map_location='cpu' ) # Rename keys in the transformers names __A = list(temp.keys() ) for key in keys: __A = temp.pop(UpperCAmelCase ) if tensors is None: __A = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __A = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __A = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __A = tensors[key] / pretraining_tp __A = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) assert not other_keys.unexpected_keys, f'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: __A = set(other_keys.missing_keys ) else: __A = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) __A = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __A = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: __A = model.to(config.torch_dtype ) torch.save(model.state_dict() , UpperCAmelCase ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) a__ : Tuple = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
161
0
"""simple docstring""" _UpperCamelCase = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100000)] def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _UpperCamelCase = [None] * 10000000 _UpperCamelCase = True _UpperCamelCase = False def _a ( _snake_case ): """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase = chain(next_number(_snake_case ) ) UpperCAmelCase = number_chain while number < 1000_0000: UpperCAmelCase = number_chain number *= 10 return number_chain def _a ( _snake_case = 1000_0000 ): """simple docstring""" for i in range(1 , _snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
234
"""simple docstring""" from __future__ import annotations def _a ( _snake_case , _snake_case = None , _snake_case = None ): """simple docstring""" if start is None: UpperCAmelCase = 0 if end is None: UpperCAmelCase = len(_snake_case ) - 1 if start >= end: return UpperCAmelCase = (start + end) // 2 slowsort(_snake_case , _snake_case , _snake_case ) slowsort(_snake_case , mid + 1 , _snake_case ) if sequence[end] < sequence[mid]: UpperCAmelCase , UpperCAmelCase = sequence[mid], sequence[end] slowsort(_snake_case , _snake_case , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
234
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowerCAmelCase__ : Any = None lowerCAmelCase__ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase__ : int = '''▁''' lowerCAmelCase__ : List[str] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ : List[str] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}, '''tokenizer_file''': { '''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json''' }, } lowerCAmelCase__ : Any = { '''google/pegasus-xsum''': 5_12, } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = PegasusTokenizer __lowerCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="<pad>" , __UpperCamelCase="</s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<mask_2>" , __UpperCamelCase="<mask_1>" , __UpperCamelCase=None , __UpperCamelCase=103 , **__UpperCamelCase , ) -> Optional[Any]: '''simple docstring''' snake_case__ : List[str] = offset if additional_special_tokens is not None: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(__UpperCamelCase )}, but is""" F""" {type(__UpperCamelCase )}""" ) snake_case__ : Tuple = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(__UpperCamelCase ) , self.offset - 1 ) ] if len(set(__UpperCamelCase ) ) != len(__UpperCamelCase ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) snake_case__ : Union[str, Any] = additional_special_tokens_extended else: snake_case__ : Dict = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , pad_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , mask_token=__UpperCamelCase , mask_token_sent=__UpperCamelCase , offset=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ : List[str] = vocab_file snake_case__ : Any = False if not self.vocab_file else True def __a ( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( 'There should be 3 special tokens: mask_token, pad_token, and eos_token +' F""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def __a ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(__UpperCamelCase ) elif token_ids_a is None: return self._special_token_mask(__UpperCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __a ( self , __UpperCamelCase , __UpperCamelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__UpperCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ : Tuple = os.path.join( __UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file , __UpperCamelCase ) return (out_vocab_file,)
143
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __snake_case ( unittest.TestCase ): @require_torch def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Optional[Any] = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused' ) snake_case__ : Union[str, Any] = load_dataset('ashraq/esc50' ) snake_case__ : List[Any] = dataset['train']['audio'][-1]['array'] snake_case__ : Tuple = audio_classifier(__UpperCamelCase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [{'score': 0.5_0_1, 'label': 'Sound of a dog'}, {'score': 0.4_9_9, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF' ) def __a ( self ) -> List[str]: '''simple docstring''' pass @slow @require_torch def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Tuple = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog snake_case__ : Dict = load_dataset('ashraq/esc50' ) snake_case__ : Optional[int] = dataset['train']['audio'][-1]['array'] snake_case__ : Tuple = audio_classifier(__UpperCamelCase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ {'score': 0.9_9_9, 'label': 'Sound of a dog'}, {'score': 0.0_0_1, 'label': 'Sound of vaccum cleaner'}, ] , ) snake_case__ : str = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ [ {'score': 0.9_9_9, 'label': 'Sound of a dog'}, {'score': 0.0_0_1, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) snake_case__ : Tuple = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5 ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ [ {'score': 0.9_9_9, 'label': 'Sound of a dog'}, {'score': 0.0_0_1, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF' ) def __a ( self ) -> Any: '''simple docstring''' pass
143
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : str = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _a : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
126
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _a : Tuple = None _a : str = logging.get_logger(__name__) _a : str = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _a : Tuple = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } _a : int = { 'facebook/nllb-large-en-ro': 1_024, 'facebook/nllb-200-distilled-600M': 1_024, } # fmt: off _a : Union[str, Any] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = ["input_ids", "attention_mask"] _UpperCamelCase : Tuple = NllbTokenizer _UpperCamelCase : List[int] = [] _UpperCamelCase : List[int] = [] def __init__( self , a__=None , a__=None , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__=None , a__=None , a__=None , a__=False , **a__ , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Optional[int] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token _lowerCAmelCase : int = legacy_behaviour super().__init__( vocab_file=a__ , tokenizer_file=a__ , bos_token=a__ , eos_token=a__ , sep_token=a__ , cls_token=a__ , unk_token=a__ , pad_token=a__ , mask_token=a__ , src_lang=a__ , tgt_lang=a__ , additional_special_tokens=a__ , legacy_behaviour=a__ , **a__ , ) _lowerCAmelCase : List[Any] = vocab_file _lowerCAmelCase : List[str] = False if not self.vocab_file else True _lowerCAmelCase : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _lowerCAmelCase : Tuple = { lang_code: self.convert_tokens_to_ids(a__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase : List[str] = src_lang if src_lang is not None else """eng_Latn""" _lowerCAmelCase : int = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __A ( self ): return self._src_lang @src_lang.setter def __A ( self , a__ ): _lowerCAmelCase : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __A ( self , a__ , a__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Tuple = [self.sep_token_id] _lowerCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , a__ , a__ , a__ , a__ , **a__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : str = src_lang _lowerCAmelCase : List[Any] = self(a__ , add_special_tokens=a__ , return_tensors=a__ , **a__ ) _lowerCAmelCase : Dict = self.convert_tokens_to_ids(a__ ) _lowerCAmelCase : Dict = tgt_lang_id return inputs def __A ( self , a__ , a__ = "eng_Latn" , a__ = None , a__ = "fra_Latn" , **a__ , ): _lowerCAmelCase : List[Any] = src_lang _lowerCAmelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(a__ , a__ , **a__ ) def __A ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __A ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __A ( self , a__ ): _lowerCAmelCase : Optional[Any] = self.convert_tokens_to_ids(a__ ) if self.legacy_behaviour: _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : str = [self.cur_lang_code] _lowerCAmelCase : List[Any] = [self.eos_token_id] _lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : Any = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __A ( self , a__ ): _lowerCAmelCase : Any = self.convert_tokens_to_ids(a__ ) if self.legacy_behaviour: _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : str = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : Optional[int] = [self.eos_token_id] _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __A ( self , a__ , a__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(a__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return _lowerCAmelCase : Optional[Any] = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
126
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A__: Optional[Any] = { '''configuration_transfo_xl''': ['''TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TransfoXLConfig'''], '''tokenization_transfo_xl''': ['''TransfoXLCorpus''', '''TransfoXLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: str = [ '''TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AdaptiveEmbedding''', '''TransfoXLForSequenceClassification''', '''TransfoXLLMHeadModel''', '''TransfoXLModel''', '''TransfoXLPreTrainedModel''', '''load_tf_weights_in_transfo_xl''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: List[Any] = [ '''TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAdaptiveEmbedding''', '''TFTransfoXLForSequenceClassification''', '''TFTransfoXLLMHeadModel''', '''TFTransfoXLMainLayer''', '''TFTransfoXLModel''', '''TFTransfoXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys A__: Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
'''simple docstring''' A__: Optional[int] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A__: Any = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A__: int = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ,_UpperCAmelCase : int ) -> str: assert len(str(_UpperCAmelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _a : List[str] =year // 100 _a : List[str] =(5 * (century % 4) + 2) % 7 _a : Optional[int] =year % 100 _a : Any =centurian % 12 _a : int =( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _a : Optional[Any] =( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) _a : str =(dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
276
1
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : int = """▁""" _lowercase : Any = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } _lowercase : int = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } _lowercase : Tuple = { """facebook/m2m100_418M""": 1024, } # fmt: off _lowercase : Optional[int] = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Tuple = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Any = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Any="<s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : List[str]="</s>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Any="<unk>" , lowerCAmelCase : List[str]="m2m100" , lowerCAmelCase : Optional[Dict[str, Any]] = None , lowerCAmelCase : List[Any]=8 , **lowerCAmelCase : Dict , )-> None: """simple docstring""" UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = language_codes UpperCAmelCase = FAIRSEQ_LANGUAGE_CODES[language_codes] UpperCAmelCase = {lang_code: F"""__{lang_code}__""" for lang_code in fairseq_language_code} UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(lowerCAmelCase ) for lang_code in fairseq_language_code if self.get_lang_token(lowerCAmelCase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , language_codes=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = vocab_file UpperCAmelCase = load_json(lowerCAmelCase ) UpperCAmelCase = {v: k for k, v in self.encoder.items()} UpperCAmelCase = spm_file UpperCAmelCase = load_spm(lowerCAmelCase , self.sp_model_kwargs ) UpperCAmelCase = len(self.encoder ) UpperCAmelCase = { self.get_lang_token(lowerCAmelCase ): self.encoder_size + i for i, lang_code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {lang_code: self.encoder_size + i for i, lang_code in enumerate(lowerCAmelCase )} UpperCAmelCase = {v: k for k, v in self.lang_token_to_id.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en''' UpperCAmelCase = tgt_lang UpperCAmelCase = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) UpperCAmelCase = num_madeup_words @property def a__( self : Tuple )-> int: """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def a__( self : int )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a__( self : Optional[int] , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[Any] , lowerCAmelCase : int )-> Dict: """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(lowerCAmelCase , self.encoder[self.unk_token] ) def a__( self : List[str] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(lowerCAmelCase , self.unk_token ) def a__( self : Union[str, Any] , lowerCAmelCase : Union[str, Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Dict , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : List[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Tuple , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def a__( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" UpperCAmelCase = Path(lowerCAmelCase ) if not save_dir.is_dir(): raise OSError(F"""{save_directory} should be a directory""" ) UpperCAmelCase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) UpperCAmelCase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (str(lowerCAmelCase ), str(lowerCAmelCase )) def a__( self : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro" , **lowerCAmelCase : Dict , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Union[str, Any] )-> int: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.get_lang_id(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : Dict )-> Dict: """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def a__( self : str )-> Dict: """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : Dict , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.get_lang_token(lowerCAmelCase ) UpperCAmelCase = self.lang_token_to_id[lang_token] UpperCAmelCase = [self.cur_lang_id] UpperCAmelCase = [self.eos_token_id] def a__( self : List[str] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.get_lang_token(lowerCAmelCase ) UpperCAmelCase = self.lang_token_to_id[lang_token] UpperCAmelCase = [self.cur_lang_id] UpperCAmelCase = [self.eos_token_id] def a__( self : Dict , lowerCAmelCase : str )-> str: """simple docstring""" return self.lang_code_to_token[lang] def a__( self : List[Any] , lowerCAmelCase : str )-> int: """simple docstring""" UpperCAmelCase = self.get_lang_token(lowerCAmelCase ) return self.lang_token_to_id[lang_token] def lowerCamelCase__ ( A : str , A : Dict[str, Any] ): '''simple docstring''' UpperCAmelCase = sentencepiece.SentencePieceProcessor(**A ) spm.Load(str(A ) ) return spm def lowerCamelCase__ ( A : str ): '''simple docstring''' with open(A , '''r''' ) as f: return json.load(A ) def lowerCamelCase__ ( A : Optional[Any] , A : str ): '''simple docstring''' with open(A , '''w''' ) as f: json.dump(A , A , indent=2 )
