code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations import math def _UpperCAmelCase ( a__): '''simple docstring''' if num <= 0: a_ : Any = f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(a__) a_ : List[Any] = [True] * (num + 1) a_ : Optional[Any] = [] a_ : str = 2 a_ : Any = int(math.sqrt(a__)) while start <= end: # If start is a prime if sieve[start] is True: prime.append(a__) # Set multiples of start be False for i in range(start * start , num + 1 , a__): if sieve[i] is True: a_ : List[str] = False start += 1 for j in range(end + 1 , num + 1): if sieve[j] is True: prime.append(a__) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
248
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A__(a_ ): """simple docstring""" def __init__( self , *_lowercase , _lowercase=None , _lowercase=None , **_lowercase ) -> Optional[Any]: super().__init__(*_lowercase , **_lowercase ) a_ : Optional[int] = eval_examples a_ : Tuple = post_process_function def UpperCamelCase__ ( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase = "eval" ) -> Union[str, Any]: a_ : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset a_ : List[str] = self.get_eval_dataloader(_lowercase ) a_ : List[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a_ : Optional[int] = self.compute_metrics a_ : List[str] = None a_ : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a_ : Any = time.time() try: a_ : Union[str, Any] = eval_loop( _lowercase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowercase , metric_key_prefix=_lowercase , ) finally: a_ : Dict = compute_metrics a_ : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _lowercase , _lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default a_ : List[Any] = self.post_process_function(_lowercase , _lowercase , output.predictions ) a_ : Optional[Any] = self.compute_metrics(_lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a_ : List[str] = metrics.pop(_lowercase ) metrics.update(output.metrics ) else: a_ : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowercase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) a_ : List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowercase ) return metrics def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase=None , _lowercase = "test" ) -> str: a_ : Tuple = self.get_test_dataloader(_lowercase ) # Temporarily disable metric computation, we will do it in the loop here. a_ : List[Any] = self.compute_metrics a_ : int = None a_ : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a_ : Union[str, Any] = time.time() try: a_ : List[str] = eval_loop( _lowercase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowercase , metric_key_prefix=_lowercase , ) finally: a_ : Optional[Any] = compute_metrics a_ : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _lowercase , _lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output a_ : Optional[int] = self.post_process_function(_lowercase , _lowercase , output.predictions , """predict""" ) a_ : List[Any] = self.compute_metrics(_lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a_ : int = metrics.pop(_lowercase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowercase )
248
1
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __a ( snake_case__ ): """simple docstring""" def __init__( self : int , lowercase_ : int , lowercase_ : Optional[int]=13 , lowercase_ : str=7 , lowercase_ : str=True , lowercase_ : Optional[Any]=True , lowercase_ : int=True , lowercase_ : Any=True , lowercase_ : Tuple=True , lowercase_ : List[Any]=False , lowercase_ : List[Any]=False , lowercase_ : str=False , lowercase_ : Dict=2 , lowercase_ : Any=99 , lowercase_ : Union[str, Any]=0 , lowercase_ : Dict=32 , lowercase_ : Optional[Any]=5 , lowercase_ : Union[str, Any]=4 , lowercase_ : Any=0.1 , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=512 , lowercase_ : Tuple=12 , lowercase_ : Any=2 , lowercase_ : Union[str, Any]=0.0_2 , lowercase_ : Tuple=3 , lowercase_ : Any=4 , lowercase_ : Union[str, Any]="last" , lowercase_ : List[Any]=None , lowercase_ : Tuple=None , ): UpperCamelCase__ : int =parent UpperCamelCase__ : List[str] =batch_size UpperCamelCase__ : Tuple =seq_length UpperCamelCase__ : Tuple =is_training UpperCamelCase__ : str =use_input_lengths UpperCamelCase__ : str =use_token_type_ids UpperCamelCase__ : Optional[Any] =use_labels UpperCamelCase__ : str =gelu_activation UpperCamelCase__ : List[str] =sinusoidal_embeddings UpperCamelCase__ : Optional[int] =causal UpperCamelCase__ : Dict =asm UpperCamelCase__ : Tuple =n_langs UpperCamelCase__ : str =vocab_size UpperCamelCase__ : Dict =n_special UpperCamelCase__ : Optional[int] =hidden_size UpperCamelCase__ : str =num_hidden_layers UpperCamelCase__ : Optional[Any] =num_attention_heads UpperCamelCase__ : List[str] =hidden_dropout_prob UpperCamelCase__ : Dict =attention_probs_dropout_prob UpperCamelCase__ : int =max_position_embeddings UpperCamelCase__ : Optional[Any] =type_vocab_size UpperCamelCase__ : List[str] =type_sequence_label_size UpperCamelCase__ : Optional[Any] =initializer_range UpperCamelCase__ : str =num_labels UpperCamelCase__ : str =num_choices UpperCamelCase__ : Optional[Any] =summary_type UpperCamelCase__ : Optional[int] =use_proj UpperCamelCase__ : Dict =scope def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ : Tuple =random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ : Tuple =None if self.use_input_lengths: UpperCamelCase__ : str =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase__ : List[str] =None if self.use_token_type_ids: UpperCamelCase__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase__ : List[Any] =None UpperCamelCase__ : Optional[Any] =None UpperCamelCase__ : Optional[int] =None if self.use_labels: UpperCamelCase__ : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ : int =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ : Optional[Any] =ids_tensor([self.batch_size] , 2 ).float() UpperCamelCase__ : List[str] =ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ : Optional[int] =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCAmelCase ( self : List[Any] ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _lowerCAmelCase ( self : List[str] , lowercase_ : Dict , lowercase_ : int , lowercase_ : Dict , lowercase_ : str , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : List[Any] , ): UpperCamelCase__ : int =FlaubertModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase__ : Tuple =model(lowercase_ , lengths=lowercase_ , langs=lowercase_ ) UpperCamelCase__ : Optional[Any] =model(lowercase_ , langs=lowercase_ ) UpperCamelCase__ : Optional[int] =model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : List[str] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , ): UpperCamelCase__ : Any =FlaubertWithLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase__ : int =model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : int , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : str , ): UpperCamelCase__ : Optional[int] =FlaubertForQuestionAnsweringSimple(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase__ : Any =model(lowercase_ ) UpperCamelCase__ : Optional[int] =model(lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Any , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : List[Any] , ): UpperCamelCase__ : List[str] =FlaubertForQuestionAnswering(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase__ : Any =model(lowercase_ ) UpperCamelCase__ : Union[str, Any] =model( lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , cls_index=lowercase_ , is_impossible=lowercase_ , p_mask=lowercase_ , ) UpperCamelCase__ : Optional[int] =model( lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , cls_index=lowercase_ , is_impossible=lowercase_ , ) ((UpperCamelCase__) , ) : int =result_with_labels.to_tuple() UpperCamelCase__ : str =model(lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ ) ((UpperCamelCase__) , ) : Dict =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCAmelCase ( self : str , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : str , lowercase_ : List[str] , ): UpperCamelCase__ : int =FlaubertForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase__ : Optional[Any] =model(lowercase_ ) UpperCamelCase__ : Union[str, Any] =model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self : List[Any] , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Any , ): UpperCamelCase__ : Any =self.num_labels UpperCamelCase__ : Union[str, Any] =FlaubertForTokenClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase__ : Any =model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Dict , ): UpperCamelCase__ : Optional[Any] =self.num_choices UpperCamelCase__ : str =FlaubertForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase__ : Optional[Any] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ : Optional[Any] =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ : Optional[Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ : Optional[Any] =model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : int ): UpperCamelCase__ : Optional[Any] =self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) : Optional[int] =config_and_inputs UpperCamelCase__ : List[Any] ={ '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __a ( snake_case__, snake_case__, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _lowerCAmelCase ( self : Tuple , lowercase_ : str , lowercase_ : int , lowercase_ : str , lowercase_ : int , lowercase_ : int ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : List[Any]=False ): UpperCamelCase__ : List[str] =super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": UpperCamelCase__ : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) UpperCamelCase__ : Union[str, Any] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def _lowerCAmelCase ( self : Dict ): UpperCamelCase__ : List[str] =FlaubertModelTester(self ) UpperCamelCase__ : str =ConfigTester(self , config_class=lowercase_ , emb_dim=37 ) def _lowerCAmelCase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowercase_ ) def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowercase_ ) def _lowerCAmelCase ( self : Union[str, Any] ): UpperCamelCase__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowercase_ ) def _lowerCAmelCase ( self : Dict ): UpperCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowercase_ ) def _lowerCAmelCase ( self : Optional[int] ): UpperCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase_ ) def _lowerCAmelCase ( self : Union[str, Any] ): UpperCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowercase_ ) def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowercase_ ) @slow def _lowerCAmelCase ( self : Optional[Any] ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Optional[int] =FlaubertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Tuple ): UpperCamelCase__ , UpperCamelCase__ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : Any =model_class(config=lowercase_ ) UpperCamelCase__ : int =self._prepare_for_class(lowercase_ , lowercase_ ) UpperCamelCase__ : int =torch.jit.trace( lowercase_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase_ , os.path.join(lowercase_ , '''traced_model.pt''' ) ) UpperCamelCase__ : List[Any] =torch.jit.load(os.path.join(lowercase_ , '''traced_model.pt''' ) , map_location=lowercase_ ) loaded(inputs_dict['''input_ids'''].to(lowercase_ ) , inputs_dict['''attention_mask'''].to(lowercase_ ) ) @require_torch class __a ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : str ): UpperCamelCase__ : int =FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) UpperCamelCase__ : Union[str, Any] =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): UpperCamelCase__ : Union[str, Any] =model(lowercase_ )[0] UpperCamelCase__ : Tuple =torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase_ ) UpperCamelCase__ : Optional[int] =torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1e-4 ) )
157
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _SCREAMING_SNAKE_CASE : str = False class __a ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class __a ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Optional[int] ): UpperCamelCase__ : Any =VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCamelCase__ : int =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCamelCase__ : Dict =torch.manual_seed(0 ) UpperCamelCase__ : Optional[int] =pipe.dual_guided( prompt='''first prompt''' , image=lowercase_ , text_to_image_strength=0.7_5 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase_ ) UpperCamelCase__ : str =VersatileDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCamelCase__ : int =generator.manual_seed(0 ) UpperCamelCase__ : str =pipe.dual_guided( prompt='''first prompt''' , image=lowercase_ , text_to_image_strength=0.7_5 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : Dict =VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCamelCase__ : str ='''cyberpunk 2077''' UpperCamelCase__ : str =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCamelCase__ : int =torch.manual_seed(0 ) UpperCamelCase__ : int =pipe.dual_guided( prompt=lowercase_ , image=lowercase_ , text_to_image_strength=0.7_5 , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCamelCase__ : List[str] =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ : Dict =np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ : Dict ='''A painting of a squirrel eating a burger ''' UpperCamelCase__ : Optional[int] =torch.manual_seed(0 ) UpperCamelCase__ : str =pipe.text_to_image( prompt=lowercase_ , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images UpperCamelCase__ : str =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ : List[Any] =np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ : Optional[Any] =pipe.image_variation(lowercase_ , generator=lowercase_ , output_type='''numpy''' ).images UpperCamelCase__ : str =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ : Tuple =np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
157
1
'''simple docstring''' def lowercase__ ( __UpperCamelCase )-> int: UpperCamelCase = abs(__UpperCamelCase ) UpperCamelCase = 0 while n > 0: res += n % 10 n //= 10 return res def lowercase__ ( __UpperCamelCase )-> int: UpperCamelCase = abs(__UpperCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def lowercase__ ( __UpperCamelCase )-> int: return sum(int(__UpperCamelCase ) for c in str(abs(__UpperCamelCase ) ) ) def lowercase__ ( )-> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(__UpperCamelCase , __UpperCamelCase ) -> None: UpperCamelCase = F"{func.__name__}({value})" UpperCamelCase = timeit(F"__main__.{call}" , setup="""import __main__""" ) print(F"{call:56} = {func(__UpperCamelCase )} -- {timing:.4f} seconds" ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__UpperCamelCase , __UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
321
'''simple docstring''' def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__UpperCamelCase ) ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> bool: # Base Case if index == len(__UpperCamelCase ): return True # Recursive Step for i in range(__UpperCamelCase ): if valid_coloring(graph[index] , __UpperCamelCase , __UpperCamelCase ): # Color current vertex UpperCamelCase = i # Validate coloring if util_color(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , index + 1 ): return True # Backtrack UpperCamelCase = -1 return False def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> list[int]: UpperCamelCase = [-1] * len(__UpperCamelCase ) if util_color(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , 0 ): return colored_vertices return []
321
1
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): # Return True if there is node that has not iterated. _UpperCamelCase : Dict = [False] * len(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = [] queue.append(UpperCAmelCase_ ) _UpperCamelCase : Any = True while queue: _UpperCamelCase : Tuple = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(UpperCAmelCase_ ) _UpperCamelCase : str = True _UpperCamelCase : Any = u return visited[t] def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): # This array is filled by BFS and to store path _UpperCamelCase : List[str] = [-1] * (len(UpperCAmelCase_ )) _UpperCamelCase : Union[str, Any] = 0 while bfs(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Optional[Any] = float('Inf' ) _UpperCamelCase : Optional[Any] = sink while s != source: # Find the minimum value in select path _UpperCamelCase : Union[str, Any] = min(UpperCAmelCase_ , graph[parent[s]][s] ) _UpperCamelCase : Tuple = parent[s] max_flow += path_flow _UpperCamelCase : Optional[Any] = sink while v != source: _UpperCamelCase : Tuple = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCamelCase : Any = parent[v] return max_flow snake_case_ : Dict = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] snake_case_ : List[str] = 0, 5 print(ford_fulkerson(graph, source, sink))
368
'''simple docstring''' import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() snake_case_ : Dict = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=False , UpperCAmelCase_=True ): if model_type not in MODEL_CLASSES: raise ValueError(f'Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.' ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[str] = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: _UpperCamelCase : Optional[int] = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , force_download=not use_cached_models ) _UpperCamelCase : Optional[Any] = config_class.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = True _UpperCamelCase : List[str] = True print(f'Building TensorFlow model from configuration: {config}' ) _UpperCamelCase : Any = model_class(UpperCAmelCase_ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): _UpperCamelCase : Union[str, Any] = cached_file( UpperCAmelCase_ , UpperCAmelCase_ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: _UpperCamelCase : List[Any] = load_pytorch_checkpoint_in_tfa_model(UpperCAmelCase_ , UpperCAmelCase_ ) if compare_with_pt_model: _UpperCamelCase : Optional[int] = tf_model(tf_model.dummy_inputs , training=UpperCAmelCase_ ) # build the network _UpperCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : List[str] = pt_model_class.from_pretrained( pretrained_model_name_or_path=UpperCAmelCase_ , config=UpperCAmelCase_ , state_dict=UpperCAmelCase_ ) with torch.no_grad(): _UpperCamelCase : Optional[Any] = pt_model(**pt_model.dummy_inputs ) _UpperCamelCase : int = pto[0].numpy() _UpperCamelCase : Any = tfo[0].numpy() _UpperCamelCase : Dict = np.amax(np.abs(np_pt - np_tf ) ) print(f'Max absolute difference between models outputs {diff}' ) assert diff <= 2E-2, f'Error, model absolute difference is >2e-2: {diff}' # Save pytorch-model print(f'Save TensorFlow model to {tf_dump_path}' ) tf_model.save_weights(UpperCAmelCase_ , save_format='h5' ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=False , UpperCAmelCase_=False , UpperCAmelCase_=False , UpperCAmelCase_=False , ): if args_model_type is None: _UpperCamelCase : List[Any] = list(MODEL_CLASSES.keys() ) else: _UpperCamelCase : Tuple = [args_model_type] for j, model_type in enumerate(UpperCAmelCase_ , start=1 ): print('=' * 1_0_0 ) print(f' Converting model type {j}/{len(UpperCAmelCase_ )}: {model_type}' ) print('=' * 1_0_0 ) if model_type not in MODEL_CLASSES: raise ValueError(f'Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.' ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: _UpperCamelCase : List[Any] = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: _UpperCamelCase : int = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(UpperCAmelCase_ , UpperCAmelCase_ ) , start=1 ): print('-' * 1_0_0 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f' Skipping finetuned checkpoint {model_shortcut_name}' ) continue _UpperCamelCase : Dict = model_shortcut_name elif only_convert_finetuned_models: print(f' Skipping not finetuned checkpoint {model_shortcut_name}' ) continue print( f' Converting checkpoint {i}/{len(UpperCAmelCase_ )}: {model_shortcut_name} - model_type {model_type}' ) print('-' * 1_0_0 ) if config_shortcut_name in aws_config_map: _UpperCamelCase : Any = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , force_download=not use_cached_models ) else: _UpperCamelCase : str = config_shortcut_name if model_shortcut_name in aws_model_maps: _UpperCamelCase : int = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , force_download=not use_cached_models ) else: _UpperCamelCase : List[str] = model_shortcut_name if os.path.isfile(UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = 'converted_model' convert_pt_checkpoint_to_tf( model_type=UpperCAmelCase_ , pytorch_checkpoint_path=UpperCAmelCase_ , config_file=UpperCAmelCase_ , tf_dump_path=os.path.join(UpperCAmelCase_ , model_shortcut_name + '-tf_model.h5' ) , compare_with_pt_model=UpperCAmelCase_ , ) if remove_cached_files: os.remove(UpperCAmelCase_ ) os.remove(UpperCAmelCase_ ) if __name__ == "__main__": snake_case_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( F"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') snake_case_ : Optional[int] = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
236
0
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: """simple docstring""" snake_case__ : Dict = TaConfig.from_json_file(__lowerCAmelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) snake_case__ : List[str] = TaForConditionalGeneration(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
230
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A__ = { '''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''], '''tokenization_ctrl''': ['''CTRLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CTRLForSequenceClassification''', '''CTRLLMHeadModel''', '''CTRLModel''', '''CTRLPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCTRLForSequenceClassification''', '''TFCTRLLMHeadModel''', '''TFCTRLModel''', '''TFCTRLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
230
1
import logging import os from .state import PartialState class SCREAMING_SNAKE_CASE__ ( logging.LoggerAdapter ): """simple docstring""" @staticmethod def __lowerCamelCase ( __UpperCamelCase ) -> int: '''simple docstring''' __UpperCamelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) -> Any: '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) __UpperCamelCase : Tuple = kwargs.pop("main_process_only" , __UpperCamelCase ) __UpperCamelCase : Tuple = kwargs.pop("in_order" , __UpperCamelCase ) if self.isEnabledFor(__UpperCamelCase ): if self._should_log(__UpperCamelCase ): __UpperCamelCase : Union[str, Any] = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif in_order: __UpperCamelCase : int = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCamelCase : List[str] = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) state.wait_for_everyone() def UpperCAmelCase_ (_lowerCAmelCase : str , _lowerCAmelCase : str = None ): if log_level is None: __UpperCamelCase : str = os.environ.get("ACCELERATE_LOG_LEVEL" , _lowerCAmelCase ) __UpperCamelCase : Optional[int] = logging.getLogger(_lowerCAmelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCAmelCase , {} )
370
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowercase : Any = logging.get_logger() @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" lowercase : nn.Module lowercase : List[nn.Module] = field(default_factory=lowerCamelCase__ ) lowercase : list = field(default_factory=lowerCamelCase__ ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Optional[int] = len(list(m.modules() ) ) == 1 or isinstance(__UpperCamelCase , nn.Convad ) or isinstance(__UpperCamelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(__UpperCamelCase ) def __call__( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__UpperCamelCase ) [x.remove() for x in self.handles] return self @property def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' return list(filter(lambda __UpperCamelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" lowercase : nn.Module lowercase : nn.Module lowercase : int = 0 lowercase : List = field(default_factory=lowerCamelCase__ ) lowercase : List = field(default_factory=lowerCamelCase__ ) def __call__( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' __UpperCamelCase : Optional[Any] = Tracker(self.dest )(__UpperCamelCase ).parametrized __UpperCamelCase : Union[str, Any] = Tracker(self.src )(__UpperCamelCase ).parametrized __UpperCamelCase : Union[str, Any] = list(filter(lambda __UpperCamelCase : type(__UpperCamelCase ) not in self.src_skip , __UpperCamelCase ) ) __UpperCamelCase : Any = list(filter(lambda __UpperCamelCase : type(__UpperCamelCase ) not in self.dest_skip , __UpperCamelCase ) ) if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise Exception( f'''Numbers of operations are different. Source module has {len(__UpperCamelCase )} operations while''' f''' destination module has {len(__UpperCamelCase )}.''' ) for dest_m, src_m in zip(__UpperCamelCase , __UpperCamelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) def UpperCAmelCase_ (_lowerCAmelCase : str , _lowerCAmelCase : ResNetConfig , _lowerCAmelCase : Path , _lowerCAmelCase : bool = True ): print(F'''Converting {name}...''' ) with torch.no_grad(): __UpperCamelCase : Optional[Any] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ).eval() __UpperCamelCase : Union[str, Any] = ResNetForImageClassification(_lowerCAmelCase ).eval() __UpperCamelCase : Any = ModuleTransfer(src=_lowerCAmelCase , dest=_lowerCAmelCase ) __UpperCamelCase : Optional[int] = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(_lowerCAmelCase ) assert torch.allclose(from_model(_lowerCAmelCase ) , our_model(_lowerCAmelCase ).logits ), "The model logits don't match the original one." __UpperCamelCase : Tuple = F'''resnet{"-".join(name.split("resnet" ) )}''' print(_lowerCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=_lowerCAmelCase , ) # we can use the convnext one __UpperCamelCase : List[str] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=_lowerCAmelCase , ) print(F'''Pushed {checkpoint_name}''' ) def UpperCAmelCase_ (_lowerCAmelCase : Path , _lowerCAmelCase : str = None , _lowerCAmelCase : bool = True ): __UpperCamelCase : str = "imagenet-1k-id2label.json" __UpperCamelCase : Dict = 10_00 __UpperCamelCase : Any = (1, num_labels) __UpperCamelCase : Union[str, Any] = "huggingface/label-files" __UpperCamelCase : List[Any] = num_labels __UpperCamelCase : Tuple = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) __UpperCamelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} __UpperCamelCase : List[str] = idalabel __UpperCamelCase : str = {v: k for k, v in idalabel.items()} __UpperCamelCase : Dict = partial(_lowerCAmelCase , num_labels=_lowerCAmelCase , idalabel=_lowerCAmelCase , labelaid=_lowerCAmelCase ) __UpperCamelCase : List[str] = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(_lowerCAmelCase , names_to_config[model_name] , _lowerCAmelCase , _lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) lowercase : Union[str, Any] = parser.parse_args() lowercase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
171
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _a ( ) -> List[str]: """simple docstring""" lowerCAmelCase__ = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ).convert("RGB" ) return image def _a ( UpperCamelCase_ : int ) -> Dict: """simple docstring""" lowerCAmelCase__ = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = dct.pop(UpperCamelCase_ ) lowerCAmelCase__ = val def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] ) -> Union[str, Any]: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCAmelCase__ = state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" ) lowerCAmelCase__ = state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict lowerCAmelCase__ = torch.cat((q_bias, torch.zeros_like(UpperCamelCase_ , requires_grad=UpperCamelCase_ ), v_bias) ) lowerCAmelCase__ = qkv_bias def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any ) -> Any: """simple docstring""" lowerCAmelCase__ = 364 if "coco" in model_name else 224 lowerCAmelCase__ = BlipaVisionConfig(image_size=UpperCamelCase_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowerCAmelCase__ = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=UpperCamelCase_ ).to_dict() elif "opt-6.7b" in model_name: lowerCAmelCase__ = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=UpperCamelCase_ ).to_dict() elif "t5-xl" in model_name: lowerCAmelCase__ = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCAmelCase__ = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() lowerCAmelCase__ = BlipaConfig(vision_config=UpperCamelCase_ , text_config=UpperCamelCase_ ) return config, image_size @torch.no_grad() def _a ( UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : int=False ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) lowerCAmelCase__ = tokenizer("\n" , add_special_tokens=UpperCamelCase_ ).input_ids[0] lowerCAmelCase__ , lowerCAmelCase__ = get_blipa_config(UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) lowerCAmelCase__ = BlipaForConditionalGeneration(UpperCamelCase_ ).eval() lowerCAmelCase__ = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } lowerCAmelCase__ , lowerCAmelCase__ = model_name_to_original[model_name] # load original model print("Loading original model..." ) lowerCAmelCase__ = "cuda" if torch.cuda.is_available() else "cpu" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = load_model_and_preprocess( name=UpperCamelCase_ , model_type=UpperCamelCase_ , is_eval=UpperCamelCase_ , device=UpperCamelCase_ ) original_model.eval() print("Done!" ) # update state dict keys lowerCAmelCase__ = original_model.state_dict() lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCAmelCase__ = state_dict.pop(UpperCamelCase_ ) if key.startswith("Qformer.bert" ): lowerCAmelCase__ = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: lowerCAmelCase__ = key.replace("self" , "attention" ) if "opt_proj" in key: lowerCAmelCase__ = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: lowerCAmelCase__ = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): lowerCAmelCase__ = key.replace("opt" , "language" ) if key.startswith("t5" ): lowerCAmelCase__ = key.replace("t5" , "language" ) lowerCAmelCase__ = val # read in qv biases read_in_q_v_bias(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = hf_model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) assert len(UpperCamelCase_ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowerCAmelCase__ = load_demo_image() lowerCAmelCase__ = vis_processors["eval"](UpperCamelCase_ ).unsqueeze(0 ).to(UpperCamelCase_ ) lowerCAmelCase__ = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(UpperCamelCase_ ) # create processor lowerCAmelCase__ = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ ) lowerCAmelCase__ = BlipaProcessor(image_processor=UpperCamelCase_ , tokenizer=UpperCamelCase_ ) lowerCAmelCase__ = processor(images=UpperCamelCase_ , return_tensors="pt" ).pixel_values.to(UpperCamelCase_ ) # make sure processor creates exact same pixel values assert torch.allclose(UpperCamelCase_ , UpperCamelCase_ ) original_model.to(UpperCamelCase_ ) hf_model.to(UpperCamelCase_ ) with torch.no_grad(): if "opt" in model_name: lowerCAmelCase__ = original_model({"image": original_pixel_values, "text_input": [""]} ).logits lowerCAmelCase__ = hf_model(UpperCamelCase_ , UpperCamelCase_ ).logits else: lowerCAmelCase__ = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits lowerCAmelCase__ = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) lowerCAmelCase__ = hf_model(UpperCamelCase_ , UpperCamelCase_ , labels=UpperCamelCase_ ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowerCAmelCase__ = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=UpperCamelCase_ ) assert torch.allclose(logits[0, :3, :3] , UpperCamelCase_ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowerCAmelCase__ = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=UpperCamelCase_ ) else: # cast to same type lowerCAmelCase__ = logits.dtype assert torch.allclose(original_logits.to(UpperCamelCase_ ) , UpperCamelCase_ , atol=1e-2 ) print("Looks ok!" ) print("Generating a caption..." ) lowerCAmelCase__ = "" lowerCAmelCase__ = tokenizer(UpperCamelCase_ , return_tensors="pt" ).input_ids.to(UpperCamelCase_ ) lowerCAmelCase__ = original_model.generate({"image": original_pixel_values} ) lowerCAmelCase__ = hf_model.generate( UpperCamelCase_ , UpperCamelCase_ , do_sample=UpperCamelCase_ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , UpperCamelCase_ ) lowerCAmelCase__ = input_ids.shape[1] lowerCAmelCase__ = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=UpperCamelCase_ ) lowerCAmelCase__ = [text.strip() for text in output_text] print("HF generation:" , UpperCamelCase_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCamelCase_ ) hf_model.save_pretrained(UpperCamelCase_ ) if push_to_hub: processor.push_to_hub(F"nielsr/{model_name}" ) hf_model.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() a_ = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) a_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
340
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _a ( UpperCamelCase_ : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(UpperCamelCase_ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) lowerCAmelCase__ = QuantumRegister(UpperCamelCase_ , "qr" ) lowerCAmelCase__ = ClassicalRegister(UpperCamelCase_ , "cr" ) lowerCAmelCase__ = QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = number_of_qubits for i in range(UpperCamelCase_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(UpperCamelCase_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase_ , UpperCamelCase_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(UpperCamelCase_ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(UpperCamelCase_ , UpperCamelCase_ ) # simulate with 10000 shots lowerCAmelCase__ = Aer.get_backend("qasm_simulator" ) lowerCAmelCase__ = execute(UpperCamelCase_ , UpperCamelCase_ , shots=10_000 ) return job.result().get_counts(UpperCamelCase_ ) if __name__ == "__main__": print( F"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
340
1
def lowerCamelCase_ (UpperCamelCase__ : int = 1000 ): _UpperCAmelCase : Tuple = -1 _UpperCAmelCase : Optional[Any] = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c _UpperCAmelCase : Optional[int] = (n * n - 2 * a * n) // (2 * n - 2 * a) _UpperCAmelCase : List[str] = n - a - b if c * c == (a * a + b * b): _UpperCAmelCase : str = a * b * c if candidate >= product: _UpperCAmelCase : Union[str, Any] = candidate return product if __name__ == "__main__": print(f"{solution() = }")
368
"""simple docstring""" from itertools import count def lowerCamelCase_ (UpperCamelCase__ : int = 50 ): _UpperCAmelCase : Tuple = [1] * min_block_length for n in count(UpperCamelCase__ ): fill_count_functions.append(1 ) for block_length in range(UpperCamelCase__ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(f"{solution() = }")
68
0
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
157
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _snake_case ( _lowercase ): lowerCamelCase__: Tuple = ["image_processor", "tokenizer"] lowerCamelCase__: Tuple = "BlipImageProcessor" lowerCamelCase__: str = "AutoTokenizer" def __init__( self: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: int ) -> List[str]: __UpperCAmelCase : Dict = False super().__init__(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[Any] = self.image_processor def __call__( self: Tuple , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Optional[int] , ) -> BatchEncoding: if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: __UpperCAmelCase : int = self.tokenizer __UpperCAmelCase : Optional[int] = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) return text_encoding # add pixel_values __UpperCAmelCase : List[str] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) if text is not None: __UpperCAmelCase : Optional[int] = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) else: __UpperCAmelCase : Optional[int] = None if text_encoding is not None: encoding_image_processor.update(__lowerCamelCase ) return encoding_image_processor def _lowerCamelCase ( self: Union[str, Any] , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: List[Any] ) -> Dict: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Any , *__lowerCamelCase: str , **__lowerCamelCase: Dict ) -> Union[str, Any]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self: List[Any] ) -> List[str]: __UpperCAmelCase : int = self.tokenizer.model_input_names __UpperCAmelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
157
1
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva lowerCAmelCase_ = '' lowerCAmelCase_ = '' lowerCAmelCase_ = '' lowerCAmelCase_ = 1 # (0 is vertical, 1 is horizontal) def __UpperCAmelCase ( ) -> None: lowercase__ , lowercase__ : List[Any] = get_dataset(__lowerCamelCase , __lowerCamelCase ) print('''Processing...''' ) lowercase__ , lowercase__ , lowercase__ : Optional[Any] = update_image_and_anno(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for index, image in enumerate(__lowerCamelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowercase__ : str = random_chars(32 ) lowercase__ : int = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] lowercase__ : Dict = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__lowerCamelCase )} with {file_name}""" ) lowercase__ : Optional[int] = [] for anno in new_annos[index]: lowercase__ : Tuple = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__lowerCamelCase ) with open(f"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> tuple[list, list]: lowercase__ : Dict = [] lowercase__ : Tuple = [] for label_file in glob.glob(os.path.join(__lowerCamelCase , '''*.txt''' ) ): lowercase__ : str = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__lowerCamelCase ) as in_file: lowercase__ : Any = in_file.readlines() lowercase__ : str = os.path.join(__lowerCamelCase , f"""{label_name}.jpg""" ) lowercase__ : Optional[Any] = [] for obj_list in obj_lists: lowercase__ : Dict = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCamelCase ) labels.append(__lowerCamelCase ) return img_paths, labels def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 1 ) -> tuple[list, list, list]: lowercase__ : Union[str, Any] = [] lowercase__ : Union[str, Any] = [] lowercase__ : Optional[Any] = [] for idx in range(len(__lowerCamelCase ) ): lowercase__ : Any = [] lowercase__ : Tuple = img_list[idx] path_list.append(__lowerCamelCase ) lowercase__ : List[str] = anno_list[idx] lowercase__ : Tuple = cva.imread(__lowerCamelCase ) if flip_type == 1: lowercase__ : Optional[int] = cva.flip(__lowerCamelCase , __lowerCamelCase ) for bbox in img_annos: lowercase__ : List[str] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: lowercase__ : Optional[int] = cva.flip(__lowerCamelCase , __lowerCamelCase ) for bbox in img_annos: lowercase__ : str = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCamelCase ) new_imgs_list.append(__lowerCamelCase ) return new_imgs_list, new_annos_lists, path_list def __UpperCAmelCase ( __lowerCamelCase = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" lowercase__ : Tuple = ascii_lowercase + digits return "".join(random.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) ) if __name__ == "__main__": main() print('DONE ✅')
302
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) lowerCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ : str = import_module('''tasks''' ) try: lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) ) lowercase__ : Optional[int] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , ) lowercase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ : str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]: lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 ) lowercase__ , lowercase__ : Tuple = preds.shape lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )] lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCamelCase ) -> Dict: lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ), "precision": precision_score(__lowerCamelCase , __lowerCamelCase ), "recall": recall_score(__lowerCamelCase , __lowerCamelCase ), "f1": fa_score(__lowerCamelCase , __lowerCamelCase ), } # Data collator lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ : str = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Optional[int] = trainer.evaluate() lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__lowerCamelCase ) # Predict if training_args.do_predict: lowercase__ : Optional[int] = TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase ) lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return results def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
302
1
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : List[str]=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Any=99 , _UpperCAmelCase : Optional[Any]=32 , _UpperCAmelCase : Optional[int]=5 , _UpperCAmelCase : int=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : int=5_12 , _UpperCAmelCase : int=16 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Union[str, Any]=4 , ): """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_attention_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_choices def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_attention_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : str = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = FlaxRobertaPreLayerNormModelTester(self ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowerCAmelCase ) UpperCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowerCAmelCase ) UpperCAmelCase__ = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) UpperCAmelCase__ = model(_lowerCAmelCase )[0] UpperCAmelCase__ = [1, 11, 5_02_65] self.assertEqual(list(output.shape ) , _lowerCAmelCase ) # compare the actual values for a slice. UpperCAmelCase__ = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowerCAmelCase ) UpperCAmelCase__ = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) UpperCAmelCase__ = model(_lowerCAmelCase )[0] # compare the actual values for a slice. UpperCAmelCase__ = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
346
import numpy # List of input, output pairs _UpperCAmelCase : List[str] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _UpperCAmelCase : Optional[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150)) _UpperCAmelCase : Tuple = [2, 4, 1, 5] _UpperCAmelCase : Union[str, Any] = len(train_data) _UpperCAmelCase : Dict = 0.0_0_9 def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase="train" ): return calculate_hypothesis_value(lowerCamelCase, lowerCamelCase ) - output( lowerCamelCase, lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase ): lowercase :str = 0 for i in range(len(lowerCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase=m ): lowercase :Union[str, Any] = 0 for i in range(lowerCamelCase ): if index == -1: summation_value += _error(lowerCamelCase ) else: summation_value += _error(lowerCamelCase ) * train_data[i][0][index] return summation_value def UpperCAmelCase__ ( lowerCamelCase ): lowercase :int = summation_of_cost_derivative(lowerCamelCase, lowerCamelCase ) / m return cost_derivative_value def UpperCAmelCase__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowercase :str = 0.000_002 lowercase :Tuple = 0 lowercase :Optional[int] = 0 while True: j += 1 lowercase :Union[str, Any] = [0, 0, 0, 0] for i in range(0, len(lowerCamelCase ) ): lowercase :Dict = get_cost_derivative(i - 1 ) lowercase :Optional[Any] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCamelCase, lowerCamelCase, atol=lowerCamelCase, rtol=lowerCamelCase, ): break lowercase :Union[str, Any] = temp_parameter_vector print(("Number of iterations:", j) ) def UpperCAmelCase__ ( ): for i in range(len(lowerCamelCase ) ): print(("Actual output value:", output(lowerCamelCase, "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(lowerCamelCase, "test" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
236
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def UpperCamelCase( lowercase_ , lowercase_=False ) -> Any: '''simple docstring''' snake_case_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def UpperCamelCase( lowercase_ , lowercase_ , lowercase_=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: snake_case_ = '' else: snake_case_ = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) snake_case_ = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[ : config.hidden_size, : ] snake_case_ = in_proj_bias[: config.hidden_size] snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = in_proj_bias[-config.hidden_size :] def UpperCamelCase( lowercase_ ) -> Dict: '''simple docstring''' snake_case_ = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' snake_case_ = dct.pop(lowerCAmelCase_ ) snake_case_ = val def UpperCamelCase( ) -> Optional[int]: '''simple docstring''' snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def UpperCamelCase( lowercase_ , lowercase_ , lowercase_=True ) -> Dict: '''simple docstring''' snake_case_ = ViTConfig() # patch_size if model_name[-1] == "8": snake_case_ = 8 # set labels if required if not base_model: snake_case_ = 1000 snake_case_ = 'huggingface/label-files' snake_case_ = 'imagenet-1k-id2label.json' snake_case_ = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) snake_case_ = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: snake_case_ = 384 snake_case_ = 1536 snake_case_ = 12 snake_case_ = 6 # load original model from torch hub snake_case_ = torch.hub.load("""facebookresearch/dino:main""" , lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys snake_case_ = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) snake_case_ = create_rename_keys(lowerCAmelCase_ , base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # load HuggingFace model if base_model: snake_case_ = ViTModel(lowerCAmelCase_ , add_pooling_layer=lowerCAmelCase_ ).eval() else: snake_case_ = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor snake_case_ = ViTImageProcessor() snake_case_ = image_processor(images=prepare_img() , return_tensors="""pt""" ) snake_case_ = encoding['pixel_values'] snake_case_ = model(lowerCAmelCase_ ) if base_model: snake_case_ = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: snake_case_ = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_ , outputs.logits , atol=1e-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) lowerCamelCase_ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
368
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' snake_case_ = AutoConfig.from_pretrained(lowercase_ ) snake_case_ = FlaxAutoModelForSeqaSeqLM.from_config(config=lowercase_ ) snake_case_ = checkpoints.load_tax_checkpoint(lowercase_ ) snake_case_ = """wi_0""" in tax_model["""target"""]["""encoder"""]["""layers_0"""]["""mlp"""] if config.model_type == "t5": snake_case_ = """SelfAttention""" if config.model_type == "longt5" and config.encoder_attention_type == "local": snake_case_ = """LocalSelfAttention""" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = """TransientGlobalSelfAttention""" else: raise ValueError( """Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`""" """ attribute with a value from ['local', 'transient-global].""" ) # Encoder for layer_index in range(config.num_layers ): snake_case_ = f'''layers_{str(lowercase_ )}''' # Self-Attention snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""key"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""out"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""query"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""value"""]["""kernel"""] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""T5LayerNorm_0"""]["""scale"""] # Layer Normalization snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""pre_attention_layer_norm"""]["""scale"""] if split_mlp_wi: snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization snake_case_ = tax_model["""target"""]["""encoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning snake_case_ = flax_model.params["""encoder"""]["""block"""][str(lowercase_ )]["""layer"""] snake_case_ = tax_attention_key snake_case_ = tax_attention_out snake_case_ = tax_attention_query snake_case_ = tax_attention_value snake_case_ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = tax_global_layer_norm if split_mlp_wi: snake_case_ = tax_mlp_wi_a snake_case_ = tax_mlp_wi_a else: snake_case_ = tax_mlp_wi snake_case_ = tax_mlp_wo snake_case_ = tax_mlp_layer_norm snake_case_ = flax_model_encoder_layer_block # Only for layer 0: snake_case_ = tax_model["""target"""]["""encoder"""]["""relpos_bias"""]["""rel_embedding"""].T snake_case_ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = tax_model["""target"""]["""encoder"""]["""side_relpos_bias"""]["""rel_embedding"""].T snake_case_ = tax_encoder_global_rel_embedding # Assigning snake_case_ = tax_model["""target"""]["""encoder"""]["""encoder_norm"""]["""scale"""] snake_case_ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): snake_case_ = f'''layers_{str(lowercase_ )}''' # Self-Attention snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""key"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""out"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""query"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""value"""]["""kernel"""] # Layer Normalization snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_self_attention_layer_norm"""][ """scale""" ] # Encoder-Decoder-Attention snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""encoder_decoder_attention"""] snake_case_ = tax_enc_dec_attention_module["""key"""]["""kernel"""] snake_case_ = tax_enc_dec_attention_module["""out"""]["""kernel"""] snake_case_ = tax_enc_dec_attention_module["""query"""]["""kernel"""] snake_case_ = tax_enc_dec_attention_module["""value"""]["""kernel"""] # Layer Normalization snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_cross_attention_layer_norm"""]["""scale"""] # MLP if split_mlp_wi: snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization snake_case_ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning snake_case_ = flax_model.params["""decoder"""]["""block"""][str(lowercase_ )]["""layer"""] snake_case_ = tax_attention_key snake_case_ = tax_attention_out snake_case_ = tax_attention_query snake_case_ = tax_attention_value snake_case_ = tax_pre_attention_layer_norm snake_case_ = tax_enc_dec_attention_key snake_case_ = tax_enc_dec_attention_out snake_case_ = tax_enc_dec_attention_query snake_case_ = tax_enc_dec_attention_value snake_case_ = tax_cross_layer_norm if split_mlp_wi: snake_case_ = tax_mlp_wi_a snake_case_ = tax_mlp_wi_a else: snake_case_ = tax_mlp_wi snake_case_ = tax_mlp_wo snake_case_ = txa_mlp_layer_norm snake_case_ = flax_model_decoder_layer_block # Decoder Normalization snake_case_ = tax_model["""target"""]["""decoder"""]["""decoder_norm"""]["""scale"""] snake_case_ = txa_decoder_norm # Only for layer 0: snake_case_ = tax_model["""target"""]["""decoder"""]["""relpos_bias"""]["""rel_embedding"""].T snake_case_ = tax_decoder_rel_embedding # Token Embeddings snake_case_ = tax_model["""target"""]["""token_embedder"""]["""embedding"""] snake_case_ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: snake_case_ = tax_model["""target"""]["""decoder"""]["""logits_dense"""]["""kernel"""] flax_model.save_pretrained(lowercase_ ) print("""T5X Model was sucessfully converted!""" ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) lowerCamelCase_ = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