364
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def lowerCamelCase__ ( A : int , A : int , A : int , A : int , A : int , A : int ): '''simple docstring''' if (ksize % 2) == 0: UpperCAmelCase = ksize + 1 UpperCAmelCase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(A ): for x in range(A ): # distance from center UpperCAmelCase = x - ksize // 2 UpperCAmelCase = y - ksize // 2 # degree to radiant UpperCAmelCase = theta / 1_80 * np.pi UpperCAmelCase = np.cos(_theta ) UpperCAmelCase = np.sin(_theta ) # get kernel x UpperCAmelCase = cos_theta * px + sin_theta * py # get kernel y UpperCAmelCase = -sin_theta * px + cos_theta * py # fill kernel UpperCAmelCase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _lowercase : Tuple = imread("""../image_data/lena.jpg""") # turn image in gray scale value _lowercase : int = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _lowercase : List[str] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _lowercase : List[Any] = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _lowercase : Optional[int] = out / out.max() * 255 _lowercase : Optional[int] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
91
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _A = logging.get_logger(__name__) _A = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class lowerCamelCase ( __UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'deberta-v2' def __init__(self , _lowerCamelCase=128100 , _lowerCamelCase=1536 , _lowerCamelCase=24 , _lowerCamelCase=24 , _lowerCamelCase=6144 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=0 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-7 , _lowerCamelCase=False , _lowerCamelCase=-1 , _lowerCamelCase=0 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=0 , _lowerCamelCase="gelu" , **_lowerCamelCase , ): """simple docstring""" super().__init__(**a_ ) UpperCAmelCase__ : Any = hidden_size UpperCAmelCase__ : Any = num_hidden_layers UpperCAmelCase__ : List[Any] = num_attention_heads UpperCAmelCase__ : Union[str, Any] = intermediate_size UpperCAmelCase__ : List[str] = hidden_act UpperCAmelCase__ : int = hidden_dropout_prob UpperCAmelCase__ : List[str] = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : int = type_vocab_size UpperCAmelCase__ : Tuple = initializer_range UpperCAmelCase__ : Optional[int] = relative_attention UpperCAmelCase__ : int = max_relative_positions UpperCAmelCase__ : Any = pad_token_id UpperCAmelCase__ : int = position_biased_input # Backwards compatibility if type(a_ ) == str: UpperCAmelCase__ : Optional[Any] = [x.strip() for x in pos_att_type.lower().split("""|""" )] UpperCAmelCase__ : Tuple = pos_att_type UpperCAmelCase__ : int = vocab_size UpperCAmelCase__ : Optional[Any] = layer_norm_eps UpperCAmelCase__ : str = kwargs.get("""pooler_hidden_size""" , a_ ) UpperCAmelCase__ : Union[str, Any] = pooler_dropout UpperCAmelCase__ : Tuple = pooler_hidden_act class lowerCamelCase ( __UpperCamelCase ): '''simple docstring''' @property def _a (self ): """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase__ : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase__ : int = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def _a (self ): """simple docstring""" return 12 def _a (self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = 3 , _lowerCamelCase = 40 , _lowerCamelCase = 40 , _lowerCamelCase = None , ): """simple docstring""" UpperCAmelCase__ : List[Any] = super().generate_dummy_inputs(preprocessor=a_ , framework=a_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
171
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __A =logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = ["""pixel_values"""] def __init__( self : Tuple , a_ : bool = True , a_ : Dict[str, int] = None , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : bool = True , a_ : Dict[str, int] = None , a_ : bool = True , a_ : Union[int, float] = 1 / 2_55 , a_ : bool = True , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : bool = True , **a_ : str , ): '''simple docstring''' super().__init__(**a_ ) __UpperCAmelCase : List[Any] = size if size is not None else {'''shortest_edge''': 2_24} __UpperCAmelCase : List[str] = get_size_dict(a_ , default_to_square=a_ ) __UpperCAmelCase : int = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __UpperCAmelCase : Optional[int] = get_size_dict(a_ , default_to_square=a_ , param_name='''crop_size''' ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : Union[str, Any] = size __UpperCAmelCase : Union[str, Any] = resample __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : Any = crop_size __UpperCAmelCase : Any = do_rescale __UpperCAmelCase : Dict = rescale_factor __UpperCAmelCase : Union[str, Any] = do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCAmelCase : int = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCAmelCase : List[str] = do_convert_rgb def snake_case__ ( self : Optional[Any] , a_ : np.ndarray , a_ : Dict[str, int] , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Optional[int] , ): '''simple docstring''' __UpperCAmelCase : Dict = get_size_dict(a_ , default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __UpperCAmelCase : Optional[int] = get_resize_output_image_size(a_ , size=size['''shortest_edge'''] , default_to_square=a_ ) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def snake_case__ ( self : Union[str, Any] , a_ : np.ndarray , a_ : Dict[str, int] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Dict , ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(a_ , size=(size['''height'''], size['''width''']) , data_format=a_ , **a_ ) def snake_case__ ( self : Union[str, Any] , a_ : np.ndarray , a_ : Union[int, float] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : List[str] , ): '''simple docstring''' return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def snake_case__ ( self : Optional[Any] , a_ : np.ndarray , a_ : Union[float, List[float]] , a_ : Union[float, List[float]] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Dict , ): '''simple docstring''' return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def snake_case__ ( self : Any , a_ : ImageInput , a_ : bool = None , a_ : Dict[str, int] = None , a_ : PILImageResampling = None , a_ : bool = None , a_ : int = None , a_ : bool = None , a_ : float = None , a_ : bool = None , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : bool = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **a_ : Dict , ): '''simple docstring''' __UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Optional[Any] = size if size is not None else self.size __UpperCAmelCase : Dict = get_size_dict(a_ , param_name='''size''' , default_to_square=a_ ) __UpperCAmelCase : int = resample if resample is not None else self.resample __UpperCAmelCase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Any = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Dict = get_size_dict(a_ , param_name='''crop_size''' , default_to_square=a_ ) __UpperCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Tuple = image_std if image_std is not None else self.image_std __UpperCAmelCase : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCAmelCase : List[str] = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCAmelCase : Optional[Any] = [convert_to_rgb(a_ ) for image in images] # All transformations expect numpy arrays. __UpperCAmelCase : int = [to_numpy_array(a_ ) for image in images] if do_resize: __UpperCAmelCase : int = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_center_crop: __UpperCAmelCase : List[str] = [self.center_crop(image=a_ , size=a_ ) for image in images] if do_rescale: __UpperCAmelCase : Dict = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_normalize: __UpperCAmelCase : Optional[int] = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images] __UpperCAmelCase : Optional[int] = [to_channel_dimension_format(a_ , a_ ) for image in images] __UpperCAmelCase : Union[str, Any] = {'''pixel_values''': images} return BatchFeature(data=a_ , tensor_type=a_ )
226
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Dict ) -> List[Any]: __lowerCamelCase = '''ylacombe/bark-small''' __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = '''en_speaker_1''' __lowerCamelCase = '''This is a test string''' __lowerCamelCase = '''speaker_embeddings_path.json''' __lowerCamelCase = '''speaker_embeddings''' def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Tuple ) -> str: return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE__ ) def __A ( self : str ) -> int: shutil.rmtree(self.tmpdirname ) def __A ( self : Optional[Any] ) -> Optional[int]: __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __A ( self : Union[str, Any] ) -> Tuple: __lowerCamelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCamelCase = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __A ( self : Union[str, Any] ) -> Tuple: __lowerCamelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __lowerCamelCase = 35 __lowerCamelCase = 2 __lowerCamelCase = 8 __lowerCamelCase = { '''semantic_prompt''': np.ones(SCREAMING_SNAKE_CASE__ ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __lowerCamelCase = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __lowerCamelCase = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __lowerCamelCase = processor(text=self.input_string , voice_preset=self.voice_preset ) def __A ( self : Union[str, Any] ) -> List[str]: __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = processor(text=self.input_string ) __lowerCamelCase = tokenizer( self.input_string , padding='''max_length''' , max_length=2_56 , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
339
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE__ : Optional[int] = "bart" SCREAMING_SNAKE_CASE__ : Dict = True @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> str: if LOAD_DENSE_INDEX: __lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __lowerCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __lowerCamelCase = qar_model.eval() else: __lowerCamelCase , __lowerCamelCase = (None, None) if MODEL_TYPE == "bart": __lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __lowerCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __lowerCamelCase = sas_model.eval() else: __lowerCamelCase , __lowerCamelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> Optional[int]: if LOAD_DENSE_INDEX: __lowerCamelCase = faiss.StandardGpuResources() __lowerCamelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __lowerCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCamelCase = faiss.IndexFlatIP(128 ) __lowerCamelCase = faiss.index_cpu_to_gpu(__lowerCAmelCase , 1 , __lowerCAmelCase ) wikiaab_gpu_index_flat.add(__lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCamelCase , __lowerCamelCase = (None, None) __lowerCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> List[str]: __lowerCamelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __lowerCamelCase = elia['''train_eli5'''] __lowerCamelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __lowerCamelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(__lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_indexes() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = load_models() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_train_data() def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=10 ) -> List[str]: __lowerCamelCase = embed_questions_for_retrieval([question] , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = eli5_train_q_index.search(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = [elia_train[int(__lowerCAmelCase )] for i in I[0]] return nn_examples def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict="wiki40b" , __lowerCAmelCase : Any="dense" , __lowerCAmelCase : Dict=10 ) -> Union[str, Any]: if source == "none": __lowerCamelCase , __lowerCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCamelCase , __lowerCamelCase = query_qa_dense_index( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: __lowerCamelCase , __lowerCamelCase = query_es_index( __lowerCAmelCase , __lowerCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=__lowerCAmelCase , ) __lowerCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __lowerCamelCase = '''question: {} context: {}'''.format(__lowerCAmelCase , __lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __lowerCAmelCase : None), } ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str=64 , __lowerCAmelCase : Dict=256 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Optional[Any]=0.95 , __lowerCAmelCase : List[Any]=0.8 ) -> Any: with torch.no_grad(): __lowerCamelCase = qa_sas_generate( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_answers=1 , num_beams=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase , do_sample=__lowerCAmelCase , temp=__lowerCAmelCase , top_p=__lowerCAmelCase , top_k=__lowerCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar SCREAMING_SNAKE_CASE__ : List[str] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" SCREAMING_SNAKE_CASE__ : Dict = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE__ : int = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE__ : str = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.checkbox("Demo options") if demo_options: SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.selectbox( "", action_list, index=3, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = action_list.index(action_st) SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = show_type == "Show full text of passages" else: SCREAMING_SNAKE_CASE__ : Any = 3 SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: SCREAMING_SNAKE_CASE__ : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: SCREAMING_SNAKE_CASE__ : List[str] = "wiki40b" SCREAMING_SNAKE_CASE__ : Optional[Any] = "dense" SCREAMING_SNAKE_CASE__ : str = "beam" SCREAMING_SNAKE_CASE__ : List[Any] = 2 SCREAMING_SNAKE_CASE__ : Optional[Any] = 64 SCREAMING_SNAKE_CASE__ : List[Any] = 256 SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.checkbox("Generation options") if generate_options: SCREAMING_SNAKE_CASE__ : Dict = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE__ : str = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE__ : Dict = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None # start main text SCREAMING_SNAKE_CASE__ : Any = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] SCREAMING_SNAKE_CASE__ : List[str] = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.text_input("Enter your question here:", "") else: SCREAMING_SNAKE_CASE__ : str = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_support(question, source=wiki_source, method="dense", n_results=10) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = make_support(question, source=wiki_source, method="sparse", n_results=10) SCREAMING_SNAKE_CASE__ : int = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE__ : Optional[Any] = support_list[:10] SCREAMING_SNAKE_CASE__ : Tuple = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE__ : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) SCREAMING_SNAKE_CASE__ : Tuple = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE__ : Union[str, Any] = "[{}]({})".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE__ : Dict = sec_titles.split(" & ") SCREAMING_SNAKE_CASE__ : int = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE__ : Any = find_nearest_training(question) SCREAMING_SNAKE_CASE__ : List[Any] = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) SCREAMING_SNAKE_CASE__ : List[Any] = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