34
0
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class A ( unittest.TestCase ): __UpperCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) __UpperCAmelCase : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_cli.py'] ) __UpperCAmelCase : int = ['accelerate', 'launch'] __UpperCAmelCase : Optional[Any] = Path.home() / '.cache/huggingface/accelerate' __UpperCAmelCase : Union[str, Any] = 'default_config.yaml' __UpperCAmelCase : Optional[int] = config_folder / config_file __UpperCAmelCase : int = config_folder / '_default_config.yaml' __UpperCAmelCase : List[Any] = Path('tests/test_configs' ) @classmethod def lowercase_ (cls : Dict ) -> str: """simple docstring""" if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase_ (cls : str ) -> Any: """simple docstring""" if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase_ (self : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase_ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" for config in sorted(self.test_config_path.glob("**/*.yaml" ) ): with self.subTest(config_file=_lowerCamelCase ): execute_subprocess_async( self.base_cmd + ["--config_file", str(_lowerCamelCase ), self.test_file_path] , env=os.environ.copy() ) def lowercase_ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" execute_subprocess_async(["accelerate", "test"] , env=os.environ.copy() ) class A ( unittest.TestCase ): __UpperCAmelCase : List[str] = 'test-tpu' __UpperCAmelCase : Any = 'us-central1-a' __UpperCAmelCase : List[str] = 'ls' __UpperCAmelCase : Tuple = ['accelerate', 'tpu-config'] __UpperCAmelCase : int = 'cd /usr/share' __UpperCAmelCase : Optional[Any] = 'tests/test_samples/test_command_file.sh' __UpperCAmelCase : Tuple = 'Running gcloud compute tpus tpu-vm ssh' def lowercase_ (self : str ) -> Any: """simple docstring""" UpperCAmelCase__ = run_command( self.cmd + ["--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug"] , return_stdout=_lowerCamelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowerCamelCase , ) def lowercase_ (self : List[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] , return_stdout=_lowerCamelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowerCamelCase , ) def lowercase_ (self : str ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--debug"] , return_stdout=_lowerCamelCase ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowerCamelCase , ) def lowercase_ (self : Dict ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--debug"] , return_stdout=_lowerCamelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowerCamelCase , ) def lowercase_ (self : Optional[Any] ) -> Any: """simple docstring""" UpperCAmelCase__ = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--command", "echo \"Hello World\"", "--debug", ] , return_stdout=_lowerCamelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _lowerCamelCase , ) def lowercase_ (self : Optional[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase__ = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command_file", self.command_file, "--debug"] , return_stdout=_lowerCamelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowerCamelCase , ) def lowercase_ (self : List[Any] ) -> str: """simple docstring""" UpperCAmelCase__ = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command_file", self.command_file, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] , return_stdout=_lowerCamelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowerCamelCase , ) def lowercase_ (self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--debug"] , return_stdout=_lowerCamelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowerCamelCase , ) def lowercase_ (self : Union[str, Any] ) -> Any: """simple docstring""" UpperCAmelCase__ = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--accelerate_version", "12.0.0", "--debug", ] , return_stdout=_lowerCamelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowerCamelCase , )
65
"""simple docstring""" import os from datetime import datetime as dt from github import Github _A = [ """good first issue""", """feature request""", """wip""", ] def a__ ( ) -> str: UpperCAmelCase__ : Union[str, Any] = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase__ : Dict = g.get_repo("""huggingface/accelerate""" ) UpperCAmelCase__ : str = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase__ : Optional[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCAmelCase : i.created_at , reverse=lowerCAmelCase ) UpperCAmelCase__ : List[Any] = comments[0] if len(lowerCAmelCase ) > 0 else None UpperCAmelCase__ : Optional[Any] = dt.utcnow() UpperCAmelCase__ : List[str] = (current_time - issue.updated_at).days UpperCAmelCase__ : Optional[int] = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="""closed""" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
171
0
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : int) -> Dict: '''simple docstring''' __lowercase = s.rsplit(_UpperCamelCase, _UpperCamelCase) return new.join(_UpperCamelCase) def _A ( UpperCamelCase_ : int) -> List[str]: '''simple docstring''' return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items()) def _A ( UpperCamelCase_ : int) -> List[str]: '''simple docstring''' __lowercase = {} __lowercase = ["group_1", "group_2", "group_3", "group_4"] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowercase = key.replace(F"""{group_key}.""", F"""{group_key}.group.""") if "res_path" in key: __lowercase = key.replace("res_path.", "res_path.path.") if key.endswith(".w"): __lowercase = rreplace(_UpperCamelCase, ".w", ".weight", 1) if key.endswith(".b"): __lowercase = rreplace(_UpperCamelCase, ".b", ".bias", 1) __lowercase = value.float() return upgrade @torch.no_grad() def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Dict=None, UpperCamelCase_ : Optional[Any]=True) -> Any: '''simple docstring''' from dall_e import Encoder __lowercase = Encoder() if os.path.exists(_UpperCamelCase): __lowercase = torch.load(_UpperCamelCase) else: __lowercase = torch.hub.load_state_dict_from_url(_UpperCamelCase) if isinstance(_UpperCamelCase, _UpperCamelCase): __lowercase = ckpt.state_dict() encoder.load_state_dict(_UpperCamelCase) if config_path is not None: __lowercase = FlavaImageCodebookConfig.from_pretrained(_UpperCamelCase) else: __lowercase = FlavaImageCodebookConfig() __lowercase = FlavaImageCodebook(_UpperCamelCase).eval() __lowercase = encoder.state_dict() __lowercase = upgrade_state_dict(_UpperCamelCase) hf_model.load_state_dict(_UpperCamelCase) __lowercase = hf_model.state_dict() __lowercase = count_parameters(_UpperCamelCase) __lowercase = count_parameters(_UpperCamelCase) assert torch.allclose(_UpperCamelCase, _UpperCamelCase, atol=1E-3) if save_checkpoint: hf_model.save_pretrained(_UpperCamelCase) else: return hf_state_dict if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') _a = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
368
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _a = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __UpperCAmelCase : str = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __UpperCAmelCase : Optional[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __UpperCAmelCase : Tuple = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def _lowercase ( self : Optional[int] ): __lowercase = pipeline( task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt" ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) __lowercase = text_classifier("This is great !", top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}] ) __lowercase = text_classifier(["This is great !", "This is bad"], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ], ) __lowercase = text_classifier("This is great !", top_k=1 ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) # Legacy behavior __lowercase = text_classifier("This is great !", return_all_scores=UpperCAmelCase__ ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) __lowercase = text_classifier("This is great !", return_all_scores=UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]] ) __lowercase = text_classifier(["This is great !", "Something else"], return_all_scores=UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ], ) __lowercase = text_classifier(["This is great !", "Something else"], return_all_scores=UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [ {"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_0", "score": 0.504}, ], ) @require_torch def _lowercase ( self : Dict ): import torch __lowercase = pipeline( task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt", device=torch.device("cpu" ), ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) @require_tf def _lowercase ( self : Union[str, Any] ): __lowercase = pipeline( task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf" ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) @slow @require_torch def _lowercase ( self : Dict ): __lowercase = pipeline("text-classification" ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "POSITIVE", "score": 1.0}] ) __lowercase = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "NEGATIVE", "score": 1.0}] ) __lowercase = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "POSITIVE", "score": 0.988}] ) @slow @require_tf def _lowercase ( self : Tuple ): __lowercase = pipeline("text-classification", framework="tf" ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "POSITIVE", "score": 1.0}] ) __lowercase = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "NEGATIVE", "score": 1.0}] ) __lowercase = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "POSITIVE", "score": 0.988}] ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : str, UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple ): __lowercase = TextClassificationPipeline(model=UpperCAmelCase__, tokenizer=UpperCAmelCase__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : str ): __lowercase = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __lowercase = "HuggingFace is in" __lowercase = text_classifier(UpperCAmelCase__ ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) __lowercase = ["HuggingFace is in ", "Paris is in France"] __lowercase = text_classifier(UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}, {"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}], ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __lowercase = text_classifier(UpperCAmelCase__, top_k=UpperCAmelCase__ ) __lowercase = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [[{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}] * N, [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}] * N], ) __lowercase = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"} __lowercase = text_classifier(UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), {"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}, ) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __lowercase = [["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(UpperCAmelCase__ ): text_classifier(UpperCAmelCase__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __lowercase = text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}], ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
144
0
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) snake_case_ : str = logging.getLogger(__name__) def A__ ( ): _UpperCamelCase : List[Any] = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=UpperCAmelCase_ , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=UpperCAmelCase_ , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=UpperCAmelCase_ , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=UpperCAmelCase_ , default='data/dump' , help='The dump file prefix.' ) _UpperCamelCase : Any = parser.parse_args() logger.info(f'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": _UpperCamelCase : Optional[int] = BertTokenizer.from_pretrained(args.tokenizer_name ) _UpperCamelCase : Optional[int] = tokenizer.special_tokens_map['cls_token'] # `[CLS]` _UpperCamelCase : Dict = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": _UpperCamelCase : List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) _UpperCamelCase : Any = tokenizer.special_tokens_map['cls_token'] # `<s>` _UpperCamelCase : int = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": _UpperCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) _UpperCamelCase : Optional[Any] = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` _UpperCamelCase : Any = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(f'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: _UpperCamelCase : List[Any] = fp.readlines() logger.info('Start encoding' ) logger.info(f'{len(UpperCAmelCase_ )} examples to process.' ) _UpperCamelCase : int = [] _UpperCamelCase : Any = 0 _UpperCamelCase : Any = 1_0_0_0_0 _UpperCamelCase : Optional[Any] = time.time() for text in data: _UpperCamelCase : List[Any] = f'{bos} {text.strip()} {sep}' _UpperCamelCase : Any = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) rslt.append(UpperCAmelCase_ ) iter += 1 if iter % interval == 0: _UpperCamelCase : Union[str, Any] = time.time() logger.info(f'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) _UpperCamelCase : Tuple = time.time() logger.info('Finished binarization' ) logger.info(f'{len(UpperCAmelCase_ )} examples processed.' ) _UpperCamelCase : Optional[int] = f'{args.dump_file}.{args.tokenizer_name}.pickle' _UpperCamelCase : List[str] = tokenizer.vocab_size if vocab_size < (1 << 1_6): _UpperCamelCase : List[Any] = [np.uintaa(UpperCAmelCase_ ) for d in rslt] else: _UpperCamelCase : Any = [np.intaa(UpperCAmelCase_ ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'Dump to {dp_file}' ) with open(UpperCAmelCase_ , 'wb' ) as handle: pickle.dump(rslt_ , UpperCAmelCase_ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
83
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class a__ : """simple docstring""" __lowerCamelCase = BlenderbotSmallConfig __lowerCamelCase = {} __lowerCamelCase = 'gelu' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=32 , lowercase=2 , lowercase=4 , lowercase=37 , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Any: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ = tf.concat([input_ids, eos_tensor] , axis=1 ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A__ = prepare_blenderbot_small_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def UpperCamelCase ( self , lowercase , lowercase ) -> str: '''simple docstring''' A__ = TFBlenderbotSmallModel(config=lowercase ).get_decoder() A__ = inputs_dict["input_ids"] A__ = input_ids[:1, :] A__ = inputs_dict["attention_mask"][:1, :] A__ = inputs_dict["head_mask"] A__ = 1 # first forward pass A__ = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) A__ , A__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A__ = tf.concat([input_ids, next_tokens] , axis=-1 ) A__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A__ = model(lowercase , attention_mask=lowercase )[0] A__ = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A__ = output_from_no_past[:, -3:, random_slice_idx] A__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1e-3 ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: Optional[Any]=None , SCREAMING_SNAKE_CASE_: Optional[int]=None , SCREAMING_SNAKE_CASE_: Optional[int]=None , SCREAMING_SNAKE_CASE_: Dict=None , SCREAMING_SNAKE_CASE_: List[str]=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: A__ = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a__ ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __lowerCamelCase = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = TFBlenderbotSmallModelTester(self ) A__ = ConfigTester(self , config_class=lowercase ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_tokenizers @require_tf class a__ ( unittest.TestCase ): """simple docstring""" __lowerCamelCase = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] __lowerCamelCase = 'facebook/blenderbot_small-90M' @cached_property def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = self.tokenizer(self.src_text , return_tensors="tf" ) A__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , ) A__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
68
0
_A = '''Alexander Joslin''' import operator as op from .stack import Stack def lowerCamelCase__ ( a__ : str ) -> int: UpperCamelCase_ = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCamelCase_ = Stack() UpperCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(a__ ) ) elif i in operators: # RULE 2 operator_stack.push(a__ ) elif i == ")": # RULE 4 UpperCamelCase_ = operator_stack.peek() operator_stack.pop() UpperCamelCase_ = operand_stack.peek() operand_stack.pop() UpperCamelCase_ = operand_stack.peek() operand_stack.pop() UpperCamelCase_ = operators[opr](a__ , a__ ) operand_stack.push(a__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _A = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
261
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _A = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
261
1
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging lowerCamelCase__ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : Tuple , __lowercase : int = 101 ): '''simple docstring''' __a = length def __len__( self : Union[str, Any] ): '''simple docstring''' return self.length def __getitem__( self : List[str] , __lowercase : Tuple ): '''simple docstring''' return i class SCREAMING_SNAKE_CASE : def __call__( self : Optional[int] , __lowercase : List[str] ): '''simple docstring''' return {"input_ids": torch.tensor(__lowercase ), "labels": torch.tensor(__lowercase )} class SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Optional[int] ): '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. __a = nn.Linear(120 , 80 ) def UpperCamelCase_ ( self : Dict , __lowercase : Optional[Any] , __lowercase : Optional[int]=None ): '''simple docstring''' if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): @require_torch_neuroncore def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = F"--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() __a = self.get_auto_remove_tmp_dir() __a = F"--output_dir {output_dir}".split() __a = ["""torchrun"""] + distributed_args + args execute_subprocess_async(__lowercase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): @require_torch_multi_gpu def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' __a = F"--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() __a = self.get_auto_remove_tmp_dir() __a = F"--output_dir {output_dir}".split() __a = ["""torchrun"""] + distributed_args + args execute_subprocess_async(__lowercase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py lowerCamelCase__ = HfArgumentParser((TrainingArguments,)) lowerCamelCase__ = parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: lowerCamelCase__ = DummyDataset(dataset_length) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : EvalPrediction ): """simple docstring""" __a = list(range(len(_SCREAMING_SNAKE_CASE ) ) ) __a = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( """Predictions and/or labels do not match expected results:\n - predictions: """ f"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}" ) return {"success": success} lowerCamelCase__ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) lowerCamelCase__ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCamelCase__ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCamelCase__ = 2 lowerCamelCase__ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCamelCase__ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCamelCase__ = None
302
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] =(IPNDMScheduler,) __lowerCamelCase : int =(('num_inference_steps', 50),) def UpperCamelCase_ ( self : str , **__lowercase : Dict ): '''simple docstring''' __a = {"""num_train_timesteps""": 1000} config.update(**__lowercase ) return config def UpperCamelCase_ ( self : Any , __lowercase : Tuple=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : str ): '''simple docstring''' pass def UpperCamelCase_ ( self : str , __lowercase : int=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals (must be after setting timesteps) __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residual (must be after setting timesteps) __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : List[str] , **__lowercase : Dict ): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) __a = 10 __a = self.dummy_model() __a = self.dummy_sample_deter scheduler.set_timesteps(__lowercase ) for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample return sample def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) __a = self.dummy_sample __a = 0.1 * sample if num_inference_steps is not None and hasattr(__lowercase , """set_timesteps""" ): scheduler.set_timesteps(__lowercase ) elif num_inference_steps is not None and not hasattr(__lowercase , """set_timesteps""" ): __a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __a = dummy_past_residuals[:] __a = scheduler.timesteps[5] __a = scheduler.timesteps[6] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.full_loop() __a = torch.mean(torch.abs(__lowercase ) ) assert abs(result_mean.item() - 2540529 ) < 10
302
1
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __lowercase: List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, Iterable[int]] , _UpperCamelCase : bool , _UpperCamelCase : int ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(_UpperCamelCase : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[int]=None ): UpperCamelCase__ = round(val / multiple ) * multiple if max_val is not None and x > max_val: UpperCamelCase__ = math.floor(val / multiple ) * multiple if x < min_val: UpperCamelCase__ = math.ceil(val / multiple ) * multiple return x UpperCamelCase__ = (output_size, output_size) if isinstance(_UpperCamelCase , _UpperCamelCase ) else output_size UpperCamelCase__ , UpperCamelCase__ = get_image_size(_UpperCamelCase ) UpperCamelCase__ , UpperCamelCase__ = output_size # determine new height and width UpperCamelCase__ = output_height / input_height UpperCamelCase__ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width UpperCamelCase__ = scale_width else: # fit height UpperCamelCase__ = scale_height UpperCamelCase__ = constraint_to_multiple_of(scale_height * input_height , multiple=_UpperCamelCase ) UpperCamelCase__ = constraint_to_multiple_of(scale_width * input_width , multiple=_UpperCamelCase ) return (new_height, new_width) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Dict = ['pixel_values'] def __init__( self : str, a_ : bool = True, a_ : Dict[str, int] = None, a_ : PILImageResampling = PILImageResampling.BILINEAR, a_ : bool = False, a_ : int = 1, a_ : bool = True, a_ : Union[int, float] = 1 / 255, a_ : bool = True, a_ : Optional[Union[float, List[float]]] = None, a_ : Optional[Union[float, List[float]]] = None, **a_ : List[str], ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = size if size is not None else {"height": 384, "width": 384} UpperCamelCase__ = get_size_dict(a_ ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = keep_aspect_ratio UpperCamelCase__ = ensure_multiple_of UpperCamelCase__ = resample UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase_ ( self : List[str], a_ : np.ndarray, a_ : Dict[str, int], a_ : bool = False, a_ : int = 1, a_ : PILImageResampling = PILImageResampling.BICUBIC, a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : int, ): """simple docstring""" UpperCamelCase__ = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) UpperCamelCase__ = get_resize_output_image_size( a_, output_size=(size["height"], size["width"]), keep_aspect_ratio=a_, multiple=a_, ) return resize(a_, size=a_, resample=a_, data_format=a_, **a_ ) def lowercase_ ( self : int, a_ : np.ndarray, a_ : Union[int, float], a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : Tuple, ): """simple docstring""" return rescale(a_, scale=a_, data_format=a_, **a_ ) def lowercase_ ( self : List[Any], a_ : np.ndarray, a_ : Union[float, List[float]], a_ : Union[float, List[float]], a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : Dict, ): """simple docstring""" return normalize(a_, mean=a_, std=a_, data_format=a_, **a_ ) def lowercase_ ( self : Optional[Any], a_ : ImageInput, a_ : bool = None, a_ : int = None, a_ : bool = None, a_ : int = None, a_ : PILImageResampling = None, a_ : bool = None, a_ : float = None, a_ : bool = None, a_ : Optional[Union[float, List[float]]] = None, a_ : Optional[Union[float, List[float]]] = None, a_ : Optional[Union[str, TensorType]] = None, a_ : ChannelDimension = ChannelDimension.FIRST, **a_ : str, ): """simple docstring""" UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(a_ ) UpperCamelCase__ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio UpperCamelCase__ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(a_ ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=a_, size=a_, resample=a_ ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=a_, scale=a_ ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=a_, mean=a_, std=a_ ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(a_, a_ ) for image in images] UpperCamelCase__ = {"pixel_values": images} return BatchFeature(data=a_, tensor_type=a_ ) def lowercase_ ( self : Union[str, Any], a_ : int, a_ : List[Tuple] = None ): """simple docstring""" UpperCamelCase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a_ ) != len(a_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(a_ ): UpperCamelCase__ = target_sizes.numpy() UpperCamelCase__ = [] for idx in range(len(a_ ) ): UpperCamelCase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ), size=target_sizes[idx], mode="bilinear", align_corners=a_ ) UpperCamelCase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a_ ) else: UpperCamelCase__ = logits.argmax(dim=1 ) UpperCamelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
31
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Any, a_ : VQModel, a_ : UNetaDModel, a_ : DDIMScheduler ): """simple docstring""" super().__init__() self.register_modules(vqvae=a_, unet=a_, scheduler=a_ ) @torch.no_grad() def __call__( self : Union[str, Any], a_ : int = 1, a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None, a_ : float = 0.0, a_ : int = 50, a_ : Optional[str] = "pil", a_ : bool = True, **a_ : Tuple, ): """simple docstring""" UpperCamelCase__ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=a_, ) UpperCamelCase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(a_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCamelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ = {} if accepts_eta: UpperCamelCase__ = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCamelCase__ = self.scheduler.scale_model_input(a_, a_ ) # predict the noise residual UpperCamelCase__ = self.unet(a_, a_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(a_, a_, a_, **a_ ).prev_sample # decode the image latents with the VAE UpperCamelCase__ = self.vqvae.decode(a_ ).sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0, 1 ) UpperCamelCase__ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
31
1
"""simple docstring""" import math import random def __SCREAMING_SNAKE_CASE ( A_ , A_ = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCamelCase : Any = 0.0_2 def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Tuple = float(2 * (random.randint(1 , 1_00 )) - 1 ) for _ in range(A_ ): # Forward propagation lowerCAmelCase__ : Dict = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? lowerCAmelCase__ : List[Any] = (expected / 1_00) - layer_a # Error delta lowerCAmelCase__ : str = layer_1_error * sigmoid_function(A_ , A_ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : List[str] = int(input('''Expected value: ''')) __UpperCamelCase : Optional[Any] = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
106
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version A =logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') A ={ 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization A ={ 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } A =sorted(arg_to_scheduler.keys()) A ='{' + ', '.join(arg_to_scheduler_choices) + '}' class _a ( pl.LightningModule ): def __init__( self : List[str] , lowercase : argparse.Namespace , lowercase : List[Any]=None , lowercase : Dict="base" , lowercase : Optional[int]=None , lowercase : Dict=None , lowercase : Tuple=None , **lowercase : Optional[int] , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase ) UpperCAmelCase = 0 UpperCAmelCase = Path(self.hparams.output_dir ) UpperCAmelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCAmelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase , **lowercase , ) else: UpperCAmelCase = config UpperCAmelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase , lowercase ): assert hasattr(self.config , lowercase ), f"model config doesn't have a `{p}` attribute" setattr(self.config , lowercase , getattr(self.hparams , lowercase ) ) if tokenizer is None: UpperCAmelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase , ) else: UpperCAmelCase = tokenizer UpperCAmelCase = MODEL_MODES[mode] if model is None: UpperCAmelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase , ) else: UpperCAmelCase = model def A ( self : List[Any] , *lowercase : List[str] , **lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = self.model_type.from_pretrained(*lowercase , **lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = arg_to_scheduler[self.hparams.lr_scheduler] UpperCAmelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) UpperCAmelCase = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.model UpperCAmelCase = ['''bias''', '''LayerNorm.weight'''] UpperCAmelCase = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: UpperCAmelCase = Adafactor( lowercase , lr=self.hparams.learning_rate , scale_parameter=lowercase , relative_step=lowercase ) else: UpperCAmelCase = AdamW( lowercase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) UpperCAmelCase = optimizer UpperCAmelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def A ( self : List[Any] , lowercase : int , lowercase : List[str] ): '''simple docstring''' return self.validation_step(lowercase , lowercase ) def A ( self : List[Any] , lowercase : Tuple ): '''simple docstring''' return self.validation_end(lowercase ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCAmelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def A ( self : List[str] , lowercase : Any ): '''simple docstring''' if stage == "test": UpperCAmelCase = len(self.test_dataloader().dataset ) else: UpperCAmelCase = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase ) UpperCAmelCase = len(self.train_dataloader().dataset ) def A ( self : List[str] , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' raise NotImplementedError('''You must implement this for your task''' ) def A ( self : Union[str, Any] ): '''simple docstring''' return self.train_loader def A ( self : Optional[Any] ): '''simple docstring''' return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase ) def A ( self : List[Any] ): '''simple docstring''' return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase ) def A ( self : Any , lowercase : Union[str, Any] ): '''simple docstring''' return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase , list(filter(lowercase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def A ( self : List[str] , lowercase : Dict[str, Any] ): '''simple docstring''' UpperCAmelCase = self.output_dir.joinpath('''best_tfmr''' ) UpperCAmelCase = self.step_count self.model.save_pretrained(lowercase ) self.tokenizer.save_pretrained(lowercase ) @staticmethod def A ( lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' parser.add_argument( '''--model_name_or_path''' , default=lowercase , type=lowercase , required=lowercase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase , type=lowercase , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase ).parent / '''test_run''' / '''cache''' ) , type=lowercase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase , metavar=lowercase , type=lowercase , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class _a ( pl.Callback ): def A ( self : Dict , lowercase : Optional[Any] , lowercase : List[Any] ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _a ( pl.Callback ): def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Any ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase ) class _a ( pl.Callback ): def A ( self : Optional[int] , lowercase : Optional[int] , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = trainer.lr_schedulers[0]['''scheduler'''] UpperCAmelCase = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase ) def A ( self : Tuple , lowercase : pl.Trainer , lowercase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Validation results *****''' ) UpperCAmelCase = trainer.callback_metrics # Log results for key in sorted(lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) def A ( self : Dict , lowercase : pl.Trainer , lowercase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Test results *****''' ) UpperCAmelCase = trainer.callback_metrics # Log and save results to file UpperCAmelCase = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase , '''w''' ) as writer: for key in sorted(lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) def snake_case_ (_a : int , _a : Optional[Any] ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '''--output_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=_a , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=_a , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=_a ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=_a , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=_a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=_a , default=4_2 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=_a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def snake_case_ (_a : BaseTransformer , _a : argparse.Namespace , _a : List[Any]=None , _a : Tuple=True , _a : int=[] , _a : Any=None , _a : int=None , **_a : Optional[Any] , ): pl.seed_everything(args.seed ) # init model UpperCAmelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_a ) # add custom checkpoints if checkpoint_callback is None: UpperCAmelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_a ) if logging_callback is None: UpperCAmelCase = LoggingCallback() UpperCAmelCase = {} if args.fpaa: UpperCAmelCase = 1_6 if args.gpus > 1: UpperCAmelCase = '''auto''' UpperCAmelCase = '''ddp''' UpperCAmelCase = args.accumulate_grad_batches UpperCAmelCase = None UpperCAmelCase = '''auto''' UpperCAmelCase = pl.Trainer.from_argparse_args( _a , weights_summary=_a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_a , val_check_interval=1 , num_sanity_val_steps=2 , **_a , ) if args.do_train: trainer.fit(_a ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
34
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __a: Optional[int] = ["""gpt2"""] __a: str = """gpt2""" if is_tf_available(): class UpperCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self , __lowerCAmelCase ) -> Any: super().__init__() lowercase__ : Tuple = tokenizer lowercase__ : Tuple = AutoConfig.from_pretrained(__lowerCAmelCase ) lowercase__ : int = TFGPTaLMHeadModel.from_config(__lowerCAmelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[str]: lowercase__ : Dict = self.tokenizer(__lowerCAmelCase ) lowercase__ : List[str] = tokenized['''input_ids'''].to_tensor() lowercase__ : Tuple = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) lowercase__ : int = self.model(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase )['''logits'''] return outputs @require_tf @require_keras_nlp class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> List[str]: super().setUp() lowercase__ : List[Any] = [GPTaTokenizer.from_pretrained(__lowerCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] lowercase__ : List[Any] = [TFGPTaTokenizer.from_pretrained(__lowerCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowercase__ : str = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] lowercase__ : Any = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _lowerCAmelCase( self ) -> List[Any]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: lowercase__ : str = tokenizer([test_inputs] , return_tensors='''tf''' ) lowercase__ : Dict = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors lowercase__ : List[Any] = python_outputs[key].numpy() lowercase__ : List[str] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__lowerCAmelCase , tf.intaa ) == tf_outputs_values ) ) @slow def _lowerCAmelCase( self ) -> Optional[Any]: for tf_tokenizer in self.tf_tokenizers: lowercase__ : Optional[Any] = tf.function(__lowerCAmelCase ) for test_inputs in self.test_sentences: lowercase__ : List[str] = tf.constant(__lowerCAmelCase ) lowercase__ : Optional[Any] = compiled_tokenizer(__lowerCAmelCase ) lowercase__ : Union[str, Any] = tf_tokenizer(__lowerCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _lowerCAmelCase( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: lowercase__ : Any = ModelToSave(tokenizer=__lowerCAmelCase ) lowercase__ : str = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase__ : Optional[int] = model.serving(__lowerCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowercase__ : Tuple = Path(__lowerCAmelCase ) / '''saved.model''' tf.saved_model.save(__lowerCAmelCase , __lowerCAmelCase , signatures={'''serving_default''': model.serving} ) lowercase__ : Dict = tf.saved_model.load(__lowerCAmelCase ) lowercase__ : int = loaded_model.signatures['''serving_default'''](__lowerCAmelCase )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _lowerCAmelCase( self ) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: lowercase__ : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase__ : Tuple = tf_tokenizer(__lowerCAmelCase ) # Build model with some sample inputs lowercase__ : Dict = tf_tokenizer.get_config() lowercase__ : int = TFGPTaTokenizer.from_config(__lowerCAmelCase ) lowercase__ : Tuple = model_from_config(__lowerCAmelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _lowerCAmelCase( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: # for the test to run lowercase__ : List[str] = 123123 for max_length in [3, 5, 1024]: lowercase__ : List[str] = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase__ : Optional[Any] = tf_tokenizer(__lowerCAmelCase , max_length=__lowerCAmelCase ) lowercase__ : List[str] = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
352
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __a: Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(a__ ) class UpperCAmelCase ( a__ ): '''simple docstring''' def __init__( self , **__lowerCAmelCase ) -> int: super().__init__(**__lowerCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> Optional[Any]: lowercase__ : str = {} if "candidate_labels" in kwargs: lowercase__ : str = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : str = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase="This is a photo of {}." ) -> Any: lowercase__ : Union[str, Any] = load_image(__lowerCAmelCase ) lowercase__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) lowercase__ : Union[str, Any] = candidate_labels lowercase__ : int = [hypothesis_template.format(__lowerCAmelCase ) for x in candidate_labels] lowercase__ : Any = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework , padding=__lowerCAmelCase ) lowercase__ : Any = [text_inputs] return inputs def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[Any]: lowercase__ : Any = model_inputs.pop('''candidate_labels''' ) lowercase__ : int = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , __lowerCAmelCase ): lowercase__ : Union[str, Any] = text_inputs[0] else: # Batching case. lowercase__ : Optional[Any] = text_inputs[0][0] lowercase__ : Any = self.model(**__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : Any = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[str]: lowercase__ : Union[str, Any] = model_outputs.pop('''candidate_labels''' ) lowercase__ : Optional[int] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Any = probs.tolist() if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase__ : Dict = [scores] elif self.framework == "tf": lowercase__ : List[Any] = stable_softmax(__lowerCAmelCase , axis=-1 ) lowercase__ : str = probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) lowercase__ : Optional[int] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__lowerCAmelCase , __lowerCAmelCase ) , key=lambda __lowerCAmelCase : -x[0] ) ] return result
214
0
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ = None class UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ = PandasConfig def UpperCamelCase_ ( self : List[Any] ): return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase_ ( self : str ,A : Dict ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __A = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A ,(str, list, tuple) ): __A = data_files if isinstance(A ,A ): __A = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __A = [dl_manager.iter_files(A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={"files": files} )] __A = [] for split_name, files in data_files.items(): if isinstance(A ,A ): __A = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __A = [dl_manager.iter_files(A ) for file in files] splits.append(datasets.SplitGenerator(name=A ,gen_kwargs={"files": files} ) ) return splits def UpperCamelCase_ ( self : Dict ,A : pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __A = table_cast(A ,self.config.features.arrow_schema ) return pa_table def UpperCamelCase_ ( self : Dict ,A : Union[str, Any] ): for i, file in enumerate(itertools.chain.from_iterable(A ) ): with open(A ,"rb" ) as f: __A = pa.Table.from_pandas(pd.read_pickle(A ) ) yield i, self._cast_table(A )
15
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) A__ : Optional[Any] = logging.getLogger(__name__) def _snake_case ( ) -> int: lowerCamelCase_ : Tuple =argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=lowerCamelCase__ , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=lowerCamelCase__ , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=lowerCamelCase__ , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=lowerCamelCase__ , default="data/dump" , help="The dump file prefix." ) lowerCamelCase_ : Tuple =parser.parse_args() logger.info(F"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": lowerCamelCase_ : Tuple =BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase_ : Optional[Any] =tokenizer.special_tokens_map["cls_token"] # `[CLS]` lowerCamelCase_ : Any =tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCamelCase_ : str =RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase_ : List[Any] =tokenizer.special_tokens_map["cls_token"] # `<s>` lowerCamelCase_ : Any =tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": lowerCamelCase_ : Tuple =GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase_ : Dict =tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` lowerCamelCase_ : Any =tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F"""Loading text from {args.file_path}""" ) with open(args.file_path , "r" , encoding="utf8" ) as fp: lowerCamelCase_ : Optional[int] =fp.readlines() logger.info("Start encoding" ) logger.info(F"""{len(lowerCamelCase__ )} examples to process.""" ) lowerCamelCase_ : str =[] lowerCamelCase_ : Union[str, Any] =0 lowerCamelCase_ : List[str] =10_000 lowerCamelCase_ : int =time.time() for text in data: lowerCamelCase_ : List[str] =F"""{bos} {text.strip()} {sep}""" lowerCamelCase_ : str =tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) rslt.append(lowerCamelCase__ ) iter += 1 if iter % interval == 0: lowerCamelCase_ : List[Any] =time.time() logger.info(F"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) lowerCamelCase_ : Tuple =time.time() logger.info("Finished binarization" ) logger.info(F"""{len(lowerCamelCase__ )} examples processed.""" ) lowerCamelCase_ : Optional[Any] =F"""{args.dump_file}.{args.tokenizer_name}.pickle""" lowerCamelCase_ : Optional[int] =tokenizer.vocab_size if vocab_size < (1 << 16): lowerCamelCase_ : int =[np.uintaa(lowerCamelCase__ ) for d in rslt] else: lowerCamelCase_ : Tuple =[np.intaa(lowerCamelCase__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"""Dump to {dp_file}""" ) with open(lowerCamelCase__ , "wb" ) as handle: pickle.dump(rslt_ , lowerCamelCase__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
144
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : str ) -> str: '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
320
"""simple docstring""" from __future__ import annotations def lowerCamelCase ( _UpperCamelCase : list[float] , _UpperCamelCase : list[float] ) -> float: '''simple docstring''' __UpperCAmelCase : Tuple = sorted(numsa + numsa ) __UpperCAmelCase ,__UpperCAmelCase : Dict = divmod(len(_UpperCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : List[Any] = [float(x) for x in input('Enter the elements of first array: ').split()] UpperCAmelCase : Optional[int] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
320
1
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class snake_case__ ( snake_case_, unittest.TestCase ): _snake_case : Any = BertJapaneseTokenizer _snake_case : Optional[Any] = False _snake_case : List[Any] = True def a__ ( self ): super().setUp() __a = [ "[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは", "世界", "##世界", "、", "##、", "。", "##。", ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def a__ ( self , lowerCamelCase ): __a = "こんにちは、世界。 \nこんばんは、世界。" __a = "こんにちは 、 世界 。 こんばんは 、 世界 。" return input_text, output_text def a__ ( self , lowerCamelCase ): __a , __a = self.get_input_output_texts(lowerCamelCase ) __a = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __a = tokenizer.decode(lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase ) return text, ids def a__ ( self ): pass # TODO add if relevant def a__ ( self ): pass # TODO add if relevant def a__ ( self ): pass # TODO add if relevant def a__ ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。" ) self.assertListEqual(lowerCamelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def a__ ( self ): __a = self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab" ) self.assertIsNotNone(lowerCamelCase ) __a = "こんにちは、世界。\nこんばんは、世界。" __a = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __a = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(lowerCamelCase , "wb" ) as handle: pickle.dump(lowerCamelCase , lowerCamelCase ) with open(lowerCamelCase , "rb" ) as handle: __a = pickle.load(lowerCamelCase ) __a = tokenizer_new.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def a__ ( self ): __a = MecabTokenizer(mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def a__ ( self ): try: __a = MecabTokenizer(mecab_dic="unidic_lite" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def a__ ( self ): try: __a = MecabTokenizer(mecab_dic="unidic" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def a__ ( self ): __a = MecabTokenizer(do_lower_case=lowerCamelCase , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def a__ ( self ): try: __a = MecabTokenizer( do_lower_case=lowerCamelCase , normalize_text=lowerCamelCase , mecab_option="-d /usr/local/lib/mecab/dic/jumandic" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , ) def a__ ( self ): __a = MecabTokenizer(normalize_text=lowerCamelCase , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , ) @require_sudachi def a__ ( self ): __a = self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi" ) self.assertIsNotNone(lowerCamelCase ) __a = "こんにちは、世界。\nこんばんは、世界。" __a = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __a = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(lowerCamelCase , "wb" ) as handle: pickle.dump(lowerCamelCase , lowerCamelCase ) with open(lowerCamelCase , "rb" ) as handle: __a = pickle.load(lowerCamelCase ) __a = tokenizer_new.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) @require_sudachi def a__ ( self ): __a = SudachiTokenizer(sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def a__ ( self ): __a = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国", "人", "参政", "権"] ) @require_sudachi def a__ ( self ): __a = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人", "参政権"] ) @require_sudachi def a__ ( self ): __a = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人参政権"] ) @require_sudachi def a__ ( self ): __a = SudachiTokenizer(do_lower_case=lowerCamelCase , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def a__ ( self ): __a = SudachiTokenizer(normalize_text=lowerCamelCase , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , ) @require_sudachi def a__ ( self ): __a = SudachiTokenizer(trim_whitespace=lowerCamelCase , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) @require_jumanpp def a__ ( self ): __a = self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp" ) self.assertIsNotNone(lowerCamelCase ) __a = "こんにちは、世界。\nこんばんは、世界。" __a = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __a = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(lowerCamelCase , "wb" ) as handle: pickle.dump(lowerCamelCase , lowerCamelCase ) with open(lowerCamelCase , "rb" ) as handle: __a = pickle.load(lowerCamelCase ) __a = tokenizer_new.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) @require_jumanpp def a__ ( self ): __a = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def a__ ( self ): __a = JumanppTokenizer(do_lower_case=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def a__ ( self ): __a = JumanppTokenizer(normalize_text=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def a__ ( self ): __a = JumanppTokenizer(trim_whitespace=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , ) @require_jumanpp def a__ ( self ): __a = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。" ) , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , ) def a__ ( self ): __a = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは"] __a = {} for i, token in enumerate(lowerCamelCase ): __a = i __a = WordpieceTokenizer(vocab=lowerCamelCase , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こんにちは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは" ) , ["こん", "##ばんは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは" ) , ["こん", "##ばんは", "[UNK]", "こんにちは"] ) def a__ ( self ): __a = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp" ) __a = tokenizer.subword_tokenizer __a = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。" ) self.assertListEqual(lowerCamelCase , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"] ) __a = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは" ) self.assertListEqual(lowerCamelCase , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"] ) def a__ ( self ): __a = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese" ) __a = tokenizer.encode("ありがとう。" , add_special_tokens=lowerCamelCase ) __a = tokenizer.encode("どういたしまして。" , add_special_tokens=lowerCamelCase ) __a = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) __a = tokenizer.build_inputs_with_special_tokens(lowerCamelCase , lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class snake_case__ ( snake_case_, unittest.TestCase ): _snake_case : str = BertJapaneseTokenizer _snake_case : Dict = False def a__ ( self ): super().setUp() __a = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def a__ ( self , **lowerCamelCase ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **lowerCamelCase ) def a__ ( self , lowerCamelCase ): __a = "こんにちは、世界。 \nこんばんは、世界。" __a = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。" return input_text, output_text def a__ ( self ): pass # TODO add if relevant def a__ ( self ): pass # TODO add if relevant def a__ ( self ): pass # TODO add if relevant def a__ ( self ): __a = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character" ) __a = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。" ) self.assertListEqual( lowerCamelCase , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def a__ ( self ): __a = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] __a = {} for i, token in enumerate(lowerCamelCase ): __a = i __a = CharacterTokenizer(vocab=lowerCamelCase , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こ", "ん", "に", "ち", "は"] ) self.assertListEqual(tokenizer.tokenize("こんにちほ" ) , ["こ", "ん", "に", "ち", "[UNK]"] ) def a__ ( self ): __a = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char" ) __a = tokenizer.encode("ありがとう。" , add_special_tokens=lowerCamelCase ) __a = tokenizer.encode("どういたしまして。" , add_special_tokens=lowerCamelCase ) __a = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) __a = tokenizer.build_inputs_with_special_tokens(lowerCamelCase , lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class snake_case__ ( unittest.TestCase ): def a__ ( self ): __a = "cl-tohoku/bert-base-japanese" __a = AutoTokenizer.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) class snake_case__ ( unittest.TestCase ): def a__ ( self ): __a = "cl-tohoku/bert-base-japanese" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertTokenizer.from_pretrained(lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) ) __a = "bert-base-cased" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertJapaneseTokenizer.from_pretrained(lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) )
261
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class snake_case__ ( snake_case_ ): _snake_case : "DiagonalGaussianDistribution" class snake_case__ ( snake_case_, snake_case_ ): _snake_case : Optional[Any] = True @register_to_config def __init__( self , lowerCamelCase = 3 , lowerCamelCase = 3 , lowerCamelCase = ("DownEncoderBlock2D",) , lowerCamelCase = ("UpDecoderBlock2D",) , lowerCamelCase = (64,) , lowerCamelCase = 1 , lowerCamelCase = "silu" , lowerCamelCase = 4 , lowerCamelCase = 32 , lowerCamelCase = 32 , lowerCamelCase = 0.1_8215 , ): super().__init__() # pass init params to Encoder __a = Encoder( in_channels=lowerCamelCase , out_channels=lowerCamelCase , down_block_types=lowerCamelCase , block_out_channels=lowerCamelCase , layers_per_block=lowerCamelCase , act_fn=lowerCamelCase , norm_num_groups=lowerCamelCase , double_z=lowerCamelCase , ) # pass init params to Decoder __a = Decoder( in_channels=lowerCamelCase , out_channels=lowerCamelCase , up_block_types=lowerCamelCase , block_out_channels=lowerCamelCase , layers_per_block=lowerCamelCase , norm_num_groups=lowerCamelCase , act_fn=lowerCamelCase , ) __a = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __a = nn.Convad(lowerCamelCase , lowerCamelCase , 1 ) __a = False __a = False # only relevant if vae tiling is enabled __a = self.config.sample_size __a = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __a = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __a = 0.25 def a__ ( self , lowerCamelCase , lowerCamelCase=False ): if isinstance(lowerCamelCase , (Encoder, Decoder) ): __a = value def a__ ( self , lowerCamelCase = True ): __a = use_tiling def a__ ( self ): self.enable_tiling(lowerCamelCase ) def a__ ( self ): __a = True def a__ ( self ): __a = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self ): __a = {} def fn_recursive_add_processors(lowerCamelCase , lowerCamelCase , lowerCamelCase ): if hasattr(lowerCamelCase , "set_processor" ): __a = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , lowerCamelCase , lowerCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return processors def a__ ( self , lowerCamelCase ): __a = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase , lowerCamelCase ) and len(lowerCamelCase ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(lowerCamelCase )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(lowerCamelCase , lowerCamelCase , lowerCamelCase ): if hasattr(lowerCamelCase , "set_processor" ): if not isinstance(lowerCamelCase , lowerCamelCase ): module.set_processor(lowerCamelCase ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , lowerCamelCase , lowerCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def a__ ( self ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def a__ ( self , lowerCamelCase , lowerCamelCase = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(lowerCamelCase , return_dict=lowerCamelCase ) if self.use_slicing and x.shape[0] > 1: __a = [self.encoder(lowerCamelCase ) for x_slice in x.split(1 )] __a = torch.cat(lowerCamelCase ) else: __a = self.encoder(lowerCamelCase ) __a = self.quant_conv(lowerCamelCase ) __a = DiagonalGaussianDistribution(lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(lowerCamelCase , return_dict=lowerCamelCase ) __a = self.post_quant_conv(lowerCamelCase ) __a = self.decoder(lowerCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase ) @apply_forward_hook def a__ ( self , lowerCamelCase , lowerCamelCase = True ): if self.use_slicing and z.shape[0] > 1: __a = [self._decode(lowerCamelCase ).sample for z_slice in z.split(1 )] __a = torch.cat(lowerCamelCase ) else: __a = self._decode(lowerCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = min(a.shape[2] , b.shape[2] , lowerCamelCase ) for y in range(lowerCamelCase ): __a = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = min(a.shape[3] , b.shape[3] , lowerCamelCase ) for x in range(lowerCamelCase ): __a = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def a__ ( self , lowerCamelCase , lowerCamelCase = True ): __a = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __a = int(self.tile_latent_min_size * self.tile_overlap_factor ) __a = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __a = [] for i in range(0 , x.shape[2] , lowerCamelCase ): __a = [] for j in range(0 , x.shape[3] , lowerCamelCase ): __a = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __a = self.encoder(lowerCamelCase ) __a = self.quant_conv(lowerCamelCase ) row.append(lowerCamelCase ) rows.append(lowerCamelCase ) __a = [] for i, row in enumerate(lowerCamelCase ): __a = [] for j, tile in enumerate(lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __a = self.blend_v(rows[i - 1][j] , lowerCamelCase , lowerCamelCase ) if j > 0: __a = self.blend_h(row[j - 1] , lowerCamelCase , lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCamelCase , dim=3 ) ) __a = torch.cat(lowerCamelCase , dim=2 ) __a = DiagonalGaussianDistribution(lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase = True ): __a = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __a = int(self.tile_sample_min_size * self.tile_overlap_factor ) __a = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __a = [] for i in range(0 , z.shape[2] , lowerCamelCase ): __a = [] for j in range(0 , z.shape[3] , lowerCamelCase ): __a = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __a = self.post_quant_conv(lowerCamelCase ) __a = self.decoder(lowerCamelCase ) row.append(lowerCamelCase ) rows.append(lowerCamelCase ) __a = [] for i, row in enumerate(lowerCamelCase ): __a = [] for j, tile in enumerate(lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __a = self.blend_v(rows[i - 1][j] , lowerCamelCase , lowerCamelCase ) if j > 0: __a = self.blend_h(row[j - 1] , lowerCamelCase , lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCamelCase , dim=3 ) ) __a = torch.cat(lowerCamelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = True , lowerCamelCase = None , ): __a = sample __a = self.encode(lowerCamelCase ).latent_dist if sample_posterior: __a = posterior.sample(generator=lowerCamelCase ) else: __a = posterior.mode() __a = self.decode(lowerCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase )
261
1
import unittest import numpy as np def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , ): """simple docstring""" lowercase__ = np.shape(SCREAMING_SNAKE_CASE ) lowercase__ = np.shape(SCREAMING_SNAKE_CASE ) lowercase__ = np.shape(SCREAMING_SNAKE_CASE ) if shape_a[0] != shape_b[0]: lowercase__ = ( '''Expected the same number of rows for A and B. ''' f'Instead found A of size {shape_a} and B of size {shape_b}' ) raise ValueError(SCREAMING_SNAKE_CASE ) if shape_b[1] != shape_c[1]: lowercase__ = ( '''Expected the same number of columns for B and C. ''' f'Instead found B of size {shape_b} and C of size {shape_c}' ) raise ValueError(SCREAMING_SNAKE_CASE ) lowercase__ = pseudo_inv if a_inv is None: try: lowercase__ = np.linalg.inv(SCREAMING_SNAKE_CASE ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Union[str, Any] ) -> None: """simple docstring""" lowercase__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase__ = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase__ = np.array([[2, 1], [6, 3]] ) lowercase__ = schur_complement(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = np.block([[a, b], [b.T, c]] ) lowercase__ = np.linalg.det(UpperCamelCase_ ) lowercase__ = np.linalg.det(UpperCamelCase_ ) lowercase__ = np.linalg.det(UpperCamelCase_ ) self.assertAlmostEqual(UpperCamelCase_ , det_a * det_s ) def lowerCamelCase_ ( self: int ) -> None: """simple docstring""" lowercase__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase__ = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase__ = np.array([[2, 1], [6, 3]] ) with self.assertRaises(UpperCamelCase_ ): schur_complement(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> None: """simple docstring""" lowercase__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase__ = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase__ = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(UpperCamelCase_ ): schur_complement(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
364
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : _lowercase : int _lowercase : TreeNode | None = None _lowercase : TreeNode | None = None lowerCAmelCase = namedtuple('CoinsDistribResult', 'moves excess') def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if root is None: return 0 # Validation def count_nodes(SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(SCREAMING_SNAKE_CASE ) != count_coins(SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(SCREAMING_SNAKE_CASE ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase__ , lowercase__ = get_distrib(node.left ) lowercase__ , lowercase__ = get_distrib(node.right ) lowercase__ = 1 - left_distrib_excess lowercase__ = 1 - right_distrib_excess lowercase__ = ( left_distrib_moves + right_distrib_moves + abs(SCREAMING_SNAKE_CASE ) + abs(SCREAMING_SNAKE_CASE ) ) lowercase__ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return get_distrib(SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
93
0
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : Any , A : Optional[int]=None , A : Tuple=None , *A : Tuple , **A : List[str] ): super().__init__(*A , **A ) if config is None: assert isinstance(self.model , A ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) _UpperCAmelCase : str = self.model.config else: _UpperCAmelCase : List[str] = config _UpperCAmelCase : List[Any] = data_args _UpperCAmelCase : str = self.config.tgt_vocab_size if isinstance(self.config , A ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" " padding.." ) if self.args.label_smoothing == 0: _UpperCAmelCase : Optional[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _UpperCAmelCase : Dict = label_smoothed_nll_loss def _A ( self : Tuple , A : int ): if self.optimizer is None: _UpperCAmelCase : Tuple = ["bias", "LayerNorm.weight"] _UpperCAmelCase : str = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] _UpperCAmelCase : int = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _UpperCAmelCase : List[str] = Adafactor _UpperCAmelCase : List[Any] = {"scale_parameter": False, "relative_step": False} else: _UpperCAmelCase : List[str] = AdamW _UpperCAmelCase : List[str] = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } _UpperCAmelCase : List[Any] = self.args.learning_rate if self.sharded_ddp: _UpperCAmelCase : List[Any] = OSS( params=A , optim=A , **A , ) else: _UpperCAmelCase : Union[str, Any] = optimizer_cls(A , **A ) if self.lr_scheduler is None: _UpperCAmelCase : List[str] = self._get_lr_scheduler(A ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def _A ( self : List[str] , A : Optional[int] ): _UpperCAmelCase : List[str] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _UpperCAmelCase : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _UpperCAmelCase : str = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _UpperCAmelCase : str = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=A ) return scheduler def _A ( self : Tuple ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _A ( self : Any , A : Union[str, Any] , A : Union[str, Any] , A : List[Any] ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _UpperCAmelCase : List[str] = model(**A , use_cache=A )[0] _UpperCAmelCase : int = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _UpperCAmelCase , _UpperCAmelCase : Any = model(**A , labels=A , use_cache=A )[:2] else: # compute label smoothed loss _UpperCAmelCase : Optional[int] = model(**A , use_cache=A )[0] _UpperCAmelCase : List[str] = torch.nn.functional.log_softmax(A , dim=-1 ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.loss_fn(A , A , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _A ( self : List[str] , A : Optional[int] , A : Optional[int] ): _UpperCAmelCase : Union[str, Any] = inputs.pop("labels" ) _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._compute_loss(A , A , A ) return loss def _A ( self : List[str] , A : nn.Module , A : Dict[str, Union[torch.Tensor, Any]] , A : bool , A : Optional[List[str]] = None , ): _UpperCAmelCase : List[str] = self._prepare_inputs(A ) _UpperCAmelCase : Dict = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _UpperCAmelCase : Dict = self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **A , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase : int = self._pad_tensors_to_max_len(A , gen_kwargs["max_length"] ) _UpperCAmelCase : Any = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data _UpperCAmelCase , _UpperCAmelCase : str = self._compute_loss(A , A , A ) _UpperCAmelCase : List[str] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _UpperCAmelCase : str = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase : Optional[Any] = self._pad_tensors_to_max_len(A , gen_kwargs["max_length"] ) return (loss, logits, labels) def _A ( self : Dict , A : int , A : List[str] ): # If PAD token is not defined at least EOS token has to be defined _UpperCAmelCase : Union[str, Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" F""" padded to `max_length`={max_length}""" ) _UpperCAmelCase : Tuple = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _UpperCAmelCase : Tuple = tensor return padded_tensor
31
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __SCREAMING_SNAKE_CASE : Dict = get_logger(__name__) class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[str] , A : Optional[str] = None ): _UpperCAmelCase : Dict = ( os.path.join(A , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _UpperCAmelCase : Union[str, Any] = Extractor def _A ( self : Tuple , A : str ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _UpperCAmelCase : Dict = os.path.abspath(A ) return os.path.join(self.extract_dir , hash_url_to_filename(A ) ) def _A ( self : int , A : str , A : bool ): return force_extract or ( not os.path.isfile(A ) and not (os.path.isdir(A ) and os.listdir(A )) ) def _A ( self : Optional[int] , A : str , A : bool = False ): _UpperCAmelCase : Union[str, Any] = self.extractor.infer_extractor_format(A ) if not extractor_format: return input_path _UpperCAmelCase : Optional[Any] = self._get_output_path(A ) if self._do_extract(A , A ): self.extractor.extract(A , A , A ) return output_path class lowerCamelCase_ (snake_case__ ): '''simple docstring''' @classmethod @abstractmethod def _A ( cls : str , A : Union[Path, str] , **A : Dict ): ... @staticmethod @abstractmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): ... class lowerCamelCase_ (snake_case__ , snake_case__ ): '''simple docstring''' __UpperCamelCase: List[bytes] = [] @staticmethod def _A ( A : Union[Path, str] , A : int ): with open(A , "rb" ) as f: return f.read(A ) @classmethod def _A ( cls : Any , A : Union[Path, str] , A : bytes = b"" ): if not magic_number: _UpperCAmelCase : Any = max(len(A ) for cls_magic_number in cls.magic_numbers ) try: _UpperCAmelCase : int = cls.read_magic_number(A , A ) except OSError: return False return any(magic_number.startswith(A ) for cls_magic_number in cls.magic_numbers ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' @classmethod def _A ( cls : str , A : Union[Path, str] , **A : List[Any] ): return tarfile.is_tarfile(A ) @staticmethod def _A ( A : Union[str, Any] , A : str ): def resolved(A : str ) -> str: return os.path.realpath(os.path.abspath(A ) ) def badpath(A : str , A : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(A , A ) ).startswith(A ) def badlink(A : str , A : str ) -> bool: # Links are interpreted relative to the directory containing the link _UpperCAmelCase : List[str] = resolved(os.path.join(A , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=A ) _UpperCAmelCase : Optional[int] = resolved(A ) for finfo in members: if badpath(finfo.name , A ): logger.error(F"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(A , A ): logger.error(F"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(A , A ): logger.error(F"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): os.makedirs(A , exist_ok=A ) _UpperCAmelCase : int = tarfile.open(A ) tar_file.extractall(A , members=TarExtractor.safemembers(A , A ) ) tar_file.close() class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Union[str, Any] = [b"\x1F\x8B"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): with gzip.open(A , "rb" ) as gzip_file: with open(A , "wb" ) as extracted_file: shutil.copyfileobj(A , A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def _A ( cls : Dict , A : Union[Path, str] , A : bytes = b"" ): if super().is_extractable(A , magic_number=A ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(A , "rb" ) as fp: _UpperCAmelCase : Tuple = _EndRecData(A ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _UpperCAmelCase : Dict = fp.read(A ) # CD is where we expect it to be if len(A ) == sizeCentralDir: _UpperCAmelCase : Any = struct.unpack(A , A ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): os.makedirs(A , exist_ok=A ) with zipfile.ZipFile(A , "r" ) as zip_file: zip_file.extractall(A ) zip_file.close() class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): with lzma.open(A ) as compressed_file: with open(A , "wb" ) as extracted_file: shutil.copyfileobj(A , A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: List[str] = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile" ) import rarfile os.makedirs(A , exist_ok=A ) _UpperCAmelCase : List[str] = rarfile.RarFile(A ) rf.extractall(A ) rf.close() class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = [b"\x28\xb5\x2F\xFD"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard" ) import zstandard as zstd _UpperCAmelCase : Optional[Any] = zstd.ZstdDecompressor() with open(A , "rb" ) as ifh, open(A , "wb" ) as ofh: dctx.copy_stream(A , A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = [b"\x42\x5A\x68"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): with bza.open(A , "rb" ) as compressed_file: with open(A , "wb" ) as extracted_file: shutil.copyfileobj(A , A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: List[Any] = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr" ) import pyazr os.makedirs(A , exist_ok=A ) with pyazr.SevenZipFile(A , "r" ) as archive: archive.extractall(A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[int] = [b"\x04\x22\x4D\x18"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4" ) import lza.frame with lza.frame.open(A , "rb" ) as compressed_file: with open(A , "wb" ) as extracted_file: shutil.copyfileobj(A , A ) class lowerCamelCase_ : '''simple docstring''' __UpperCamelCase: Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _A ( cls : List[Any] ): return max( len(A ) for extractor in cls.extractors.values() if issubclass(A , A ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _A ( A : Union[Path, str] , A : int ): try: return MagicNumberBaseExtractor.read_magic_number(A , magic_number_length=A ) except OSError: return b"" @classmethod def _A ( cls : Optional[Any] , A : Union[Path, str] , A : bool = False ): warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead." , category=A , ) _UpperCAmelCase : Union[str, Any] = cls.infer_extractor_format(A ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _A ( cls : Dict , A : Union[Path, str] ): # <Added version="2.4.0"/> _UpperCAmelCase : Optional[int] = cls._get_magic_number_max_length() _UpperCAmelCase : str = cls._read_magic_number(A , A ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(A , magic_number=A ): return extractor_format @classmethod def _A ( cls : List[str] , A : Union[Path, str] , A : Union[Path, str] , A : Optional[str] = None , A : Optional[BaseExtractor] = "deprecated" , ): os.makedirs(os.path.dirname(A ) , exist_ok=A ) # Prevent parallel extractions _UpperCAmelCase : Tuple = str(Path(A ).with_suffix(".lock" ) ) with FileLock(A ): shutil.rmtree(A , ignore_errors=A ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(A , A ): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead." , category=A , ) _UpperCAmelCase : Tuple = extractor if extractor != "deprecated" else extractor_format else: _UpperCAmelCase : Tuple = cls.extractors[extractor_format] return extractor.extract(A , A ) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0." , category=A , ) for extractor in cls.extractors.values(): if extractor.is_extractable(A ): return extractor.extract(A , A )
31
1
def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [0] * len(_A ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [1] * len(_A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: SCREAMING_SNAKE_CASE__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: SCREAMING_SNAKE_CASE__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_A ) print(max(_A ) ) # Adjacency list of Graph _SCREAMING_SNAKE_CASE : List[str] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
371
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) _SCREAMING_SNAKE_CASE : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def UpperCAmelCase_ ( _A ): '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: SCREAMING_SNAKE_CASE__ = model_type_to_module_name(_A ) SCREAMING_SNAKE_CASE__ = importlib.import_module(F'''.{module_name}''' , '''transformers.models''' ) try: return getattr(_A , _A ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(_A , '''__name__''' , _A ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. SCREAMING_SNAKE_CASE__ = importlib.import_module('''transformers''' ) if hasattr(_A , _A ): return getattr(_A , _A ) return None def UpperCAmelCase_ ( _A , _A = None , _A = False , _A = False , _A = None , _A = None , _A = None , _A = False , **_A , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_file_from_repo( _A , _A , cache_dir=_A , force_download=_A , resume_download=_A , proxies=_A , use_auth_token=_A , revision=_A , local_files_only=_A , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(_A , encoding='''utf-8''' ) as reader: return json.load(_A ) class UpperCAmelCase__ : """simple docstring""" def __init__( self : List[Any] ) -> int: raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__lowerCamelCase ) def lowercase_ ( cls : Optional[int] , __lowerCamelCase : Any , **__lowerCamelCase : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ = kwargs.pop('''config''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop('''trust_remote_code''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = ImageProcessingMixin.get_image_processor_dict(__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = config_dict.get('''image_processor_type''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): SCREAMING_SNAKE_CASE__ = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: SCREAMING_SNAKE_CASE__ = config_dict.pop('''feature_extractor_type''' , __lowerCamelCase ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) SCREAMING_SNAKE_CASE__ = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): SCREAMING_SNAKE_CASE__ = config_dict['''auto_map''']['''AutoFeatureExtractor'''] SCREAMING_SNAKE_CASE__ = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # It could be in `config.image_processor_type`` SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , '''image_processor_type''' , __lowerCamelCase ) if hasattr(__lowerCamelCase , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: SCREAMING_SNAKE_CASE__ = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: SCREAMING_SNAKE_CASE__ = image_processor_class_from_name(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image_processor_auto_map is not None SCREAMING_SNAKE_CASE__ = image_processor_class is not None or type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING SCREAMING_SNAKE_CASE__ = resolve_trust_remote_code( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if has_remote_code and trust_remote_code: SCREAMING_SNAKE_CASE__ = get_class_from_dynamic_module( __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop('''code_revision''' , __lowerCamelCase ) if os.path.isdir(__lowerCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING: SCREAMING_SNAKE_CASE__ = IMAGE_PROCESSOR_MAPPING[type(__lowerCamelCase )] return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowercase_ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ) -> str: IMAGE_PROCESSOR_MAPPING.register(__lowerCamelCase , __lowerCamelCase )
218
0
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Any ) -> Dict: a = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() a = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) a = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } a = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 1_60_00, "return_attention_mask": False, "do_normalize": True, } a = tempfile.mkdtemp() a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCamelCase ) + "\n" ) with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCamelCase ) + "\n" ) # load decoder from hub a = "hf-internal-testing/ngram-beam-search-decoder" def __UpperCAmelCase ( self : str , **__lowerCamelCase : str ) -> int: a = self.add_kwargs_tokens_map.copy() kwargs.update(__lowerCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __UpperCAmelCase ( self : str , **__lowerCamelCase : Dict ) -> int: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] , **__lowerCamelCase : Optional[int] ) -> Union[str, Any]: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__lowerCamelCase ) def __UpperCAmelCase ( self : Any ) -> Tuple: shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: a = self.get_tokenizer() a = self.get_feature_extractor() a = self.get_decoder() a = WavaVecaProcessorWithLM(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase , decoder=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) a = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __lowerCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __lowerCamelCase ) def __UpperCAmelCase ( self : Dict ) -> Any: a = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match a = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: a = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"] ) with self.assertRaisesRegex(__lowerCamelCase , "include" ): WavaVecaProcessorWithLM( tokenizer=__lowerCamelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: a = self.get_feature_extractor() a = self.get_tokenizer() a = self.get_decoder() a = WavaVecaProcessorWithLM(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase , decoder=__lowerCamelCase ) a = floats_list((3, 10_00) ) a = feature_extractor(__lowerCamelCase , return_tensors="np" ) a = processor(__lowerCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCAmelCase ( self : Tuple ) -> List[Any]: a = self.get_feature_extractor() a = self.get_tokenizer() a = self.get_decoder() a = WavaVecaProcessorWithLM(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase , decoder=__lowerCamelCase ) a = "This is a test string" a = processor(text=__lowerCamelCase ) a = tokenizer(__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase ( self : int , __lowerCamelCase : List[str]=(2, 10, 16) , __lowerCamelCase : Any=77 ) -> List[Any]: np.random.seed(__lowerCamelCase ) return np.random.rand(*__lowerCamelCase ) def __UpperCAmelCase ( self : Dict ) -> int: a = self.get_feature_extractor() a = self.get_tokenizer() a = self.get_decoder() a = WavaVecaProcessorWithLM(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase , decoder=__lowerCamelCase ) a = self._get_dummy_logits(shape=(10, 16) , seed=13 ) a = processor.decode(__lowerCamelCase ) a = decoder.decode_beams(__lowerCamelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("</s> <s> </s>" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["fork"], ["spawn"]] ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Any ) -> str: a = self.get_feature_extractor() a = self.get_tokenizer() a = self.get_decoder() a = WavaVecaProcessorWithLM(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase , decoder=__lowerCamelCase ) a = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: a = processor.batch_decode(__lowerCamelCase ) else: with get_context(__lowerCamelCase ).Pool() as pool: a = processor.batch_decode(__lowerCamelCase , __lowerCamelCase ) a = list(__lowerCamelCase ) with get_context("fork" ).Pool() as p: a = decoder.decode_beams_batch(__lowerCamelCase , __lowerCamelCase ) a , a , a = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__lowerCamelCase , decoded_processor.text ) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text ) self.assertListEqual(__lowerCamelCase , decoded_processor.logit_score ) self.assertListEqual(__lowerCamelCase , decoded_processor.lm_score ) def __UpperCAmelCase ( self : Dict ) -> Any: a = self.get_feature_extractor() a = self.get_tokenizer() a = self.get_decoder() a = WavaVecaProcessorWithLM(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase , decoder=__lowerCamelCase ) a = self._get_dummy_logits() a = 15 a = -20.0 a = -4.0 a = processor.batch_decode( __lowerCamelCase , beam_width=__lowerCamelCase , beam_prune_logp=__lowerCamelCase , token_min_logp=__lowerCamelCase , ) a = decoded_processor_out.text a = list(__lowerCamelCase ) with get_context("fork" ).Pool() as pool: a = decoder.decode_beams_batch( __lowerCamelCase , __lowerCamelCase , beam_width=__lowerCamelCase , beam_prune_logp=__lowerCamelCase , token_min_logp=__lowerCamelCase , ) a = [d[0][0] for d in decoded_decoder_out] a = [d[0][2] for d in decoded_decoder_out] a = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , __lowerCamelCase ) self.assertTrue(np.array_equal(__lowerCamelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __lowerCamelCase , atol=1e-3 ) ) self.assertTrue(np.array_equal(__lowerCamelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , __lowerCamelCase , atol=1e-3 ) ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: a = self.get_feature_extractor() a = self.get_tokenizer() a = self.get_decoder() a = WavaVecaProcessorWithLM(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase , decoder=__lowerCamelCase ) a = self._get_dummy_logits() a = 2.0 a = 5.0 a = -20.0 a = True a = processor.batch_decode( __lowerCamelCase , alpha=__lowerCamelCase , beta=__lowerCamelCase , unk_score_offset=__lowerCamelCase , lm_score_boundary=__lowerCamelCase , ) a = decoded_processor_out.text a = list(__lowerCamelCase ) decoder.reset_params( alpha=__lowerCamelCase , beta=__lowerCamelCase , unk_score_offset=__lowerCamelCase , lm_score_boundary=__lowerCamelCase , ) with get_context("fork" ).Pool() as pool: a = decoder.decode_beams_batch( __lowerCamelCase , __lowerCamelCase , ) a = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , __lowerCamelCase ) a = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ) -> str: a = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) a = processor.decoder.model_container[processor.decoder._model_key] a = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() a = os.listdir(__lowerCamelCase ) a = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : str ) -> List[str]: a = snapshot_download("hf-internal-testing/processor_with_lm" ) a = WavaVecaProcessorWithLM.from_pretrained(__lowerCamelCase ) a = processor.decoder.model_container[processor.decoder._model_key] a = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() a = os.listdir(__lowerCamelCase ) a = os.listdir(__lowerCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : int ) -> Dict: a = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) a = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" ) a = floats_list((3, 10_00) ) a = processor_wavaveca(__lowerCamelCase , return_tensors="np" ) a = processor_auto(__lowerCamelCase , return_tensors="np" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) a = self._get_dummy_logits() a = processor_wavaveca.batch_decode(__lowerCamelCase ) a = processor_auto.batch_decode(__lowerCamelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: a = self.get_feature_extractor() a = self.get_tokenizer() a = self.get_decoder() a = WavaVecaProcessorWithLM(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase , decoder=__lowerCamelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , ) @staticmethod def __UpperCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : int ) -> int: a = [d[key] for d in offsets] return retrieved_list def __UpperCAmelCase ( self : List[Any] ) -> int: a = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) a = self._get_dummy_logits()[0] a = processor.decode(__lowerCamelCase , output_word_offsets=__lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] ) def __UpperCAmelCase ( self : List[Any] ) -> Any: a = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) a = self._get_dummy_logits() a = processor.batch_decode(__lowerCamelCase , output_word_offsets=__lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(__lowerCamelCase , __lowerCamelCase ) ) self.assertListEqual( [" ".join(self.get_from_offsets(__lowerCamelCase , "word" ) ) for o in outputs["word_offsets"]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: import torch a = load_dataset("common_voice" , "en" , split="train" , streaming=__lowerCamelCase ) a = ds.cast_column("audio" , datasets.Audio(sampling_rate=1_60_00 ) ) a = iter(__lowerCamelCase ) a = next(__lowerCamelCase ) a = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) a = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train a = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values with torch.no_grad(): a = model(__lowerCamelCase ).logits.cpu().numpy() a = processor.decode(logits[0] , output_word_offsets=__lowerCamelCase ) a = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate a = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] a = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" # output words self.assertEqual(" ".join(self.get_from_offsets(__lowerCamelCase , "word" ) ) , __lowerCamelCase ) self.assertEqual(" ".join(self.get_from_offsets(__lowerCamelCase , "word" ) ) , output.text ) # output times a = torch.tensor(self.get_from_offsets(__lowerCamelCase , "start_time" ) ) a = torch.tensor(self.get_from_offsets(__lowerCamelCase , "end_time" ) ) # fmt: off a = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) a = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=0.01 ) )
107
import math def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' lowercase__ : Optional[Any] = [] lowercase__ : str = 2 lowercase__ : Optional[Any] = int(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) # Size of every segment lowercase__ : Dict = [True] * (end + 1) lowercase__ : Union[str, Any] = [] while start <= end: if temp[start] is True: in_prime.append(SCREAMING_SNAKE_CASE_ ) for i in range(start * start , end + 1 , SCREAMING_SNAKE_CASE_ ): lowercase__ : int = False start += 1 prime += in_prime lowercase__ : Optional[int] = end + 1 lowercase__ : List[str] = min(2 * end , SCREAMING_SNAKE_CASE_ ) while low <= n: lowercase__ : str = [True] * (high - low + 1) for each in in_prime: lowercase__ : str = math.floor(low / each ) * each if t < low: t += each for j in range(SCREAMING_SNAKE_CASE_ , high + 1 , SCREAMING_SNAKE_CASE_ ): lowercase__ : Optional[Any] = False for j in range(len(SCREAMING_SNAKE_CASE_ ) ): if temp[j] is True: prime.append(j + low ) lowercase__ : Optional[Any] = high + 1 lowercase__ : Optional[int] = min(high + end , SCREAMING_SNAKE_CASE_ ) return prime print(sieve(10**6))
214
0
from collections import Counter from timeit import timeit def __lowerCamelCase ( lowerCamelCase__ = "" , ): """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def __lowerCamelCase ( lowerCamelCase__ = "" ): """simple docstring""" if len(lowerCamelCase__ ) == 0: return True lowercase__ : str = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string lowercase__ : dict[str, int] = {} for character in lower_case_input_str: lowercase__ : List[Any] = character_freq_dict.get(lowerCamelCase__ , 0 ) + 1 lowercase__ : List[Any] = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def __lowerCamelCase ( lowerCamelCase__ = "" ): """simple docstring""" print("\nFor string = " , lowerCamelCase__ , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(lowerCamelCase__ ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(lowerCamelCase__ ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": lowerCAmelCase__ = input( '''Enter string to determine if it can be rearranged as a palindrome or not: ''' ).strip() benchmark(check_str) lowerCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
121
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class snake_case__(unittest.TestCase ): """simple docstring""" @property def snake_case ( self : Any ): torch.manual_seed(0 ) lowercase__ : Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model @property def snake_case ( self : List[str] ): torch.manual_seed(0 ) lowercase__ : Optional[int] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , ) return model @property def snake_case ( self : Dict ): torch.manual_seed(0 ) lowercase__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(SCREAMING_SNAKE_CASE ) def snake_case ( self : str ): lowercase__ : Any = self.dummy_uncond_unet lowercase__ : Dict = DDIMScheduler() lowercase__ : Optional[Any] = self.dummy_vq_model lowercase__ : Union[str, Any] = LDMPipeline(unet=SCREAMING_SNAKE_CASE , vqvae=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) ldm.to(SCREAMING_SNAKE_CASE ) ldm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) lowercase__ : int = torch.manual_seed(0 ) lowercase__ : Optional[int] = ldm(generator=SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="numpy" ).images lowercase__ : str = torch.manual_seed(0 ) lowercase__ : List[Any] = ldm(generator=SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="numpy" , return_dict=SCREAMING_SNAKE_CASE )[0] lowercase__ : Any = image[0, -3:, -3:, -1] lowercase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ : List[Any] = np.array([0.8_512, 0.818, 0.6_411, 0.6_808, 0.4_465, 0.5_618, 0.46, 0.6_231, 0.5_172] ) lowercase__ : Optional[Any] = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : Optional[Any] ): lowercase__ : int = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(SCREAMING_SNAKE_CASE ) ldm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) lowercase__ : Dict = torch.manual_seed(0 ) lowercase__ : Tuple = ldm(generator=SCREAMING_SNAKE_CASE , num_inference_steps=5 , output_type="numpy" ).images lowercase__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__ : Optional[Any] = np.array([0.4_399, 0.44_975, 0.46_825, 0.474, 0.4_359, 0.4_581, 0.45_095, 0.4_341, 0.4_447] ) lowercase__ : int = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
121
1
"""simple docstring""" def A_ ( _lowerCAmelCase : str ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
320
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __snake_case = { '''google/rembert''': 256, } __snake_case = '''▁''' class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[Any] = VOCAB_FILES_NAMES A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : List[Any] = RemBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) _a = do_lower_case _a = remove_space _a = keep_accents _a = vocab_file _a = False if not self.vocab_file else True def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return _a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
320
1
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A_ ( snake_case_ : Dataset ,snake_case_ : Dict[str, str] ): '''simple docstring''' UpperCamelCase : List[str] = args.log_outputs UpperCamelCase : Tuple = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric UpperCamelCase : List[Any] = load_metric("""wer""" ) UpperCamelCase : Any = load_metric("""cer""" ) # compute metrics UpperCamelCase : str = wer.compute(references=result["""target"""] ,predictions=result["""prediction"""] ) UpperCamelCase : Dict = cer.compute(references=result["""target"""] ,predictions=result["""prediction"""] ) # print & log results UpperCamelCase : Optional[int] = f'WER: {wer_result}\nCER: {cer_result}' print(snake_case_ ) with open(f'{dataset_id}_eval_results.txt' ,"""w""" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCamelCase : Optional[Any] = f'log_{dataset_id}_predictions.txt' UpperCamelCase : str = f'log_{dataset_id}_targets.txt' with open(snake_case_ ,"""w""" ) as p, open(snake_case_ ,"""w""" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] ,snake_case_ : Tuple ): p.write(f'{i}' + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(f'{i}' + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(snake_case_ ,with_indices=snake_case_ ) def A_ ( snake_case_ : str ): '''simple docstring''' UpperCamelCase : Dict = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCamelCase : str = re.sub(snake_case_ ,"""""" ,text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCamelCase : List[str] = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: UpperCamelCase : Tuple = """ """.join(text.split(snake_case_ ) ) return text def A_ ( snake_case_ : str ): '''simple docstring''' UpperCamelCase : Union[str, Any] = load_dataset(args.dataset ,args.config ,split=args.split ,use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCamelCase : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCamelCase : Dict = feature_extractor.sampling_rate # resample audio UpperCamelCase : Optional[Any] = dataset.cast_column("""audio""" ,Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: UpperCamelCase : int = 0 if torch.cuda.is_available() else -1 UpperCamelCase : Union[str, Any] = pipeline("""automatic-speech-recognition""" ,model=args.model_id ,device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Union[str, Any] ): UpperCamelCase : List[Any] = asr( batch["""audio"""]["""array"""] ,chunk_length_s=args.chunk_length_s ,stride_length_s=args.stride_length_s ) UpperCamelCase : Union[str, Any] = prediction["""text"""] UpperCamelCase : Optional[Any] = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples UpperCamelCase : Any = dataset.map(snake_case_ ,remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ ,snake_case_ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) __A : Optional[Any] = parser.parse_args() main(args)
370
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def A_ ( snake_case_ : int ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def A_ ( ): '''simple docstring''' with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" UpperCamelCase : Optional[Any] = [1, 2, 3] with pytest.raises(snake_case_ ): with parallel_backend("""unsupported backend""" ): map_nested(snake_case_ ,snake_case_ ,num_proc=2 ) with pytest.raises(snake_case_ ): with parallel_backend("""unsupported backend""" ): map_nested(snake_case_ ,snake_case_ ,num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" ,[2, -1] ) def A_ ( snake_case_ : List[str] ): '''simple docstring''' UpperCamelCase : List[Any] = [1, 2] UpperCamelCase : List[Any] = {"""a""": 1, """b""": 2} UpperCamelCase : List[str] = {"""a""": [1, 2], """b""": [3, 4]} UpperCamelCase : Tuple = {"""a""": {"""1""": 1}, """b""": 2} UpperCamelCase : Any = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} UpperCamelCase : Optional[int] = [2, 3] UpperCamelCase : List[str] = {"""a""": 2, """b""": 3} UpperCamelCase : Any = {"""a""": [2, 3], """b""": [4, 5]} UpperCamelCase : Tuple = {"""a""": {"""1""": 2}, """b""": 3} UpperCamelCase : List[str] = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ ,snake_case_ ,num_proc=snake_case_ ) == expected_map_nested_sa
27
0
"""simple docstring""" import torch def _snake_case ( ): if torch.cuda.is_available(): UpperCAmelCase : int = torch.cuda.device_count() else: UpperCAmelCase : Optional[int] = 0 print(F"Successfully ran on {num_gpus} GPUs" ) if __name__ == "__main__": main()
109
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Union[str, Any] = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys _lowercase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
93
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
360
'''simple docstring''' # Lint as: python3 import itertools import os import re lowercase__ = re.compile(r"([A-Z]+)([A-Z][a-z])") lowercase__ = re.compile(r"([a-z\d])([A-Z])") lowercase__ = re.compile(r"(?<!_)_(?!_)") lowercase__ = re.compile(r"(_{2,})") lowercase__ = r"^\w+(\.\w+)*$" lowercase__ = r"<>:/\|?*" def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = _uppercase_uppercase_re.sub(R'\1_\2' , UpperCAmelCase_ ) UpperCAmelCase : str = _lowercase_uppercase_re.sub(R'\1_\2' , UpperCAmelCase_ ) return name.lower() def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = _single_underscore_re.split(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = [_multiple_underscores_re.split(UpperCAmelCase_ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(UpperCAmelCase_ ) if n != '' ) def UpperCamelCase( UpperCAmelCase_ ): if os.path.basename(UpperCAmelCase_ ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if os.path.basename(UpperCAmelCase_ ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , UpperCAmelCase_ ): raise ValueError(F"""Split name should match '{_split_re}'' but got '{split}'.""" ) return F"""{filename_prefix_for_name(UpperCAmelCase_ )}-{split}""" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ): UpperCAmelCase : Dict = filename_prefix_for_split(UpperCAmelCase_ , UpperCAmelCase_ ) if filetype_suffix: prefix += F""".{filetype_suffix}""" UpperCAmelCase : Optional[int] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) return F"""{filepath}*""" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None ): UpperCAmelCase : Optional[int] = filename_prefix_for_split(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) if shard_lengths: UpperCAmelCase : List[str] = len(UpperCAmelCase_ ) UpperCAmelCase : List[str] = [F"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(UpperCAmelCase_ )] if filetype_suffix: UpperCAmelCase : Dict = [filename + F""".{filetype_suffix}""" for filename in filenames] return filenames else: UpperCAmelCase : Optional[Any] = prefix if filetype_suffix: filename += F""".{filetype_suffix}""" return [filename]