339
1
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : Tuple = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : List[str] = Rectangle(height=0.2_5 , width=0.2_5 ) _UpperCAmelCase : Union[str, Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : str = [mem.copy() for i in range(6 )] _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Union[str, Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = Text("CPU" , font_size=24 ) _UpperCAmelCase : Optional[Any] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = [mem.copy() for i in range(4 )] _UpperCAmelCase : Optional[int] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = Text("GPU" , font_size=24 ) _UpperCAmelCase : List[str] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : int = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Union[str, Any] = Text("Model" , font_size=24 ) _UpperCAmelCase : Union[str, Any] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : int = [] _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Tuple = [] for i, rect in enumerate(lowerCamelCase__ ): rect.set_stroke(lowerCamelCase__ ) _UpperCAmelCase : int = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=lowerCamelCase__ , buff=0.0 ) self.add(lowerCamelCase__ ) model_cpu_arr.append(lowerCamelCase__ ) self.add(*lowerCamelCase__ , *lowerCamelCase__ , *lowerCamelCase__ ) _UpperCAmelCase : Dict = [mem.copy() for i in range(6 )] _UpperCAmelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = Text("Loaded Checkpoint" , font_size=24 ) _UpperCAmelCase : Tuple = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Union[str, Any] = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : str = fill.copy().set_fill(lowerCamelCase__ , opacity=0.7 ) target.move_to(lowerCamelCase__ ) ckpt_arr.append(lowerCamelCase__ ) _UpperCAmelCase : int = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(lowerCamelCase__ ) self.add(*lowerCamelCase__ , *lowerCamelCase__ ) _UpperCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : int = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowerCamelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowerCamelCase__ ) _UpperCAmelCase : str = MarkupText( F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) _UpperCAmelCase : Optional[int] = [meta_mem.copy() for i in range(6 )] _UpperCAmelCase : str = [meta_mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[Any] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : int = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Any = Text("Disk" , font_size=24 ) _UpperCAmelCase : List[str] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(lowerCamelCase__ , run_time=3 ) , Write(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) ) _UpperCAmelCase : str = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : str = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(FadeOut(lowerCamelCase__ ) ) _UpperCAmelCase : Any = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=3 ) ) self.play( FadeOut(lowerCamelCase__ , lowerCamelCase__ , *lowerCamelCase__ , *lowerCamelCase__ ) , ) self.wait()
234
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = old_name if "patch_embed" in old_name: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = old_name.split("." ) if layer == "0": _UpperCAmelCase : List[str] = old_name.replace("0" , "convolution1" ) elif layer == "1": _UpperCAmelCase : Dict = old_name.replace("1" , "batchnorm_before" ) elif layer == "3": _UpperCAmelCase : Tuple = old_name.replace("3" , "convolution2" ) else: _UpperCAmelCase : Tuple = old_name.replace("4" , "batchnorm_after" ) if "network" in old_name and re.search(R"\d\.\d" , __lowerCAmelCase ): _UpperCAmelCase : List[Any] = R"\b\d{2}\b" if bool(re.search(__lowerCAmelCase , __lowerCAmelCase ) ): _UpperCAmelCase : Optional[int] = re.search(R"\d\.\d\d." , __lowerCAmelCase ).group() else: _UpperCAmelCase : Any = re.search(R"\d\.\d." , __lowerCAmelCase ).group() if int(match[0] ) < 6: _UpperCAmelCase : str = old_name.replace(__lowerCAmelCase , "" ) _UpperCAmelCase : Optional[Any] = trimmed_name.replace("network" , match[0] + ".meta4D_layers.blocks." + match[2:-1] ) _UpperCAmelCase : Union[str, Any] = "intermediate_stages." + trimmed_name else: _UpperCAmelCase : Tuple = old_name.replace(__lowerCAmelCase , "" ) if int(match[2] ) < num_meta4D_last_stage: _UpperCAmelCase : Any = trimmed_name.replace("network" , "meta4D_layers.blocks." + match[2] ) else: _UpperCAmelCase : List[str] = str(int(match[2] ) - num_meta4D_last_stage ) _UpperCAmelCase : int = trimmed_name.replace("network" , "meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: _UpperCAmelCase : Tuple = trimmed_name.replace("norm1" , "layernorm1" ) elif "norm2" in old_name: _UpperCAmelCase : int = trimmed_name.replace("norm2" , "layernorm2" ) elif "fc1" in old_name: _UpperCAmelCase : Optional[int] = trimmed_name.replace("fc1" , "linear_in" ) elif "fc2" in old_name: _UpperCAmelCase : List[str] = trimmed_name.replace("fc2" , "linear_out" ) _UpperCAmelCase : Optional[Any] = "last_stage." + trimmed_name elif "network" in old_name and re.search(R".\d." , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = old_name.replace("network" , "intermediate_stages" ) if "fc" in new_name: _UpperCAmelCase : Union[str, Any] = new_name.replace("fc" , "convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): _UpperCAmelCase : List[Any] = new_name.replace("norm1" , "batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): _UpperCAmelCase : List[Any] = new_name.replace("norm2" , "batchnorm_after" ) if "proj" in new_name: _UpperCAmelCase : Union[str, Any] = new_name.replace("proj" , "projection" ) if "dist_head" in new_name: _UpperCAmelCase : List[Any] = new_name.replace("dist_head" , "distillation_classifier" ) elif "head" in new_name: _UpperCAmelCase : str = new_name.replace("head" , "classifier" ) elif "patch_embed" in new_name: _UpperCAmelCase : List[str] = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": _UpperCAmelCase : List[Any] = new_name.replace("norm" , "layernorm" ) _UpperCAmelCase : Any = "efficientformer." + new_name else: _UpperCAmelCase : Dict = "efficientformer.encoder." + new_name return new_name def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for key in checkpoint.copy().keys(): _UpperCAmelCase : List[Any] = checkpoint.pop(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = val return checkpoint def __lowerCAmelCase (): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Tuple = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return image def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = torch.load(__lowerCAmelCase , map_location="cpu" )["model"] _UpperCAmelCase : Dict = EfficientFormerConfig.from_json_file(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = EfficientFormerForImageClassificationWithTeacher(__lowerCAmelCase ) _UpperCAmelCase : Tuple = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) _UpperCAmelCase : Union[str, Any] = config.depths[-1] - config.num_metaad_blocks + 1 _UpperCAmelCase : Optional[int] = convert_torch_checkpoint(__lowerCAmelCase , __lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() _UpperCAmelCase : Optional[Any] = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image _UpperCAmelCase : int = prepare_img() _UpperCAmelCase : List[str] = 256 _UpperCAmelCase : Optional[int] = 224 _UpperCAmelCase : Tuple = EfficientFormerImageProcessor( size={"shortest_edge": image_size} , crop_size={"height": crop_size, "width": crop_size} , resample=pillow_resamplings["bicubic"] , ) _UpperCAmelCase : Any = processor(images=__lowerCAmelCase , return_tensors="pt" ).pixel_values # original processing pipeline _UpperCAmelCase : int = Compose( [ Resize(__lowerCAmelCase , interpolation=pillow_resamplings["bicubic"] ), CenterCrop(__lowerCAmelCase ), ToTensor(), Normalize(__lowerCAmelCase , __lowerCAmelCase ), ] ) _UpperCAmelCase : Any = image_transforms(__lowerCAmelCase ).unsqueeze(0 ) assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = model(__lowerCAmelCase ) _UpperCAmelCase : Dict = outputs.logits _UpperCAmelCase : Optional[int] = (1, 1_000) if "l1" in model_name: _UpperCAmelCase : List[Any] = torch.Tensor( [-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9, -0.5_1_2_4, 0.4_1_8_3, -0.6_7_9_3, -1.3_7_7_7, -0.0_8_9_3, -0.7_3_5_8, -2.4_3_2_8] ) assert torch.allclose(logits[0, :10] , __lowerCAmelCase , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: _UpperCAmelCase : List[Any] = torch.Tensor( [-1.3_1_5_0, -1.5_4_5_6, -1.2_5_5_6, -0.8_4_9_6, -0.7_1_2_7, -0.7_8_9_7, -0.9_7_2_8, -0.3_0_5_2, 0.3_7_5_1, -0.3_1_2_7] ) assert torch.allclose(logits[0, :10] , __lowerCAmelCase , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: _UpperCAmelCase : List[Any] = torch.Tensor( [-1.0_2_8_3, -1.4_1_3_1, -0.5_6_4_4, -1.3_1_1_5, -0.5_7_8_5, -1.2_0_4_9, -0.7_5_2_8, 0.1_9_9_2, -0.3_8_2_2, -0.0_8_7_8] ) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(__lowerCAmelCase ) print(F"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" , commit_message="Add model" , use_temp_dir=__lowerCAmelCase , ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" , commit_message="Add image processor" , use_temp_dir=__lowerCAmelCase , ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) lowerCamelCase__ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
234
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : int = 'distilbert' A_ : str = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self , __UpperCAmelCase=30522 , __UpperCAmelCase=512 , __UpperCAmelCase=False , __UpperCAmelCase=6 , __UpperCAmelCase=12 , __UpperCAmelCase=768 , __UpperCAmelCase=4 * 768 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.2 , __UpperCAmelCase=0 , **__UpperCAmelCase , ) -> List[Any]: _a = vocab_size _a = max_position_embeddings _a = sinusoidal_pos_embds _a = n_layers _a = n_heads _a = dim _a = hidden_dim _a = dropout _a = attention_dropout _a = activation _a = initializer_range _a = qa_dropout _a = seq_classif_dropout super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase ) class __lowerCamelCase ( a__ ): '''simple docstring''' @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
153
"""simple docstring""" def A_ ( _lowerCAmelCase : int ): """simple docstring""" if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True _a = 4 _a = (1 << p) - 1 for _ in range(p - 2 ): _a = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
153
1
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase = pytest.mark.integration @require_faiss class A_ ( A__ ): """simple docstring""" def UpperCAmelCase__ ( self :Dict ): """simple docstring""" lowerCamelCase__ : int =Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowerCamelCase_ ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCAmelCase__ ( self :Any ): """simple docstring""" import faiss lowerCamelCase__ : Dataset =self._create_dummy_dataset() lowerCamelCase__ : str =dset.map( lambda lowerCamelCase_ , lowerCamelCase_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ ) lowerCamelCase__ : Any =dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase__ , lowerCamelCase__ : Dict =dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCAmelCase__ ( self :Dict ): """simple docstring""" import faiss lowerCamelCase__ : Dataset =self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase__ , lowerCamelCase__ : List[Any] =dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" import faiss lowerCamelCase__ : Dataset =self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCamelCase_ ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ , lowerCamelCase__ : List[Any] =dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : Dataset =self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(lowerCamelCase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" from elasticsearch import Elasticsearch lowerCamelCase__ : Dataset =self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : List[Any] ={'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase__ : Optional[int] ={'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase__ : Any =Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : Any =dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class A_ ( A__ ): """simple docstring""" def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" import faiss lowerCamelCase__ : Tuple =FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase__ : List[str] =np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Optional[int] =1 lowerCamelCase__ , lowerCamelCase__ : Optional[int] =index.search(lowerCamelCase_ ) self.assertRaises(lowerCamelCase_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase__ : List[Any] =np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase__ , lowerCamelCase__ : Tuple =index.search_batch(lowerCamelCase_ ) self.assertRaises(lowerCamelCase_ , index.search_batch , queries[0] ) lowerCamelCase__ : Any =[scores[0] for scores in total_scores] lowerCamelCase__ : str =[indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowerCamelCase_ ) def UpperCAmelCase__ ( self :str ): """simple docstring""" import faiss lowerCamelCase__ : Dict =FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase__ : Dict =FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowerCamelCase_ ): lowerCamelCase__ : List[Any] =FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" import faiss lowerCamelCase__ : Dict =faiss.IndexFlat(5 ) lowerCamelCase__ : Union[str, Any] =FaissIndex(custom_index=lowerCamelCase_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCAmelCase__ ( self :str ): """simple docstring""" import faiss lowerCamelCase__ : List[str] =FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCamelCase_ ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase__ : Optional[int] =FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ : str =np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Any =1 lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =index.search(lowerCamelCase_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCAmelCase_ ( snake_case_ : Optional[int] ) ->Any: import faiss lowerCamelCase__ : int =FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase__ : List[str] ='index.faiss' lowerCamelCase__ : str =f"""mock://{index_name}""" index.save(snake_case_ , storage_options=mockfs.storage_options ) lowerCamelCase__ : int =FaissIndex.load(snake_case_ , storage_options=mockfs.storage_options ) lowerCamelCase__ : List[Any] =np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Union[str, Any] =1 lowerCamelCase__ , lowerCamelCase__ : List[Any] =index.search(snake_case_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class A_ ( A__ ): """simple docstring""" def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : List[str] =Elasticsearch() lowerCamelCase__ : List[Any] ={'acknowledged': True} lowerCamelCase__ : str =ElasticSearchIndex(es_client=lowerCamelCase_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase__ : Optional[Any] ='foo' lowerCamelCase__ : Optional[int] ={'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : str =index.search(lowerCamelCase_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase__ : Optional[Any] ='foo' lowerCamelCase__ : Any ={'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Any =index.search(lowerCamelCase_ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase__ : Tuple =['foo', 'bar', 'foobar'] lowerCamelCase__ : Any ={'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Dict =index.search_batch(lowerCamelCase_ ) lowerCamelCase__ : List[str] =[scores[0] for scores in total_scores] lowerCamelCase__ : str =[indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , lowerCamelCase_ ) # batched queries with timeout lowerCamelCase__ : Tuple =['foo', 'bar', 'foobar'] lowerCamelCase__ : Tuple ={'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : List[Any] =index.search_batch(lowerCamelCase_ , request_timeout=30 ) lowerCamelCase__ : Tuple =[scores[0] for scores in total_scores] lowerCamelCase__ : Union[str, Any] =[indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , lowerCamelCase_ )