280
0
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = 42 class snake_case_( a__ , a__ ): __UpperCamelCase = 1 @register_to_config def __init__( self : str , UpperCamelCase_ : int = 2_0_0_0 , UpperCamelCase_ : float = 0.15 , UpperCamelCase_ : float = 0.01 , UpperCamelCase_ : float = 1_348.0 , UpperCamelCase_ : float = 1E-5 , UpperCamelCase_ : int = 1 , ): # standard deviation of the initial noise distribution lowerCAmelCase : Union[str, Any] = sigma_max # setable values lowerCAmelCase : Dict = None self.set_sigmas(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[int] = None ): return sample def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : float = None , UpperCamelCase_ : Union[str, torch.device] = None ): lowerCAmelCase : Optional[Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowerCAmelCase : Dict = torch.linspace(1 , UpperCamelCase_ , UpperCamelCase_ , device=UpperCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : int , UpperCamelCase_ : float = None , UpperCamelCase_ : float = None , UpperCamelCase_ : float = None ): lowerCAmelCase : Optional[Any] = sigma_min if sigma_min is not None else self.config.sigma_min lowerCAmelCase : Union[str, Any] = sigma_max if sigma_max is not None else self.config.sigma_max lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(UpperCamelCase_ ) , math.log(UpperCamelCase_ ) , UpperCamelCase_ ) ) lowerCAmelCase : Dict = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : int , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[torch.Generator] = None , UpperCamelCase_ : bool = True , ): if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowerCAmelCase : Optional[int] = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowerCAmelCase : Any = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowerCAmelCase : int = timesteps.to(self.discrete_sigmas.device ) lowerCAmelCase : Union[str, Any] = self.discrete_sigmas[timesteps].to(sample.device ) lowerCAmelCase : Any = self.get_adjacent_sigma(UpperCamelCase_ , UpperCamelCase_ ).to(sample.device ) lowerCAmelCase : Union[str, Any] = torch.zeros_like(UpperCamelCase_ ) lowerCAmelCase : str = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowerCAmelCase : List[str] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowerCAmelCase : List[Any] = diffusion.unsqueeze(-1 ) lowerCAmelCase : int = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowerCAmelCase : str = randn_tensor( sample.shape , layout=sample.layout , generator=UpperCamelCase_ , device=sample.device , dtype=sample.dtype ) lowerCAmelCase : Optional[Any] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowerCAmelCase : Union[str, Any] = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=UpperCamelCase_ , prev_sample_mean=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[torch.Generator] = None , UpperCamelCase_ : bool = True , ): if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape , layout=sample.layout , generator=UpperCamelCase_ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowerCAmelCase : Tuple = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() lowerCAmelCase : str = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() lowerCAmelCase : Optional[int] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowerCAmelCase : Tuple = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowerCAmelCase : Any = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowerCAmelCase : str = step_size.unsqueeze(-1 ) lowerCAmelCase : Optional[Any] = sample + step_size * model_output lowerCAmelCase : List[str] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples lowerCAmelCase : List[Any] = timesteps.to(original_samples.device ) lowerCAmelCase : Optional[int] = self.discrete_sigmas.to(original_samples.device )[timesteps] lowerCAmelCase : str = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(UpperCamelCase_ ) * sigmas[:, None, None, None] ) lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self : Tuple ): return self.config.num_train_timesteps
60
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'ctrl' SCREAMING_SNAKE_CASE = ['past_key_values'] SCREAMING_SNAKE_CASE = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __snake_case=24_6534 , __snake_case=256 , __snake_case=1280 , __snake_case=8192 , __snake_case=48 , __snake_case=16 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=1e-6 , __snake_case=0.02 , __snake_case=True , **__snake_case , ) -> Union[str, Any]: '''simple docstring''' __a =vocab_size __a =n_positions __a =n_embd __a =n_layer __a =n_head __a =dff __a =resid_pdrop __a =embd_pdrop __a =layer_norm_epsilon __a =initializer_range __a =use_cache super().__init__(**__snake_case )
218
0
from math import factorial def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(__lowerCamelCase ) // (factorial(__lowerCamelCase ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', f"fifty-two card deck is: {combinations(52, 5)}\n", ) print( 'If a class of 40 students must be arranged into groups of', f"4 for group projects, there are {combinations(40, 4)} ways", 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', f"are {combinations(10, 3)} ways that first, second and", 'third place can be awarded.', )
325
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase__ ='src/diffusers' UpperCamelCase__ ='.' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase__ =importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase__ =spec.loader.load_module() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): return line.startswith(__lowerCamelCase ) or len(__lowerCamelCase ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$", __lowerCamelCase ) is not None def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = object_name.split("." ) _SCREAMING_SNAKE_CASE : List[Any] = 0 # First let's find the module where our object lives. _SCREAMING_SNAKE_CASE : Any = parts[i] while i < len(__lowerCamelCase ) and not os.path.isfile(os.path.join(__lowerCamelCase, f"""{module}.py""" ) ): i += 1 if i < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase, parts[i] ) if i >= len(__lowerCamelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__lowerCamelCase, f"""{module}.py""" ), "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() # Now let's find the class / func in the code! _SCREAMING_SNAKE_CASE : Union[str, Any] = "" _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""", lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCamelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _SCREAMING_SNAKE_CASE : Optional[int] = line_index while line_index < len(__lowerCamelCase ) and _should_continue(lines[line_index], __lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : Optional[int] = lines[start_index:line_index] return "".join(__lowerCamelCase ) UpperCamelCase__ =re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') UpperCamelCase__ =re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') UpperCamelCase__ =re.compile(R'<FILL\s+[^>]*>') def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = code.split("\n" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while idx < len(__lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCamelCase ): return re.search(R"^(\s*)\S", lines[idx] ).groups()[0] return "" def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = len(get_indent(__lowerCamelCase ) ) > 0 if has_indent: _SCREAMING_SNAKE_CASE : Union[str, Any] = f"""class Bla:\n{code}""" _SCREAMING_SNAKE_CASE : Any = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119, preview=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = black.format_str(__lowerCamelCase, mode=__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = style_docstrings_in_code(__lowerCamelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=False ): with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = search.groups() _SCREAMING_SNAKE_CASE : Any = find_code_in_diffusers(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = get_indent(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 _SCREAMING_SNAKE_CASE : int = theoretical_indent _SCREAMING_SNAKE_CASE : str = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _SCREAMING_SNAKE_CASE : Any = True while line_index < len(__lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCamelCase ): break _SCREAMING_SNAKE_CASE : Union[str, Any] = lines[line_index] _SCREAMING_SNAKE_CASE : str = _should_continue(__lowerCamelCase, __lowerCamelCase ) and re.search(f"""^{indent}# End copy""", __lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : List[Any] = lines[start_index:line_index] _SCREAMING_SNAKE_CASE : Optional[Any] = "".join(__lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies _SCREAMING_SNAKE_CASE : Dict = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(__lowerCamelCase ) is None] _SCREAMING_SNAKE_CASE : str = "\n".join(__lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : str = replace_pattern.replace("with", "" ).split("," ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [_re_replace_pattern.search(__lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = pattern.groups() _SCREAMING_SNAKE_CASE : Tuple = re.sub(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if option.strip() == "all-casing": _SCREAMING_SNAKE_CASE : List[Any] = re.sub(obja.lower(), obja.lower(), __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = re.sub(obja.upper(), obja.upper(), __lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _SCREAMING_SNAKE_CASE : int = blackify(lines[start_index - 1] + theoretical_code ) _SCREAMING_SNAKE_CASE : List[str] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _SCREAMING_SNAKE_CASE : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] _SCREAMING_SNAKE_CASE : int = start_index + 1 if overwrite and len(__lowerCamelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(__lowerCamelCase, "w", encoding="utf-8", newline="\n" ) as f: f.writelines(__lowerCamelCase ) return diffs def lowerCamelCase__ (__lowerCamelCase = False ): _SCREAMING_SNAKE_CASE : int = glob.glob(os.path.join(__lowerCamelCase, "**/*.py" ), recursive=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for filename in all_files: _SCREAMING_SNAKE_CASE : int = is_copy_consistent(__lowerCamelCase, __lowerCamelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : Dict = "\n".join(__lowerCamelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase__ =parser.parse_args() check_copies(args.fix_and_overwrite)
325
1
import math import flax.linen as nn import jax.numpy as jnp def lowerCamelCase__ ( a , a , a = 1 , a = 1 , a = 1.0E4 , a = False , a = 1.0 , ) -> jnp.ndarray: assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f"""Embedding dimension {embedding_dim} should be even""" _A: int = float(embedding_dim // 2 ) _A: Any = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) _A: Optional[int] = min_timescale * jnp.exp(jnp.arange(a , dtype=jnp.floataa ) * -log_timescale_increment ) _A: str = jnp.expand_dims(a , 1 ) * jnp.expand_dims(a , 0 ) # scale embeddings _A: Union[str, Any] = scale * emb if flip_sin_to_cos: _A: Any = jnp.concatenate([jnp.cos(a ), jnp.sin(a )] , axis=1 ) else: _A: Dict = jnp.concatenate([jnp.sin(a ), jnp.cos(a )] , axis=1 ) _A: List[str] = jnp.reshape(a , [jnp.shape(a )[0], embedding_dim] ) return signal class UpperCAmelCase ( nn.Module ): '''simple docstring''' __UpperCamelCase : int = 32 __UpperCamelCase : jnp.dtype = jnp.floataa @nn.compact def __call__( self : str , lowerCAmelCase_ : int ): """simple docstring""" _A: Optional[int] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_1''' )(lowerCAmelCase_ ) _A: Union[str, Any] = nn.silu(lowerCAmelCase_ ) _A: Tuple = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_2''' )(lowerCAmelCase_ ) return temb class UpperCAmelCase ( nn.Module ): '''simple docstring''' __UpperCamelCase : int = 32 __UpperCamelCase : bool = False __UpperCamelCase : float = 1 @nn.compact def __call__( self : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" return get_sinusoidal_embeddings( lowerCAmelCase_ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
121
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase__ ( a , a ) -> Dict: if "xprophetnet" in prophetnet_checkpoint_path: _A: List[Any] = XLMProphetNetForConditionalGenerationOld.from_pretrained(a ) _A , _A: Union[str, Any] = XLMProphetNetForConditionalGeneration.from_pretrained( a , output_loading_info=a ) else: _A: Dict = ProphetNetForConditionalGenerationOld.from_pretrained(a ) _A , _A: Tuple = ProphetNetForConditionalGeneration.from_pretrained( a , output_loading_info=a ) _A: Optional[int] = ['''key_proj''', '''value_proj''', '''query_proj'''] _A: List[Any] = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: _A: List[str] = key.split('''.''' ) if attributes[0] == "lm_head": _A: Optional[int] = prophet _A: Tuple = prophet_old else: _A: Tuple = prophet.prophetnet _A: Any = prophet_old.model _A: int = False for attribute in attributes: if attribute in mapping: _A: Optional[int] = mapping[attribute] if not hasattr(a , a ) and len(a ) > 0: _A: int = attribute elif hasattr(a , a ): _A: Tuple = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _A: Union[str, Any] = old_model.weight logger.info(f"""{attribute} is initialized.""" ) _A: Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _A: str = old_model.bias logger.info(f"""{attribute} is initialized""" ) _A: Dict = True break elif attribute in special_keys and hasattr(a , '''in_proj_weight''' ): _A: Optional[int] = old_model.in_proj_weight.shape[0] // 3 _A: Tuple = getattr(a , a ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _A: List[str] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _A: List[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _A: int = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _A: Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _A: List[Any] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _A: int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _A: Tuple = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _A: Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _A: List[Any] = True break if attribute.isdigit(): _A: Tuple = model[int(a )] _A: int = old_model[int(a )] else: _A: Union[str, Any] = getattr(a , a ) if old_attribute == "": _A: Union[str, Any] = old_model else: if not hasattr(a , a ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) _A: List[Any] = getattr(a , a ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCAmelCase__ : Tuple = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
121
1
'''simple docstring''' def __magic_name__( lowerCamelCase): if num <= 0: raise ValueError('''Input must be a positive integer''') __lowerCAmelCase = [True] * (num + 1) __lowerCAmelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p, num + 1, lowerCamelCase): __lowerCAmelCase = False p += 1 return [prime for prime in range(2, num + 1) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : Tuple = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
358
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : str = True __UpperCamelCase : Any = DebertaTokenizerFast def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCAmelCase = {'''unk_token''': '''[UNK]'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer('''Hello''' , '''World''' ) __lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __lowercase ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case (self ): __lowerCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase ) __lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']] # fmt: off __lowerCAmelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __lowercase ) for expected, decoded in zip(__lowercase , __lowercase ): self.assertEqual(__lowercase , __lowercase )
9
0
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( lowerCAmelCase_ ): lowercase = ['image_processor', 'tokenizer'] lowercase = 'FlavaImageProcessor' lowercase = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Optional[Any] , a : List[Any]=None , a : int=None , **a : Any ): '''simple docstring''' lowerCAmelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __a , ) lowerCAmelCase__ : int = kwargs.pop('feature_extractor' ) lowerCAmelCase__ : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__a , __a ) lowerCAmelCase__ : Optional[int] = self.image_processor def __call__( self : Tuple , a : int = None , a : Union[str, Any] = None , a : Optional[Any] = True , a : Tuple = False , a : Optional[int] = False , a : List[str] = None , a : Tuple = 0 , a : Optional[int] = None , a : Optional[int] = None , a : Optional[int] = None , a : List[Any] = None , a : Dict = None , a : int = False , a : str = False , a : Any = False , a : Dict = False , a : int = True , a : str = None , **a : List[Any] , ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCAmelCase__ : Union[str, Any] = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) if images is not None: lowerCAmelCase__ : Optional[Any] = self.image_processor( __a , return_image_mask=__a , return_codebook_pixels=__a , return_tensors=__a , **__a , ) if text is not None and images is not None: encoding.update(__a ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__a ) , tensor_type=__a ) def _lowerCamelCase ( self : Optional[Any] , *a : int , **a : str ): '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a ) def _lowerCamelCase ( self : Dict , *a : Any , **a : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*__a , **__a ) @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.tokenizer.model_input_names lowerCAmelCase__ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __a , ) return self.image_processor_class @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __a , ) return self.image_processor
212
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase : str = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] __lowercase : Tuple = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] __lowercase : Dict = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): __lowercase : Optional[Any] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __lowercase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = 42 class _UpperCAmelCase ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : int , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 3 , __UpperCAmelCase : Tuple[str] = ("DownEncoderBlock2D",) , __UpperCAmelCase : Tuple[str] = ("UpDecoderBlock2D",) , __UpperCAmelCase : Tuple[int] = (64,) , __UpperCAmelCase : int = 1 , __UpperCAmelCase : str = "silu" , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 32 , __UpperCAmelCase : int = 256 , __UpperCAmelCase : int = 32 , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : float = 0.18215 , __UpperCAmelCase : str = "group" , ): '''simple docstring''' super().__init__() # pass init params to Encoder _A = Encoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , down_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , act_fn=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , double_z=__UpperCAmelCase , ) _A = vq_embed_dim if vq_embed_dim is not None else latent_channels _A = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) _A = VectorQuantizer(__UpperCAmelCase , __UpperCAmelCase , beta=0.25 , remap=__UpperCAmelCase , sane_index_shape=__UpperCAmelCase ) _A = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) # pass init params to Decoder _A = Decoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , up_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , act_fn=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , norm_type=__UpperCAmelCase , ) @apply_forward_hook def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : bool = True ): '''simple docstring''' _A = self.encoder(__UpperCAmelCase ) _A = self.quant_conv(__UpperCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=__UpperCAmelCase ) @apply_forward_hook def lowerCAmelCase ( self : str , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = True ): '''simple docstring''' if not force_not_quantize: _A , _A , _A = self.quantize(__UpperCAmelCase ) else: _A = h _A = self.post_quant_conv(__UpperCAmelCase ) _A = self.decoder(__UpperCAmelCase , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : bool = True ): '''simple docstring''' _A = sample _A = self.encode(__UpperCAmelCase ).latents _A = self.decode(__UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase )
352
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase_ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
174
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase_ = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def _SCREAMING_SNAKE_CASE ( a , a ) -> Optional[Any]: __A : Any = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 10_24, 'hidden_size': 7_68, 'max_length': 5_12, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 10_24, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1e-5, 'token_type_vocab_size': 2, } __A : str = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __A : Optional[int] = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=a , output_all_encodings=a , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , a ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __A : Union[str, Any] = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab __A : Any = os.path.join(get_home_dir() , 'models' ) __A : List[Any] = _load_vocab(a , a , a , cls=a ) __A : Dict = nlp.model.BERTModel( a , len(a ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=a , use_token_type_embed=a , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=a , use_decoder=a , ) original_bort.load_parameters(a , cast_dtype=a , ignore_extra=a ) __A : Union[str, Any] = original_bort._collect_params_with_prefix() # Build our config 🤗 __A : Any = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(a ), } __A : int = BertConfig.from_dict(a ) __A : Union[str, Any] = BertForMaskedLM(a ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(a ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(a , a ): __A : Tuple = hf_param.shape __A : str = to_torch(params[gluon_param] ) __A : Union[str, Any] = gluon_param.shape assert ( shape_hf == shape_gluon ), F"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param __A : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) __A : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) __A : List[str] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) __A : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __A : Tuple = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __A : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention __A : BertSelfAttention = layer.attention.self __A : Optional[Any] = check_and_map_params( self_attn.key.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) __A : Optional[int] = check_and_map_params( self_attn.key.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) __A : Union[str, Any] = check_and_map_params( self_attn.query.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) __A : Optional[Any] = check_and_map_params( self_attn.query.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) __A : Union[str, Any] = check_and_map_params( self_attn.value.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) __A : Optional[int] = check_and_map_params( self_attn.value.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output __A : BertSelfOutput = layer.attention.output __A : Tuple = check_and_map_params( self_output.dense.bias , F"""encoder.transformer_cells.{i}.proj.bias""" ) __A : int = check_and_map_params( self_output.dense.weight , F"""encoder.transformer_cells.{i}.proj.weight""" ) __A : List[Any] = check_and_map_params( self_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.layer_norm.beta""" ) __A : str = check_and_map_params( self_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate __A : BertIntermediate = layer.intermediate __A : int = check_and_map_params( intermediate.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) __A : List[Any] = check_and_map_params( intermediate.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output __A : BertOutput = layer.output __A : List[Any] = check_and_map_params( bert_output.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) __A : Dict = check_and_map_params( bert_output.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) __A : Optional[int] = check_and_map_params( bert_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) __A : Dict = check_and_map_params( bert_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __A : Any = RobertaTokenizer.from_pretrained('roberta-base' ) __A : List[str] = tokenizer.encode_plus(a )['input_ids'] # Get gluon output __A : List[str] = mx.nd.array([input_ids] ) __A : Union[str, Any] = original_bort(inputs=a , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(a ) __A : Optional[Any] = BertModel.from_pretrained(a ) hf_bort_model.eval() __A : Tuple = tokenizer.encode_plus(a , return_tensors='pt' ) __A : Any = hf_bort_model(**a )[0] __A : Union[str, Any] = output_gluon[0].asnumpy() __A : Tuple = output_hf[0].detach().numpy() __A : int = np.max(np.abs(hf_layer - gluon_layer ) ).item() __A : int = np.allclose(a , a , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , a ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase : Dict = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
280
0
"""simple docstring""" import warnings from functools import wraps from typing import Callable def lowercase_ ( __UpperCAmelCase ) -> Callable: """simple docstring""" @wraps(lowercase__ ) def _inner_fn(*__UpperCAmelCase , **__UpperCAmelCase ): warnings.warn( (f"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , lowercase__ , ) return fn(*lowercase__ , **lowercase__ ) return _inner_fn
351
"""simple docstring""" def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: return "\n".join( f"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
212
0
from math import factorial def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('Please enter positive integers for n and k where n >= k' ) return factorial(SCREAMING_SNAKE_CASE ) // (factorial(SCREAMING_SNAKE_CASE ) * factorial(n - k )) if __name__ == "__main__": print( """The number of five-card hands possible from a standard""", F'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( """If a class of 40 students must be arranged into groups of""", F'''4 for group projects, there are {combinations(40, 4)} ways''', """to arrange them.\n""", ) print( """If 10 teams are competing in a Formula One race, there""", F'''are {combinations(10, 3)} ways that first, second and''', """third place can be awarded.""", )
325
import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict: __lowercase = factor * value __lowercase = value while not is_prime(SCREAMING_SNAKE_CASE ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE ) return value
325
1
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase : int = IFInpaintingSuperResolutionPipeline lowerCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} lowerCAmelCase : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) lowerCAmelCase : int = PipelineTesterMixin.required_optional_params - {"""latents"""} def __A ( self ): return self._get_superresolution_dummy_components() def __A ( self , UpperCAmelCase__ , UpperCAmelCase__=0 ): if str(UpperCAmelCase__ ).startswith("mps" ): A__ = torch.manual_seed(UpperCAmelCase__ ) else: A__ = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) A__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) A__ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __A ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __A ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __A ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __A ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __A ( self ): self._test_save_load_local() def __A ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
198
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase : List[str] = """linear""" lowerCAmelCase : int = """cosine""" lowerCAmelCase : Dict = """cosine_with_restarts""" lowerCAmelCase : Optional[Any] = """polynomial""" lowerCAmelCase : Dict = """constant""" lowerCAmelCase : Any = """constant_with_warmup""" lowerCAmelCase : Union[str, Any] = """piecewise_constant""" def UpperCamelCase ( _A : Optimizer , _A : int = -1 )-> Dict: """simple docstring""" return LambdaLR(_A , lambda _A : 1 , last_epoch=_A ) def UpperCamelCase ( _A : Optimizer , _A : int , _A : int = -1 )-> Optional[Any]: """simple docstring""" def lr_lambda(_A : int ): if current_step < num_warmup_steps: return float(_A ) / float(max(1.0 , _A ) ) return 1.0 return LambdaLR(_A , _A , last_epoch=_A ) def UpperCamelCase ( _A : Optimizer , _A : str , _A : int = -1 )-> Dict: """simple docstring""" A__ = {} A__ = step_rules.split("," ) for rule_str in rule_list[:-1]: A__ , A__ = rule_str.split(":" ) A__ = int(_A ) A__ = float(_A ) A__ = value A__ = float(rule_list[-1] ) def create_rules_function(_A : Any , _A : Optional[int] ): def rule_func(_A : int ) -> float: A__ = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_A ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ = create_rules_function(_A , _A ) return LambdaLR(_A , _A , last_epoch=_A ) def UpperCamelCase ( _A : Any , _A : Union[str, Any] , _A : str , _A : str=-1 )-> Tuple: """simple docstring""" def lr_lambda(_A : int ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_A , _A , _A ) def UpperCamelCase ( _A : Optimizer , _A : int , _A : int , _A : float = 0.5 , _A : int = -1 )-> Any: """simple docstring""" def lr_lambda(_A : Tuple ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) A__ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_A ) * 2.0 * progress )) ) return LambdaLR(_A , _A , _A ) def UpperCamelCase ( _A : Optimizer , _A : int , _A : int , _A : int = 1 , _A : int = -1 )-> Any: """simple docstring""" def lr_lambda(_A : Tuple ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) A__ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_A ) * progress) % 1.0) )) ) return LambdaLR(_A , _A , _A ) def UpperCamelCase ( _A : Union[str, Any] , _A : Union[str, Any] , _A : List[str] , _A : Tuple=1E-7 , _A : Dict=1.0 , _A : Union[str, Any]=-1 )-> Any: """simple docstring""" A__ = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(_A : int ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ = lr_init - lr_end A__ = num_training_steps - num_warmup_steps A__ = 1 - (current_step - num_warmup_steps) / decay_steps A__ = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_A , _A , _A ) UpperCAmelCase_ : Any = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def UpperCamelCase ( _A : Union[str, SchedulerType] , _A : Optimizer , _A : Optional[str] = None , _A : Optional[int] = None , _A : Optional[int] = None , _A : int = 1 , _A : float = 1.0 , _A : int = -1 , )-> Union[str, Any]: """simple docstring""" A__ = SchedulerType(_A ) A__ = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_A , last_epoch=_A ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_A , step_rules=_A , last_epoch=_A ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_A , num_warmup_steps=_A , last_epoch=_A ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _A , num_warmup_steps=_A , num_training_steps=_A , num_cycles=_A , last_epoch=_A , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _A , num_warmup_steps=_A , num_training_steps=_A , power=_A , last_epoch=_A , ) return schedule_func( _A , num_warmup_steps=_A , num_training_steps=_A , last_epoch=_A )
198
1
'''simple docstring''' from math import factorial def lowerCAmelCase (__A = 100): """simple docstring""" return sum(int(lowercase__) for x in str(factorial(lowercase__))) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
211
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Any ={'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =[ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
0
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = MODEL_FOR_MASKED_LM_MAPPING lowerCAmelCase_ : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def lowercase__ ( self : List[str] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowercase__ ( self : Tuple ): lowerCAmelCase : Tuple = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) lowerCAmelCase : List[str] = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1E-05, 'token': 38015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1E-05, 'token': 25506, 'token_str': ' accuser'}, ] , ) lowerCAmelCase : int = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1E-05, 'token': 38015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1E-05, 'token': 25506, 'token_str': ' accuser', }, ] , ) lowerCAmelCase : int = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2E-05, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2E-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9E-05, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def lowercase__ ( self : Optional[int] ): lowerCAmelCase : str = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) lowerCAmelCase : List[Any] = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2E-05, 'token': 35676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2E-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) lowerCAmelCase : Union[str, Any] = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2E-05, 'token': 35676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2E-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) lowerCAmelCase : str = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1E-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2E-05, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2E-05, 'token': 13606, 'token_str': ' Clara'}, ] , ) lowerCAmelCase : List[Any] = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ [ { 'score': 2.2E-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2E-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2E-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2E-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def lowercase__ ( self : Any ): lowerCAmelCase : str = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() lowerCAmelCase : Any = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_lowercase , _lowercase ) @slow @require_torch def lowercase__ ( self : int ): lowerCAmelCase : Optional[int] = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(_lowercase ) @slow @require_tf def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(_lowercase ) def lowercase__ ( self : Dict , UpperCAmelCase_ : str ): lowerCAmelCase : int = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_lowercase ) , [ {'sequence': 'My name is John', 'score': 0.0_08, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.0_07, 'token': 1573, 'token_str': ' Chris'}, ] , ) lowerCAmelCase : Union[str, Any] = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_lowercase ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.2_51, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.2_14, 'token': 12790, 'token_str': ' Lyon', }, ] , ) lowerCAmelCase : List[str] = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase ) , [ {'sequence': 'My name is Patrick', 'score': 0.0_05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.0_00, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.0_00, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def lowercase__ ( self : List[Any] ): lowerCAmelCase : str = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) lowerCAmelCase : Tuple = None lowerCAmelCase : Union[str, Any] = None self.run_pipeline_test(_lowercase , [] ) @require_tf def lowercase__ ( self : str ): lowerCAmelCase : Optional[int] = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) lowerCAmelCase : Any = None lowerCAmelCase : str = None self.run_pipeline_test(_lowercase , [] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) lowerCAmelCase : Optional[int] = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) lowerCAmelCase : Dict = [ f"This is another {tokenizer.mask_token} test", ] return fill_masker, examples def lowercase__ ( self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple ): lowerCAmelCase : str = fill_masker.tokenizer lowerCAmelCase : Optional[Any] = fill_masker.model lowerCAmelCase : List[Any] = fill_masker( f"This is a {tokenizer.mask_token}" , ) self.assertEqual( _lowercase , [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ] , ) lowerCAmelCase : List[Any] = fill_masker([f"This is a {tokenizer.mask_token}"] ) self.assertEqual( _lowercase , [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ] , ) lowerCAmelCase : Dict = fill_masker([f"This is a {tokenizer.mask_token}", f"Another {tokenizer.mask_token} great test."] ) self.assertEqual( _lowercase , [ [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ], [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ], ] , ) with self.assertRaises(_lowercase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_lowercase ): fill_masker('This is' ) self.run_test_top_k(_lowercase , _lowercase ) self.run_test_targets(_lowercase , _lowercase ) self.run_test_top_k_targets(_lowercase , _lowercase ) self.fill_mask_with_duplicate_targets_and_top_k(_lowercase , _lowercase ) self.fill_mask_with_multiple_masks(_lowercase , _lowercase ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] ): lowerCAmelCase : Union[str, Any] = tokenizer.get_vocab() lowerCAmelCase : Union[str, Any] = sorted(vocab.keys() )[:2] # Pipeline argument lowerCAmelCase : Dict = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase , targets=_lowercase ) lowerCAmelCase : Union[str, Any] = fill_masker(f"This is a {tokenizer.mask_token}" ) self.assertEqual( _lowercase , [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ] , ) lowerCAmelCase : Optional[int] = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _lowercase ) lowerCAmelCase : Tuple = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_lowercase ) ) # Call argument lowerCAmelCase : Optional[int] = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) lowerCAmelCase : int = fill_masker(f"This is a {tokenizer.mask_token}" , targets=_lowercase ) self.assertEqual( _lowercase , [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ] , ) lowerCAmelCase : Tuple = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _lowercase ) lowerCAmelCase : str = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_lowercase ) ) # Score equivalence lowerCAmelCase : Tuple = fill_masker(f"This is a {tokenizer.mask_token}" , targets=_lowercase ) lowerCAmelCase : Dict = [top_mask['token_str'] for top_mask in outputs] lowerCAmelCase : List[Any] = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowercase ) == set(_lowercase ): lowerCAmelCase : List[Any] = fill_masker(f"This is a {tokenizer.mask_token}" , targets=_lowercase ) lowerCAmelCase : str = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) # Raises with invalid with self.assertRaises(_lowercase ): lowerCAmelCase : Optional[int] = fill_masker(f"This is a {tokenizer.mask_token}" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_lowercase ): lowerCAmelCase : Any = fill_masker(f"This is a {tokenizer.mask_token}" , targets=[''] ) with self.assertRaises(_lowercase ): lowerCAmelCase : List[str] = fill_masker(f"This is a {tokenizer.mask_token}" , targets='' ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : List[str] = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase , top_k=2 ) lowerCAmelCase : List[Any] = fill_masker(f"This is a {tokenizer.mask_token}" ) self.assertEqual( _lowercase , [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ] , ) lowerCAmelCase : List[str] = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) lowerCAmelCase : Dict = fill_masker(f"This is a {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( _lowercase , [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ] , ) self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple ): lowerCAmelCase : Tuple = tokenizer.get_vocab() lowerCAmelCase : int = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) # top_k=2, ntargets=3 lowerCAmelCase : Tuple = sorted(vocab.keys() )[:3] lowerCAmelCase : Any = fill_masker(f"This is a {tokenizer.mask_token}" , top_k=2 , targets=_lowercase ) # If we use the most probably targets, and filter differently, we should still # have the same results lowerCAmelCase : List[str] = [el['token_str'] for el in sorted(_lowercase , key=lambda UpperCAmelCase_ : x["score"] , reverse=_lowercase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowercase ).issubset(_lowercase ): lowerCAmelCase : int = fill_masker(f"This is a {tokenizer.mask_token}" , top_k=3 , targets=_lowercase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : List[Any] = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) lowerCAmelCase : Tuple = tokenizer.get_vocab() # String duplicates + id duplicates lowerCAmelCase : Union[str, Any] = sorted(vocab.keys() )[:3] lowerCAmelCase : Tuple = [targets[0], targets[1], targets[0], targets[2], targets[1]] lowerCAmelCase : Optional[int] = fill_masker(f"My name is {tokenizer.mask_token}" , targets=_lowercase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_lowercase ) , 3 ) def lowercase__ ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) lowerCAmelCase : int = fill_masker( f"This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( _lowercase , [ [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ], [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ], [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ], ] , )
370
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
0
from __future__ import annotations from math import pow, sqrt def a__ ( UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> Tuple: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(UpperCAmelCase , 2 ) - pow(UpperCAmelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(UpperCAmelCase , 2 ) - pow(UpperCAmelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(UpperCAmelCase , 2 ) + pow(UpperCAmelCase , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
336
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __lowerCAmelCase = set() return any( node not in visited and depth_first_search(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) for node in graph) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): visited.add(lowerCamelCase) rec_stk.add(lowerCamelCase) for node in graph[vertex]: if node not in visited: if depth_first_search(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowerCamelCase) return False if __name__ == "__main__": from doctest import testmod testmod()
174
0
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __UpperCamelCase = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __UpperCamelCase = [0, 25, 50] __UpperCamelCase = [25, 50, 75] __UpperCamelCase = fuzz.membership.trimf(X, abca) __UpperCamelCase = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __UpperCamelCase = np.ones(75) __UpperCamelCase = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __UpperCamelCase = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __UpperCamelCase = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __UpperCamelCase = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __UpperCamelCase = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __UpperCamelCase = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __UpperCamelCase = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __UpperCamelCase = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __UpperCamelCase = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
38
"""simple docstring""" import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowercase (SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]: return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int]="attention" ) -> List[Any]: SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) SCREAMING_SNAKE_CASE = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) SCREAMING_SNAKE_CASE = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) SCREAMING_SNAKE_CASE = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) SCREAMING_SNAKE_CASE = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def lowercase (SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any=False ) -> List[Any]: if split_mlp_wi: SCREAMING_SNAKE_CASE = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] SCREAMING_SNAKE_CASE = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] SCREAMING_SNAKE_CASE = (wi_a, wi_a) else: SCREAMING_SNAKE_CASE = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] SCREAMING_SNAKE_CASE = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Union[str, Any]: return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def lowercase (SCREAMING_SNAKE_CASE_ : dict , *, SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : bool , SCREAMING_SNAKE_CASE_ : bool = False ) -> Tuple: SCREAMING_SNAKE_CASE = traverse_util.flatten_dict(variables['target'] ) SCREAMING_SNAKE_CASE = {'/'.join(SCREAMING_SNAKE_CASE_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi SCREAMING_SNAKE_CASE = 'encoder/encoder/mlp/wi_0/kernel' in old print('Split MLP:' , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = collections.OrderedDict() # Shared embeddings. SCREAMING_SNAKE_CASE = old['token_embedder/embedding'] # Encoder. for i in range(SCREAMING_SNAKE_CASE_ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'encoder' , 'pre_attention_layer_norm' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = tax_attention_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'encoder' , 'attention' ) SCREAMING_SNAKE_CASE = layer_norm SCREAMING_SNAKE_CASE = k.T SCREAMING_SNAKE_CASE = o.T SCREAMING_SNAKE_CASE = q.T SCREAMING_SNAKE_CASE = v.T # Block i, layer 1 (MLP). SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'encoder' , 'pre_mlp_layer_norm' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = tax_mlp_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'encoder' , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE = wi[0].T SCREAMING_SNAKE_CASE = wi[1].T else: SCREAMING_SNAKE_CASE = wi.T SCREAMING_SNAKE_CASE = wo.T if scalable_attention: # convert the rel_embedding of each layer SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'encoder' ).T SCREAMING_SNAKE_CASE = old['encoder/encoder_norm/scale'] if not scalable_attention: SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE_ , 0 , 'encoder' ).T SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE_ , 0 , 'decoder' ).T if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE_ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'decoder' , 'pre_self_attention_layer_norm' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = tax_attention_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'decoder' , 'self_attention' ) SCREAMING_SNAKE_CASE = layer_norm SCREAMING_SNAKE_CASE = k.T SCREAMING_SNAKE_CASE = o.T SCREAMING_SNAKE_CASE = q.T SCREAMING_SNAKE_CASE = v.T # Block i, layer 1 (Cross Attention). SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'decoder' , 'pre_cross_attention_layer_norm' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = tax_attention_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'decoder' , 'encoder_decoder_attention' ) SCREAMING_SNAKE_CASE = layer_norm SCREAMING_SNAKE_CASE = k.T SCREAMING_SNAKE_CASE = o.T SCREAMING_SNAKE_CASE = q.T SCREAMING_SNAKE_CASE = v.T # Block i, layer 2 (MLP). SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'decoder' , 'pre_mlp_layer_norm' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = tax_mlp_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'decoder' , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE = wi[0].T SCREAMING_SNAKE_CASE = wi[1].T else: SCREAMING_SNAKE_CASE = wi.T SCREAMING_SNAKE_CASE = wo.T if scalable_attention: # convert the rel_embedding of each layer SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'decoder' ).T SCREAMING_SNAKE_CASE = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: SCREAMING_SNAKE_CASE = old['decoder/logits_dense/kernel'].T return new def lowercase (SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : bool ) -> int: SCREAMING_SNAKE_CASE = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) SCREAMING_SNAKE_CASE = state_dict['shared.weight'] return state_dict def lowercase (SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = convert_tax_to_pytorch( SCREAMING_SNAKE_CASE_ , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE_ , scalable_attention=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = make_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) def lowercase (SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , ) -> Any: SCREAMING_SNAKE_CASE = MTaConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: SCREAMING_SNAKE_CASE = UMTaEncoderModel(SCREAMING_SNAKE_CASE_ ) else: SCREAMING_SNAKE_CASE = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE_ ) print('Done' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) __UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
38
1
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowerCamelCase__ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Any: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: return max(metric_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for gt in ground_truths ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : str = [line.strip() for line in open(SCREAMING_SNAKE_CASE_ , 'r' ).readlines()] lowerCAmelCase__ : Union[str, Any] = [] if args.gold_data_mode == "qa": lowerCAmelCase__ : str = pd.read_csv(SCREAMING_SNAKE_CASE_ , sep='\t' , header=SCREAMING_SNAKE_CASE_ ) for answer_list in data[1]: lowerCAmelCase__ : Any = ast.literal_eval(SCREAMING_SNAKE_CASE_ ) answers.append(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Any = [line.strip() for line in open(SCREAMING_SNAKE_CASE_ , 'r' ).readlines()] lowerCAmelCase__ : Any = [[reference] for reference in references] lowerCAmelCase__ : Union[str, Any] = 0 for prediction, ground_truths in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): total += 1 em += metric_max_over_ground_truths(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) fa += metric_max_over_ground_truths(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = 100.0 * em / total lowerCAmelCase__ : Any = 100.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: lowerCAmelCase__ : str = args.k lowerCAmelCase__ : Tuple = [line.strip() for line in open(SCREAMING_SNAKE_CASE_ , 'r' ).readlines()] lowerCAmelCase__ : Optional[int] = [line.strip() for line in open(SCREAMING_SNAKE_CASE_ , 'r' ).readlines()] lowerCAmelCase__ : str = 0 for hypo, reference in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Optional[Any] = set(hypo.split('\t' )[:k] ) lowerCAmelCase__ : Tuple = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k lowerCAmelCase__ : Any = 100.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: def strip_title(SCREAMING_SNAKE_CASE_ ): if title.startswith('"' ): lowerCAmelCase__ : Union[str, Any] = title[1:] if title.endswith('"' ): lowerCAmelCase__ : int = title[:-1] return title lowerCAmelCase__ : Union[str, Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( SCREAMING_SNAKE_CASE_ , return_tensors='pt' , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , )['input_ids'].to(args.device ) lowerCAmelCase__ : Optional[int] = rag_model.rag.question_encoder(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[Any] = question_enc_outputs[0] lowerCAmelCase__ : Union[str, Any] = rag_model.retriever( SCREAMING_SNAKE_CASE_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) lowerCAmelCase__ : Dict = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) lowerCAmelCase__ : List[str] = [] for docs in all_docs: lowerCAmelCase__ : Any = [strip_title(SCREAMING_SNAKE_CASE_ ) for title in docs['title']] provenance_strings.append('\t'.join(SCREAMING_SNAKE_CASE_ ) ) return provenance_strings def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: with torch.no_grad(): lowerCAmelCase__ : List[str] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( SCREAMING_SNAKE_CASE_ , return_tensors='pt' , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : int = inputs_dict.input_ids.to(args.device ) lowerCAmelCase__ : Union[str, Any] = inputs_dict.attention_mask.to(args.device ) lowerCAmelCase__ : int = rag_model.generate( # rag_model overwrites generate SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=SCREAMING_SNAKE_CASE_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) lowerCAmelCase__ : int = rag_model.retriever.generator_tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) if args.print_predictions: for q, a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): logger.info('Q: {} - A: {}'.format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) return answers def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=SCREAMING_SNAKE_CASE_ , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=SCREAMING_SNAKE_CASE_ , choices=['exact', 'compressed', 'legacy'] , type=SCREAMING_SNAKE_CASE_ , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=SCREAMING_SNAKE_CASE_ , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=SCREAMING_SNAKE_CASE_ , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=SCREAMING_SNAKE_CASE_ , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=SCREAMING_SNAKE_CASE_ , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=SCREAMING_SNAKE_CASE_ , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=SCREAMING_SNAKE_CASE_ , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=SCREAMING_SNAKE_CASE_ , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=SCREAMING_SNAKE_CASE_ , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=50 , type=SCREAMING_SNAKE_CASE_ , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) lowerCAmelCase__ : Union[str, Any] = parser.parse_args() lowerCAmelCase__ : List[Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Dict: lowerCAmelCase__ : int = {} if args.model_type is None: lowerCAmelCase__ : Any = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): lowerCAmelCase__ : List[str] = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration lowerCAmelCase__ : Any = args.n_docs if args.index_name is not None: lowerCAmelCase__ : Tuple = args.index_name if args.index_path is not None: lowerCAmelCase__ : Tuple = args.index_path else: lowerCAmelCase__ : Tuple = BartForConditionalGeneration lowerCAmelCase__ : int = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = get_scores if args.eval_mode == 'e2e' else get_precision_at_k lowerCAmelCase__ : Any = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(SCREAMING_SNAKE_CASE_ , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(SCREAMING_SNAKE_CASE_ ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): lowerCAmelCase__ : Any = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , retriever=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) model.retriever.init_retrieval() else: lowerCAmelCase__ : int = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: lowerCAmelCase__ : Any = [] for line in tqdm(SCREAMING_SNAKE_CASE_ ): questions.append(line.strip() ) if len(SCREAMING_SNAKE_CASE_ ) == args.eval_batch_size: lowerCAmelCase__ : Tuple = evaluate_batch_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) preds_file.write('\n'.join(SCREAMING_SNAKE_CASE_ ) + '\n' ) preds_file.flush() lowerCAmelCase__ : Dict = [] if len(SCREAMING_SNAKE_CASE_ ) > 0: lowerCAmelCase__ : List[str] = evaluate_batch_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) preds_file.write('\n'.join(SCREAMING_SNAKE_CASE_ ) ) preds_file.flush() score_fn(SCREAMING_SNAKE_CASE_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowerCamelCase__ = get_args() main(args)
212
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : str , a : Optional[Any] , a : int=13 , a : str=7 , a : str=True , a : List[str]=True , a : Optional[Any]=True , a : int=True , a : List[Any]=99 , a : List[Any]=32 , a : Tuple=5 , a : Any=4 , a : Optional[int]=37 , a : Tuple="gelu" , a : Any=0.1 , a : int=0.1 , a : List[Any]=128 , a : Union[str, Any]=32 , a : Union[str, Any]=16 , a : Dict=2 , a : List[Any]=0.0_2 , a : Optional[Any]=3 , a : List[Any]=4 , a : Optional[int]=None , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = parent lowerCAmelCase__ : Dict = batch_size lowerCAmelCase__ : Optional[Any] = seq_length lowerCAmelCase__ : Optional[Any] = is_training lowerCAmelCase__ : Union[str, Any] = use_input_mask lowerCAmelCase__ : List[Any] = use_token_type_ids lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Optional[Any] = vocab_size lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : Optional[int] = num_attention_heads lowerCAmelCase__ : List[Any] = intermediate_size lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : Any = type_vocab_size lowerCAmelCase__ : Any = type_sequence_label_size lowerCAmelCase__ : List[Any] = initializer_range lowerCAmelCase__ : Dict = num_labels lowerCAmelCase__ : Any = num_choices lowerCAmelCase__ : Union[str, Any] = scope def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Tuple = None if self.use_input_mask: lowerCAmelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : Tuple = None if self.use_token_type_ids: lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Optional[int] = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCamelCase ( self : Optional[Any] , a : Optional[int] , a : Tuple , a : Optional[int] , a : List[Any] , a : Tuple , a : List[str] , a : Any ): '''simple docstring''' lowerCAmelCase__ : List[str] = NezhaModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a , token_type_ids=a ) lowerCAmelCase__ : List[str] = model(a , token_type_ids=a ) lowerCAmelCase__ : Any = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self : List[Any] , a : Union[str, Any] , a : Dict , a : List[Any] , a : Optional[Any] , a : int , a : Tuple , a : List[Any] , a : Tuple , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Optional[int] = NezhaModel(a ) model.to(a ) model.eval() lowerCAmelCase__ : Any = model( a , attention_mask=a , token_type_ids=a , encoder_hidden_states=a , encoder_attention_mask=a , ) lowerCAmelCase__ : Dict = model( a , attention_mask=a , token_type_ids=a , encoder_hidden_states=a , ) lowerCAmelCase__ : List[str] = model(a , attention_mask=a , token_type_ids=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self : Tuple , a : Optional[Any] , a : List[Any] , a : str , a : List[str] , a : Tuple , a : List[Any] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = NezhaForMaskedLM(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : List[Any] , a : Optional[int] , a : List[Any] , a : int , a : List[str] , a : Union[str, Any] , a : int , a : Any ): '''simple docstring''' lowerCAmelCase__ : List[Any] = NezhaForNextSentencePrediction(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : str = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self : int , a : Optional[int] , a : str , a : List[str] , a : int , a : Dict , a : Optional[Any] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = NezhaForPreTraining(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[int] = model( a , attention_mask=a , token_type_ids=a , labels=a , next_sentence_label=a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self : Union[str, Any] , a : Dict , a : List[str] , a : Any , a : Any , a : Union[str, Any] , a : Tuple , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = NezhaForQuestionAnswering(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Tuple = model( a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Tuple , a : str , a : Union[str, Any] , a : Tuple , a : Optional[Any] , a : Dict , a : str , a : int ): '''simple docstring''' lowerCAmelCase__ : Any = self.num_labels lowerCAmelCase__ : Optional[Any] = NezhaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Tuple = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : List[str] , a : Dict , a : str , a : Optional[Any] , a : Optional[int] , a : List[str] , a : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : Dict = self.num_labels lowerCAmelCase__ : str = NezhaForTokenClassification(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Any = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : int , a : Tuple , a : List[Any] , a : Tuple , a : List[Any] , a : Optional[int] , a : Optional[int] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.num_choices lowerCAmelCase__ : Any = NezhaForMultipleChoice(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Any = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = config_and_inputs lowerCAmelCase__ : str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) lowercase = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) lowercase = True def _lowerCamelCase ( self : str , a : Tuple , a : int , a : Dict=False ): '''simple docstring''' lowerCAmelCase__ : int = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class in get_values(a ): lowerCAmelCase__ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a ) lowerCAmelCase__ : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = NezhaModelTester(self ) lowerCAmelCase__ : Optional[int] = ConfigTester(self , config_class=a , hidden_size=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*a ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCAmelCase__ : str = None self.model_tester.create_and_check_model_as_decoder( a , a , a , a , a , a , a , a , a , ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Optional[Any] = NezhaModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowerCAmelCase__ : Dict = True lowerCAmelCase__ : Any = model_class(config=a ) lowerCAmelCase__ : Union[str, Any] = self._prepare_for_class(a , a ) lowerCAmelCase__ : int = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'bert.pt' ) ) lowerCAmelCase__ : Any = torch.jit.load(os.path.join(a , 'bert.pt' ) , map_location=a ) loaded(inputs_dict['input_ids'].to(a ) , inputs_dict['attention_mask'].to(a ) ) @require_torch class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : str = NezhaModel.from_pretrained('sijunhe/nezha-cn-base' ) lowerCAmelCase__ : Any = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(a , attention_mask=a )[0] lowerCAmelCase__ : Union[str, Any] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , a ) lowerCAmelCase__ : Optional[int] = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1E-4 ) ) @slow def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = NezhaForMaskedLM.from_pretrained('sijunhe/nezha-cn-base' ) lowerCAmelCase__ : Optional[int] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase__ : Optional[int] = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(a , attention_mask=a )[0] lowerCAmelCase__ : int = torch.Size((1, 6, 21_128) ) self.assertEqual(output.shape , a ) lowerCAmelCase__ : List[Any] = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1E-4 ) )
212
1
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : str = RobertaPreLayerNormConfig.from_pretrained( A_ , architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict lowerCAmelCase : Dict = torch.load(hf_hub_download(repo_id=A_ , filename="pytorch_model.bin" ) ) lowerCAmelCase : Union[str, Any] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): lowerCAmelCase : int = '''roberta_prelayernorm.''' + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue lowerCAmelCase : Any = tensor_value lowerCAmelCase : List[Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=A_ , config=A_ , state_dict=A_ ) model.save_pretrained(A_ ) # convert tokenizer lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(A_ ) tokenizer.save_pretrained(A_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
358
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[int] =(DEISMultistepScheduler,) a : str =(("num_inference_steps", 25),) def lowercase__ ( self , **snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, } config.update(**snake_case__ ) return config def lowercase__ ( self , snake_case__=0 , **snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = dict(self.forward_default_kwargs ) lowerCAmelCase : List[str] = kwargs.pop("num_inference_steps" , snake_case__ ) lowerCAmelCase : List[str] = self.dummy_sample lowerCAmelCase : int = 0.1 * sample lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase : Any = self.get_scheduler_config(**snake_case__ ) lowerCAmelCase : List[str] = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals lowerCAmelCase : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) lowerCAmelCase : List[str] = scheduler_class.from_pretrained(snake_case__ ) new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals lowerCAmelCase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase , lowerCAmelCase : Union[str, Any] = sample, sample for t in range(snake_case__ , time_step + scheduler.config.solver_order + 1 ): lowerCAmelCase : Any = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCAmelCase : str = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self , snake_case__=0 , **snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = dict(self.forward_default_kwargs ) lowerCAmelCase : List[str] = kwargs.pop("num_inference_steps" , snake_case__ ) lowerCAmelCase : List[str] = self.dummy_sample lowerCAmelCase : Optional[int] = 0.1 * sample lowerCAmelCase : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase : int = self.get_scheduler_config() lowerCAmelCase : Any = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) lowerCAmelCase : Any = scheduler_class.from_pretrained(snake_case__ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase : Union[str, Any] = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCAmelCase : int = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self , snake_case__=None , **snake_case__ ): """simple docstring""" if scheduler is None: lowerCAmelCase : List[str] = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config(**snake_case__ ) lowerCAmelCase : Any = scheduler_class(**snake_case__ ) lowerCAmelCase : List[str] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config(**snake_case__ ) lowerCAmelCase : List[str] = scheduler_class(**snake_case__ ) lowerCAmelCase : int = 10 lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase : Any = model(snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample return sample def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = dict(self.forward_default_kwargs ) lowerCAmelCase : Optional[Any] = kwargs.pop("num_inference_steps" , snake_case__ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : List[Any] = scheduler_class(**snake_case__ ) lowerCAmelCase : int = self.dummy_sample lowerCAmelCase : int = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case__ , "set_timesteps" ): scheduler.set_timesteps(snake_case__ ) elif num_inference_steps is not None and not hasattr(snake_case__ , "set_timesteps" ): lowerCAmelCase : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase : int = [residual + 0.2, residual + 0.15, residual + 0.10] lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] lowerCAmelCase : int = scheduler.timesteps[5] lowerCAmelCase : str = scheduler.timesteps[6] lowerCAmelCase : str = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCAmelCase : Union[str, Any] = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = DEISMultistepScheduler(**self.get_scheduler_config() ) lowerCAmelCase : Dict = self.full_loop(scheduler=snake_case__ ) lowerCAmelCase : Optional[Any] = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 lowerCAmelCase : List[str] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCAmelCase : Any = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase : str = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase : Union[str, Any] = DEISMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=snake_case__ ) lowerCAmelCase : str = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.check_over_configs(thresholding=snake_case__ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=snake_case__ , prediction_type=snake_case__ , sample_max_value=snake_case__ , algorithm_type="deis" , solver_order=snake_case__ , solver_type=snake_case__ , ) def lowercase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def lowercase__ ( self ): """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=snake_case__ , solver_type=snake_case__ , prediction_type=snake_case__ , algorithm_type=snake_case__ , ) lowerCAmelCase : Any = self.full_loop( solver_order=snake_case__ , solver_type=snake_case__ , prediction_type=snake_case__ , algorithm_type=snake_case__ , ) assert not torch.isnan(snake_case__ ).any(), "Samples have nan numbers" def lowercase__ ( self ): """simple docstring""" self.check_over_configs(lower_order_final=snake_case__ ) self.check_over_configs(lower_order_final=snake_case__ ) def lowercase__ ( self ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=snake_case__ , time_step=0 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.full_loop() lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.full_loop(prediction_type="v_prediction" ) lowerCAmelCase : List[Any] = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : str = self.get_scheduler_config(thresholding=snake_case__ , dynamic_thresholding_ratio=0 ) lowerCAmelCase : Optional[Any] = scheduler_class(**snake_case__ ) lowerCAmelCase : Optional[Any] = 10 lowerCAmelCase : Tuple = self.dummy_model() lowerCAmelCase : List[str] = self.dummy_sample_deter.half() scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase : Union[str, Any] = model(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample assert sample.dtype == torch.floataa
133
0
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = CTRLTokenizer SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : Optional[Any] = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__ : str = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowercase__ : Tuple = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__ : Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[str]: lowercase__ : List[str] = '''adapt react readapt apt''' lowercase__ : Union[str, Any] = '''adapt react readapt apt''' return input_text, output_text def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Union[str, Any] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ : Optional[Any] = '''adapt react readapt apt''' lowercase__ : Dict = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__ : Union[str, Any] = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : int = tokens + [tokenizer.unk_token] lowercase__ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase )
198
'''simple docstring''' from math import pow def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count lowercase__ : Optional[Any] = int(pow(UpperCAmelCase , UpperCAmelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n lowercase__ , lowercase__ : Dict = backtrack( UpperCAmelCase , UpperCAmelCase , current_number + 1 , UpperCAmelCase , UpperCAmelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. lowercase__ , lowercase__ : str = backtrack( UpperCAmelCase , UpperCAmelCase , current_number + 1 , UpperCAmelCase , UpperCAmelCase ) return current_sum, solutions_count def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(UpperCAmelCase , UpperCAmelCase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
198
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class _snake_case ( lowercase_ ): lowerCAmelCase_ : Union[str, Any] = "mgp-str" def __init__( self , a__=[32, 128] , a__=4 , a__=3 , a__=27 , a__=38 , a__=50_257 , a__=30_522 , a__=768 , a__=12 , a__=12 , a__=4.0 , a__=True , a__=False , a__=1e-5 , a__=0.0 , a__=0.0 , a__=0.0 , a__=False , a__=0.0_2 , **a__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**a__ ) snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = max_token_length snake_case_ = num_character_labels snake_case_ = num_bpe_labels snake_case_ = num_wordpiece_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = mlp_ratio snake_case_ = distilled snake_case_ = layer_norm_eps snake_case_ = drop_rate snake_case_ = qkv_bias snake_case_ = attn_drop_rate snake_case_ = drop_path_rate snake_case_ = output_aa_attentions snake_case_ = initializer_range
92
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _snake_case ( unittest.TestCase , lowercase_ ): def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = load_tool("text-classification" ) self.tool.setup() snake_case_ = load_tool("text-classification" , remote=a__ ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(a__ , "positive" ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(a__ , "positive" ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(a__ , "positive" ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(a__ , "positive" )
92
1
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ = 10**9 ): __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
100
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__ : def __init__( self , lowerCAmelCase__ = None ) -> None: if components is None: __magic_name__ : Any = [] __magic_name__ : List[str] = list(lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : Dict = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : int = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... @overload def __mul__( self , lowerCAmelCase__ ) -> float: ... def __mul__( self , lowerCAmelCase__ ) -> float | Vector: if isinstance(lowerCAmelCase__ , (float, int) ): __magic_name__ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): __magic_name__ : Optional[Any] = len(self ) __magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __magic_name__ ( self ) -> Vector: return Vector(self.__components ) def __magic_name__ ( self , lowerCAmelCase__ ) -> float: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ : Optional[int] = value def __magic_name__ ( self ) -> float: if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __magic_name__ : Dict = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: __magic_name__ : Optional[Any] = self * other __magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase ( _A ): """simple docstring""" assert isinstance(_A, _A ) return Vector([0] * dimension ) def UpperCamelCase ( _A, _A ): """simple docstring""" assert isinstance(_A, _A ) and (isinstance(_A, _A )) __magic_name__ : Union[str, Any] = [0] * dimension __magic_name__ : Optional[int] = 1 return Vector(_A ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" assert ( isinstance(_A, _A ) and isinstance(_A, _A ) and (isinstance(_A, (int, float) )) ) return x * scalar + y def UpperCamelCase ( _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )] return Vector(_A ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Dict = matrix __magic_name__ : Tuple = w __magic_name__ : Union[str, Any] = h def __str__( self ) -> str: __magic_name__ : Dict = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Tuple = [] for i in range(self.__height ): __magic_name__ : Tuple = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Optional[Any] = [] for i in range(self.__height ): __magic_name__ : int = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Matrix: ... @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: __magic_name__ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ : Optional[int] = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar __magic_name__ : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def __magic_name__ ( self ) -> int: return self.__height def __magic_name__ ( self ) -> int: return self.__width def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): __magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __magic_name__ ( self ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )] return Matrix(_A, _A, _A ) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : list[list[float]] = [ [random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A ) ] return Matrix(_A, _A, _A )
342
0
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean lowercase_ = 0 lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right lowercase_ = tuple[int, int] class SCREAMING_SNAKE_CASE : def __init__( self : Any , a : int , a : int , a : int , a : int , a : int , a : Node | None , )-> None: """simple docstring""" lowercase__ = pos_x lowercase__ = pos_y lowercase__ = (pos_y, pos_x) lowercase__ = goal_x lowercase__ = goal_y lowercase__ = g_cost lowercase__ = parent lowercase__ = self.calculate_heuristic() lowercase__ = self.g_cost + self.h_cost def SCREAMING_SNAKE_CASE_ ( self : Dict )-> float: """simple docstring""" lowercase__ = self.pos_x - self.goal_x lowercase__ = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(a ) + abs(a ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Any , a : Node )-> bool: """simple docstring""" return self.f_cost < other.f_cost class SCREAMING_SNAKE_CASE : def __init__( self : str , a : TPosition , a : TPosition )-> int: """simple docstring""" lowercase__ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , a ) lowercase__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , a ) lowercase__ = [self.start] lowercase__ = [] lowercase__ = False def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> list[TPosition]: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowercase__ = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(a ) self.closed_nodes.append(a ) lowercase__ = self.get_successors(a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(a ) else: # retrieve the best current path lowercase__ = self.open_nodes.pop(self.open_nodes.index(a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(a ) else: self.open_nodes.append(a ) return [self.start.pos] def SCREAMING_SNAKE_CASE_ ( self : int , a : Node )-> list[Node]: """simple docstring""" lowercase__ = [] for action in delta: lowercase__ = parent.pos_x + action[1] lowercase__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( a , a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , a , ) ) return successors def SCREAMING_SNAKE_CASE_ ( self : str , a : Node | None )-> list[TPosition]: """simple docstring""" lowercase__ = node lowercase__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowercase__ = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , a : TPosition , a : TPosition )-> None: """simple docstring""" lowercase__ = AStar(a , a ) lowercase__ = AStar(a , a ) lowercase__ = False def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> list[TPosition]: """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() lowercase__ = self.fwd_astar.open_nodes.pop(0 ) lowercase__ = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( a , a ) self.fwd_astar.closed_nodes.append(a ) self.bwd_astar.closed_nodes.append(a ) lowercase__ = current_bwd_node lowercase__ = current_fwd_node lowercase__ = { self.fwd_astar: self.fwd_astar.get_successors(a ), self.bwd_astar: self.bwd_astar.get_successors(a ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(a ) else: # retrieve the best current path lowercase__ = astar.open_nodes.pop( astar.open_nodes.index(a ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(a ) else: astar.open_nodes.append(a ) return [self.fwd_astar.start.pos] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : Node , a : Node )-> list[TPosition]: """simple docstring""" lowercase__ = self.fwd_astar.retrace_path(a ) lowercase__ = self.bwd_astar.retrace_path(a ) bwd_path.pop() bwd_path.reverse() lowercase__ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowercase_ = time.time() lowercase_ = AStar(init, goal) lowercase_ = a_star.search() lowercase_ = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') lowercase_ = time.time() lowercase_ = BidirectionalAStar(init, goal) lowercase_ = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
351
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Dict: lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) lowercase__ = emb.weight.data return lin_layer def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="facebook/mbart-large-en-ro" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ) -> str: lowercase__ = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) lowercase__ = state_dict['encoder.embed_tokens.weight'].shape[0] lowercase__ = MBartConfig.from_pretrained(_SCREAMING_SNAKE_CASE , vocab_size=_SCREAMING_SNAKE_CASE ) if mbart_aa and finetuned: lowercase__ = 'relu' lowercase__ = state_dict['decoder.embed_tokens.weight'] lowercase__ = MBartForConditionalGeneration(_SCREAMING_SNAKE_CASE ) model.model.load_state_dict(_SCREAMING_SNAKE_CASE ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") lowercase_ = parser.parse_args() lowercase_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
269
0
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch UpperCAmelCase_ : List[str] = '''sshleifer/bart-tiny-random''' UpperCAmelCase_ : Tuple = '''patrickvonplaten/t5-tiny-random''' @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def _A ( self : Union[str, Any] ): return AutoConfig.from_pretrained(__lowerCamelCase ) def _A ( self : Any ): UpperCamelCase , *UpperCamelCase :Dict = create_student_by_copying_alternating_layers(__lowerCamelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def _A ( self : List[str] ): UpperCamelCase , *UpperCamelCase :Any = create_student_by_copying_alternating_layers(__lowerCamelCase , tempfile.mkdtemp() , e=1 , d=__lowerCamelCase ) def _A ( self : Union[str, Any] ): UpperCamelCase , *UpperCamelCase :Union[str, Any] = create_student_by_copying_alternating_layers(__lowerCamelCase , tempfile.mkdtemp() , e=1 , d=__lowerCamelCase ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def _A ( self : Tuple ): UpperCamelCase , *UpperCamelCase :int = create_student_by_copying_alternating_layers(__lowerCamelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def _A ( self : str ): with self.assertRaises(__lowerCamelCase ): create_student_by_copying_alternating_layers(__lowerCamelCase , tempfile.mkdtemp() , e=__lowerCamelCase , d=__lowerCamelCase )
38
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any=13 , __lowerCamelCase : Dict=3 , __lowerCamelCase : int=224 , __lowerCamelCase : Any=30 , __lowerCamelCase : Tuple=400 , __lowerCamelCase : int=True , __lowerCamelCase : List[str]=None , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=[0.5, 0.5, 0.5] , __lowerCamelCase : List[Any]=[0.5, 0.5, 0.5] , ): UpperCamelCase :List[Any] = size if size is not None else {"""height""": 18, """width""": 18} UpperCamelCase :str = parent UpperCamelCase :Optional[int] = batch_size UpperCamelCase :Dict = num_channels UpperCamelCase :str = image_size UpperCamelCase :Dict = min_resolution UpperCamelCase :str = max_resolution UpperCamelCase :Union[str, Any] = do_resize UpperCamelCase :Optional[Any] = size UpperCamelCase :Any = do_normalize UpperCamelCase :Optional[Any] = image_mean UpperCamelCase :Tuple = image_std def _A ( self : int ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : List[Any] = ViTImageProcessor if is_vision_available() else None def _A ( self : str ): UpperCamelCase :Tuple = EfficientFormerImageProcessorTester(self ) @property def _A ( self : List[str] ): return self.image_proc_tester.prepare_image_processor_dict() def _A ( self : int ): UpperCamelCase :List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """size""" ) ) def _A ( self : Optional[int] ): pass def _A ( self : str ): # Initialize image_processor UpperCamelCase :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase :Union[str, Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input UpperCamelCase :List[str] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched UpperCamelCase :List[Any] = image_processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def _A ( self : Union[str, Any] ): # Initialize image_processor UpperCamelCase :Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase :List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input UpperCamelCase :Dict = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched UpperCamelCase :Tuple = image_processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def _A ( self : List[Any] ): # Initialize image_processor UpperCamelCase :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase :Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase :List[Any] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched UpperCamelCase :str = image_processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
38
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase_ = "src/diffusers" UpperCamelCase_ = "." # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase_ = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase_ = spec.loader.load_module() def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' return line.startswith(__UpperCAmelCase ) or len(__UpperCAmelCase ) <= 1 or re.search(r'''^\s*\)(\s*->.*:|:)\s*$''' , __UpperCAmelCase ) is not None def A ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = object_name.split('''.''' ) UpperCAmelCase_ = 0 # First let's find the module where our object lives. UpperCAmelCase_ = parts[i] while i < len(__UpperCAmelCase ) and not os.path.isfile(os.path.join(__UpperCAmelCase , f"{module}.py" ) ): i += 1 if i < len(__UpperCAmelCase ): UpperCAmelCase_ = os.path.join(__UpperCAmelCase , parts[i] ) if i >= len(__UpperCAmelCase ): raise ValueError(f"`object_name` should begin with the name of a module of diffusers but got {object_name}." ) with open(os.path.join(__UpperCAmelCase , f"{module}.py" ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase_ = f.readlines() # Now let's find the class / func in the code! UpperCAmelCase_ = '''''' UpperCAmelCase_ = 0 for name in parts[i + 1 :]: while ( line_index < len(__UpperCAmelCase ) and re.search(rf"^{indent}(class|def)\s+{name}(\(|\:)" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__UpperCAmelCase ): raise ValueError(f" {object_name} does not match any function or class in {module}." ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). UpperCAmelCase_ = line_index while line_index < len(__UpperCAmelCase ) and _should_continue(lines[line_index] , __UpperCAmelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase_ = lines[start_index:line_index] return "".join(__UpperCAmelCase ) UpperCamelCase_ = re.compile(r"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") UpperCamelCase_ = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)") UpperCamelCase_ = re.compile(r"<FILL\s+[^>]*>") def A ( __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = code.split('''\n''' ) UpperCAmelCase_ = 0 while idx < len(__UpperCAmelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__UpperCAmelCase ): return re.search(r'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def A ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = len(get_indent(__UpperCAmelCase ) ) > 0 if has_indent: UpperCAmelCase_ = f"class Bla:\n{code}" UpperCAmelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=__UpperCAmelCase ) UpperCAmelCase_ = black.format_str(__UpperCAmelCase , mode=__UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = style_docstrings_in_code(__UpperCAmelCase ) return result[len('''class Bla:\n''' ) :] if has_indent else result def A ( __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [] UpperCAmelCase_ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__UpperCAmelCase ): UpperCAmelCase_ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = search.groups() UpperCAmelCase_ = find_code_in_diffusers(__UpperCAmelCase ) UpperCAmelCase_ = get_indent(__UpperCAmelCase ) UpperCAmelCase_ = line_index + 1 if indent == theoretical_indent else line_index + 2 UpperCAmelCase_ = theoretical_indent UpperCAmelCase_ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. UpperCAmelCase_ = True while line_index < len(__UpperCAmelCase ) and should_continue: line_index += 1 if line_index >= len(__UpperCAmelCase ): break UpperCAmelCase_ = lines[line_index] UpperCAmelCase_ = _should_continue(__UpperCAmelCase , __UpperCAmelCase ) and re.search(f"^{indent}# End copy" , __UpperCAmelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase_ = lines[start_index:line_index] UpperCAmelCase_ = ''''''.join(__UpperCAmelCase ) # Remove any nested `Copied from` comments to avoid circular copies UpperCAmelCase_ = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(__UpperCAmelCase ) is None] UpperCAmelCase_ = '''\n'''.join(__UpperCAmelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__UpperCAmelCase ) > 0: UpperCAmelCase_ = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) UpperCAmelCase_ = [_re_replace_pattern.search(__UpperCAmelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = pattern.groups() UpperCAmelCase_ = re.sub(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if option.strip() == "all-casing": UpperCAmelCase_ = re.sub(obja.lower() , obja.lower() , __UpperCAmelCase ) UpperCAmelCase_ = re.sub(obja.upper() , obja.upper() , __UpperCAmelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line UpperCAmelCase_ = blackify(lines[start_index - 1] + theoretical_code ) UpperCAmelCase_ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: UpperCAmelCase_ = lines[:start_index] + [theoretical_code] + lines[line_index:] UpperCAmelCase_ = start_index + 1 if overwrite and len(__UpperCAmelCase ) > 0: # Warn the user a file has been modified. print(f"Detected changes, rewriting {filename}." ) with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__UpperCAmelCase ) return diffs def A ( __UpperCAmelCase = False ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = glob.glob(os.path.join(__UpperCAmelCase , '''**/*.py''' ) , recursive=__UpperCAmelCase ) UpperCAmelCase_ = [] for filename in all_files: UpperCAmelCase_ = is_copy_consistent(__UpperCAmelCase , __UpperCAmelCase ) diffs += [f"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs] if not overwrite and len(__UpperCAmelCase ) > 0: UpperCAmelCase_ = '''\n'''.join(__UpperCAmelCase ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCamelCase_ = parser.parse_args() check_copies(args.fix_and_overwrite)
344
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =(PNDMScheduler,) UpperCamelCase__ : Optional[Any] =(("num_inference_steps", 50),) def __a ( self :Union[str, Any] , **_lowercase :Any) -> Union[str, Any]: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_lowercase) return config def __a ( self :str , _lowercase :List[Any]=0 , **_lowercase :str) -> Union[str, Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Any) -> Optional[Any]: pass def __a ( self :str , _lowercase :int=0 , **_lowercase :Union[str, Any]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :int , **_lowercase :str) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.prk_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample for i, t in enumerate(scheduler.plms_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :Union[str, Any]) -> int: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , '''set_timesteps'''): scheduler.set_timesteps(_lowercase) elif num_inference_steps is not None and not hasattr(_lowercase , '''set_timesteps'''): UpperCAmelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) UpperCAmelCase_ = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __a ( self :Any) -> Dict: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :List[Any]) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(steps_offset=1) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def __a ( self :Optional[int]) -> str: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase) def __a ( self :Any) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase) def __a ( self :List[Any]) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=_lowercase) def __a ( self :Tuple) -> Dict: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=_lowercase) def __a ( self :str) -> List[Any]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample def __a ( self :List[str]) -> int: with self.assertRaises(_lowercase): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def __a ( self :List[str]) -> Dict: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 198.1_318) < 1E-2 assert abs(result_mean.item() - 0.2_580) < 1E-3 def __a ( self :Any) -> Tuple: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 67.3_986) < 1E-2 assert abs(result_mean.item() - 0.0_878) < 1E-3 def __a ( self :int) -> Any: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 230.0_399) < 1E-2 assert abs(result_mean.item() - 0.2_995) < 1E-3 def __a ( self :Any) -> Dict: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 186.9_482) < 1E-2 assert abs(result_mean.item() - 0.2_434) < 1E-3
344
1
from math import factorial def A ( a_ ,a_ ) -> int: # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('Please enter positive integers for n and k where n >= k' ) return factorial(a_ ) // (factorial(a_ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f"fifty-two card deck is: {combinations(52, 5)}\n", ) print( '''If a class of 40 students must be arranged into groups of''', f"4 for group projects, there are {combinations(40, 4)} ways", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f"are {combinations(10, 3)} ways that first, second and", '''third place can be awarded.''', )
71
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=True , snake_case_="pt" ): '''simple docstring''' _UpperCAmelCase = {"add_prefix_space": True} if isinstance(snake_case_ , snake_case_ ) and not line.startswith(" " ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=snake_case_ , padding="max_length" if pad_to_max_length else None , truncation=snake_case_ , return_tensors=snake_case_ , add_special_tokens=snake_case_ , **snake_case_ , ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_=None , ): '''simple docstring''' _UpperCAmelCase = input_ids.ne(snake_case_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( UpperCAmelCase__ ): def __init__( self : Dict , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str]="train" , snake_case__ : List[str]=None , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : List[str]="" , ): """simple docstring""" super().__init__() _UpperCAmelCase = Path(snake_case__ ).joinpath(type_path + ".source" ) _UpperCAmelCase = Path(snake_case__ ).joinpath(type_path + ".target" ) _UpperCAmelCase = self.get_char_lens(self.src_file ) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Optional[int] ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : Optional[Any] , snake_case__ : str ): """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , snake_case__ ).rstrip("\n" ) _UpperCAmelCase = linecache.getline(str(self.tgt_file ) , snake_case__ ).rstrip("\n" ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , snake_case__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer _UpperCAmelCase = encode_line(snake_case__ , snake_case__ , self.max_source_length , "right" ) _UpperCAmelCase = encode_line(snake_case__ , snake_case__ , self.max_target_length , "right" ) _UpperCAmelCase = source_inputs["input_ids"].squeeze() _UpperCAmelCase = target_inputs["input_ids"].squeeze() _UpperCAmelCase = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCamelCase ( snake_case__ : Optional[Any] ): """simple docstring""" return [len(snake_case__ ) for x in Path(snake_case__ ).open().readlines()] def UpperCamelCase ( self : Any , snake_case__ : List[Any] ): """simple docstring""" _UpperCAmelCase = torch.stack([x["input_ids"] for x in batch] ) _UpperCAmelCase = torch.stack([x["attention_mask"] for x in batch] ) _UpperCAmelCase = torch.stack([x["decoder_input_ids"] for x in batch] ) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(snake_case__ , snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = trim_batch(snake_case__ , snake_case__ , attention_mask=snake_case__ ) _UpperCAmelCase = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch lowercase_ : Dict = getLogger(__name__) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' return list(itertools.chain.from_iterable(snake_case_ ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(snake_case_ , os.path.join(snake_case_ , "git_log.json" ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_=4 , **snake_case_ ): '''simple docstring''' with open(snake_case_ , "w" ) as f: json.dump(snake_case_ , snake_case_ , indent=snake_case_ , **snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' with open(snake_case_ ) as f: return json.load(snake_case_ ) def __SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=snake_case_ ) _UpperCAmelCase = { "repo_id": str(snake_case_ ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' return list(map(snake_case_ , snake_case_ ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' with open(snake_case_ , "wb" ) as f: return pickle.dump(snake_case_ , snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' def remove_articles(snake_case_ ): return re.sub(R"\b(a|an|the)\b" , " " , snake_case_ ) def white_space_fix(snake_case_ ): return " ".join(text.split() ) def remove_punc(snake_case_ ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(snake_case_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case_ ) ) ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = normalize_answer(snake_case_ ).split() _UpperCAmelCase = normalize_answer(snake_case_ ).split() _UpperCAmelCase = Counter(snake_case_ ) & Counter(snake_case_ ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(snake_case_ ) _UpperCAmelCase = 1.0 * num_same / len(snake_case_ ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' return normalize_answer(snake_case_ ) == normalize_answer(snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' assert len(snake_case_ ) == len(snake_case_ ) _UpperCAmelCase = 0 for hypo, pred in zip(snake_case_ , snake_case_ ): em += exact_match_score(snake_case_ , snake_case_ ) if len(snake_case_ ) > 0: em /= len(snake_case_ ) return {"em": em} def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' return model_prefix.startswith("rag" ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = "dropout_rate" for p in extra_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): if not hasattr(snake_case_ , snake_case_ ) and not hasattr(snake_case_ , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(snake_case_ ) ) delattr(snake_case_ , snake_case_ ) continue _UpperCAmelCase = p if hasattr(snake_case_ , snake_case_ ) else equivalent_param[p] setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) delattr(snake_case_ , snake_case_ ) return hparams, config
133
0
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCAmelCase :Tuple = datasets.utils.logging.get_logger(__name__) class _lowerCamelCase ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' A_ : Optional[int] = None A_ : int = None class _lowerCamelCase ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' A_ : int = datasets.Audio() A_ : Tuple = """audio""" A_ : Union[str, Any] = AudioFolderConfig A_ : List[Any] = 42 # definition at the bottom of the script A_ : int = AudioClassification(audio_column="""audio""" , label_column="""label""" ) lowerCAmelCase :Dict = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] lowerCAmelCase :List[str] = AUDIO_EXTENSIONS
358
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __magic_name__ : int = sorted(string.lower() ) return len(lowerCAmelCase ) == len(set(lowerCAmelCase ) ) if __name__ == "__main__": lowerCAmelCase :Any = input('''Enter a string ''').strip() lowerCAmelCase :List[Any] = is_isogram(input_str) print(F'{input_str} is {"an" if isogram else "not an"} isogram.')