126
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCAmelCase_ ( ) ->Tuple: lowerCamelCase__ : Dict =_ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowerCamelCase__ : int =get_sagemaker_input() else: lowerCamelCase__ : List[str] =get_cluster_input() return config def lowerCAmelCase_ ( snake_case_ : List[Any]=None ) ->List[str]: if subparsers is not None: lowerCamelCase__ : Union[str, Any] =subparsers.add_parser('config' , description=snake_case_ ) else: lowerCamelCase__ : Tuple =argparse.ArgumentParser('Accelerate config command' , description=snake_case_ ) parser.add_argument( '--config_file' , default=snake_case_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def lowerCAmelCase_ ( snake_case_ : str ) ->List[Any]: lowerCamelCase__ : Optional[int] =get_user_input() if args.config_file is not None: lowerCamelCase__ : Dict =args.config_file else: if not os.path.isdir(snake_case_ ): os.makedirs(snake_case_ ) lowerCamelCase__ : Optional[Any] =default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(snake_case_ ) else: config.to_yaml_file(snake_case_ ) print(f"""accelerate configuration saved at {config_file}""" ) def lowerCAmelCase_ ( ) ->Optional[Any]: lowerCamelCase__ : Tuple =config_command_parser() lowerCamelCase__ : Tuple =parser.parse_args() config_command(snake_case_ ) if __name__ == "__main__": main()
126
1
'''simple docstring''' import os def a__ ( lowerCAmelCase__ = "matrix.txt" ) -> int: with open(os.path.join(os.path.dirname(_UpperCamelCase ) , _UpperCamelCase ) ) as in_file: UpperCAmelCase__ : Dict = in_file.read() UpperCAmelCase__ : List[str] = [[int(_UpperCamelCase ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] UpperCAmelCase__ : Dict = [[0 for cell in row] for row in grid] UpperCAmelCase__ : Optional[int] = len(grid[0] ) UpperCAmelCase__ : str = [[0 for i in range(_UpperCamelCase )] for j in range(_UpperCamelCase )] UpperCAmelCase__ : Tuple = grid[0][0] for i in range(1 , _UpperCamelCase ): UpperCAmelCase__ : Any = grid[0][i] + dp[0][i - 1] for i in range(1 , _UpperCamelCase ): UpperCAmelCase__ : Tuple = grid[i][0] + dp[i - 1][0] for i in range(1 , _UpperCamelCase ): for j in range(1 , _UpperCamelCase ): UpperCAmelCase__ : Union[str, Any] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"""{solution() = }""")
368
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'new-model' if is_tf_available(): class lowerCamelCase_ ( __a ): lowerCAmelCase__ = NewModelConfig @require_tf class lowerCamelCase_ ( unittest.TestCase ): @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = '''bert-base-cased''' UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = '''bert-base-cased''' UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForPreTraining.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : str = TFAutoModelForCausalLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForCausalLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForQuestionAnswering.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow @require_tensorflow_probability def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: UpperCAmelCase__ : List[str] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained( _A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = copy.deepcopy(model.config ) UpperCAmelCase__ : Tuple = ['''FunnelBaseModel'''] UpperCAmelCase__ : int = TFAutoModel.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = TFAutoModel.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' try: AutoConfig.register('''new-model''' , _A ) UpperCAmelCase__ : List[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) auto_class.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase__ : Tuple = BertModelTester(self ).get_config() UpperCAmelCase__ : str = NewModelConfig(**tiny_config.to_dict() ) UpperCAmelCase__ : str = auto_class.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = auto_class.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def lowercase_ ( self : str ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained('''bert-base''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaisesRegex(_A , '''Use `from_pt=True` to load this model''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase__ : Union[str, Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint UpperCAmelCase__ : Optional[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): '''simple docstring''' _UpperCAmelCase : List[str] = ["image_processor", "tokenizer"] _UpperCAmelCase : Tuple = "CLIPImageProcessor" _UpperCAmelCase : Tuple = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[Any] , lowercase : Dict=None , lowercase : List[str]=None , **lowercase : List[str] ): '''simple docstring''' _snake_case = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase_ , ) _snake_case = kwargs.pop('feature_extractor' ) _snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowercase_ , lowercase_ ) def __call__( self : str , lowercase : int=None , lowercase : int=None , lowercase : Dict=None , **lowercase : Any ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: _snake_case = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and images is not None: _snake_case = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def A ( self : str , *lowercase : int , **lowercase : Any ): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def A ( self : List[str] , *lowercase : Union[str, Any] , **lowercase : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def A ( self : List[str] ): '''simple docstring''' _snake_case = self.tokenizer.model_input_names _snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A ( self : Optional[int] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase_ , ) return self.image_processor_class @property def A ( self : List[str] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase_ , ) return self.image_processor
282
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : Any = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "openai-gpt" __UpperCamelCase = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , lowercase_ : List[str]=40478 , lowercase_ : List[str]=512 , lowercase_ : Optional[Any]=768 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : List[Any]=1e-5 , lowercase_ : int=0.02 , lowercase_ : Optional[int]="cls_index" , lowercase_ : Any=True , lowercase_ : List[Any]=None , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=0.1 , **lowercase_ : List[str] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_size SCREAMING_SNAKE_CASE_ : Tuple = n_positions SCREAMING_SNAKE_CASE_ : Optional[int] = n_embd SCREAMING_SNAKE_CASE_ : Dict = n_layer SCREAMING_SNAKE_CASE_ : Any = n_head SCREAMING_SNAKE_CASE_ : Union[str, Any] = afn SCREAMING_SNAKE_CASE_ : int = resid_pdrop SCREAMING_SNAKE_CASE_ : List[str] = embd_pdrop SCREAMING_SNAKE_CASE_ : Union[str, Any] = attn_pdrop SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : List[str] = summary_type SCREAMING_SNAKE_CASE_ : Tuple = summary_use_proj SCREAMING_SNAKE_CASE_ : Union[str, Any] = summary_activation SCREAMING_SNAKE_CASE_ : Any = summary_first_dropout SCREAMING_SNAKE_CASE_ : List[str] = summary_proj_to_labels super().__init__(**lowercase_)
91
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _A : List[Any] = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): _UpperCAmelCase : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _UpperCAmelCase : Optional[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _UpperCAmelCase : str = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _UpperCAmelCase : Tuple = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def __lowerCamelCase ( self : str , A : List[str] , A : Tuple , A : str ) ->List[str]: lowerCamelCase__ : List[Any] = ZeroShotClassificationPipeline( model=A , tokenizer=A , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def __lowerCamelCase ( self : List[str] , A : Union[str, Any] , A : Optional[Any] ) ->Union[str, Any]: lowerCamelCase__ : Any = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(A , {'''sequence''': ANY(A ), '''labels''': [ANY(A )], '''scores''': [ANY(A )]} ) # No kwarg lowerCamelCase__ : str = classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(A , {'''sequence''': ANY(A ), '''labels''': [ANY(A )], '''scores''': [ANY(A )]} ) lowerCamelCase__ : Dict = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(A , {'''sequence''': ANY(A ), '''labels''': [ANY(A )], '''scores''': [ANY(A )]} ) lowerCamelCase__ : Dict = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( A , {'''sequence''': ANY(A ), '''labels''': [ANY(A ), ANY(A )], '''scores''': [ANY(A ), ANY(A )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowerCamelCase__ : Optional[int] = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( A , {'''sequence''': ANY(A ), '''labels''': [ANY(A ), ANY(A )], '''scores''': [ANY(A ), ANY(A )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowerCamelCase__ : str = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(A , {'''sequence''': ANY(A ), '''labels''': [ANY(A )], '''scores''': [ANY(A )]} ) # https://github.com/huggingface/transformers/issues/13846 lowerCamelCase__ : Optional[int] = classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( A , [ {'''sequence''': ANY(A ), '''labels''': [ANY(A ), ANY(A )], '''scores''': [ANY(A ), ANY(A )]} for i in range(1 ) ] , ) lowerCamelCase__ : Any = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( A , [ {'''sequence''': ANY(A ), '''labels''': [ANY(A ), ANY(A )], '''scores''': [ANY(A ), ANY(A )]} for i in range(2 ) ] , ) with self.assertRaises(A ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(A ): classifier(A , candidate_labels='''politics''' ) with self.assertRaises(A ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(A ): classifier('''Who are you voting for in 2020?''' , candidate_labels=A ) with self.assertRaises(A ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(A ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=A , ) self.run_entailment_id(A ) def __lowerCamelCase ( self : Optional[int] , A : Pipeline ) ->Dict: lowerCamelCase__ : str = zero_shot_classifier.model.config lowerCamelCase__ : Optional[int] = config.labelaid lowerCamelCase__ : Tuple = zero_shot_classifier.entailment_id lowerCamelCase__ : Optional[Any] = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) lowerCamelCase__ : Optional[int] = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowerCamelCase__ : List[str] = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowerCamelCase__ : Optional[Any] = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) lowerCamelCase__ : Tuple = original_labelaid self.assertEqual(A , zero_shot_classifier.entailment_id ) @require_torch def __lowerCamelCase ( self : Any ) ->str: lowerCamelCase__ : Optional[int] = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 1_0_0 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def __lowerCamelCase ( self : List[Any] ) ->Optional[Any]: lowerCamelCase__ : List[Any] = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) lowerCamelCase__ : Dict = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(A ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def __lowerCamelCase ( self : str ) ->List[str]: lowerCamelCase__ : Any = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) lowerCamelCase__ : Optional[Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(A ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def __lowerCamelCase ( self : List[Any] ) ->Optional[Any]: lowerCamelCase__ : int = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) lowerCamelCase__ : int = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(A ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_76, 0.0_15, 0.0_09], } , ) lowerCamelCase__ : Any = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=A , ) self.assertEqual( nested_simplify(A ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def __lowerCamelCase ( self : Union[str, Any] ) ->Optional[int]: lowerCamelCase__ : List[Any] = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) lowerCamelCase__ : Dict = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(A ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_76, 0.0_15, 0.0_09], } , ) lowerCamelCase__ : Union[str, Any] = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=A , ) self.assertEqual( nested_simplify(A ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
265
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _A : Optional[Any] = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } _A : Any = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def _a ( UpperCAmelCase , UpperCAmelCase=False ) -> str: """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : List[str] = create_model( '''HTSAT-tiny''' , '''roberta''' , UpperCAmelCase , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=UpperCAmelCase , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def _a ( UpperCAmelCase ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : Optional[int] = {} lowerCamelCase__ : int = R'''.*sequential.(\d+).*''' lowerCamelCase__ : Any = R'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCamelCase__ : List[str] = key.replace(UpperCAmelCase , UpperCAmelCase ) if re.match(UpperCAmelCase , UpperCAmelCase ): # replace sequential layers with list lowerCamelCase__ : List[Any] = re.match(UpperCAmelCase , UpperCAmelCase ).group(1 ) lowerCamelCase__ : Optional[int] = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(UpperCAmelCase )//3}.linear." ) elif re.match(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : Optional[int] = int(re.match(UpperCAmelCase , UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... lowerCamelCase__ : str = 1 if projecton_layer == 0 else 2 lowerCamelCase__ : List[str] = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value lowerCamelCase__ : Optional[Any] = value lowerCamelCase__ : Optional[Any] = mixed_qkv.size(0 ) // 3 lowerCamelCase__ : Tuple = mixed_qkv[:qkv_dim] lowerCamelCase__ : Dict = mixed_qkv[qkv_dim : qkv_dim * 2] lowerCamelCase__ : int = mixed_qkv[qkv_dim * 2 :] lowerCamelCase__ : Optional[int] = query_layer lowerCamelCase__ : str = key_layer lowerCamelCase__ : List[str] = value_layer else: lowerCamelCase__ : Tuple = value return model_state_dict def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> List[Any]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Dict = init_clap(UpperCAmelCase , enable_fusion=UpperCAmelCase ) clap_model.eval() lowerCamelCase__ : List[Any] = clap_model.state_dict() lowerCamelCase__ : Dict = rename_state_dict(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = ClapConfig() lowerCamelCase__ : Optional[int] = enable_fusion lowerCamelCase__ : Optional[Any] = ClapModel(UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) transformers_config.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _A : int = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') _A : Tuple = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