275
0
import numpy as np def _a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float = 1E-12 , SCREAMING_SNAKE_CASE_ : int = 1_00 , ): assert np.shape(SCREAMING_SNAKE_CASE_ )[0] == np.shape(SCREAMING_SNAKE_CASE_ )[1] # Ensure proper dimensionality. assert np.shape(SCREAMING_SNAKE_CASE_ )[0] == np.shape(SCREAMING_SNAKE_CASE_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(SCREAMING_SNAKE_CASE_ ) == np.iscomplexobj(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = np.iscomplexobj(SCREAMING_SNAKE_CASE_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(SCREAMING_SNAKE_CASE_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(SCREAMING_SNAKE_CASE_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(SCREAMING_SNAKE_CASE_ , np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_ ) return lambda_, vector def _a ( ): __lowerCAmelCase = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __lowerCAmelCase = np.array([41, 4, 20] ) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa ) __lowerCAmelCase = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(SCREAMING_SNAKE_CASE_ ) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(SCREAMING_SNAKE_CASE_ ) - np.abs(SCREAMING_SNAKE_CASE_ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
92
def _a ( SCREAMING_SNAKE_CASE_ : int = 1_00_00_00 ): __lowerCAmelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , SCREAMING_SNAKE_CASE_ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
92
1
UpperCAmelCase_ = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
29
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]=False ): '''simple docstring''' try: __lowerCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCamelCase = default else: # KEY is set, convert it to True or False. try: __lowerCamelCase = strtobool(A__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value UpperCAmelCase_ = parse_flag_from_env('RUN_SLOW', default=False) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skip("""Test was skipped""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , """test is slow""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(A__ ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple=None , A__ : Optional[Any]=None ): '''simple docstring''' if test_case is None: return partial(A__ , version=A__ ) return unittest.skipUnless(is_torch_version(""">=""" , A__ ) , f'test requires torch version >= {version}' )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(A__ ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(A__ ) UpperCAmelCase_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(A__ ) class lowerCamelCase__( unittest.TestCase): UpperCAmelCase__ : List[Any] = True @classmethod def lowerCAmelCase__ ( cls: int ): __lowerCamelCase = tempfile.mkdtemp() @classmethod def lowerCAmelCase__ ( cls: Any ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCAmelCase__ ( self: Any ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase_ ) class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: int ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[mock.Mock, List[mock.Mock]] ): __lowerCamelCase = mocks if isinstance(UpperCamelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = AcceleratorState() __lowerCamelCase = tensor[None].clone().to(state.device ) __lowerCamelCase = gather(A__ ).cpu() __lowerCamelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , A__ ): return False return True class lowerCamelCase__: def __init__( self: Union[str, Any] , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: Any ): __lowerCamelCase = returncode __lowerCamelCase = stdout __lowerCamelCase = stderr async def lowerCamelCase__ ( A__ : int , A__ : Any ): '''simple docstring''' while True: __lowerCamelCase = await stream.readline() if line: callback(A__ ) else: break async def lowerCamelCase__ ( A__ : Dict , A__ : List[str]=None , A__ : Any=None , A__ : Optional[Any]=None , A__ : Tuple=False , A__ : List[Any]=False ): '''simple docstring''' if echo: print("""\nRunning: """ , """ """.join(A__ ) ) __lowerCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=A__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=A__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCamelCase = [] __lowerCamelCase = [] def tee(A__ : int , A__ : Any , A__ : Optional[Any] , A__ : int="" ): __lowerCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(A__ ) if not quiet: print(A__ , A__ , file=A__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda A__ : tee(A__ , A__ , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda A__ : tee(A__ , A__ , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=A__ , ) return _RunOutput(await p.wait() , A__ , A__ ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Any=None , A__ : Union[str, Any]=None , A__ : Dict=180 , A__ : str=False , A__ : List[Any]=True ): '''simple docstring''' __lowerCamelCase = asyncio.get_event_loop() __lowerCamelCase = loop.run_until_complete( _stream_subprocess(A__ , env=A__ , stdin=A__ , timeout=A__ , quiet=A__ , echo=A__ ) ) __lowerCamelCase = """ """.join(A__ ) if result.returncode > 0: __lowerCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) return result class lowerCamelCase__( __lowerCamelCase): pass def lowerCamelCase__ ( A__ : List[str] , A__ : Union[str, Any]=False ): '''simple docstring''' try: __lowerCamelCase = subprocess.check_output(A__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(A__ , """decode""" ): __lowerCamelCase = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'Command `{" ".join(A__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
29
1
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase__ = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCAmelCase__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase__ = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase__ = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCAmelCase__ = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase__ = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCAmelCase__ = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase__ = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCAmelCase__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCAmelCase__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCAmelCase__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCAmelCase__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCAmelCase__ = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCAmelCase__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCAmelCase__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCAmelCase__ = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCAmelCase__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCAmelCase__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCAmelCase__ = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase__ = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCAmelCase__ = '''''' lowerCAmelCase__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCAmelCase__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase__ = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _A ( A__ , A__ ): """simple docstring""" assert ReadMe.from_string(A__ , A__ ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _A ( A__ , A__ ): """simple docstring""" with pytest.raises(A__ , match=re.escape(expected_error.format(path='''root''' ) ) ): __lowercase = ReadMe.from_string(A__ , A__ ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _A ( A__ , A__ ): """simple docstring""" with pytest.raises(A__ , match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(A__ , A__ ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _A ( A__ ): """simple docstring""" ReadMe.from_string(A__ , A__ , suppress_parsing_errors=A__ ) @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _A ( A__ , A__ ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = Path(A__ ) / '''README.md''' with open(A__ , '''w+''' ) as readme_file: readme_file.write(A__ ) __lowercase = ReadMe.from_readme(A__ , A__ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _A ( A__ , A__ ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = Path(A__ ) / '''README.md''' with open(A__ , '''w+''' ) as readme_file: readme_file.write(A__ ) __lowercase = expected_error.format(path=A__ ) with pytest.raises(A__ , match=re.escape(A__ ) ): __lowercase = ReadMe.from_readme(A__ , A__ ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _A ( A__ , A__ ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = Path(A__ ) / '''README.md''' with open(A__ , '''w+''' ) as readme_file: readme_file.write(A__ ) __lowercase = expected_error.format(path=A__ ) with pytest.raises(A__ , match=re.escape(A__ ) ): ReadMe.from_readme(A__ , A__ ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _A ( A__ ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = Path(A__ ) / '''README.md''' with open(A__ , '''w+''' ) as readme_file: readme_file.write(A__ ) ReadMe.from_readme(A__ , A__ , suppress_parsing_errors=A__ )
104
"""simple docstring""" from ..utils import DummyObject, requires_backends class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'torchsde'] def __init__( self: int , *_SCREAMING_SNAKE_CASE: Optional[Any] , **_SCREAMING_SNAKE_CASE: str) -> Dict: """simple docstring""" requires_backends(self , ["torch", "torchsde"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Optional[Any] , *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch", "torchsde"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Dict , *_SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: Any) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch", "torchsde"])
269
0
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[str] , snake_case_ : Optional[int] , snake_case_ : Tuple=13 , snake_case_ : Optional[int]=[30, 30] , snake_case_ : List[Any]=2 , snake_case_ : Any=3 , snake_case_ : Optional[Any]=True , snake_case_ : Dict=True , snake_case_ : Optional[int]=32 , snake_case_ : List[str]=5 , snake_case_ : Tuple=4 , snake_case_ : List[Any]=37 , snake_case_ : List[str]="gelu" , snake_case_ : Dict=0.1 , snake_case_ : List[str]=0.1 , snake_case_ : int=10 , snake_case_ : str=0.02 , snake_case_ : Optional[int]=3 , snake_case_ : Dict=None , snake_case_ : Dict=8 , snake_case_ : Optional[Any]=10 , ): snake_case__ : List[str] = parent snake_case__ : Optional[Any] = batch_size snake_case__ : Any = image_size snake_case__ : int = patch_size snake_case__ : Optional[int] = num_channels snake_case__ : Optional[Any] = is_training snake_case__ : Any = use_labels snake_case__ : Any = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : Optional[int] = intermediate_size snake_case__ : Union[str, Any] = hidden_act snake_case__ : Optional[int] = hidden_dropout_prob snake_case__ : Tuple = attention_probs_dropout_prob snake_case__ : Dict = type_sequence_label_size snake_case__ : Dict = initializer_range snake_case__ : List[str] = num_labels snake_case__ : Union[str, Any] = scope snake_case__ : List[Any] = n_targets snake_case__ : str = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens snake_case__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) snake_case__ : int = num_patches + 1 + self.num_detection_tokens def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) snake_case__ : Union[str, Any] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) snake_case__ : Tuple = [] for i in range(self.batch_size ): snake_case__ : Any = {} snake_case__ : Union[str, Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=snake_case_ ) snake_case__ : str = torch.rand(self.n_targets , 4 , device=snake_case_ ) labels.append(snake_case_ ) snake_case__ : Dict = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : Dict ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def lowerCamelCase ( self : Dict , snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Tuple ): snake_case__ : Union[str, Any] = YolosModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Dict = model(snake_case_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def lowerCamelCase ( self : Tuple , snake_case_ : Optional[int] , snake_case_ : List[Any] , snake_case_ : str ): snake_case__ : List[Any] = YolosForObjectDetection(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Tuple = model(pixel_values=snake_case_ ) snake_case__ : str = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) snake_case__ : List[Any] = model(pixel_values=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def lowerCamelCase ( self : int ): snake_case__ : Optional[int] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : List[str] = config_and_inputs snake_case__ : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" lowercase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowercase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def lowerCamelCase ( self : int , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : List[str]=False ): snake_case__ : Optional[Any] = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": snake_case__ : Dict = [] for i in range(self.model_tester.batch_size ): snake_case__ : Union[str, Any] = {} snake_case__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=snake_case_ , dtype=torch.long ) snake_case__ : Tuple = torch.ones( self.model_tester.n_targets , 4 , device=snake_case_ , dtype=torch.float ) labels.append(snake_case_ ) snake_case__ : Optional[int] = labels return inputs_dict def lowerCamelCase ( self : Tuple ): snake_case__ : Any = YolosModelTester(self ) snake_case__ : List[Any] = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def lowerCamelCase ( self : Any ): self.config_tester.run_common_tests() def lowerCamelCase ( self : str ): # YOLOS does not use inputs_embeds pass def lowerCamelCase ( self : Union[str, Any] ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[str] = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def lowerCamelCase ( self : List[Any] ): snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = model_class(snake_case_ ) snake_case__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Dict = [*signature.parameters.keys()] snake_case__ : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowerCamelCase ( self : List[Any] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCamelCase ( self : Any ): snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = True # in YOLOS, the seq_len is different snake_case__ : List[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: snake_case__ : Dict = True snake_case__ : str = False snake_case__ : Dict = True snake_case__ : Optional[Any] = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): snake_case__ : Tuple = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) snake_case__ : int = outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case__ : Optional[Any] = True snake_case__ : Tuple = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): snake_case__ : int = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) snake_case__ : Optional[int] = outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) snake_case__ : int = len(snake_case_ ) # Check attention is always last and order is fine snake_case__ : Tuple = True snake_case__ : Any = True snake_case__ : Optional[Any] = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): snake_case__ : Optional[int] = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) snake_case__ : Optional[Any] = 1 self.assertEqual(out_len + added_hidden_states , len(snake_case_ ) ) snake_case__ : Any = outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowerCamelCase ( self : Union[str, Any] ): def check_hidden_states_output(snake_case_ : int , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ): snake_case__ : str = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): snake_case__ : Dict = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) snake_case__ : Any = outputs.hidden_states snake_case__ : Dict = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) # YOLOS has a different seq_length snake_case__ : str = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) snake_case__ , snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[Any] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : Dict = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase ( self : int ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Optional[Any] = YolosModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def __snake_case( ) -> Union[str, Any]: snake_case__ : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase ( self : List[str] ): return AutoImageProcessor.from_pretrained("""hustvl/yolos-small""" ) if is_vision_available() else None @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : int = YolosForObjectDetection.from_pretrained("""hustvl/yolos-small""" ).to(snake_case_ ) snake_case__ : int = self.default_image_processor snake_case__ : Union[str, Any] = prepare_img() snake_case__ : List[Any] = image_processor(images=snake_case_ , return_tensors="""pt""" ).to(snake_case_ ) # forward pass with torch.no_grad(): snake_case__ : Optional[Any] = model(inputs.pixel_values ) # verify outputs snake_case__ : Any = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , snake_case_ ) snake_case__ : Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=snake_case_ , ) snake_case__ : Optional[Any] = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , snake_case_ , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , snake_case_ , atol=1E-4 ) ) # verify postprocessing snake_case__ : Optional[int] = image_processor.post_process_object_detection( snake_case_ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] snake_case__ : int = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(snake_case_ ) snake_case__ : Optional[Any] = [75, 75, 17, 63, 17] snake_case__ : int = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(snake_case_ ) self.assertEqual(len(results["""scores"""] ) , 5 ) self.assertTrue(torch.allclose(results["""scores"""] , snake_case_ , atol=1E-4 ) ) self.assertSequenceEqual(results["""labels"""].tolist() , snake_case_ ) self.assertTrue(torch.allclose(results["""boxes"""][0, :] , snake_case_ ) )
43
'''simple docstring''' import numpy as np def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 1e-12 , _lowerCAmelCase = 100 , ) -> tuple[float, np.ndarray]: assert np.shape(_lowerCAmelCase )[0] == np.shape(_lowerCAmelCase )[1] # Ensure proper dimensionality. assert np.shape(_lowerCAmelCase )[0] == np.shape(_lowerCAmelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_lowerCAmelCase ) == np.iscomplexobj(_lowerCAmelCase ) snake_case__ : str = np.iscomplexobj(_lowerCAmelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_lowerCAmelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. snake_case__ : Tuple = False snake_case__ : Any = 0 snake_case__ : List[str] = 0 snake_case__ : Dict = 1e12 while not convergence: # Multiple matrix by the vector. snake_case__ : Optional[int] = np.dot(_lowerCAmelCase , _lowerCAmelCase ) # Normalize the resulting output vector. snake_case__ : Optional[Any] = w / np.linalg.norm(_lowerCAmelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) snake_case__ : List[str] = vector.conj().T if is_complex else vector.T snake_case__ : Optional[int] = np.dot(_lowerCAmelCase , np.dot(_lowerCAmelCase , _lowerCAmelCase ) ) # Check convergence. snake_case__ : Union[str, Any] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: snake_case__ : Dict = True snake_case__ : Union[str, Any] = lambda_ if is_complex: snake_case__ : int = np.real(lambda_ ) return lambda_, vector def __snake_case( ) -> None: snake_case__ : int = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) snake_case__ : Tuple = np.array([41, 4, 20] ) snake_case__ : Dict = real_input_matrix.astype(np.complexaaa ) snake_case__ : Optional[int] = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T snake_case__ : Dict = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": snake_case__ : Dict = real_input_matrix snake_case__ : Optional[Any] = real_vector elif problem_type == "complex": snake_case__ : Optional[Any] = complex_input_matrix snake_case__ : Optional[Any] = complex_vector # Our implementation. snake_case__ , snake_case__ : Tuple = power_iteration(_lowerCAmelCase , _lowerCAmelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). snake_case__ , snake_case__ : Dict = np.linalg.eigh(_lowerCAmelCase ) # Last eigenvalue is the maximum one. snake_case__ : Optional[int] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. snake_case__ : Any = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_lowerCAmelCase ) - np.abs(_lowerCAmelCase ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
43
1
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase__ : Union[str, Any] = 'src/diffusers' UpperCamelCase__ : Any = '.' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase__ : Tuple = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase__ : str = spec.loader.load_module() def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" return line.startswith(a_ ) or len(a_ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , a_ ) is not None def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" A_ : int = object_name.split(""".""" ) A_ : Optional[int] = 0 # First let's find the module where our object lives. A_ : int = parts[i] while i < len(a_ ) and not os.path.isfile(os.path.join(a_ , F"{module}.py" ) ): i += 1 if i < len(a_ ): A_ : int = os.path.join(a_ , parts[i] ) if i >= len(a_ ): raise ValueError(F"`object_name` should begin with the name of a module of diffusers but got {object_name}." ) with open(os.path.join(a_ , F"{module}.py" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A_ : List[str] = f.readlines() # Now let's find the class / func in the code! A_ : List[Any] = """""" A_ : Tuple = 0 for name in parts[i + 1 :]: while ( line_index < len(a_ ) and re.search(RF"^{indent}(class|def)\s+{name}(\(|\:)" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(a_ ): raise ValueError(F" {object_name} does not match any function or class in {module}." ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A_ : Any = line_index while line_index < len(a_ ) and _should_continue(lines[line_index] , a_ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A_ : Any = lines[start_index:line_index] return "".join(a_ ) UpperCamelCase__ : Any = re.compile(r'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') UpperCamelCase__ : Optional[int] = re.compile(r'^\s*(\S+)->(\S+)(\s+.*|$)') UpperCamelCase__ : int = re.compile(r'<FILL\s+[^>]*>') def UpperCAmelCase ( a_ ) -> str: """simple docstring""" A_ : List[str] = code.split("""\n""" ) A_ : Tuple = 0 while idx < len(a_ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(a_ ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : Optional[int] = len(get_indent(a_ ) ) > 0 if has_indent: A_ : Optional[Any] = F"class Bla:\n{code}" A_ : Dict = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=a_ ) A_ : Dict = black.format_str(a_ , mode=a_ ) A_ , A_ : str = style_docstrings_in_code(a_ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def UpperCAmelCase ( a_ , a_=False ) -> Dict: """simple docstring""" with open(a_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A_ : int = f.readlines() A_ : Union[str, Any] = [] A_ : Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(a_ ): A_ : Optional[int] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A_ , A_ , A_ : Any = search.groups() A_ : Any = find_code_in_diffusers(a_ ) A_ : Optional[int] = get_indent(a_ ) A_ : List[str] = line_index + 1 if indent == theoretical_indent else line_index + 2 A_ : List[Any] = theoretical_indent A_ : Optional[int] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A_ : str = True while line_index < len(a_ ) and should_continue: line_index += 1 if line_index >= len(a_ ): break A_ : str = lines[line_index] A_ : Tuple = _should_continue(a_ , a_ ) and re.search(F"^{indent}# End copy" , a_ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A_ : Optional[int] = lines[start_index:line_index] A_ : Any = """""".join(a_ ) # Remove any nested `Copied from` comments to avoid circular copies A_ : str = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(a_ ) is None] A_ : Optional[Any] = """\n""".join(a_ ) # Before comparing, use the `replace_pattern` on the original code. if len(a_ ) > 0: A_ : Union[str, Any] = replace_pattern.replace("""with""" , """""" ).split(""",""" ) A_ : List[Any] = [_re_replace_pattern.search(a_ ) for p in patterns] for pattern in patterns: if pattern is None: continue A_ , A_ , A_ : Tuple = pattern.groups() A_ : int = re.sub(a_ , a_ , a_ ) if option.strip() == "all-casing": A_ : Optional[int] = re.sub(obja.lower() , obja.lower() , a_ ) A_ : str = re.sub(obja.upper() , obja.upper() , a_ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A_ : Optional[int] = blackify(lines[start_index - 1] + theoretical_code ) A_ : Optional[int] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A_ : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] A_ : Optional[int] = start_index + 1 if overwrite and len(a_ ) > 0: # Warn the user a file has been modified. print(F"Detected changes, rewriting {filename}." ) with open(a_ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(a_ ) return diffs def UpperCAmelCase ( a_ = False ) -> Union[str, Any]: """simple docstring""" A_ : List[Any] = glob.glob(os.path.join(a_ , """**/*.py""" ) , recursive=a_ ) A_ : str = [] for filename in all_files: A_ : List[Any] = is_copy_consistent(a_ , a_ ) diffs += [F"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs] if not overwrite and len(a_ ) > 0: A_ : Optional[int] = """\n""".join(a_ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": UpperCamelCase__ : str = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase__ : List[Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
344
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''distilbert''' lowerCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=512 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=12 , _lowerCamelCase=768 , _lowerCamelCase=4 * 768 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.02 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ) -> Optional[Any]: A_ : Tuple = vocab_size A_ : List[Any] = max_position_embeddings A_ : int = sinusoidal_pos_embds A_ : int = n_layers A_ : str = n_heads A_ : Optional[int] = dim A_ : int = hidden_dim A_ : Tuple = dropout A_ : List[Any] = attention_dropout A_ : int = activation A_ : Dict = initializer_range A_ : List[Any] = qa_dropout A_ : int = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A_ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
344
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: snake_case : Any = 384 snake_case : int = 7 if "tiny" in model_name: snake_case : List[str] = 96 snake_case : str = (2, 2, 6, 2) snake_case : Optional[Any] = (3, 6, 12, 24) elif "small" in model_name: snake_case : Tuple = 96 snake_case : List[Any] = (2, 2, 18, 2) snake_case : List[str] = (3, 6, 12, 24) elif "base" in model_name: snake_case : str = 128 snake_case : List[Any] = (2, 2, 18, 2) snake_case : Any = (4, 8, 16, 32) snake_case : Tuple = 12 snake_case : Optional[Any] = 512 elif "large" in model_name: snake_case : str = 192 snake_case : Optional[Any] = (2, 2, 18, 2) snake_case : Dict = (6, 12, 24, 48) snake_case : Any = 12 snake_case : Optional[Any] = 768 # set label information snake_case : Union[str, Any] = 150 snake_case : Optional[Any] = """huggingface/label-files""" snake_case : List[str] = """ade20k-id2label.json""" snake_case : Any = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) snake_case : Union[str, Any] = {int(lowercase ): v for k, v in idalabel.items()} snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()} snake_case : Optional[int] = SwinConfig( embed_dim=lowercase ,depths=lowercase ,num_heads=lowercase ,window_size=lowercase ,out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ,) snake_case : Dict = UperNetConfig( backbone_config=lowercase ,auxiliary_in_channels=lowercase ,num_labels=lowercase ,idalabel=lowercase ,labelaid=lowercase ,) return config def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: snake_case : Dict = [] # fmt: off # stem rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.stages.{i}.downsample.reduction.weight""", f"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.weight""", f"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.bias""", f"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[Any]: snake_case : List[str] = dct.pop(lowercase ) snake_case : str = val def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Dict: snake_case : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): snake_case : Optional[int] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case : Tuple = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) snake_case : str = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case : int = in_proj_weight[:dim, :] snake_case : Optional[Any] = in_proj_bias[: dim] snake_case : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] snake_case : Tuple = in_proj_bias[ dim : dim * 2 ] snake_case : List[Any] = in_proj_weight[ -dim :, : ] snake_case : Any = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = x.shape snake_case : Dict = x.reshape(lowercase ,4 ,in_channel // 4 ) snake_case : Optional[int] = x[:, [0, 2, 1, 3], :].transpose(1 ,2 ).reshape(lowercase ,lowercase ) return x def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: snake_case : int = x.shape snake_case : Union[str, Any] = x.reshape(lowercase ,in_channel // 4 ,4 ) snake_case : List[Any] = x[:, :, [0, 2, 1, 3]].transpose(1 ,2 ).reshape(lowercase ,lowercase ) return x def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: snake_case : Dict = x.shape[0] snake_case : Optional[int] = x.reshape(4 ,in_channel // 4 ) snake_case : int = x[[0, 2, 1, 3], :].transpose(0 ,1 ).reshape(lowercase ) return x def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: snake_case : Optional[Any] = x.shape[0] snake_case : Dict = x.reshape(in_channel // 4 ,4 ) snake_case : str = x[:, [0, 2, 1, 3]].transpose(0 ,1 ).reshape(lowercase ) return x def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Any: snake_case : List[Any] = { """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } snake_case : List[str] = model_name_to_url[model_name] snake_case : Dict = torch.hub.load_state_dict_from_url(lowercase ,map_location="""cpu""" ,file_name=lowercase )[ """state_dict""" ] for name, param in state_dict.items(): print(lowercase ,param.shape ) snake_case : Tuple = get_upernet_config(lowercase ) snake_case : Tuple = UperNetForSemanticSegmentation(lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): snake_case : List[Any] = state_dict.pop(lowercase ) if "bn" in key: snake_case : Dict = key.replace("""bn""" ,"""batch_norm""" ) snake_case : Optional[Any] = val # rename keys snake_case : Dict = create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase ,lowercase ,lowercase ) read_in_q_k_v(lowercase ,config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: snake_case : Tuple = reverse_correct_unfold_reduction_order(lowercase ) if "norm" in key: snake_case : str = reverse_correct_unfold_norm_order(lowercase ) model.load_state_dict(lowercase ) # verify on image snake_case : Union[str, Any] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" snake_case : List[Any] = Image.open(requests.get(lowercase ,stream=lowercase ).raw ).convert("""RGB""" ) snake_case : int = SegformerImageProcessor() snake_case : str = processor(lowercase ,return_tensors="""pt""" ).pixel_values with torch.no_grad(): snake_case : Tuple = model(lowercase ) snake_case : str = outputs.logits print(logits.shape ) print("""First values of logits:""" ,logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": snake_case : Tuple = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": snake_case : List[Any] = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": snake_case : Tuple = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": snake_case : Optional[int] = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print("""Logits:""" ,outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] ,lowercase ,atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowercase ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[f"""upernet-swin-{size}""" for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCamelCase : Optional[Any] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
368
from math import pow def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,) -> tuple[int, int]: if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count snake_case : Union[str, Any] = int(pow(lowercase ,lowercase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n snake_case , snake_case : List[Any] = backtrack( lowercase ,lowercase ,current_number + 1 ,lowercase ,lowercase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. snake_case , snake_case : str = backtrack( lowercase ,lowercase ,current_number + 1 ,lowercase ,lowercase ) return current_sum, solutions_count def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(lowercase ,lowercase ,1 ,0 ,0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
176
0
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCAmelCase ( ) -> tuple[list[int], int]: __lowerCamelCase = [randint(-10_00 , 10_00 ) for i in range(10 )] __lowerCamelCase = randint(-50_00 , 50_00 ) return (arr, r) __UpperCAmelCase =make_dataset() def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> tuple[int, ...]: for triplet in permutations(UpperCamelCase__ , 3 ): if sum(UpperCamelCase__ ) == target: return tuple(sorted(UpperCamelCase__ ) ) return (0, 0, 0) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> tuple[int, int, int]: arr.sort() __lowerCamelCase = len(UpperCamelCase__ ) for i in range(n - 1 ): __lowerCamelCase , __lowerCamelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCAmelCase ( ) -> tuple[float, float]: __lowerCamelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCamelCase = ''' triplet_sum1(*dataset) ''' __lowerCamelCase = ''' triplet_sum2(*dataset) ''' __lowerCamelCase = repeat(setup=UpperCamelCase__ , stmt=UpperCamelCase__ , repeat=5 , number=1_00_00 ) __lowerCamelCase = repeat(setup=UpperCamelCase__ , stmt=UpperCamelCase__ , repeat=5 , number=1_00_00 ) return (min(UpperCamelCase__ ), min(UpperCamelCase__ )) if __name__ == "__main__": from doctest import testmod testmod() __UpperCAmelCase =solution_times() print(f'The time for naive implementation is {times[0]}.') print(f'The time for optimized implementation is {times[1]}.')
67
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _UpperCamelCase = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _UpperCamelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _UpperCamelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : List[str] = len([g for position, g in enumerate(lowercase__ ) if g == main_target[position]] ) return (item, float(lowercase__ )) def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : str = random.randint(0 , len(lowercase__ ) - 1 ) __lowerCAmelCase : int = parent_a[:random_slice] + parent_a[random_slice:] __lowerCAmelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : List[str] = list(lowercase__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __lowerCAmelCase : int = random.choice(lowercase__ ) return "".join(lowercase__ ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ , ): __lowerCAmelCase : str = [] # Generate more children proportionally to the fitness score. __lowerCAmelCase : str = int(parent_a[1] * 1_0_0 ) + 1 __lowerCAmelCase : Optional[Any] = 1_0 if child_n >= 1_0 else child_n for _ in range(lowercase__ ): __lowerCAmelCase : List[Any] = population_score[random.randint(0 , lowercase__ )][0] __lowerCAmelCase, __lowerCAmelCase : Dict = crossover(parent_a[0] , lowercase__ ) # Append new string to the population list. pop.append(mutate(lowercase__ , lowercase__ ) ) pop.append(mutate(lowercase__ , lowercase__ ) ) return pop def _lowercase ( lowercase__ , lowercase__ , lowercase__ = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: __lowerCAmelCase : int = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(lowercase__ ) # Verify that the target contains no genes besides the ones inside genes variable. __lowerCAmelCase : Any = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __lowerCAmelCase : List[str] = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(lowercase__ ) # Generate random starting population. __lowerCAmelCase : List[Any] = [] for _ in range(lowercase__ ): population.append(''''''.join([random.choice(lowercase__ ) for i in range(len(lowercase__ ) )] ) ) # Just some logs to know what the algorithms is doing. __lowerCAmelCase, __lowerCAmelCase : Tuple = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __lowerCAmelCase : Any = [evaluate(lowercase__ , lowercase__ ) for item in population] # Check if there is a matching evolution. __lowerCAmelCase : Union[str, Any] = sorted(lowercase__ , key=lambda lowercase__ : x[1] , reverse=lowercase__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 1_0 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __lowerCAmelCase : Tuple = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase__ ) # Normalize population score to be between 0 and 1. __lowerCAmelCase : List[Any] = [ (item, score / len(lowercase__ )) for item, score in population_score ] # This is selection for i in range(lowercase__ ): population.extend(select(population_score[int(lowercase__ )] , lowercase__ , lowercase__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase__ ) > N_POPULATION: break if __name__ == "__main__": _UpperCamelCase = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _UpperCamelCase = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = basic(target_str, genes_list) print( F"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}" )
275
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
48
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """wavlm""" def __init__( self : List[str] , _lowerCAmelCase : List[Any]=3_2 , _lowerCAmelCase : int=7_6_8 , _lowerCAmelCase : Any=1_2 , _lowerCAmelCase : Union[str, Any]=1_2 , _lowerCAmelCase : List[Any]=3_0_7_2 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : Dict=1e-5 , _lowerCAmelCase : List[Any]="group" , _lowerCAmelCase : Optional[Any]="gelu" , _lowerCAmelCase : Dict=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , _lowerCAmelCase : Any=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase : Optional[Any]=(1_0, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : int=1_2_8 , _lowerCAmelCase : Tuple=1_6 , _lowerCAmelCase : Optional[int]=3_2_0 , _lowerCAmelCase : Union[str, Any]=8_0_0 , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Any=0.05 , _lowerCAmelCase : List[Any]=1_0 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Union[str, Any]=1_0 , _lowerCAmelCase : List[Any]=3_2_0 , _lowerCAmelCase : int=2 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Optional[int]=1_0_0 , _lowerCAmelCase : Tuple=2_5_6 , _lowerCAmelCase : Union[str, Any]=2_5_6 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple="mean" , _lowerCAmelCase : Any=False , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Any=2_5_6 , _lowerCAmelCase : Tuple=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , _lowerCAmelCase : Dict=(5, 3, 3, 1, 1) , _lowerCAmelCase : Dict=(1, 2, 3, 1, 1) , _lowerCAmelCase : int=5_1_2 , _lowerCAmelCase : Optional[int]=8_0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Any=3 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : List[Any]=3 , _lowerCAmelCase : List[str]=None , **_lowerCAmelCase : List[str] , ): '''simple docstring''' super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase) __lowercase =hidden_size __lowercase =feat_extract_norm __lowercase =feat_extract_activation __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =conv_bias __lowercase =num_buckets __lowercase =max_bucket_distance __lowercase =num_conv_pos_embeddings __lowercase =num_conv_pos_embedding_groups __lowercase =len(self.conv_dim) __lowercase =num_hidden_layers __lowercase =intermediate_size __lowercase =hidden_act __lowercase =num_attention_heads __lowercase =hidden_dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =feat_proj_dropout __lowercase =final_dropout __lowercase =layerdrop __lowercase =layer_norm_eps __lowercase =initializer_range __lowercase =num_ctc_classes __lowercase =vocab_size __lowercase =do_stable_layer_norm __lowercase =use_weighted_layer_sum __lowercase =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase =apply_spec_augment __lowercase =mask_time_prob __lowercase =mask_time_length __lowercase =mask_time_min_masks __lowercase =mask_feature_prob __lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations __lowercase =num_codevectors_per_group __lowercase =num_codevector_groups __lowercase =contrastive_logits_temperature __lowercase =num_negatives __lowercase =codevector_dim __lowercase =proj_codevector_dim __lowercase =diversity_loss_weight # ctc loss __lowercase =ctc_loss_reduction __lowercase =ctc_zero_infinity # adapter __lowercase =add_adapter __lowercase =adapter_kernel_size __lowercase =adapter_stride __lowercase =num_adapter_layers __lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =xvector_output_dim @property def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
48
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase=1_3 , _UpperCamelCase=3_2 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=[1_0, 2_0, 3_0, 4_0] , _UpperCamelCase=[2, 2, 3, 2] , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=3_7 , _UpperCamelCase="gelu" , _UpperCamelCase=1_0 , _UpperCamelCase=0.02 , _UpperCamelCase=["stage2", "stage3", "stage4"] , _UpperCamelCase=3 , _UpperCamelCase=None , ) -> Tuple: UpperCAmelCase_ : Optional[int] = parent UpperCAmelCase_ : Any = batch_size UpperCAmelCase_ : Union[str, Any] = image_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Union[str, Any] = num_stages UpperCAmelCase_ : Dict = hidden_sizes UpperCAmelCase_ : Union[str, Any] = depths UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : List[Any] = type_sequence_label_size UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[Any] = out_features UpperCAmelCase_ : str = num_labels UpperCAmelCase_ : Tuple = scope UpperCAmelCase_ : List[Any] = num_stages def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Dict = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ) -> Tuple: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __UpperCAmelCase ( self ) -> Optional[Any]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_UpperCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=_UpperCamelCase , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: UpperCAmelCase_ : Optional[int] = UperNetForSemanticSegmentation(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : int = model(_UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : List[str] = config_and_inputs UpperCAmelCase_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (_snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : str = (UperNetForSemanticSegmentation,) if is_torch_available() else () _snake_case : List[str] = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} _snake_case : Tuple = False _snake_case : Optional[Any] = False _snake_case : Optional[Any] = False _snake_case : List[str] = False _snake_case : Any = False _snake_case : Dict = False def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : Optional[int] = UperNetModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=3_7 ) def __UpperCAmelCase ( self ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self ) -> List[Any]: return def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(_UpperCamelCase ) UpperCAmelCase_ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : str = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCamelCase ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def __UpperCAmelCase ( self ) -> int: pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def __UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='UperNet does not have a base model' ) def __UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason='UperNet does not have a base model' ) def __UpperCAmelCase ( self ) -> Any: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def __UpperCAmelCase ( self ) -> int: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCAmelCase ( self ) -> str: pass def __UpperCAmelCase ( self ) -> Optional[int]: def check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Tuple = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ : int = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) UpperCAmelCase_ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ : Tuple = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : int = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : int = _config_zero_init(_UpperCamelCase ) UpperCAmelCase_ : List[str] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: UpperCAmelCase_ : List[str] = model_class(config=_UpperCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip(reason='UperNet does not have tied weights' ) def __UpperCAmelCase ( self ) -> Optional[int]: pass @slow def __UpperCAmelCase ( self ) -> List[Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = UperNetForSemanticSegmentation.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : str = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) UpperCAmelCase_ : Optional[Any] = Image.open(__snake_case ).convert('RGB' ) return image @require_torch @require_vision @slow class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : int = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) UpperCAmelCase_ : Optional[int] = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = prepare_img() UpperCAmelCase_ : Optional[Any] = processor(images=_UpperCamelCase , return_tensors='pt' ).to(_UpperCamelCase ) with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**_UpperCamelCase ) UpperCAmelCase_ : Any = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) UpperCAmelCase_ : List[str] = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _UpperCamelCase , atol=1E-4 ) ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Optional[int] = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) UpperCAmelCase_ : str = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(_UpperCamelCase ) UpperCAmelCase_ : Any = prepare_img() UpperCAmelCase_ : List[str] = processor(images=_UpperCamelCase , return_tensors='pt' ).to(_UpperCamelCase ) with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**_UpperCamelCase ) UpperCAmelCase_ : int = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) UpperCAmelCase_ : Dict = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _UpperCamelCase , atol=1E-4 ) )
29
from __future__ import annotations def lowercase__ ( __snake_case : tuple[int, int] , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Tuple = position UpperCAmelCase_ : str = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCAmelCase_ : Optional[Any] = [] for position in positions: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__snake_case ) return permissible_positions def lowercase__ ( __snake_case : list[list[int]] ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def lowercase__ ( __snake_case : list[list[int]] , __snake_case : tuple[int, int] , __snake_case : int ): '''simple docstring''' if is_complete(__snake_case ): return True for position in get_valid_pos(__snake_case , len(__snake_case ) ): UpperCAmelCase_ , UpperCAmelCase_ : Any = position if board[y][x] == 0: UpperCAmelCase_ : Optional[Any] = curr + 1 if open_knight_tour_helper(__snake_case , __snake_case , curr + 1 ): return True UpperCAmelCase_ : List[Any] = 0 return False def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : str = [[0 for i in range(__snake_case )] for j in range(__snake_case )] for i in range(__snake_case ): for j in range(__snake_case ): UpperCAmelCase_ : Optional[Any] = 1 if open_knight_tour_helper(__snake_case , (i, j) , 1 ): return board UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : List[str] = F"Open Kight Tour cannot be performed on a board of size {n}" raise ValueError(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
29
1
'''simple docstring''' import os from collections.abc import Iterator def lowerCAmelCase_ ( snake_case_ : str = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(snake_case_ ): UpperCAmelCase_ = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(snake_case_ )[1] in (".py", ".ipynb"): yield os.path.join(snake_case_ , snake_case_ ).lstrip("./" ) def lowerCAmelCase_ ( snake_case_ : Tuple ) -> List[Any]: '''simple docstring''' return f"""{i * " "}*""" if i else "\n##" def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str ) -> str: '''simple docstring''' UpperCAmelCase_ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(snake_case_ ) or old_parts[i] != new_part) and new_part: print(f"""{md_prefix(snake_case_ )} {new_part.replace("_" , " " ).title()}""" ) return new_path def lowerCAmelCase_ ( snake_case_ : str = "." ) -> None: '''simple docstring''' UpperCAmelCase_ = "" for filepath in sorted(good_file_paths(snake_case_ ) ): UpperCAmelCase_ , UpperCAmelCase_ = os.path.split(snake_case_ ) if filepath != old_path: UpperCAmelCase_ = print_path(snake_case_ , snake_case_ ) UpperCAmelCase_ = (filepath.count(os.sep ) + 1) if filepath else 0 UpperCAmelCase_ = f"""{filepath}/{filename}""".replace(" " , "%20" ) UpperCAmelCase_ = os.path.splitext(filename.replace("_" , " " ).title() )[0] print(f"""{md_prefix(snake_case_ )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
106
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): @slow def _lowercase (self : Dict ): UpperCAmelCase_ = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) UpperCAmelCase_ = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" UpperCAmelCase_ = model(__a )["last_hidden_state"] UpperCAmelCase_ = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. UpperCAmelCase_ = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
106
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , ): '''simple docstring''' __UpperCamelCase :List[str] = {} if train_file is not None: __UpperCamelCase :Optional[Any] = [train_file] if eval_file is not None: __UpperCamelCase :Any = [eval_file] if test_file is not None: __UpperCamelCase :List[str] = [test_file] __UpperCamelCase :int = datasets.load_dataset('''csv''' , data_files=SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[Any] = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCamelCase :int = features_name.pop(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Union[str, Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCamelCase :List[Any] = {label: i for i, label in enumerate(SCREAMING_SNAKE_CASE )} __UpperCamelCase :str = tokenizer.model_input_names __UpperCamelCase :Optional[int] = {} if len(SCREAMING_SNAKE_CASE ) == 1: for k in files.keys(): __UpperCamelCase :str = ds[k].map( lambda SCREAMING_SNAKE_CASE : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='''max_length''' ) , batched=SCREAMING_SNAKE_CASE , ) elif len(SCREAMING_SNAKE_CASE ) == 2: for k in files.keys(): __UpperCamelCase :int = ds[k].map( lambda SCREAMING_SNAKE_CASE : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='''max_length''' , ) , batched=SCREAMING_SNAKE_CASE , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCamelCase :List[Any] = {k: v for k, v in ex.items() if k in input_names} __UpperCamelCase :Tuple = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCamelCase :List[str] = {k: v for k, v in ex.items() if k in input_names} __UpperCamelCase :Dict = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCamelCase :Dict = {k: v for k, v in ex.items() if k in input_names} __UpperCamelCase :Optional[int] = labelaid[ex[label_name]] yield (d, label) __UpperCamelCase :Optional[int] = ( tf.data.Dataset.from_generator( SCREAMING_SNAKE_CASE , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCamelCase :List[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCamelCase :str = ( tf.data.Dataset.from_generator( SCREAMING_SNAKE_CASE , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCamelCase :List[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCamelCase :int = ( tf.data.Dataset.from_generator( SCREAMING_SNAKE_CASE , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCamelCase :Tuple = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowercase = logging.getLogger(__name__) @dataclass class lowerCamelCase_ : '''simple docstring''' a__ : int = field(metadata={"""help""": """Which column contains the label"""} ) a__ : str = field(default=UpperCAmelCase_ , metadata={"""help""": """The path of the training file"""} ) a__ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """The path of the development file"""} ) a__ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """The path of the test file"""} ) a__ : int = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) @dataclass class lowerCamelCase_ : '''simple docstring''' a__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a__ : bool = field(default=UpperCAmelCase_ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :str = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase :List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[int] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=SCREAMING_SNAKE_CASE , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCamelCase :Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(SCREAMING_SNAKE_CASE ) , labelaid=SCREAMING_SNAKE_CASE , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCamelCase :str = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) def compute_metrics(SCREAMING_SNAKE_CASE ) -> Dict: __UpperCamelCase :Dict = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCamelCase :Optional[Any] = TFTrainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=SCREAMING_SNAKE_CASE , eval_dataset=SCREAMING_SNAKE_CASE , compute_metrics=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase :int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCamelCase :List[str] = trainer.evaluate() __UpperCamelCase :Optional[Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": main()
43
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name __lowercase = 256 class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Tuple = ["""melgan"""] def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> None: super().__init__() # From MELGAN __UpperCamelCase :int = math.log(1E-5) # Matches MelGAN training. __UpperCamelCase :int = 4.0 # Largest value for most examples __UpperCamelCase :str = 128 self.register_modules( notes_encoder=__lowercase , continuous_encoder=__lowercase , decoder=__lowercase , scheduler=__lowercase , melgan=__lowercase , ) def UpperCamelCase__ ( self , __lowercase , __lowercase=(-1.0, 1.0) , __lowercase=False) -> Dict: __UpperCamelCase , __UpperCamelCase :str = output_range if clip: __UpperCamelCase :Union[str, Any] = torch.clip(__lowercase , self.min_value , self.max_value) # Scale to [0, 1]. __UpperCamelCase :Union[str, Any] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def UpperCamelCase__ ( self , __lowercase , __lowercase=(-1.0, 1.0) , __lowercase=False) -> Optional[int]: __UpperCamelCase , __UpperCamelCase :int = input_range __UpperCamelCase :Optional[int] = torch.clip(__lowercase , __lowercase , __lowercase) if clip else outputs # Scale to [0, 1]. __UpperCamelCase :List[str] = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> List[Any]: __UpperCamelCase :List[str] = input_tokens > 0 __UpperCamelCase , __UpperCamelCase :Union[str, Any] = self.notes_encoder( encoder_input_tokens=__lowercase , encoder_inputs_mask=__lowercase) __UpperCamelCase , __UpperCamelCase :Union[str, Any] = self.continuous_encoder( encoder_inputs=__lowercase , encoder_inputs_mask=__lowercase) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> str: __UpperCamelCase :Optional[int] = noise_time if not torch.is_tensor(__lowercase): __UpperCamelCase :str = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device) elif torch.is_tensor(__lowercase) and len(timesteps.shape) == 0: __UpperCamelCase :Dict = timesteps[None].to(input_tokens.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCamelCase :List[str] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device) __UpperCamelCase :Tuple = self.decoder( encodings_and_masks=__lowercase , decoder_input_tokens=__lowercase , decoder_noise_time=__lowercase) return logits @torch.no_grad() def __call__( self , __lowercase , __lowercase = None , __lowercase = 100 , __lowercase = True , __lowercase = "numpy" , __lowercase = None , __lowercase = 1 , ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowercase , __lowercase) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__lowercase)}.""") __UpperCamelCase :Union[str, Any] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa) __UpperCamelCase :Union[str, Any] = np.zeros([1, 0, self.n_dims] , np.floataa) __UpperCamelCase :Union[str, Any] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__lowercase , device=self.device) for i, encoder_input_tokens in enumerate(__lowercase): if i == 0: __UpperCamelCase :int = torch.from_numpy(pred_mel[:1].copy()).to( device=self.device , dtype=self.decoder.dtype) # The first chunk has no previous context. __UpperCamelCase :int = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__lowercase , device=self.device) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __UpperCamelCase :Tuple = ones __UpperCamelCase :Optional[Any] = self.scale_features( __lowercase , output_range=[-1.0, 1.0] , clip=__lowercase) __UpperCamelCase :int = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens]).to(device=self.device) , continuous_inputs=__lowercase , continuous_mask=__lowercase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __UpperCamelCase :int = randn_tensor( shape=encoder_continuous_inputs.shape , generator=__lowercase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(__lowercase) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps)): __UpperCamelCase :Optional[int] = self.decode( encodings_and_masks=__lowercase , input_tokens=__lowercase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __UpperCamelCase :int = self.scheduler.step(__lowercase , __lowercase , __lowercase , generator=__lowercase).prev_sample __UpperCamelCase :Tuple = self.scale_to_features(__lowercase , input_range=[-1.0, 1.0]) __UpperCamelCase :List[Any] = mel[:1] __UpperCamelCase :Optional[Any] = mel.cpu().float().numpy() __UpperCamelCase :Any = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowercase , __lowercase) logger.info('''Generated segment''' , __lowercase) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''') elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''') if output_type == "numpy": __UpperCamelCase :Optional[Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa)) else: __UpperCamelCase :List[str] = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__lowercase)
43
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule A_ = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
361
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int = 10_00 ): """simple docstring""" _snake_case , _snake_case : List[Any] = 1, 1 _snake_case : str = [] for i in range(1 , n + 1 ): _snake_case : Any = prev_numerator + 2 * prev_denominator _snake_case : Optional[Any] = prev_numerator + prev_denominator if len(str(snake_case__ ) ) > len(str(snake_case__ ) ): result.append(snake_case__ ) _snake_case : int = numerator _snake_case : Any = denominator return len(snake_case__ ) if __name__ == "__main__": print(F'''{solution() = }''')
132
0
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A__ : Tuple =logging.get_logger(__name__) # pylint: disable=invalid-name A__ : Tuple =''' Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` ''' def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=8 ): """simple docstring""" _lowerCAmelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCAmelCase ( _UpperCAmelCase ): def __init__( self : str , __snake_case : UNetaDConditionModel , __snake_case : DDPMScheduler , __snake_case : VQModel , ) -> Optional[int]: super().__init__() self.register_modules( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , movq=UpperCAmelCase_ , ) _lowerCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowercase__ ( self : Union[str, Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Optional[int] ) -> Optional[Any]: if latents is None: _lowerCAmelCase = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_ ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) _lowerCAmelCase = latents.to(UpperCAmelCase_ ) _lowerCAmelCase = latents * scheduler.init_noise_sigma return latents def lowercase__ ( self : Tuple , __snake_case : Tuple=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase = torch.device(f"cuda:{gpu_id}" ) _lowerCAmelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , __snake_case : List[Any]=0 ) -> Dict: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCAmelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase = cpu_offload_with_hook(UpperCAmelCase_ , UpperCAmelCase_ , prev_module_hook=UpperCAmelCase_ ) # We'll offload the last model manually. _lowerCAmelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowercase__ ( self : Dict ) -> Optional[Any]: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCAmelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCAmelCase_ ) def __call__( self : Union[str, Any] , __snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] , __snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] , __snake_case : torch.FloatTensor , __snake_case : int = 5_12 , __snake_case : int = 5_12 , __snake_case : int = 1_00 , __snake_case : float = 4.0 , __snake_case : int = 1 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , ) -> Dict: _lowerCAmelCase = self._execution_device _lowerCAmelCase = guidance_scale > 1.0 if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _lowerCAmelCase = torch.cat(UpperCAmelCase_ , dim=0 ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _lowerCAmelCase = torch.cat(UpperCAmelCase_ , dim=0 ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _lowerCAmelCase = torch.cat(UpperCAmelCase_ , dim=0 ) _lowerCAmelCase = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _lowerCAmelCase = image_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 ) _lowerCAmelCase = negative_image_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 ) _lowerCAmelCase = hint.repeat_interleave(UpperCAmelCase_ , dim=0 ) _lowerCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCAmelCase_ ) _lowerCAmelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCAmelCase_ ) self.scheduler.set_timesteps(UpperCAmelCase_ , device=UpperCAmelCase_ ) _lowerCAmelCase = self.scheduler.timesteps _lowerCAmelCase = self.movq.config.latent_channels _lowerCAmelCase , _lowerCAmelCase = downscale_height_and_width(UpperCAmelCase_ , UpperCAmelCase_ , self.movq_scale_factor ) # create initial latent _lowerCAmelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase = {"""image_embeds""": image_embeds, """hint""": hint} _lowerCAmelCase = self.unet( sample=UpperCAmelCase_ , timestep=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , added_cond_kwargs=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase = variance_pred.chunk(2 ) _lowerCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ , )[0] # post-processing _lowerCAmelCase = self.movq.decode(UpperCAmelCase_ , force_not_quantize=UpperCAmelCase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase = image * 0.5 + 0.5 _lowerCAmelCase = image.clamp(0 , 1 ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase_ )
70
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } __snake_case = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' for attribute in key.split('.' ): SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase_ , UpperCamelCase_ ) if weight_type is not None: SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase_ , UpperCamelCase_ ).shape else: SCREAMING_SNAKE_CASE__ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE__ = value elif weight_type == "bias": SCREAMING_SNAKE_CASE__ = value else: SCREAMING_SNAKE_CASE__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = fairseq_model.state_dict() SCREAMING_SNAKE_CASE__ = hf_model.feature_extractor SCREAMING_SNAKE_CASE__ = hf_model.adapter for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE__ = False if "conv_layers" in name: load_conv_layer( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) SCREAMING_SNAKE_CASE__ = True elif any(x in name for x in ['adaptor', 'w2v_encoder.proj.', 'w2v_proj_ln.'] ): load_adapter(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: SCREAMING_SNAKE_CASE__ = True if "*" in mapped_key: SCREAMING_SNAKE_CASE__ = name.split(UpperCamelCase_ )[0].split('.' )[-2] SCREAMING_SNAKE_CASE__ = mapped_key.replace('*' , UpperCamelCase_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE__ = 'weight_g' elif "weight_v" in name: SCREAMING_SNAKE_CASE__ = 'weight_v' elif "bias" in name: SCREAMING_SNAKE_CASE__ = 'bias' elif "weight" in name: SCREAMING_SNAKE_CASE__ = 'weight' else: SCREAMING_SNAKE_CASE__ = None set_recursively(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) continue if not is_used: unused_weights.append(UpperCamelCase_ ) logger.warning(F'Unused weights: {unused_weights}' ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = full_name.split('conv_layers.' )[-1] SCREAMING_SNAKE_CASE__ = name.split('.' ) SCREAMING_SNAKE_CASE__ = int(items[0] ) SCREAMING_SNAKE_CASE__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) SCREAMING_SNAKE_CASE__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) SCREAMING_SNAKE_CASE__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) SCREAMING_SNAKE_CASE__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) SCREAMING_SNAKE_CASE__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ = full_name.split('adaptor.' )[-1] SCREAMING_SNAKE_CASE__ = name.split('.' ) if items[1].isdigit(): SCREAMING_SNAKE_CASE__ = int(items[1] ) else: SCREAMING_SNAKE_CASE__ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' SCREAMING_SNAKE_CASE__ = value logger.info(F'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' SCREAMING_SNAKE_CASE__ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' SCREAMING_SNAKE_CASE__ = value logger.info(F'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' SCREAMING_SNAKE_CASE__ = value logger.info(F'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' SCREAMING_SNAKE_CASE__ = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' SCREAMING_SNAKE_CASE__ = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = emb.weight.shape SCREAMING_SNAKE_CASE__ = nn.Linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = emb.weight.data return lin_layer @torch.no_grad() def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = WavaVecaConfig.from_pretrained( UpperCamelCase_ , add_adapter=UpperCamelCase_ , adapter_stride=UpperCamelCase_ , adapter_kernel_size=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , output_hidden_size=UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ = MBartConfig.from_pretrained(UpperCamelCase_ ) # load model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ 'config_yaml': config_yaml_path, 'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path, 'load_pretrained_decoder_from': None, } , ) SCREAMING_SNAKE_CASE__ = model[0].eval() # load feature extractor SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ , use_auth_token=UpperCamelCase_ ) # set weights for wav2vec2 encoder SCREAMING_SNAKE_CASE__ = WavaVecaModel(UpperCamelCase_ ) recursively_load_weights_wavaveca(model.encoder , UpperCamelCase_ ) # load decoder weights SCREAMING_SNAKE_CASE__ = MBartForCausalLM(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCamelCase_ ) logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) SCREAMING_SNAKE_CASE__ = SpeechEncoderDecoderModel(encoder=UpperCamelCase_ , decoder=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = MBartaaTokenizer(UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = hf_wavavec.config.to_dict() SCREAMING_SNAKE_CASE__ = tokenizer.pad_token_id SCREAMING_SNAKE_CASE__ = tokenizer.bos_token_id SCREAMING_SNAKE_CASE__ = tokenizer.eos_token_id SCREAMING_SNAKE_CASE__ = 'mbart50' SCREAMING_SNAKE_CASE__ = 'wav2vec2' SCREAMING_SNAKE_CASE__ = tokenizer.eos_token_id SCREAMING_SNAKE_CASE__ = 250004 SCREAMING_SNAKE_CASE__ = tokenizer.eos_token_id SCREAMING_SNAKE_CASE__ = SpeechEncoderDecoderConfig.from_dict(UpperCamelCase_ ) hf_wavavec.save_pretrained(UpperCamelCase_ ) feature_extractor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=10_24, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=25_00_04, type=int, help="""`decoder_start_token_id` of model config""") __snake_case = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
176
0
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = "▁" lowercase__ = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } lowercase__ = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } lowercase__ = { "facebook/m2m100_418M": 1024, } # fmt: off lowercase__ = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : int = ["""input_ids""", """attention_mask"""] UpperCAmelCase_ : List[int] = [] UpperCAmelCase_ : List[int] = [] def __init__( self : List[Any] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : int=None , lowercase_ : Any=None , lowercase_ : Optional[Any]="<s>" , lowercase_ : Tuple="</s>" , lowercase_ : List[str]="</s>" , lowercase_ : Optional[Any]="<pad>" , lowercase_ : Optional[Any]="<unk>" , lowercase_ : Optional[Any]="m2m100" , lowercase_ : Optional[Dict[str, Any]] = None , lowercase_ : List[str]=8 , **lowercase_ : Tuple , ) -> None: UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase : Any = language_codes UpperCAmelCase : Any = FAIRSEQ_LANGUAGE_CODES[language_codes] UpperCAmelCase : List[Any] = {lang_code: f"""__{lang_code}__""" for lang_code in fairseq_language_code} UpperCAmelCase : Optional[int] = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(lowercase_ ) for lang_code in fairseq_language_code if self.get_lang_token(lowercase_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowercase_ , tgt_lang=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , language_codes=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=lowercase_ , **lowercase_ , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : Union[str, Any] = load_json(lowercase_ ) UpperCAmelCase : Optional[int] = {v: k for k, v in self.encoder.items()} UpperCAmelCase : Dict = spm_file UpperCAmelCase : Union[str, Any] = load_spm(lowercase_ , self.sp_model_kwargs ) UpperCAmelCase : Optional[Any] = len(self.encoder ) UpperCAmelCase : str = { self.get_lang_token(lowercase_ ): self.encoder_size + i for i, lang_code in enumerate(lowercase_ ) } UpperCAmelCase : str = {lang_code: self.encoder_size + i for i, lang_code in enumerate(lowercase_ )} UpperCAmelCase : str = {v: k for k, v in self.lang_token_to_id.items()} UpperCAmelCase : int = src_lang if src_lang is not None else 'en' UpperCAmelCase : List[Any] = tgt_lang UpperCAmelCase : str = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) UpperCAmelCase : Any = num_madeup_words @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def UpperCAmelCase_ ( self : Tuple ) -> str: return self._src_lang @src_lang.setter def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : str ) -> None: UpperCAmelCase : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> List[str]: return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Optional[Any] ) -> Dict: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(lowercase_ , self.encoder[self.unk_token] ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : int ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(lowercase_ , self.unk_token ) def UpperCAmelCase_ ( self : Any , lowercase_ : str ) -> List[str]: UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Dict = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token UpperCAmelCase : Optional[int] = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def UpperCAmelCase_ ( self : List[str] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) UpperCAmelCase : str = [1] * len(self.prefix_tokens ) UpperCAmelCase : str = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase_ )) + suffix_ones return prefix_ones + ([0] * len(lowercase_ )) + ([0] * len(lowercase_ )) + suffix_ones def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase_ ( self : Dict ) -> Dict: UpperCAmelCase : Any = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> Dict: UpperCAmelCase : Tuple = self.__dict__.copy() UpperCAmelCase : str = None return state def __setstate__( self : int , lowercase_ : Dict ) -> None: UpperCAmelCase : Tuple = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase : Union[str, Any] = {} UpperCAmelCase : Tuple = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCAmelCase_ ( self : Dict , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : List[Any] = Path(lowercase_ ) if not save_dir.is_dir(): raise OSError(f"""{save_directory} should be a directory""" ) UpperCAmelCase : Optional[Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) UpperCAmelCase : List[Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , lowercase_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowercase_ ) elif not os.path.isfile(self.spm_file ): with open(lowercase_ , 'wb' ) as fi: UpperCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (str(lowercase_ ), str(lowercase_ )) def UpperCAmelCase_ ( self : Dict , lowercase_ : List[str] , lowercase_ : str = "en" , lowercase_ : Optional[List[str]] = None , lowercase_ : str = "ro" , **lowercase_ : Tuple , ) -> BatchEncoding: UpperCAmelCase : List[str] = src_lang UpperCAmelCase : Dict = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(lowercase_ , lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[str] , lowercase_ : Optional[str] , **lowercase_ : str ) -> Union[str, Any]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) UpperCAmelCase : List[Any] = src_lang UpperCAmelCase : int = self(lowercase_ , add_special_tokens=lowercase_ , **lowercase_ ) UpperCAmelCase : Tuple = self.get_lang_id(lowercase_ ) UpperCAmelCase : str = tgt_lang_id return inputs def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase_ ( self : int ) -> int: self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase_ ( self : int , lowercase_ : str ) -> None: UpperCAmelCase : Optional[Any] = self.get_lang_token(lowercase_ ) UpperCAmelCase : Tuple = self.lang_token_to_id[lang_token] UpperCAmelCase : int = [self.cur_lang_id] UpperCAmelCase : Any = [self.eos_token_id] def UpperCAmelCase_ ( self : List[Any] , lowercase_ : str ) -> None: UpperCAmelCase : Any = self.get_lang_token(lowercase_ ) UpperCAmelCase : int = self.lang_token_to_id[lang_token] UpperCAmelCase : int = [self.cur_lang_id] UpperCAmelCase : List[str] = [self.eos_token_id] def UpperCAmelCase_ ( self : str , lowercase_ : str ) -> str: return self.lang_code_to_token[lang] def UpperCAmelCase_ ( self : Any , lowercase_ : str ) -> int: UpperCAmelCase : str = self.get_lang_token(lowercase_ ) return self.lang_token_to_id[lang_token] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = sentencepiece.SentencePieceProcessor(**UpperCAmelCase_ ) spm.Load(str(UpperCAmelCase_ ) ) return spm def UpperCamelCase( UpperCAmelCase_ ): with open(UpperCAmelCase_ , 'r' ) as f: return json.load(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): with open(UpperCAmelCase_ , 'w' ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ , indent=2 )
280
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any , lowercase_ : str , lowercase_ : Union[str, Any]=7 , lowercase_ : Union[str, Any]=3 , lowercase_ : int=30 , lowercase_ : Tuple=400 , lowercase_ : Tuple=True , lowercase_ : Optional[int]=None , lowercase_ : List[str]=0.9 , lowercase_ : Tuple=None , lowercase_ : Union[str, Any]=True , lowercase_ : int=[0.5, 0.5, 0.5] , lowercase_ : List[str]=[0.5, 0.5, 0.5] , ) -> Tuple: UpperCAmelCase : Optional[int] = size if size is not None else {'shortest_edge': 30} UpperCAmelCase : int = crop_size if crop_size is not None else {'height': 30, 'width': 30} UpperCAmelCase : Tuple = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : int = num_channels UpperCAmelCase : int = min_resolution UpperCAmelCase : Optional[int] = max_resolution UpperCAmelCase : str = do_resize_and_center_crop UpperCAmelCase : int = size UpperCAmelCase : Dict = crop_pct UpperCAmelCase : Union[str, Any] = crop_size UpperCAmelCase : Optional[int] = do_normalize UpperCAmelCase : Optional[Any] = image_mean UpperCAmelCase : Optional[Any] = image_std def UpperCAmelCase_ ( self : str ) -> int: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = PoolFormerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : Dict ) -> str: UpperCAmelCase : Any = PoolFormerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Tuple ) -> str: UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(lowercase_ , 'size' ) ) self.assertTrue(hasattr(lowercase_ , 'crop_pct' ) ) self.assertTrue(hasattr(lowercase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowercase_ , 'image_std' ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) UpperCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: pass def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: # Initialize image_processing UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase : str = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: # Initialize image_processing UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input UpperCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase : Optional[Any] = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase_ ( self : str ) -> Dict: # Initialize image_processing UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input UpperCAmelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
280
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Tuple = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
48
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Optional[Any] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys SCREAMING_SNAKE_CASE__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
48
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCamelCase__ ( _lowercase ): '''simple docstring''' return (data["data"], data["target"]) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : str = XGBClassifier() classifier.fit(_lowercase , _lowercase ) return classifier def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = load_iris() UpperCAmelCase_, UpperCAmelCase_ : str = data_handling(_lowercase ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Dict = train_test_split( _lowercase , _lowercase , test_size=0.25 ) UpperCAmelCase_ : int = iris['''target_names'''] # Create an XGBoost Classifier from the training data UpperCAmelCase_ : int = xgboost(_lowercase , _lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _lowercase , _lowercase , _lowercase , display_labels=_lowercase , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
235
from random import shuffle import tensorflow as tf from numpy import array def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = int(_lowercase ) assert noofclusters < len(_lowercase ) # Find out the dimensionality UpperCAmelCase_ : Optional[int] = len(vectors[0] ) # Will help select random centroids from among the available vectors UpperCAmelCase_ : Optional[int] = list(range(len(_lowercase ) ) ) shuffle(_lowercase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. UpperCAmelCase_ : List[str] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION UpperCAmelCase_ : Tuple = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points UpperCAmelCase_ : str = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowercase ) ] ##These nodes will assign the centroid Variables the appropriate ##values UpperCAmelCase_ : List[Any] = tf.placeholder('''float64''' , [dim] ) UpperCAmelCase_ : List[Any] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowercase , _lowercase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) UpperCAmelCase_ : Optional[int] = [tf.Variable(0 ) for i in range(len(_lowercase ) )] ##These nodes will assign an assignment Variable the appropriate ##value UpperCAmelCase_ : List[Any] = tf.placeholder('''int32''' ) UpperCAmelCase_ : Union[str, Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowercase , _lowercase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input UpperCAmelCase_ : Tuple = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors UpperCAmelCase_ : str = tf.reduce_mean(_lowercase , 0 ) ##Node for computing Euclidean distances # Placeholders for input UpperCAmelCase_ : List[Any] = tf.placeholder('''float''' , [dim] ) UpperCAmelCase_ : Tuple = tf.placeholder('''float''' , [dim] ) UpperCAmelCase_ : Optional[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowercase , _lowercase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input UpperCAmelCase_ : int = tf.placeholder('''float''' , [noofclusters] ) UpperCAmelCase_ : Any = tf.argmin(_lowercase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. UpperCAmelCase_ : List[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(_lowercase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. UpperCAmelCase_ : Tuple = 100 for _ in range(_lowercase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowercase ) ): UpperCAmelCase_ : Optional[int] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. UpperCAmelCase_ : Tuple = [ sess.run(_lowercase , feed_dict={va: vect, va: sess.run(_lowercase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input UpperCAmelCase_ : Dict = sess.run( _lowercase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowercase ): # Collect all the vectors assigned to this cluster UpperCAmelCase_ : List[str] = [ vectors[i] for i in range(len(_lowercase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location UpperCAmelCase_ : Any = sess.run( _lowercase , feed_dict={mean_input: array(_lowercase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments UpperCAmelCase_ : Optional[int] = sess.run(_lowercase ) UpperCAmelCase_ : int = sess.run(_lowercase ) return centroids, assignments
235
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
106
"""simple docstring""" __UpperCamelCase : Optional[Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] __UpperCamelCase : Tuple = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] __UpperCamelCase : Optional[int] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] __UpperCamelCase : Tuple = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] __UpperCamelCase : str = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] __UpperCamelCase : Dict = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] __UpperCamelCase : int = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] __UpperCamelCase : Optional[int] = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
106
1
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __lowerCamelCase ( __snake_case : list, __snake_case : list, __snake_case : list, __snake_case : list, __snake_case : list ) -> float: """simple docstring""" A__ : Dict =np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCamelCase )] ) A__ : Union[str, Any] =np.array(_UpperCamelCase ) A__ : Tuple =np.dot(np.dot(np.linalg.inv(np.dot(x.transpose(), _UpperCamelCase ) ), x.transpose() ), _UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def __lowerCamelCase ( __snake_case : list, __snake_case : list, __snake_case : list ) -> float: """simple docstring""" A__ : str =(1, 2, 1) A__ : Any =(1, 1, 0, 7) A__ : Union[str, Any] =SARIMAX( _UpperCamelCase, exog=_UpperCamelCase, order=_UpperCamelCase, seasonal_order=_UpperCamelCase ) A__ : List[Any] =model.fit(disp=_UpperCamelCase, maxiter=600, method="""nm""" ) A__ : List[str] =model_fit.predict(1, len(_UpperCamelCase ), exog=[test_match] ) return result[0] def __lowerCamelCase ( __snake_case : list, __snake_case : list, __snake_case : list ) -> float: """simple docstring""" A__ : int =SVR(kernel="""rbf""", C=1, gamma=0.1, epsilon=0.1 ) regressor.fit(_UpperCamelCase, _UpperCamelCase ) A__ : str =regressor.predict(_UpperCamelCase ) return y_pred[0] def __lowerCamelCase ( __snake_case : list ) -> float: """simple docstring""" train_user.sort() A__ : List[str] =np.percentile(_UpperCamelCase, 25 ) A__ : List[Any] =np.percentile(_UpperCamelCase, 75 ) A__ : Tuple =qa - qa A__ : str =qa - (iqr * 0.1) return low_lim def __lowerCamelCase ( __snake_case : list, __snake_case : float ) -> bool: """simple docstring""" A__ : Tuple =0 A__ : Optional[int] =0 for i in list_vote: if i > actual_result: A__ : Optional[Any] =not_safe + 1 else: if abs(abs(_UpperCamelCase ) - abs(_UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __snake_case : Dict = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] __snake_case : int = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) __snake_case : Union[str, Any] = Normalizer().fit_transform(data_input_df.values) # split data __snake_case : int = normalize_df[:, 2].tolist() __snake_case : List[Any] = normalize_df[:, 0].tolist() __snake_case : Optional[int] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __snake_case : List[Any] = normalize_df[:, [1, 2]].tolist() __snake_case : str = x[: len(x) - 1] __snake_case : Optional[int] = x[len(x) - 1 :] # for linear regression & sarimax __snake_case : Optional[Any] = total_date[: len(total_date) - 1] __snake_case : List[str] = total_user[: len(total_user) - 1] __snake_case : Dict = total_match[: len(total_match) - 1] __snake_case : Union[str, Any] = total_date[len(total_date) - 1 :] __snake_case : List[Any] = total_user[len(total_user) - 1 :] __snake_case : Union[str, Any] = total_match[len(total_match) - 1 :] # voting system with forecasting __snake_case : Dict = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __snake_case : Union[str, Any] = "" if data_safety_checker(res_vote, tst_user) else "not " print('Today\'s data is {not_str}safe.')