265
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" _UpperCAmelCase = 'ylacombe/bark-small' _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = 'en_speaker_1' _UpperCAmelCase = 'This is a test string' _UpperCAmelCase = 'speaker_embeddings_path.json' _UpperCAmelCase = 'speaker_embeddings' def _lowerCamelCase ( self : List[str] , **A : Any) -> Optional[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **A) def _lowerCamelCase ( self : int) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _lowerCamelCase ( self : str) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BarkProcessor(tokenizer=A) processor.save_pretrained(self.tmpdirname) _UpperCAmelCase = BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) @slow def _lowerCamelCase ( self : Dict) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _UpperCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') _UpperCAmelCase = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _UpperCAmelCase = 35 _UpperCAmelCase = 2 _UpperCAmelCase = 8 _UpperCAmelCase = { 'semantic_prompt': np.ones(A), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len)), 'fine_prompt': np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset _UpperCAmelCase = processor(text=self.input_string , voice_preset=A) _UpperCAmelCase = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(A , np.array([])).tolist()) # test loading voice preset from npz file _UpperCAmelCase = os.path.join(self.tmpdirname , 'file.npz') np.savez(A , **A) _UpperCAmelCase = processor(text=self.input_string , voice_preset=A) _UpperCAmelCase = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(A , np.array([])).tolist()) # test loading voice preset from the hub _UpperCAmelCase = processor(text=self.input_string , voice_preset=self.voice_preset) def _lowerCamelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BarkProcessor(tokenizer=A) _UpperCAmelCase = processor(text=self.input_string) _UpperCAmelCase = tokenizer( self.input_string , padding='max_length' , max_length=2_56 , add_special_tokens=A , return_attention_mask=A , return_token_type_ids=A , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
339
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class __lowerCAmelCase ( A ): UpperCamelCase = '''open-llama''' def __init__( self : str , A : List[Any]=10_00_00 , A : Tuple=40_96 , A : Tuple=1_10_08 , A : List[str]=32 , A : Tuple=32 , A : Optional[Any]="silu" , A : int=20_48 , A : Optional[Any]=0.0_2 , A : Dict=1E-6 , A : Optional[Any]=True , A : List[Any]=0 , A : Dict=1 , A : int=2 , A : Dict=False , A : Optional[int]=True , A : List[Any]=0.1 , A : str=0.1 , A : Dict=True , A : Optional[Any]=True , A : Dict=None , **A : Union[str, Any] , ) -> Dict: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = intermediate_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = rms_norm_eps _UpperCAmelCase = use_cache _UpperCAmelCase = kwargs.pop( 'use_memorry_efficient_attention' , A) _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_dropout_prob _UpperCAmelCase = use_stable_embedding _UpperCAmelCase = shared_input_output_embedding _UpperCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , A) or len(self.rope_scaling) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"got {self.rope_scaling}") _UpperCAmelCase = self.rope_scaling.get('type' , A) _UpperCAmelCase = self.rope_scaling.get('factor' , A) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(A , A) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
339
1
from __future__ import annotations def UpperCamelCase ( _A ): """simple docstring""" if len(_A ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __magic_name__ : Dict = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
356
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __magic_name__: Optional[Any] = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" __magic_name__: List[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" __magic_name__: Union[str, Any] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__ ( datasets.Metric ): def __magic_name__ ( self ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase__ , hypotheses=lowerCAmelCase__ , min_len=lowerCAmelCase__ , max_len=lowerCAmelCase__ ) }
138
0
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowerCamelCase : def __init__(self , __a , __a=13 , __a=30 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=None , __a=2 , ) -> Tuple: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 1 def snake_case_ (self ) -> Tuple: UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def snake_case_ (self ) -> List[str]: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def snake_case_ (self , __a , __a , __a ) -> Optional[int]: UpperCamelCase = ViTModel(config=__a ) model.to(__a ) model.eval() UpperCamelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ (self , __a , __a , __a ) -> Union[str, Any]: UpperCamelCase = ViTForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() UpperCamelCase = model(__a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = ViTForMaskedImageModeling(__a ) model.to(__a ) model.eval() UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(__a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case_ (self , __a , __a , __a ) -> Tuple: UpperCamelCase = self.type_sequence_label_size UpperCamelCase = ViTForImageClassification(__a ) model.to(__a ) model.eval() UpperCamelCase = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = ViTForImageClassification(__a ) model.to(__a ) model.eval() UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase ( _lowercase , _lowercase , unittest.TestCase ): UpperCAmelCase_ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCAmelCase_ = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = ViTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def snake_case_ (self ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def snake_case_ (self ) -> Tuple: pass def snake_case_ (self ) -> int: UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def snake_case_ (self ) -> str: UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(__a ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def snake_case_ (self ) -> List[str]: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def snake_case_ (self ) -> int: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def snake_case_ (self ) -> str: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def snake_case_ (self ) -> Any: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = ViTModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def a__ ( ): """simple docstring""" UpperCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): @cached_property def snake_case_ (self ) -> Any: return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(__a ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): UpperCamelCase = model(**__a ) # verify the logits UpperCamelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __a ) UpperCamelCase = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) @slow def snake_case_ (self ) -> Tuple: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. UpperCamelCase = ViTModel.from_pretrained("facebook/dino-vits8" ).to(__a ) UpperCamelCase = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=4_80 ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=__a , return_tensors="pt" ) UpperCamelCase = inputs.pixel_values.to(__a ) # forward pass with torch.no_grad(): UpperCamelCase = model(__a , interpolate_pos_encoding=__a ) # verify the logits UpperCamelCase = torch.Size((1, 36_01, 3_84) ) self.assertEqual(outputs.last_hidden_state.shape , __a ) UpperCamelCase = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(__a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def snake_case_ (self ) -> Any: UpperCamelCase = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=__a , return_tensors="pt" ) UpperCamelCase = inputs.pixel_values.to(__a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCamelCase = model(__a )
153
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCamelCase ( _lowercase ): def __init__(self , __a , __a ) -> str: super().__init__() self.register_modules(unet=__a , scheduler=__a ) @torch.no_grad() def __call__(self , __a = 1 , __a = 1_00 , __a = None , __a = None , __a = True , ) -> Union[AudioPipelineOutput, Tuple]: if audio_length_in_s is None: UpperCamelCase = self.unet.config.sample_size / self.unet.config.sample_rate UpperCamelCase = audio_length_in_s * self.unet.config.sample_rate UpperCamelCase = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"{audio_length_in_s} is too small. Make sure it's bigger or equal to" F" {3 * down_scale_factor / self.unet.config.sample_rate}." ) UpperCamelCase = int(__a ) if sample_size % down_scale_factor != 0: UpperCamelCase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" F" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" " process." ) UpperCamelCase = int(__a ) UpperCamelCase = next(iter(self.unet.parameters() ) ).dtype UpperCamelCase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__a , __a ) and len(__a ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(__a )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) UpperCamelCase = randn_tensor(__a , generator=__a , device=self.device , dtype=__a ) # set step values self.scheduler.set_timesteps(__a , device=audio.device ) UpperCamelCase = self.scheduler.timesteps.to(__a ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase = self.unet(__a , __a ).sample # 2. compute previous image: x_t -> t_t-1 UpperCamelCase = self.scheduler.step(__a , __a , __a ).prev_sample UpperCamelCase = audio.clamp(-1 , 1 ).float().cpu().numpy() UpperCamelCase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__a )
153
1
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict lowercase__ : Optional[int] = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", ], defaults=[None, None, None, False, False, False, False, False], ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> List[str]: return (abs(source - target) / target) < 0.01 @pytest.mark.integration def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Union[str, Any]: a = _TestCommandArgs(dataset=__UpperCamelCase , all_configs=__UpperCamelCase , save_infos=__UpperCamelCase) a = TestCommand(*__UpperCamelCase) test_command.run() a = os.path.join(__UpperCamelCase , "README.md") assert os.path.exists(__UpperCamelCase) a = DatasetInfosDict.from_directory(__UpperCamelCase) a = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string")), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"])), "langs": Sequence(Value("string")), "spans": Sequence(Value("string")), }) , splits=[ { "name": "train", "num_bytes": 2_35_15_63, "num_examples": 1_00_00, }, { "name": "validation", "num_bytes": 23_84_18, "num_examples": 10_00, }, ] , download_size=3_94_06_80 , dataset_size=2_58_99_81 , ) }) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: a , a = getattr(dataset_infos["default"] , __UpperCamelCase), getattr(expected_dataset_infos["default"] , __UpperCamelCase) if key == "num_bytes": assert is_apercent_close(__UpperCamelCase , __UpperCamelCase) elif key == "splits": assert list(__UpperCamelCase) == list(__UpperCamelCase) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes) else: result == expected
358
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(UpperCamelCase__ ) , """Tatoeba directory does not exist.""" ) class a__ ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' a = tempfile.mkdtemp() return TatoebaConverter(save_dir=A ) @slow def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' self.resolver.convert_models(["heb-eng"] ) @slow def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' a , a = self.resolver.write_model_card("opus-mt-he-en" , dry_run=A ) assert mmeta["long_pair"] == "heb-eng"
180
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase__ = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __UpperCAmelCase = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) SCREAMING_SNAKE_CASE_ = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() SCREAMING_SNAKE_CASE_ = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1E-3 ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-3 ) ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self , _A=(32, 32) ) -> int: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> List[Any]: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict @slow def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = self.dummy_input SCREAMING_SNAKE_CASE_ = floats_tensor((4, 3) + (256, 256) ).to(_A ) SCREAMING_SNAKE_CASE_ = noise SCREAMING_SNAKE_CASE_ = model(**_A ) assert image is not None, "Make sure output is not None" @slow def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (256, 256) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> Dict: # not required for this model pass
299
0
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = {"vocab_file": "spiece.model"} _SCREAMING_SNAKE_CASE : List[Any] = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } _SCREAMING_SNAKE_CASE : Union[str, Any] = { "AI-Sweden/gpt-sw3-126m": 2048, "AI-Sweden/gpt-sw3-350m": 2048, "AI-Sweden/gpt-sw3-1.6b": 2048, "AI-Sweden/gpt-sw3-6.7b": 2048, "AI-Sweden/gpt-sw3-20b": 2048, } class _snake_case ( lowerCamelCase__ ): lowerCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Any = ['input_ids', 'attention_mask'] def __init__( self , a__ , a__=False , a__=False , a__=False , a__=None , a__=None , a__=None , a__=None , a__ = None , **a__ , ) -> Optional[Any]: '''simple docstring''' snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs snake_case_ = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) snake_case_ = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing snake_case_ = "<|endoftext|>" if eos_token is None else eos_token snake_case_ = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: snake_case_ = unk_token if pad_token is None else pad_token snake_case_ = eos_token if bos_token is None else bos_token else: snake_case_ = "<pad>" if pad_token is None else pad_token snake_case_ = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=lowercase__ , remove_space=lowercase__ , keep_accents=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , ) snake_case_ = do_lower_case snake_case_ = remove_space snake_case_ = keep_accents snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase__ ) # Used for whitespace normalization in input texts # fmt : off snake_case_ = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing snake_case_ = re.compile( F'[{"".join(map(lowercase__ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8_203] ) )}]' ) def __getstate__( self ) -> int: '''simple docstring''' snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self , a__ ) -> str: '''simple docstring''' snake_case_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' return len(self.sp_model ) def lowerCAmelCase__ ( self , a__ ) -> Any: '''simple docstring''' snake_case_ = self.non_printing_characters_re.sub("" , lowercase__ ) # Normalize whitespaces snake_case_ = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization snake_case_ = unicodedata.normalize("NFC" , lowercase__ ) return text def lowerCAmelCase__ ( self , a__ , **a__ ) -> Dict: '''simple docstring''' snake_case_ = self.preprocess_text(lowercase__ ) return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def lowerCAmelCase__ ( self , a__ ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.PieceToId(lowercase__ ) def lowerCAmelCase__ ( self , a__ ) -> Tuple: '''simple docstring''' return self.sp_model.IdToPiece(lowercase__ ) @staticmethod def lowerCAmelCase__ ( a__ ) -> str: '''simple docstring''' return out_string def lowerCAmelCase__ ( self , a__ ) -> Optional[Any]: '''simple docstring''' snake_case_ = [] snake_case_ = "" snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase__ ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(lowercase__ ) snake_case_ = False out_string += self.sp_model.decode(lowercase__ ) return out_string def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self , a__ , a__ = None ) -> int: '''simple docstring''' if not os.path.isdir(lowercase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return snake_case_ = os.path.join( lowercase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , "wb" ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,) def lowerCAmelCase__ ( self , a__ , a__ = False ) -> Optional[Any]: '''simple docstring''' if isinstance(lowercase__ , lowercase__ ): snake_case_ = self.preprocess_text(lowercase__ ) snake_case_ = self.sp_model.encode(lowercase__ ) else: snake_case_ = [self.preprocess_text(lowercase__ ) for t in text] snake_case_ = self.sp_model.encode(lowercase__ ) if return_tensors is True or return_tensors == "pt": snake_case_ = torch.tensor(lowercase__ ) return token_ids def lowerCAmelCase__ ( self , a__ ) -> List[str]: '''simple docstring''' return self.sp_model.decode(lowercase__ ) def lowerCAmelCase__ ( self , a__ ) -> List[str]: '''simple docstring''' snake_case_ = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] snake_case_ = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(lowercase__ ) + F'{self.bos_token}Bot:' ) return self.encode(text=lowercase__ )
358
'''simple docstring''' def UpperCamelCase_( snake_case : int = 1_0_0_0 ): '''simple docstring''' snake_case_ = 3 snake_case_ = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"{solution() = }")
92
0
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = len(_lowercase ) while cur > 1: # Find the maximum number in arr UpperCAmelCase : Optional[Any] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi UpperCAmelCase : Tuple = arr[mi::-1] + arr[mi + 1 : len(_lowercase )] # Reverse whole list UpperCAmelCase : List[Any] = arr[cur - 1 :: -1] + arr[cur : len(_lowercase )] cur -= 1 return arr if __name__ == "__main__": a : Optional[Any] = input("""Enter numbers separated by a comma:\n""").strip() a : Union[str, Any] = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
265
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. a : Tuple = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class UpperCamelCase_ ( unittest.TestCase ): lowercase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowercase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowercase = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _lowercase( self , A , A , A ) -> Dict: UpperCAmelCase : Union[str, Any] = ZeroShotClassificationPipeline( model=A , tokenizer=A , candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _lowercase( self , A , A ) -> Optional[int]: UpperCAmelCase : Dict = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics""" ) self.assertEqual(A , {"""sequence""": ANY(A ), """labels""": [ANY(A )], """scores""": [ANY(A )]} ) # No kwarg UpperCAmelCase : Optional[int] = classifier("""Who are you voting for in 2020?""" , ["""politics"""] ) self.assertEqual(A , {"""sequence""": ANY(A ), """labels""": [ANY(A )], """scores""": [ANY(A )]} ) UpperCAmelCase : str = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics"""] ) self.assertEqual(A , {"""sequence""": ANY(A ), """labels""": [ANY(A )], """scores""": [ANY(A )]} ) UpperCAmelCase : List[Any] = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics, public health""" ) self.assertEqual( A , {"""sequence""": ANY(A ), """labels""": [ANY(A ), ANY(A )], """scores""": [ANY(A ), ANY(A )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) UpperCAmelCase : Optional[int] = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health"""] ) self.assertEqual( A , {"""sequence""": ANY(A ), """labels""": [ANY(A ), ANY(A )], """scores""": [ANY(A ), ANY(A )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) UpperCAmelCase : Dict = classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""This text is about {}""" ) self.assertEqual(A , {"""sequence""": ANY(A ), """labels""": [ANY(A )], """scores""": [ANY(A )]} ) # https://github.com/huggingface/transformers/issues/13846 UpperCAmelCase : str = classifier(["""I am happy"""] , ["""positive""", """negative"""] ) self.assertEqual( A , [ {"""sequence""": ANY(A ), """labels""": [ANY(A ), ANY(A )], """scores""": [ANY(A ), ANY(A )]} for i in range(1 ) ] , ) UpperCAmelCase : List[str] = classifier(["""I am happy""", """I am sad"""] , ["""positive""", """negative"""] ) self.assertEqual( A , [ {"""sequence""": ANY(A ), """labels""": [ANY(A ), ANY(A )], """scores""": [ANY(A ), ANY(A )]} for i in range(2 ) ] , ) with self.assertRaises(A ): classifier("""""" , candidate_labels="""politics""" ) with self.assertRaises(A ): classifier(A , candidate_labels="""politics""" ) with self.assertRaises(A ): classifier("""Who are you voting for in 2020?""" , candidate_labels="""""" ) with self.assertRaises(A ): classifier("""Who are you voting for in 2020?""" , candidate_labels=A ) with self.assertRaises(A ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""Not formatting template""" , ) with self.assertRaises(A ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template=A , ) self.run_entailment_id(A ) def _lowercase( self , A ) -> Any: UpperCAmelCase : Tuple = zero_shot_classifier.model.config UpperCAmelCase : Union[str, Any] = config.labelaid UpperCAmelCase : Tuple = zero_shot_classifier.entailment_id UpperCAmelCase : Any = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) UpperCAmelCase : Optional[Any] = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) UpperCAmelCase : Any = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) UpperCAmelCase : List[str] = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) UpperCAmelCase : Tuple = original_labelaid self.assertEqual(A , zero_shot_classifier.entailment_id ) @require_torch def _lowercase( self ) -> str: UpperCAmelCase : int = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 100 , candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) UpperCAmelCase : Union[str, Any] = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(A ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[Any] = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""tf""" , ) UpperCAmelCase : List[Any] = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(A ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""pt""" ) UpperCAmelCase : Optional[int] = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(A ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) UpperCAmelCase : str = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=A , ) self.assertEqual( nested_simplify(A ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def _lowercase( self ) -> List[str]: UpperCAmelCase : int = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""tf""" ) UpperCAmelCase : Tuple = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(A ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) UpperCAmelCase : Any = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=A , ) self.assertEqual( nested_simplify(A ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
265
1
def __lowercase ( a__ ) -> bool: __SCREAMING_SNAKE_CASE = [int(a__ ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(a__ ) == 4 and all(0 <= int(a__ ) <= 2_54 for octet in octets ) if __name__ == "__main__": lowerCAmelCase__ : Optional[int] =input().strip() lowerCAmelCase__ : Optional[Any] ='''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(F'''{ip} is a {valid_or_invalid} IP v4 address.''')
118
lowerCAmelCase__ : Optional[int] =9.80_665 def __lowercase ( a__ , a__ , a__ = g ) -> float: if fluid_density <= 0: raise ValueError('Impossible fluid density' ) if volume < 0: raise ValueError('Impossible Object volume' ) if gravity <= 0: raise ValueError('Impossible Gravity' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
118
1
"""simple docstring""" import argparse from collections import defaultdict def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = f"{file}_{class_name}_{test_name}" done_test[_id] += 1 with open(_UpperCAmelCase , "r" ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = f"class {class_name}(" __lowerCAmelCase = f"{4 * ' '}def {test_name}(" __lowerCAmelCase = f"{8 * ' '}{correct_line.split()[0]}" __lowerCAmelCase = f"{16 * ' '}{correct_line.split()[0]}" __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] for line in lines: if line.startswith(_UpperCAmelCase ): __lowerCAmelCase = True elif in_class and line.startswith(_UpperCAmelCase ): __lowerCAmelCase = True elif in_class and in_func and (line.startswith(_UpperCAmelCase ) or line.startswith(_UpperCAmelCase )): __lowerCAmelCase = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: __lowerCAmelCase = True if in_class and in_func and in_line: if ")" not in line: continue else: __lowerCAmelCase = True if in_class and in_func and in_line and insert_line: new_lines.append(f"{spaces * ' '}{correct_line}" ) __lowerCAmelCase = False else: new_lines.append(_UpperCAmelCase ) with open(_UpperCAmelCase , "w" ) as f: for line in new_lines: f.write(_UpperCAmelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=None ): '''simple docstring''' if fail is not None: with open(_UpperCAmelCase , "r" ) as f: __lowerCAmelCase = {l.strip() for l in f.readlines()} else: __lowerCAmelCase = None with open(_UpperCAmelCase , "r" ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = defaultdict(_UpperCAmelCase ) for line in correct_lines: __lowerCAmelCase = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) A : Dict = parser.parse_args() main(args.correct_filename, args.fail_filename)
57
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __A : Any = datasets.utils.logging.get_logger(__name__) @dataclass class __A ( datasets.BuilderConfig ): lowerCAmelCase_ : int = 1_0000 lowerCAmelCase_ : Optional[List[str]] = None lowerCAmelCase_ : Optional[datasets.Features] = None class __A ( datasets.ArrowBasedBuilder ): lowerCAmelCase_ : List[Any] = ParquetConfig def lowercase__ ( self : Tuple ): return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Dict ): if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) lowerCAmelCase : Any = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase_ , (str, list, tuple) ): lowerCAmelCase : int = data_files if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase : Dict = [dl_manager.iter_files(UpperCAmelCase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] lowerCAmelCase : Any = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : Tuple = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase : Dict = [dl_manager.iter_files(UpperCAmelCase_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(UpperCAmelCase_ ): with open(UpperCAmelCase_ , 'rb' ) as f: lowerCAmelCase : int = datasets.Features.from_arrow_schema(pq.read_schema(UpperCAmelCase_ ) ) break splits.append(datasets.SplitGenerator(name=UpperCAmelCase_ , gen_kwargs={'files': files} ) ) return splits def lowercase__ ( self : Any , UpperCAmelCase_ : pa.Table ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCAmelCase : Union[str, Any] = table_cast(UpperCAmelCase_ , self.info.features.arrow_schema ) return pa_table def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] ): lowerCAmelCase : Optional[int] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase_ ) ): with open(UpperCAmelCase_ , 'rb' ) as f: lowerCAmelCase : Optional[Any] = pq.ParquetFile(UpperCAmelCase_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): lowerCAmelCase : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"{file_idx}_{batch_idx}", self._cast_table(UpperCAmelCase_ ) except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(UpperCAmelCase_ )}: {e}" ) raise
138
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __A = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __A = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : str = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : Any = BartTokenizer def __init__( self : List[str] , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : List[Any]="replace" , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : Optional[int]="</s>" , UpperCamelCase__ : List[str]="</s>" , UpperCamelCase__ : Any="<s>" , UpperCamelCase__ : str="<unk>" , UpperCamelCase__ : str="<pad>" , UpperCamelCase__ : List[str]="<mask>" , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : Tuple=True , **UpperCamelCase__ : Optional[Any] , )-> int: '''simple docstring''' super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ , **UpperCamelCase__ , ) __lowerCAmelCase: Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , UpperCamelCase__) != add_prefix_space: __lowerCAmelCase: Any = getattr(UpperCamelCase__ , pre_tok_state.pop("type")) __lowerCAmelCase: Any = add_prefix_space __lowerCAmelCase: Union[str, Any] = pre_tok_class(**UpperCamelCase__) __lowerCAmelCase: Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __lowerCAmelCase: Tuple = "post_processor" __lowerCAmelCase: str = getattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__) if tokenizer_component_instance: __lowerCAmelCase: Tuple = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowerCAmelCase: Dict = tuple(state["sep"]) if "cls" in state: __lowerCAmelCase: Union[str, Any] = tuple(state["cls"]) __lowerCAmelCase: Optional[Any] = False if state.get("add_prefix_space" , UpperCamelCase__) != add_prefix_space: __lowerCAmelCase: Dict = add_prefix_space __lowerCAmelCase: Optional[int] = True if state.get("trim_offsets" , UpperCamelCase__) != trim_offsets: __lowerCAmelCase: int = trim_offsets __lowerCAmelCase: Dict = True if changes_to_apply: __lowerCAmelCase: int = getattr(UpperCamelCase__ , state.pop("type")) __lowerCAmelCase: List[str] = component_class(**UpperCamelCase__) setattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__) @property def lowercase_ ( self : List[Any])-> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def lowercase_ ( self : Any , UpperCamelCase__ : int)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__) if isinstance(UpperCamelCase__ , UpperCamelCase__) else value __lowerCAmelCase: Union[str, Any] = value def lowercase_ ( self : str , *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Any)-> BatchEncoding: '''simple docstring''' __lowerCAmelCase: List[str] = kwargs.get("is_split_into_words" , UpperCamelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs.") return super()._batch_encode_plus(*UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Optional[Any] , *UpperCamelCase__ : Any , **UpperCamelCase__ : Optional[int])-> BatchEncoding: '''simple docstring''' __lowerCAmelCase: List[str] = kwargs.get("is_split_into_words" , UpperCamelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs.") return super()._encode_plus(*UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None)-> Tuple[str]: '''simple docstring''' __lowerCAmelCase: Optional[int] = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__) return tuple(UpperCamelCase__) def lowercase_ ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any]=None)-> Dict: '''simple docstring''' __lowerCAmelCase: Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Dict , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> List[int]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = [self.sep_token_id] __lowerCAmelCase: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
357
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: return int((input_a, input_a).count(0 ) == 0 ) def a__ ( ) -> None: assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
108
0
def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if isinstance(snake_case__ , snake_case__ ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if num == 0: return "0b0" lowercase = False if num < 0: lowercase = True lowercase = -num lowercase = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(snake_case__ ) for e in binary ) return "0b" + "".join(str(snake_case__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
101
from __future__ import annotations _SCREAMING_SNAKE_CASE = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: _A = graph # mapping node to its parent in resulting breadth first tree _A = {} _A = source_vertex def UpperCAmelCase ( self ) -> None: _A = {self.source_vertex} _A = None _A = [self.source_vertex] # first in first out queue while queue: _A = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowerCAmelCase_ ) _A = vertex queue.append(lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> str: if target_vertex == self.source_vertex: return self.source_vertex _A = self.parent.get(lowerCAmelCase_ ) if target_vertex_parent is None: _A = ( F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(lowerCAmelCase_ ) return self.shortest_path(lowerCAmelCase_ ) + F'''->{target_vertex}''' if __name__ == "__main__": _SCREAMING_SNAKE_CASE = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
180
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ : str = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[int] = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[Any] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
248
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' return (data["data"], data["target"]) def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCAmelCase , lowerCAmelCase ) # Predict target for test data UpperCAmelCase = xgb.predict(lowerCAmelCase ) UpperCAmelCase = predictions.reshape(len(lowerCAmelCase ) , 1 ) return predictions def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = fetch_california_housing() UpperCAmelCase , UpperCAmelCase = data_handling(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = train_test_split( lowerCAmelCase , lowerCAmelCase , test_size=0.25 , random_state=1 ) UpperCAmelCase = xgboost(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(lowerCAmelCase , lowerCAmelCase )}''' ) print(F'''Mean Square Error : {mean_squared_error(lowerCAmelCase , lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
248
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCAmelCase : Optional[Any] = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = ["""LayoutLMv2FeatureExtractor"""] _UpperCAmelCase : Any = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys _UpperCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a__ : def __init__( self , _A , _A=1_3 , _A=3_0 , _A=2 , _A=3 , _A=True , _A=True , _A=3_2 , _A=5 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=1_0 , _A=0.02 , _A=3 , _A=None , _A=2 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = num_patches + 2 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = DeiTModel(config=_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = DeiTForMaskedImageModeling(config=_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(_A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = DeiTForMaskedImageModeling(_A ) model.to(_A ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = DeiTForImageClassification(_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = DeiTForImageClassification(_A ) model.to(_A ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( snake_case__ , snake_case__ , unittest.TestCase ): _a : Optional[Any] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) _a : int = ( { """feature-extraction""": DeiTModel, """image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) _a : Optional[Any] = False _a : Tuple = False _a : Tuple = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = DeiTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A=False ): """simple docstring""" __lowerCAmelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if not self.model_tester.is_training: return __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_A ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue __lowerCAmelCase = model_class(_A ) model.to(_A ) model.train() __lowerCAmelCase = self._prepare_for_class(_A , _A , return_labels=_A ) __lowerCAmelCase = model(**_A ).loss loss.backward() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowerCAmelCase = False __lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(_A ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue __lowerCAmelCase = model_class(_A ) model.gradient_checkpointing_enable() model.to(_A ) model.train() __lowerCAmelCase = self._prepare_for_class(_A , _A , return_labels=_A ) __lowerCAmelCase = model(**_A ).loss loss.backward() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_A ), *get_values(_A ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type['title']}""" ): __lowerCAmelCase = problem_type["title"] __lowerCAmelCase = problem_type["num_labels"] __lowerCAmelCase = model_class(_A ) model.to(_A ) model.train() __lowerCAmelCase = self._prepare_for_class(_A , _A , return_labels=_A ) if problem_type["num_labels"] > 1: __lowerCAmelCase = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) __lowerCAmelCase = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_A ) as warning_list: __lowerCAmelCase = model(**_A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = DeiTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _a ( ): __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( _A ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_A , return_tensors="pt" ).to(_A ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**_A ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _A ) __lowerCAmelCase = torch.tensor([-1.02_66, 0.19_12, -1.28_61] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_A , return_tensors="pt" ) __lowerCAmelCase = inputs.pixel_values.to(_A ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __lowerCAmelCase = model(_A )
92
0
import operator as op __UpperCAmelCase : List[str] = "scaler.pt" __UpperCAmelCase : Any = "pytorch_model" __UpperCAmelCase : Any = "random_states" __UpperCAmelCase : List[Any] = "optimizer" __UpperCAmelCase : Optional[int] = "scheduler" __UpperCAmelCase : str = "pytorch_model.bin" __UpperCAmelCase : Any = "pytorch_model.bin.index.json" __UpperCAmelCase : Any = "model.safetensors" __UpperCAmelCase : List[Any] = "model.safetensors.index.json" __UpperCAmelCase : Any = "1.10.2" __UpperCAmelCase : Any = "py38" __UpperCAmelCase : Union[str, Any] = "4.17.0" __UpperCAmelCase : Tuple = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] __UpperCAmelCase : int = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] __UpperCAmelCase : Optional[int] = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] __UpperCAmelCase : Any = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] __UpperCAmelCase : List[Any] = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] __UpperCAmelCase : List[str] = "2.0.1" __UpperCAmelCase : Optional[int] = ["pdsh", "standard", "openmpi", "mvapich"] __UpperCAmelCase : Optional[Any] = ["default", "reduce-overhead", "max-autotune"] __UpperCAmelCase : str = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 __UpperCAmelCase : Tuple = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] __UpperCAmelCase : List[str] = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] __UpperCAmelCase : List[str] = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
365
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase : Union[str, Any] = logging.getLogger() def a ( ): """simple docstring""" UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCamelCase : List[str] = parser.parse_args() return args.f class UpperCAmelCase_ ( _a): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = logging.StreamHandler(sys.stdout ) logger.addHandler(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Dict = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , '''run_glue_deebert.py''' ) with patch.object(__SCREAMING_SNAKE_CASE , '''argv''' , __SCREAMING_SNAKE_CASE ): UpperCamelCase : int = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__SCREAMING_SNAKE_CASE , 0.666 ) @slow @require_torch_non_multi_gpu def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__SCREAMING_SNAKE_CASE )
315
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Optional[Any] = logging.get_logger(__name__) A : Any = { "andreasmadsen/efficient_mlm_m0.40": ( "https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json" ), } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''roberta-prelayernorm''' def __init__( self : Union[str, Any] , __magic_name__ : str=50_265 , __magic_name__ : str=768 , __magic_name__ : List[Any]=12 , __magic_name__ : Optional[Any]=12 , __magic_name__ : str=3_072 , __magic_name__ : List[Any]="gelu" , __magic_name__ : Dict=0.1 , __magic_name__ : int=0.1 , __magic_name__ : int=512 , __magic_name__ : Tuple=2 , __magic_name__ : str=0.02 , __magic_name__ : Optional[int]=1e-12 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : Tuple=0 , __magic_name__ : List[str]=2 , __magic_name__ : Any="absolute" , __magic_name__ : List[Any]=True , __magic_name__ : List[Any]=None , **__magic_name__ : Tuple , ) -> Optional[Any]: super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = classifier_dropout class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
118
from __future__ import annotations class lowerCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : str ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = text, pattern SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = len(__magic_name__ ), len(__magic_name__ ) def __A ( self : List[str] , __magic_name__ : str ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __A ( self : Dict , __magic_name__ : int ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __A ( self : Tuple ) -> list[int]: # searches pattern in text and returns index positions SCREAMING_SNAKE_CASE_ = [] for i in range(self.textLen - self.patLen + 1 ): SCREAMING_SNAKE_CASE_ = self.mismatch_in_text(__magic_name__ ) if mismatch_index == -1: positions.append(__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = self.match_in_pattern(self.text[mismatch_index] ) SCREAMING_SNAKE_CASE_ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A : Dict = "ABAABA" A : Union[str, Any] = "AB" A : str = BoyerMooreSearch(text, pattern) A : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
118
1
"""simple docstring""" import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate SCREAMING_SNAKE_CASE = trt.Logger(trt.Logger.WARNING) SCREAMING_SNAKE_CASE = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) SCREAMING_SNAKE_CASE = logging.getLogger(__name__) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) SCREAMING_SNAKE_CASE = parser.parse_args() if args.tokenizer_name: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) SCREAMING_SNAKE_CASE = args.per_device_eval_batch_size SCREAMING_SNAKE_CASE = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = "temp_engine/bert-fp32.engine" if args.fpaa: SCREAMING_SNAKE_CASE = "temp_engine/bert-fp16.engine" if args.inta: SCREAMING_SNAKE_CASE = "temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") SCREAMING_SNAKE_CASE = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network SCREAMING_SNAKE_CASE = [network.get_input(i) for i in range(network.num_inputs)] SCREAMING_SNAKE_CASE = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: SCREAMING_SNAKE_CASE = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) SCREAMING_SNAKE_CASE = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) SCREAMING_SNAKE_CASE = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: A__ = np.asarray(inputs["input_ids"] , dtype=np.intaa ) A__ = np.asarray(inputs["attention_mask"] , dtype=np.intaa ) A__ = np.asarray(inputs["token_type_ids"] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowercase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowercase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowercase_ ) # start time A__ = time.time() # Run inference context.execute_async( bindings=[int(lowercase_ ) for d_inp in d_inputs] + [int(lowercase_ ), int(lowercase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowercase_ , lowercase_ , lowercase_ ) cuda.memcpy_dtoh_async(lowercase_ , lowercase_ , lowercase_ ) # Synchronize the stream and take time stream.synchronize() # end time A__ = time.time() A__ = end_time - start_time A__ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. SCREAMING_SNAKE_CASE = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. SCREAMING_SNAKE_CASE = raw_datasets["validation"].column_names SCREAMING_SNAKE_CASE = "question" if "question" in column_names else column_names[0] SCREAMING_SNAKE_CASE = "context" if "context" in column_names else column_names[1] SCREAMING_SNAKE_CASE = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). SCREAMING_SNAKE_CASE = tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) SCREAMING_SNAKE_CASE = min(args.max_seq_length, tokenizer.model_max_length) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace A__ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. A__ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="only_second" if pad_on_right else "only_first" , max_length=lowercase_ , stride=args.doc_stride , return_overflowing_tokens=lowercase_ , return_offsets_mapping=lowercase_ , padding="max_length" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. A__ = tokenized_examples.pop("overflow_to_sample_mapping" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. A__ = [] for i in range(len(tokenized_examples["input_ids"] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). A__ = tokenized_examples.sequence_ids(lowercase_ ) A__ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. A__ = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. A__ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i] ) ] return tokenized_examples SCREAMING_SNAKE_CASE = raw_datasets["validation"] # Validation Feature Creation SCREAMING_SNAKE_CASE = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) SCREAMING_SNAKE_CASE = default_data_collator SCREAMING_SNAKE_CASE = eval_dataset.remove_columns(["example_id", "offset_mapping"]) SCREAMING_SNAKE_CASE = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_="eval" ) -> Dict: # Post-processing: we match the start logits and end logits to answers in the original context. A__ = postprocess_qa_predictions( examples=lowercase_ , features=lowercase_ , predictions=lowercase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowercase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: A__ = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: A__ = [{"id": k, "prediction_text": v} for k, v in predictions.items()] A__ = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowercase_ , label_ids=lowercase_ ) SCREAMING_SNAKE_CASE = load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: return trt.volume(engine.get_binding_shape(lowercase_ ) ) * engine.get_binding_dtype(lowercase_ ).itemsize # Allocate device memory for inputs and outputs. SCREAMING_SNAKE_CASE = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer SCREAMING_SNAKE_CASE = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) SCREAMING_SNAKE_CASE = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) SCREAMING_SNAKE_CASE = cuda.mem_alloc(h_outputa.nbytes) SCREAMING_SNAKE_CASE = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. SCREAMING_SNAKE_CASE = cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(f' Num examples = {len(eval_dataset)}') logger.info(f' Batch size = {args.per_device_eval_batch_size}') SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = timeit.default_timer() SCREAMING_SNAKE_CASE = None for step, batch in enumerate(eval_dataloader): SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = outputs SCREAMING_SNAKE_CASE = torch.tensor(start_logits) SCREAMING_SNAKE_CASE = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered SCREAMING_SNAKE_CASE = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) SCREAMING_SNAKE_CASE = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) SCREAMING_SNAKE_CASE = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) SCREAMING_SNAKE_CASE = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: SCREAMING_SNAKE_CASE = nested_truncate(all_preds, len(eval_dataset)) SCREAMING_SNAKE_CASE = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1000 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1000)) logger.info("Total Number of Inference = %d", niter) SCREAMING_SNAKE_CASE = post_processing_function(eval_examples, eval_dataset, all_preds) SCREAMING_SNAKE_CASE = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'Evaluation metrics: {eval_metric}')
230
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=10_00 ) -> Optional[Any]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd A__ = n - 1 A__ = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) A__ = 0 while count < prec: A__ = random.randint(2 , n - 1 ) A__ = bin_exp_mod(lowercase_ , lowercase_ , lowercase_ ) if b != 1: A__ = True for _ in range(lowercase_ ): if b == n - 1: A__ = False break A__ = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": SCREAMING_SNAKE_CASE = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
230
1
def lowerCAmelCase_ ( __a = 1000000 ) -> List[str]: """simple docstring""" lowerCamelCase__: int =set(range(3 , __a , 2 ) ) primes.add(2 ) for p in range(3 , __a , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , __a , __a ) ) ) lowerCamelCase__: int =[float(__a ) for n in range(limit + 1 )] for p in primes: for n in range(__a , limit + 1 , __a ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'{solution() = }')
10
"""simple docstring""" import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = tempfile.mkdtemp() lowerCAmelCase : Optional[int] = 8 # DPR tok lowerCAmelCase : Dict = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) lowerCAmelCase : Dict = os.path.join(snake_case__ , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok lowerCAmelCase : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowerCAmelCase : Optional[int] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase : List[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase : str = {"unk_token": "<unk>"} lowerCAmelCase : int = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) lowerCAmelCase : int = os.path.join(snake_case__ , BART_VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase : Dict = os.path.join(snake_case__ , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def lowercase__ ( self ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def lowercase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) @require_tokenizers def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = os.path.join(self.tmpdirname , "rag_tokenizer" ) lowerCAmelCase : List[Any] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) lowerCAmelCase : Optional[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(snake_case__ ) rag_tokenizer.save_pretrained(snake_case__ ) lowerCAmelCase : List[str] = RagTokenizer.from_pretrained(snake_case__ , config=snake_case__ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , snake_case__ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , snake_case__ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = RagTokenizer.from_pretrained("facebook/rag-token-nq" ) lowerCAmelCase : Dict = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] lowerCAmelCase : Union[str, Any] = tokenizer(snake_case__ ) self.assertIsNotNone(snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = RagTokenizer.from_pretrained("facebook/rag-sequence-nq" ) lowerCAmelCase : List[str] = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] lowerCAmelCase : str = tokenizer(snake_case__ ) self.assertIsNotNone(snake_case__ )
108
0
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase_( ) -> Any: '''simple docstring''' _lowerCamelCase : Tuple = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" _lowerCamelCase : Dict = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("RGB" ) return image def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : List[str] = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Optional[Any] = dct.pop(_lowerCamelCase ) _lowerCamelCase : Tuple = val def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCamelCase : int = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) _lowerCamelCase : List[str] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict _lowerCamelCase : Tuple = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) _lowerCamelCase : str = qkv_bias def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Dict = 364 if "coco" in model_name else 224 _lowerCamelCase : Union[str, Any] = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _lowerCamelCase : List[Any] = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: _lowerCamelCase : Optional[int] = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: _lowerCamelCase : Optional[Any] = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCamelCase : str = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() _lowerCamelCase : Dict = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False ) -> Tuple: '''simple docstring''' _lowerCamelCase : Tuple = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) _lowerCamelCase : List[str] = tokenizer("\n" , add_special_tokens=_lowerCamelCase ).input_ids[0] _lowerCamelCase, _lowerCamelCase : Optional[int] = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase ) _lowerCamelCase : List[str] = BlipaForConditionalGeneration(_lowerCamelCase ).eval() _lowerCamelCase : Dict = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } _lowerCamelCase, _lowerCamelCase : Optional[Any] = model_name_to_original[model_name] # load original model print("Loading original model..." ) _lowerCamelCase : Optional[int] = "cuda" if torch.cuda.is_available() else "cpu" _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print("Done!" ) # update state dict keys _lowerCamelCase : Tuple = original_model.state_dict() _lowerCamelCase : str = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCamelCase : Optional[Any] = state_dict.pop(_lowerCamelCase ) if key.startswith("Qformer.bert" ): _lowerCamelCase : str = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: _lowerCamelCase : Tuple = key.replace("self" , "attention" ) if "opt_proj" in key: _lowerCamelCase : Dict = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: _lowerCamelCase : List[str] = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): _lowerCamelCase : int = key.replace("opt" , "language" ) if key.startswith("t5" ): _lowerCamelCase : Any = key.replace("t5" , "language" ) _lowerCamelCase : int = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase, _lowerCamelCase : int = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _lowerCamelCase : int = load_demo_image() _lowerCamelCase : List[Any] = vis_processors["eval"](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _lowerCamelCase : Optional[int] = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(_lowerCamelCase ) # create processor _lowerCamelCase : Any = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) _lowerCamelCase : Dict = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) _lowerCamelCase : str = processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: _lowerCamelCase : Tuple = original_model({"image": original_pixel_values, "text_input": [""]} ).logits _lowerCamelCase : List[Any] = hf_model(_lowerCamelCase , _lowerCamelCase ).logits else: _lowerCamelCase : Optional[int] = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits _lowerCamelCase : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) _lowerCamelCase : Optional[Any] = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _lowerCamelCase : str = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _lowerCamelCase : Optional[Any] = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=_lowerCamelCase ) else: # cast to same type _lowerCamelCase : str = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1e-2 ) print("Looks ok!" ) print("Generating a caption..." ) _lowerCamelCase : List[str] = "" _lowerCamelCase : Dict = tokenizer(_lowerCamelCase , return_tensors="pt" ).input_ids.to(_lowerCamelCase ) _lowerCamelCase : Optional[int] = original_model.generate({"image": original_pixel_values} ) _lowerCamelCase : Dict = hf_model.generate( _lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , _lowerCamelCase ) _lowerCamelCase : List[Any] = input_ids.shape[1] _lowerCamelCase : Tuple = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase ) _lowerCamelCase : int = [text.strip() for text in output_text] print("HF generation:" , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(F"""nielsr/{model_name}""" ) hf_model.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() _lowerCAmelCase : Dict = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
340
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : str = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' for attribute in key.split("." ): _lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: _lowerCamelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: _lowerCamelCase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCamelCase : Tuple = value elif weight_type == "weight_g": _lowerCamelCase : List[str] = value elif weight_type == "weight_v": _lowerCamelCase : List[Any] = value elif weight_type == "bias": _lowerCamelCase : str = value elif weight_type == "running_mean": _lowerCamelCase : Optional[int] = value elif weight_type == "running_var": _lowerCamelCase : Optional[Any] = value elif weight_type == "num_batches_tracked": _lowerCamelCase : int = value elif weight_type == "inv_freq": _lowerCamelCase : List[str] = value else: _lowerCamelCase : Optional[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[Any] = fairseq_model.state_dict() _lowerCamelCase : List[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCamelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCamelCase : int = True if "*" in mapped_key: _lowerCamelCase : Tuple = name.split(_lowerCamelCase )[0].split("." )[-2] _lowerCamelCase : int = mapped_key.replace("*" , _lowerCamelCase ) if "pos_bias_u" in name: _lowerCamelCase : int = None elif "pos_bias_v" in name: _lowerCamelCase : Any = None elif "weight_g" in name: _lowerCamelCase : Any = "weight_g" elif "weight_v" in name: _lowerCamelCase : Any = "weight_v" elif "bias" in name: _lowerCamelCase : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase : Dict = "weight" elif "running_mean" in name: _lowerCamelCase : str = "running_mean" elif "inv_freq" in name: _lowerCamelCase : List[Any] = "inv_freq" elif "running_var" in name: _lowerCamelCase : Tuple = "running_var" elif "num_batches_tracked" in name: _lowerCamelCase : str = "num_batches_tracked" else: _lowerCamelCase : Dict = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = full_name.split("conv_layers." )[-1] _lowerCamelCase : List[Any] = name.split("." ) _lowerCamelCase : Union[str, Any] = int(items[0] ) _lowerCamelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCamelCase : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCamelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _lowerCamelCase : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCamelCase : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> Dict: '''simple docstring''' if config_path is not None: _lowerCamelCase : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" ) else: _lowerCamelCase : Dict = WavaVecaConformerConfig() if "rope" in checkpoint_path: _lowerCamelCase : List[Any] = "rotary" if is_finetuned: if dict_path: _lowerCamelCase : Dict = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase : Optional[int] = target_dict.pad_index _lowerCamelCase : Dict = target_dict.bos_index _lowerCamelCase : Optional[Any] = target_dict.eos_index _lowerCamelCase : str = len(target_dict.symbols ) _lowerCamelCase : int = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCamelCase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) _lowerCamelCase : Tuple = True if config.feat_extract_norm == "layer" else False _lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) _lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCamelCase : List[Any] = WavaVecaConformerForCTC(_lowerCamelCase ) else: _lowerCamelCase : Any = WavaVecaConformerForPreTraining(_lowerCamelCase ) if is_finetuned: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _lowerCamelCase : List[Any] = argparse.Namespace(task="audio_pretraining" ) _lowerCamelCase : Optional[Any] = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) _lowerCamelCase : Dict = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCAmelCase : str = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
340
1