359
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( __snake_case : list[int] ) -> bool: """simple docstring""" return len(set(__snake_case ) ) == len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
136
0
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __snake_case = logging.get_logger(__name__) def _A ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int=False ): try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: UpperCamelCase :Any = os.path.abspath(__lowerCAmelCase ) logger.info(F'''Loading PyTorch weights from {pt_path}''' ) UpperCamelCase :str = torch.load(__lowerCAmelCase , map_location='''cpu''' ) logger.info(F'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' ) UpperCamelCase :Dict = convert_pytorch_state_dict_to_flax(__lowerCAmelCase , __lowerCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCamelCase :str = convert_pytorch_sharded_state_dict_to_flax(__lowerCAmelCase , __lowerCAmelCase ) return flax_state_dict def _A ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ): def is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> bool: return len(set(__lowerCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCamelCase :Dict = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCamelCase :Any = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCamelCase :Optional[Any] = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCamelCase :Tuple = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase :Union[str, Any] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): UpperCamelCase :int = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase :Union[str, Any] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): UpperCamelCase :str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase :List[str] = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase :Any = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCamelCase :Optional[int] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCamelCase :Tuple = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCamelCase :int = pt_tuple_key[-2] + """_v""" if name is not None: UpperCamelCase :Any = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): # convert pytorch tensor to numpy UpperCamelCase :List[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase :Any = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCamelCase :Optional[int] = flax_model.params["""params"""] else: UpperCamelCase :List[Any] = flax_model.params UpperCamelCase :Union[str, Any] = flatten_dict(__lowerCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase :Tuple = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(__lowerCAmelCase ) UpperCamelCase :Dict = {} UpperCamelCase :Dict = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) UpperCamelCase :Union[str, Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase :Optional[int] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary UpperCamelCase :List[str] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase :List[str] = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase :Optional[Any] = rename_key_and_reshape_tensor( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # add model prefix if necessary UpperCamelCase :str = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase :List[str] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCamelCase :Optional[Any] = jnp.asarray(__lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase :str = jnp.asarray(__lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase :Optional[Any] = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase ) def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): import torch # Load the index UpperCamelCase :Union[str, Any] = {} for shard_file in shard_filenames: # load using msgpack utils UpperCamelCase :str = torch.load(__lowerCAmelCase ) UpperCamelCase :int = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase :str = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase :Tuple = flax_model.params["""params"""] UpperCamelCase :List[str] = flatten_dict(__lowerCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: UpperCamelCase :Any = flax_model.params UpperCamelCase :Dict = flatten_dict(__lowerCAmelCase ) UpperCamelCase :Optional[int] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) UpperCamelCase :Optional[int] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase :str = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary UpperCamelCase :Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase :str = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase :int = rename_key_and_reshape_tensor( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # add model prefix if necessary UpperCamelCase :Tuple = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase :int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCamelCase :str = jnp.asarray(__lowerCAmelCase ) continue if "var" in flax_key[-1]: UpperCamelCase :List[str] = jnp.asarray(__lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase :str = jnp.asarray(__lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase :Any = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase ) def _A ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): UpperCamelCase :List[Any] = os.path.abspath(__lowerCAmelCase ) logger.info(F'''Loading Flax weights from {flax_checkpoint_path}''' ) # import correct flax class UpperCamelCase :int = getattr(__lowerCAmelCase , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(__lowerCAmelCase , '''rb''' ) as state_f: try: UpperCamelCase :int = from_bytes(__lowerCAmelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(__lowerCAmelCase , __lowerCAmelCase ) def _A ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] ): try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights UpperCamelCase :Optional[int] = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE__ : x.dtype == jnp.bfloataa , __lowerCAmelCase ) ).values() if any(__lowerCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) UpperCamelCase :str = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCAmelCase ) UpperCamelCase :Union[str, Any] = flatten_dict(__lowerCAmelCase ) UpperCamelCase :int = pt_model.state_dict() UpperCamelCase :str = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) UpperCamelCase :List[Any] = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCamelCase :Optional[int] = [] UpperCamelCase :Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase :int = flax_key_tuple[0] == pt_model.base_model_prefix UpperCamelCase :Any = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase :Union[str, Any] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase :List[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCAmelCase ) not in pt_model_dict: # conv layer UpperCamelCase :List[Any] = flax_key_tuple[:-1] + ("""weight""",) UpperCamelCase :Tuple = jnp.transpose(__lowerCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCAmelCase ) not in pt_model_dict: # linear layer UpperCamelCase :Optional[int] = flax_key_tuple[:-1] + ("""weight""",) UpperCamelCase :Tuple = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase :Tuple = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCamelCase :int = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: UpperCamelCase :List[str] = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: UpperCamelCase :str = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCamelCase :Dict = """.""".join(__lowerCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCamelCase :Optional[Any] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCamelCase :List[str] = key.split('''.''' ) UpperCamelCase :Union[str, Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCamelCase :Tuple = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCamelCase :List[Any] = key_components[-2] + """_v""" if name is not None: UpperCamelCase :List[str] = key_components[:-3] + [name] UpperCamelCase :str = """.""".join(__lowerCAmelCase ) UpperCamelCase :Optional[Any] = key if flax_key in special_pt_names: UpperCamelCase :Dict = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict UpperCamelCase :Dict = np.asarray(__lowerCAmelCase ) if not isinstance(__lowerCAmelCase , np.ndarray ) else flax_tensor UpperCamelCase :Tuple = torch.from_numpy(__lowerCAmelCase ) # remove from missing keys missing_keys.remove(__lowerCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCAmelCase ) pt_model.load_state_dict(__lowerCAmelCase ) # re-transform missing_keys to list UpperCamelCase :Optional[int] = list(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(F'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' ) if len(__lowerCAmelCase ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' ''' use it for predictions and inference.''' ) else: logger.warning( F'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n''' '''If your task is similar to the task the model of the checkpoint was trained on, ''' F'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' ) return pt_model
259
"""simple docstring""" def _lowercase ( ) -> int: return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(__lowerCAmelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'{solution() = }')
132
0
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class snake_case_( unittest.TestCase ): __UpperCamelCase = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict ): lowerCAmelCase : Any = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) lowerCAmelCase : int = VideoClassificationPipeline(model=UpperCamelCase_ , image_processor=UpperCamelCase_ , top_k=2 ) lowerCAmelCase : Optional[Any] = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ): for example in examples: lowerCAmelCase : Optional[int] = video_classifier(UpperCamelCase_ ) self.assertEqual( UpperCamelCase_ , [ {'''score''': ANY(UpperCamelCase_ ), '''label''': ANY(UpperCamelCase_ )}, {'''score''': ANY(UpperCamelCase_ ), '''label''': ANY(UpperCamelCase_ )}, ] , ) @require_torch def lowerCamelCase__ ( self : Any ): lowerCAmelCase : List[Any] = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' lowerCAmelCase : Tuple = VideoMAEFeatureExtractor( size={'''shortest_edge''': 1_0} , crop_size={'''height''': 1_0, '''width''': 1_0} ) lowerCAmelCase : int = pipeline( '''video-classification''' , model=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , frame_sampling_rate=4 ) lowerCAmelCase : int = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) lowerCAmelCase : Tuple = video_classifier(UpperCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase_ , decimals=4 ) , [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}] , ) lowerCAmelCase : Any = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(UpperCamelCase_ , decimals=4 ) , [ [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def lowerCamelCase__ ( self : Union[str, Any] ): pass
352
"""simple docstring""" def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_snake_case ) else: lowerCAmelCase : str = sylvester(number - 1 ) lowerCAmelCase : Optional[Any] = num - 1 lowerCAmelCase : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
314
0
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class _A: """simple docstring""" def __init__( self , _A , ): __A : Union[str, Any] = parent __A : List[Any] = 13 __A : Optional[int] = 7 __A : Tuple = True __A : str = True __A : int = True __A : Any = 99 __A : Tuple = 32 __A : Dict = 2 __A : List[str] = 4 __A : int = 37 __A : Union[str, Any] = 'gelu' __A : List[Any] = 0.1 __A : List[str] = 0.1 __A : Dict = 512 __A : List[Any] = 16 __A : int = 2 __A : Optional[int] = 0.0_2 __A : str = 3 __A : Tuple = 4 __A : Dict = None def UpperCAmelCase_ ( self ): __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : int = None if self.use_input_mask: __A : Any = random_attention_mask([self.batch_size, self.seq_length] ) __A : str = None __A : List[str] = None __A : Tuple = None if self.use_labels: __A : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A : Tuple = ids_tensor([self.batch_size] , self.num_choices ) __A : Tuple = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self ): ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) : int = self.prepare_config_and_inputs() __A : Optional[int] = True __A : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __A : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A ): __A : str = TFEsmModel(config=_A ) __A : str = {'input_ids': input_ids, 'attention_mask': input_mask} __A : Dict = model(_A ) __A : List[str] = [input_ids, input_mask] __A : str = model(_A ) __A : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A , ): __A : int = True __A : List[str] = TFEsmModel(config=_A ) __A : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } __A : Optional[Any] = model(_A ) __A : Optional[int] = [input_ids, input_mask] __A : int = model(_A , encoder_hidden_states=_A ) # Also check the case where encoder outputs are not passed __A : Union[str, Any] = model(_A , attention_mask=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A ): __A : Optional[Any] = TFEsmForMaskedLM(config=_A ) __A : List[Any] = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A ): __A : str = self.num_labels __A : Dict = TFEsmForTokenClassification(config=_A ) __A : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} __A : Tuple = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self ): __A : List[Any] = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) : Dict = config_and_inputs __A : int = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _A( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : List[str] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase : str = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase : Optional[int] = False UpperCamelCase : int = False def UpperCAmelCase_ ( self ): __A : Optional[Any] = TFEsmModelTester(self ) __A : Dict = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCAmelCase_ ( self ): self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ): __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self ): __A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_A ) def UpperCAmelCase_ ( self ): __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def UpperCAmelCase_ ( self ): __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def UpperCAmelCase_ ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : Union[str, Any] = TFEsmModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): __A , __A : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Union[str, Any] = model_class(_A ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer __A : Optional[Any] = model.get_bias() assert isinstance(_A , _A ) for k, v in name.items(): assert isinstance(_A , tf.Variable ) else: __A : Any = model.get_output_embeddings() assert x is None __A : Tuple = model.get_bias() assert name is None @require_tf class _A( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self ): __A : List[Any] = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) __A : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __A : Union[str, Any] = model(_A )[0] __A : Optional[int] = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _A ) # compare the actual values for a slice. __A : str = tf.constant( [ [ [8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def UpperCAmelCase_ ( self ): __A : int = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) __A : Any = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __A : List[Any] = model(_A )[0] # compare the actual values for a slice. __A : Dict = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
280
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): __A : List[Any] = tempfile.mkdtemp() # fmt: off __A : List[str] = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __A : Union[str, Any] = dict(zip(_A , range(len(_A ) ) ) ) __A : Optional[int] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __A : int = {'unk_token': '<unk>'} __A : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __A : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_A ) ) __A : List[Any] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __A : Optional[int] = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_A , _A ) def UpperCAmelCase_ ( self , **_A ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **_A ) def UpperCAmelCase_ ( self , **_A ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **_A ) def UpperCAmelCase_ ( self , **_A ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self ): __A : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __A : Optional[int] = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ ( self ): __A : List[Any] = self.get_tokenizer() __A : str = self.get_rust_tokenizer() __A : List[str] = self.get_image_processor() __A : Optional[int] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) processor_slow.save_pretrained(self.tmpdirname ) __A : int = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) __A : Optional[Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) processor_fast.save_pretrained(self.tmpdirname ) __A : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _A ) self.assertIsInstance(processor_fast.tokenizer , _A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _A ) self.assertIsInstance(processor_fast.image_processor , _A ) def UpperCAmelCase_ ( self ): __A : List[str] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A : Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __A : Optional[int] = self.get_image_processor(do_normalize=_A ) __A : Any = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : Union[str, Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Union[str, Any] = self.prepare_image_inputs() __A : int = image_processor(_A , return_tensors='np' ) __A : str = processor(images=_A , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase_ ( self ): __A : str = self.get_image_processor() __A : str = self.get_tokenizer() __A : Tuple = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : str = 'lower newer' __A : str = processor(text=_A , return_tensors='np' ) __A : List[str] = tokenizer(_A , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase_ ( self ): __A : int = self.get_image_processor() __A : Optional[int] = self.get_tokenizer() __A : List[str] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Any = 'lower newer' __A : Optional[Any] = self.prepare_image_inputs() __A : List[Any] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Any = 'google/owlvit-base-patch32' __A : int = OwlViTProcessor.from_pretrained(_A ) __A : Dict = ['cat', 'nasa badge'] __A : Optional[Any] = processor(text=_A ) __A : Optional[int] = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Tuple = 'google/owlvit-base-patch32' __A : Any = OwlViTProcessor.from_pretrained(_A ) __A : Dict = [['cat', 'nasa badge'], ['person']] __A : Dict = processor(text=_A ) __A : Optional[int] = 16 __A : Any = len(_A ) __A : Union[str, Any] = max([len(_A ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : List[Any] = 'google/owlvit-base-patch32' __A : str = OwlViTProcessor.from_pretrained(_A ) __A : Union[str, Any] = ['cat', 'nasa badge'] __A : Tuple = processor(text=_A ) __A : str = 16 __A : int = inputs['input_ids'] __A : List[Any] = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.get_image_processor() __A : List[str] = self.get_tokenizer() __A : Optional[Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Optional[int] = self.prepare_image_inputs() __A : Optional[int] = self.prepare_image_inputs() __A : Optional[int] = processor(images=_A , query_images=_A ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.get_image_processor() __A : Union[str, Any] = self.get_tokenizer() __A : str = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A : Any = processor.batch_decode(_A ) __A : Tuple = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A )
280
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Tuple = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys a_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
357
'''simple docstring''' a_ : List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def a_ ( __snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ =0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a_ : list[bool | None] = [None] * 10_00_00_00 a_ : List[Any] = True a_ : Optional[Any] = False def a_ ( __snake_case : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase_ =chain(next_number(__snake_case ) ) lowerCamelCase_ =number_chain while number < 1000_0000: lowerCamelCase_ =number_chain number *= 10 return number_chain def a_ ( __snake_case : int = 1000_0000 ) -> int: """simple docstring""" for i in range(1 , __snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
6
0
from argparse import ArgumentParser from . import BaseTransformersCLICommand def __UpperCAmelCase ( __a : List[str] ) -> Optional[Any]: """simple docstring""" return DownloadCommand(args.model ,args.cache_dir ,args.force ,args.trust_remote_code ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" @staticmethod def __lowercase ( _a ) -> Dict: _a : Optional[Any] = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=_a , default=_a , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=_a , help='''Name of the model to download''' ) download_parser.set_defaults(func=_a ) def __init__( self , _a , _a , _a , _a ) -> Any: _a : int = model _a : int = cache _a : Dict = force _a : Optional[Any] = trust_remote_code def __lowercase ( self ) -> Dict: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
235
from collections.abc import Callable class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a = None ) -> None: # Stores actual heap items. _a : list = [] # Stores indexes of each item for supporting updates and deletion. _a : dict = {} # Stores current size of heap. _a : Tuple = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _a : Dict = key or (lambda _a : x) def __lowercase ( self , _a ) -> int | None: return int((i - 1) / 2 ) if i > 0 else None def __lowercase ( self , _a ) -> int | None: _a : Optional[int] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowercase ( self , _a ) -> int | None: _a : int = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowercase ( self , _a , _a ) -> None: _a , _a : Union[str, Any] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _a , _a : List[Any] = self.arr[j], self.arr[i] def __lowercase ( self , _a , _a ) -> bool: return self.arr[i][1] < self.arr[j][1] def __lowercase ( self , _a ) -> int: _a : Dict = self._left(_a ) _a : str = self._right(_a ) _a : str = i if left is not None and not self._cmp(_a , _a ): _a : Optional[Any] = left if right is not None and not self._cmp(_a , _a ): _a : Any = right return valid_parent def __lowercase ( self , _a ) -> None: _a : List[str] = self._parent(_a ) while parent is not None and not self._cmp(_a , _a ): self._swap(_a , _a ) _a , _a : Any = parent, self._parent(_a ) def __lowercase ( self , _a ) -> None: _a : List[Any] = self._get_valid_parent(_a ) while valid_parent != index: self._swap(_a , _a ) _a , _a : int = valid_parent, self._get_valid_parent(_a ) def __lowercase ( self , _a , _a ) -> None: if item not in self.pos_map: return _a : str = self.pos_map[item] _a : List[Any] = [item, self.key(_a )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_a ) self._heapify_down(_a ) def __lowercase ( self , _a ) -> None: if item not in self.pos_map: return _a : Tuple = self.pos_map[item] del self.pos_map[item] _a : Tuple = self.arr[self.size - 1] _a : str = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_a ) self._heapify_down(_a ) def __lowercase ( self , _a , _a ) -> None: _a : Union[str, Any] = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_a )] ) else: _a : Optional[int] = [item, self.key(_a )] _a : Tuple = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowercase ( self ) -> tuple | None: return self.arr[0] if self.size else None def __lowercase ( self ) -> tuple | None: _a : Tuple = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def __UpperCAmelCase ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
235
1
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Any = tmp_path / """file.csv""" snake_case_ : Any = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Optional[int] = tmp_path / """malformed_file.csv""" snake_case_ : int = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : str = tmp_path / """csv_with_image.csv""" snake_case_ : int = textwrap.dedent( F'''\ image {image_file} ''' ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' snake_case_ : int = tmp_path / """csv_with_label.csv""" snake_case_ : Tuple = textwrap.dedent( """\ label good bad good """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path / """csv_with_int_list.csv""" snake_case_ : str = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :Tuple ): '''simple docstring''' snake_case_ : int = Csv() snake_case_ : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowerCamelCase_ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(lowerCamelCase_ ) in record.message for record in caplog.records ) @require_pil def UpperCAmelCase ( lowerCamelCase_ :Tuple ): '''simple docstring''' with open(lowerCamelCase_ , encoding="""utf-8""" ) as f: snake_case_ : Tuple = f.read().splitlines()[1] snake_case_ : str = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) snake_case_ : Tuple = csv._generate_tables([[csv_file_with_image]] ) snake_case_ : Optional[Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() snake_case_ : List[str] = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' with open(lowerCamelCase_ , encoding="""utf-8""" ) as f: snake_case_ : List[Any] = f.read().splitlines()[1:] snake_case_ : Union[str, Any] = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] ) snake_case_ : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() snake_case_ : Union[str, Any] = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(lowerCamelCase_ ) for label in labels] def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : str = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda lowerCamelCase_ : [int(lowerCamelCase_ ) for i in x.split()]} ) snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_int_list]] ) snake_case_ : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) snake_case_ : Dict = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
350
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def a__ ( self :Dict ): snake_case_ : Optional[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) snake_case_ : Optional[int] = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house snake_case_ : Tuple = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ : Dict = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ : Tuple = model(_UpperCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape ,_UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) ) @slow def a__ ( self :Union[str, Any] ): snake_case_ : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) snake_case_ : Dict = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house snake_case_ : List[Any] = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ : Any = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ : str = model(_UpperCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape ,_UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) )
8
0
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __lowerCamelCase ( A__ ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def __lowerCamelCase ( A__ , A__ , A__ ) -> np.ndarray: """simple docstring""" UpperCamelCase = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(A__ , A__ ) # Predict target for test data UpperCamelCase = xgb.predict(A__ ) UpperCamelCase = predictions.reshape(len(A__ ) , 1 ) return predictions def __lowerCamelCase ( ) -> None: """simple docstring""" UpperCamelCase = fetch_california_housing() UpperCamelCase , UpperCamelCase = data_handling(A__ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = train_test_split( A__ , A__ , test_size=0.25 , random_state=1 ) UpperCamelCase = xgboost(A__ , A__ , A__ ) # Error printing print(F"""Mean Absolute Error : {mean_absolute_error(A__ , A__ )}""" ) print(F"""Mean Square Error : {mean_squared_error(A__ , A__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
28
"""simple docstring""" from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = "T5Config" class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "mt5" lowercase__ = MTaConfig class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "mt5" lowercase__ = MTaConfig class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "mt5" lowercase__ = MTaConfig
136
0
import collections import importlib.util import os import re from pathlib import Path UpperCamelCase__ ='src/transformers' # Matches is_xxx_available() UpperCamelCase__ =re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} UpperCamelCase__ =re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCamelCase__ =re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available UpperCamelCase__ =re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") UpperCamelCase__ =re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCamelCase__ =re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", UpperCamelCase__ =re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], UpperCamelCase__ =re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo UpperCamelCase__ =re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: UpperCamelCase__ =re.compile(R'^\s*try:') # Catches a line with else: UpperCamelCase__ =re.compile(R'^\s*else:') def lowerCamelCase__ (__lowerCamelCase ): if _re_test_backend.search(__lowerCamelCase ) is None: return None _SCREAMING_SNAKE_CASE : Dict = [b[0] for b in _re_backend.findall(__lowerCamelCase )] backends.sort() return "_and_".join(__lowerCamelCase ) def lowerCamelCase__ (__lowerCamelCase ): with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : Union[str, Any] = f.readlines() _SCREAMING_SNAKE_CASE : str = 0 while line_index < len(__lowerCamelCase ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__lowerCamelCase ): return None # First grab the objects without a specific backend in _import_structure _SCREAMING_SNAKE_CASE : Optional[int] = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: _SCREAMING_SNAKE_CASE : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = _re_one_line_import_struct.search(__lowerCamelCase ).groups()[0] _SCREAMING_SNAKE_CASE : Optional[Any] = re.findall("\[([^\]]+)\]", __lowerCamelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue _SCREAMING_SNAKE_CASE : List[Any] = _re_import_struct_key_value.search(__lowerCamelCase ) if single_line_import_search is not None: _SCREAMING_SNAKE_CASE : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(__lowerCamelCase ) > 0] objects.extend(__lowerCamelCase ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 _SCREAMING_SNAKE_CASE : List[Any] = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. _SCREAMING_SNAKE_CASE : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _SCREAMING_SNAKE_CASE : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _SCREAMING_SNAKE_CASE : List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): _SCREAMING_SNAKE_CASE : Optional[Any] = lines[line_index] if _re_import_struct_add_one.search(__lowerCamelCase ) is not None: objects.append(_re_import_struct_add_one.search(__lowerCamelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__lowerCamelCase ) is not None: _SCREAMING_SNAKE_CASE : List[Any] = _re_import_struct_add_many.search(__lowerCamelCase ).groups()[0].split(", " ) _SCREAMING_SNAKE_CASE : int = [obj[1:-1] for obj in imports if len(__lowerCamelCase ) > 0] objects.extend(__lowerCamelCase ) elif _re_between_brackets.search(__lowerCamelCase ) is not None: _SCREAMING_SNAKE_CASE : str = _re_between_brackets.search(__lowerCamelCase ).groups()[0].split(", " ) _SCREAMING_SNAKE_CASE : int = [obj[1:-1] for obj in imports if len(__lowerCamelCase ) > 0] objects.extend(__lowerCamelCase ) elif _re_quote_object.search(__lowerCamelCase ) is not None: objects.append(_re_quote_object.search(__lowerCamelCase ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 _SCREAMING_SNAKE_CASE : Any = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _SCREAMING_SNAKE_CASE : Optional[Any] = [] while ( line_index < len(__lowerCamelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): _SCREAMING_SNAKE_CASE : Any = lines[line_index] _SCREAMING_SNAKE_CASE : Optional[Any] = _re_import.search(__lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 _SCREAMING_SNAKE_CASE : Tuple = {"none": objects} # Let's continue with backend-specific objects while line_index < len(__lowerCamelCase ): # If the line is an if is_backend_available, we grab all objects associated. _SCREAMING_SNAKE_CASE : Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _SCREAMING_SNAKE_CASE : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _SCREAMING_SNAKE_CASE : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): _SCREAMING_SNAKE_CASE : List[Any] = lines[line_index] _SCREAMING_SNAKE_CASE : int = _re_import.search(__lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 _SCREAMING_SNAKE_CASE : Dict = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): def find_duplicates(__lowerCamelCase ): return [k for k, v in collections.Counter(__lowerCamelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _SCREAMING_SNAKE_CASE : Optional[int] = [] for key in import_dict_objects.keys(): _SCREAMING_SNAKE_CASE : Tuple = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) _SCREAMING_SNAKE_CASE : str = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _SCREAMING_SNAKE_CASE : List[Any] = "base imports" if key == "none" else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : List[Any] = [] for root, _, files in os.walk(__lowerCamelCase ): if "__init__.py" in files: _SCREAMING_SNAKE_CASE : Dict = os.path.join(__lowerCamelCase, "__init__.py" ) _SCREAMING_SNAKE_CASE : List[str] = parse_init(__lowerCamelCase ) if objects is not None: _SCREAMING_SNAKE_CASE : Dict = analyze_results(*__lowerCamelCase ) if len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : str = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("\n".join(__lowerCamelCase ) ) if len(__lowerCamelCase ) > 0: raise ValueError("\n\n".join(__lowerCamelCase ) ) def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : int = [] for path, directories, files in os.walk(__lowerCamelCase ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(__lowerCamelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__lowerCamelCase ) / folder).glob("*.py" ) ) ) == 0: continue _SCREAMING_SNAKE_CASE : Any = str((Path(__lowerCamelCase ) / folder).relative_to(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = short_path.replace(os.path.sep, "." ) submodules.append(__lowerCamelCase ) for fname in files: if fname == "__init__.py": continue _SCREAMING_SNAKE_CASE : Union[str, Any] = str((Path(__lowerCamelCase ) / fname).relative_to(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : List[str] = short_path.replace(".py", "" ).replace(os.path.sep, "." ) if len(submodule.split("." ) ) == 1: submodules.append(__lowerCamelCase ) return submodules UpperCamelCase__ =[ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def lowerCamelCase__ (): # This is to make sure the transformers module imported is the one in the repo. _SCREAMING_SNAKE_CASE : Dict = importlib.util.spec_from_file_location( "transformers", os.path.join(__lowerCamelCase, "__init__.py" ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) _SCREAMING_SNAKE_CASE : List[str] = spec.loader.load_module() _SCREAMING_SNAKE_CASE : List[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : Any = "\n".join(f"""- {module}""" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" f"""{list_of_modules}\n""" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
353
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={'vocab_file': 'spiece.model'} UpperCamelCase__ ={ 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } UpperCamelCase__ ={ 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCamelCase__ ='▁' class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __lowerCamelCase , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase="[CLS]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<unk>" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<pad>" , __lowerCamelCase="[CLS]" , __lowerCamelCase="[MASK]" , __lowerCamelCase = None , **__lowerCamelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _SCREAMING_SNAKE_CASE : List[Any] = ( AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase , normalized=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token ) _SCREAMING_SNAKE_CASE : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : Dict = do_lower_case _SCREAMING_SNAKE_CASE : List[Any] = remove_space _SCREAMING_SNAKE_CASE : str = keep_accents _SCREAMING_SNAKE_CASE : Optional[int] = vocab_file _SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def UpperCamelCase_ ( self ) -> Optional[Any]: return len(self.sp_model ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Any = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.__dict__.copy() _SCREAMING_SNAKE_CASE : Optional[Any] = None return state def __setstate__( self , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _SCREAMING_SNAKE_CASE : Optional[int] = {} _SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: if self.remove_space: _SCREAMING_SNAKE_CASE : List[str] = " ".join(inputs.strip().split() ) else: _SCREAMING_SNAKE_CASE : Optional[Any] = inputs _SCREAMING_SNAKE_CASE : str = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _SCREAMING_SNAKE_CASE : str = unicodedata.normalize("NFKD" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase )] ) if self.do_lower_case: _SCREAMING_SNAKE_CASE : Dict = outputs.lower() return outputs def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[str]: _SCREAMING_SNAKE_CASE : int = self.preprocess_text(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for piece in pieces: if len(__lowerCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _SCREAMING_SNAKE_CASE : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _SCREAMING_SNAKE_CASE : Union[str, Any] = cur_pieces[1:] else: _SCREAMING_SNAKE_CASE : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCamelCase ) else: new_pieces.append(__lowerCamelCase ) return new_pieces def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[Any]: return self.sp_model.PieceToId(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> str: return self.sp_model.IdToPiece(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : List[str] = "" _SCREAMING_SNAKE_CASE : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] _SCREAMING_SNAKE_CASE : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] _SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _SCREAMING_SNAKE_CASE : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: _SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
325
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class A_ ( A__ ): _lowerCamelCase : Any = """naver-clova-ix/donut-base-finetuned-docvqa""" _lowerCamelCase : Dict = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) _lowerCamelCase : Dict = """document_qa""" _lowerCamelCase : int = AutoProcessor _lowerCamelCase : List[str] = VisionEncoderDecoderModel _lowerCamelCase : int = ["""image""", """text"""] _lowerCamelCase : Union[str, Any] = ["""text"""] def __init__( self : List[str] , *snake_case_ : Tuple , **snake_case_ : int ): if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def lowercase ( self : Any , snake_case_ : "Image" , snake_case_ : str ): _UpperCAmelCase = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" _UpperCAmelCase = task_prompt.replace("{user_input}" , __lowerCamelCase ) _UpperCAmelCase = self.pre_processor.tokenizer( __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors="pt" ).input_ids _UpperCAmelCase = self.pre_processor(__lowerCamelCase , return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowercase ( self : List[str] , snake_case_ : Optional[int] ): return self.model.generate( inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowerCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowerCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowerCamelCase , ).sequences def lowercase ( self : Union[str, Any] , snake_case_ : int ): _UpperCAmelCase = self.pre_processor.batch_decode(__lowerCamelCase )[0] _UpperCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , "" ) _UpperCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , "" ) _UpperCAmelCase = re.sub(r"<.*?>" , "" , __lowerCamelCase , count=1 ).strip() # remove first task start token _UpperCAmelCase = self.pre_processor.tokenajson(__lowerCamelCase ) return sequence["answer"]
22
from ...configuration_utils import PretrainedConfig _SCREAMING_SNAKE_CASE : Optional[Any] = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "tapas" def __init__( self : int , __lowerCamelCase : Optional[Any]=3_0522 , __lowerCamelCase : Tuple=768 , __lowerCamelCase : int=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Union[str, Any]=3072 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : str=1024 , __lowerCamelCase : Union[str, Any]=[3, 256, 256, 2, 256, 256, 10] , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : List[str]=1e-12 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Optional[Any]=10.0 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : str=1.0 , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=1.0 , __lowerCamelCase : Dict=1.0 , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : int=False , __lowerCamelCase : List[str]="ratio" , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[Any]=64 , __lowerCamelCase : Any=32 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : str , ) -> str: super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_sizes SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps # Fine-tuning task hyperparameters SCREAMING_SNAKE_CASE__ = positive_label_weight SCREAMING_SNAKE_CASE__ = num_aggregation_labels SCREAMING_SNAKE_CASE__ = aggregation_loss_weight SCREAMING_SNAKE_CASE__ = use_answer_as_supervision SCREAMING_SNAKE_CASE__ = answer_loss_importance SCREAMING_SNAKE_CASE__ = use_normalized_answer_loss SCREAMING_SNAKE_CASE__ = huber_loss_delta SCREAMING_SNAKE_CASE__ = temperature SCREAMING_SNAKE_CASE__ = aggregation_temperature SCREAMING_SNAKE_CASE__ = use_gumbel_for_cells SCREAMING_SNAKE_CASE__ = use_gumbel_for_aggregation SCREAMING_SNAKE_CASE__ = average_approximation_function SCREAMING_SNAKE_CASE__ = cell_selection_preference SCREAMING_SNAKE_CASE__ = answer_loss_cutoff SCREAMING_SNAKE_CASE__ = max_num_rows SCREAMING_SNAKE_CASE__ = max_num_columns SCREAMING_SNAKE_CASE__ = average_logits_per_cell SCREAMING_SNAKE_CASE__ = select_one_column SCREAMING_SNAKE_CASE__ = allow_empty_column_selection SCREAMING_SNAKE_CASE__ = init_cell_selection_weights_to_zero SCREAMING_SNAKE_CASE__ = reset_position_index_per_cell SCREAMING_SNAKE_CASE__ = disable_per_token_loss # Aggregation hyperparameters SCREAMING_SNAKE_CASE__ = aggregation_labels SCREAMING_SNAKE_CASE__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = {int(__lowerCamelCase ): v for k, v in aggregation_labels.items()}
314
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
112
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : List[str] = ['''image_processor''', '''tokenizer'''] __UpperCAmelCase : str = '''LayoutLMv2ImageProcessor''' __UpperCAmelCase : Dict = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCamelCase__ , ) snake_case : Dict = kwargs.pop("feature_extractor" ) snake_case : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = 0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = True , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor snake_case : Any = self.image_processor(images=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case : Optional[int] = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case : Optional[Any] = features["words"] snake_case : Dict = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel values snake_case : Dict = features.pop("pixel_values" ) if return_overflowing_tokens is True: snake_case : Any = self.get_overflowing_images(UpperCamelCase__ , encoded_inputs["overflow_to_sample_mapping"] ) snake_case : str = images return encoded_inputs def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' snake_case : Union[str, Any] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F' {len(UpperCamelCase__ )} and {len(UpperCamelCase__ )}' ) return images_with_overflow def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def lowerCamelCase ( self ) -> Dict: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCamelCase__ , ) return self.image_processor_class @property def lowerCamelCase ( self ) -> Any: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCamelCase__ , ) return self.image_processor
112
1
def a ( snake_case__: int = 100 ): '''simple docstring''' lowercase_ = (n * (n + 1) // 2) ** 2 lowercase_ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"{solution() = }")
30
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 - _cos) / 2 __a = 1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 + _cos) / 2 __a = -1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = _sin / 2 __a = 0 __a = -ba __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 1 - alpha __a = -2 * _cos __a = 1 + alpha __a = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = 1 + alpha * big_a __a = -2 * _cos __a = 1 - alpha * big_a __a = 1 + alpha / big_a __a = -2 * _cos __a = 1 - alpha / big_a __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (pmc + aaa) __a = 2 * big_a * mpc __a = big_a * (pmc - aaa) __a = ppmc + aaa __a = -2 * pmpc __a = ppmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (ppmc + aaa) __a = -2 * big_a * pmpc __a = big_a * (ppmc - aaa) __a = pmc + aaa __a = 2 * mpc __a = pmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
6
0
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
359
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): super().__init__() snake_case_ = value_function snake_case_ = unet snake_case_ = scheduler snake_case_ = env snake_case_ = env.get_dataset() snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].mean() except: # noqa: E722 pass snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].std() except: # noqa: E722 pass snake_case_ = env.observation_space.shape[0] snake_case_ = env.action_space.shape[0] def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): return (x_in - self.means[key]) / self.stds[key] def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): return x_in * self.stds[key] + self.means[key] def UpperCamelCase__ ( self , _UpperCAmelCase ): if type(_UpperCAmelCase ) is dict: return {k: self.to_torch(_UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(_UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(_UpperCAmelCase , device=self.unet.device ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for key, val in cond.items(): snake_case_ = val.clone() return x_in def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = x.shape[0] snake_case_ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model snake_case_ = torch.full((batch_size,) , _UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(_UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models snake_case_ = self.value_function(x.permute(0 , 2 , 1 ) , _UpperCAmelCase ).sample snake_case_ = torch.autograd.grad([y.sum()] , [x] )[0] snake_case_ = self.scheduler._get_variance(_UpperCAmelCase ) snake_case_ = torch.exp(0.5 * posterior_variance ) snake_case_ = model_std * grad snake_case_ = 0 snake_case_ = x.detach() snake_case_ = x + scale * grad snake_case_ = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim ) snake_case_ = self.unet(x.permute(0 , 2 , 1 ) , _UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg snake_case_ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , predict_epsilon=_UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) snake_case_ = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim ) snake_case_ = self.to_torch(_UpperCAmelCase ) return x, y def __call__( self , _UpperCAmelCase , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 ): # normalize the observations and create batch dimension snake_case_ = self.normalize(_UpperCAmelCase , '''observations''' ) snake_case_ = obs[None].repeat(_UpperCAmelCase , axis=0 ) snake_case_ = {0: self.to_torch(_UpperCAmelCase )} snake_case_ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) snake_case_ = randn_tensor(_UpperCAmelCase , device=self.unet.device ) snake_case_ = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim ) snake_case_ = self.to_torch(_UpperCAmelCase ) # run the diffusion process snake_case_ , snake_case_ = self.run_diffusion(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # sort output trajectories by value snake_case_ = y.argsort(0 , descending=_UpperCAmelCase ).squeeze() snake_case_ = x[sorted_idx] snake_case_ = sorted_values[:, :, : self.action_dim] snake_case_ = actions.detach().cpu().numpy() snake_case_ = self.de_normalize(_UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: snake_case_ = 0 else: # if we didn't run value guiding, select a random action snake_case_ = np.random.randint(0 , _UpperCAmelCase ) snake_case_ = denorm_actions[selected_index, 0] return denorm_actions
267
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
243
from decimal import Decimal, getcontext from math import ceil, factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) snake_case_ = precision snake_case_ = ceil(precision / 14 ) snake_case_ = 426880 * Decimal(10005 ).sqrt() snake_case_ = 1 snake_case_ = 13591409 snake_case_ = Decimal(SCREAMING_SNAKE_CASE__ ) for k in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ = factorial(6 * k ) // (factorial(3 * k ) * factorial(SCREAMING_SNAKE_CASE__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCAmelCase_ = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
8
0
"""simple docstring""" A : List[Any] = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution A : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 A : List[Any] = True A : Optional[Any] = False def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __lowerCAmelCase = chain(next_number(__snake_case ) ) __lowerCAmelCase = number_chain while number < 1000_0000: __lowerCAmelCase = number_chain number *= 10 return number_chain def _lowerCamelCase ( _UpperCamelCase = 1000_0000 ): '''simple docstring''' for i in range(1 , __snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution() = }''')
356
"""simple docstring""" from __future__ import annotations import time A : Union[str, Any] = list[tuple[int, int]] A : int = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A : int = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a , __a , __a , __a ): __lowerCAmelCase = pos_x __lowerCAmelCase = pos_y __lowerCAmelCase = (pos_y, pos_x) __lowerCAmelCase = goal_x __lowerCAmelCase = goal_y __lowerCAmelCase = parent class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a ): __lowerCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , __a ) __lowerCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , __a ) __lowerCAmelCase = [self.start] __lowerCAmelCase = False def snake_case ( self ): while self.node_queue: __lowerCAmelCase = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: __lowerCAmelCase = True return self.retrace_path(__a ) __lowerCAmelCase = self.get_successors(__a ) for node in successors: self.node_queue.append(__a ) if not self.reached: return [self.start.pos] return None def snake_case ( self , __a ): __lowerCAmelCase = [] for action in delta: __lowerCAmelCase = parent.pos_x + action[1] __lowerCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__a , __a , self.target.pos_y , self.target.pos_x , __a ) ) return successors def snake_case ( self , __a ): __lowerCAmelCase = node __lowerCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowerCAmelCase = current_node.parent path.reverse() return path class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a ): __lowerCAmelCase = BreadthFirstSearch(__a , __a ) __lowerCAmelCase = BreadthFirstSearch(__a , __a ) __lowerCAmelCase = False def snake_case ( self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __lowerCAmelCase = self.fwd_bfs.node_queue.pop(0 ) __lowerCAmelCase = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: __lowerCAmelCase = True return self.retrace_bidirectional_path( __a , __a ) __lowerCAmelCase = current_bwd_node __lowerCAmelCase = current_fwd_node __lowerCAmelCase = { self.fwd_bfs: self.fwd_bfs.get_successors(__a ), self.bwd_bfs: self.bwd_bfs.get_successors(__a ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__a ) if not self.reached: return [self.fwd_bfs.start.pos] return None def snake_case ( self , __a , __a ): __lowerCAmelCase = self.fwd_bfs.retrace_path(__a ) __lowerCAmelCase = self.bwd_bfs.retrace_path(__a ) bwd_path.pop() bwd_path.reverse() __lowerCAmelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() A : List[Any] = (0, 0) A : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) A : Any = time.time() A : Dict = BreadthFirstSearch(init, goal) A : Any = bfs.search() A : List[str] = time.time() - start_bfs_time print("Unidirectional BFS computation time : ", bfs_time) A : Optional[Any] = time.time() A : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) A : Any = bd_bfs.search() A : str = time.time() - start_bd_bfs_time print("Bidirectional BFS computation time : ", bd_bfs_time)
259
0
import requests __snake_case = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def _A ( SCREAMING_SNAKE_CASE__ : str ): # fetching a list of articles in json format UpperCamelCase :Tuple = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(F'''{i}.) {article["title"]}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
259
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=5_02_65 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1e-5 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=10_24 , _UpperCAmelCase : int=1_28 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=1_28 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[int]=2_24 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : List[str] , ) -> Dict: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : int = version.parse("1.12" ) @property def a__ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : int ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : str ) -> int: """simple docstring""" return 12 def a__ ( self : str , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
325
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { '''configuration_lilt''': ['''LILT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LiltConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''LILT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LiltForQuestionAnswering''', '''LiltForSequenceClassification''', '''LiltForTokenClassification''', '''LiltModel''', '''LiltPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCAmelCase = 10 def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" for i in range(UpperCamelCase , UpperCamelCase ): if array[i] == target: return i return -1 def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Optional[int] = len(UpperCamelCase ) while left <= right: if right - left < precision: return lin_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Tuple = (left + right) // 3 + 1 lowerCAmelCase__ : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowerCAmelCase__ : int = one_third - 1 elif array[two_third] < target: lowerCAmelCase__ : Union[str, Any] = two_third + 1 else: lowerCAmelCase__ : List[Any] = one_third + 1 lowerCAmelCase__ : List[str] = two_third - 1 else: return -1 def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if left < right: if right - left < precision: return lin_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Dict = (left + right) // 3 + 1 lowerCAmelCase__ : Tuple = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(UpperCamelCase , one_third - 1 , UpperCamelCase , UpperCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , UpperCamelCase , UpperCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = input('''Enter numbers separated by comma:\n''').strip() _lowerCAmelCase = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." _lowerCAmelCase = int(input('''Enter the number to be found in the list:\n''').strip()) _lowerCAmelCase = ite_ternary_search(collection, target) _lowerCAmelCase = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print('''Not found''')
184
0
'''simple docstring''' from __future__ import annotations from typing import Any def lowerCAmelCase_ ( _lowerCamelCase: list ): if not postfix_notation: return 0 __SCREAMING_SNAKE_CASE : Any = {"""+""", """-""", """*""", """/"""} __SCREAMING_SNAKE_CASE : list[Any] = [] for token in postfix_notation: if token in operations: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_lowerCamelCase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
112
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase__ : Optional[int] = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } UpperCamelCase__ : List[Any] = { '''facebook/bart-base''': 10_24, '''facebook/bart-large''': 10_24, '''facebook/bart-large-mnli''': 10_24, '''facebook/bart-large-cnn''': 10_24, '''facebook/bart-large-xsum''': 10_24, '''yjernite/bart_eli5''': 10_24, } @lru_cache() def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __SCREAMING_SNAKE_CASE : int = bs[:] __SCREAMING_SNAKE_CASE : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCamelCase ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE : Dict = [chr(_lowerCamelCase ) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase ) ) def lowerCAmelCase_ ( _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : List[str] = set() __SCREAMING_SNAKE_CASE : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE : Optional[int] = char return pairs class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : List[str] = VOCAB_FILES_NAMES _A : Tuple = PRETRAINED_VOCAB_FILES_MAP _A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : int = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple="replace" , lowerCAmelCase__ : str="<s>" , lowerCAmelCase__ : Dict="</s>" , lowerCAmelCase__ : Union[str, Any]="</s>" , lowerCAmelCase__ : Any="<s>" , lowerCAmelCase__ : str="<unk>" , lowerCAmelCase__ : Tuple="<pad>" , lowerCAmelCase__ : Union[str, Any]="<mask>" , lowerCAmelCase__ : Dict=False , **lowerCAmelCase__ : Optional[int] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __SCREAMING_SNAKE_CASE : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __SCREAMING_SNAKE_CASE : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __SCREAMING_SNAKE_CASE : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __SCREAMING_SNAKE_CASE : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE : int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __SCREAMING_SNAKE_CASE : Dict = json.load(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE : Dict = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE : Optional[int] = bytes_to_unicode() __SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __SCREAMING_SNAKE_CASE : Tuple = merges_handle.read().split("""\n""" )[1:-1] __SCREAMING_SNAKE_CASE : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] __SCREAMING_SNAKE_CASE : str = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : Optional[int] = {} __SCREAMING_SNAKE_CASE : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE : Tuple = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def UpperCamelCase__ ( self : List[str] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE : Optional[int] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __SCREAMING_SNAKE_CASE : Optional[int] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = bigram __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : List[str] = 0 while i < len(lowerCAmelCase__ ): try: __SCREAMING_SNAKE_CASE : Any = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE : Dict = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE : Optional[int] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __SCREAMING_SNAKE_CASE : Tuple = get_pairs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = """ """.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = word return word def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase__ ) def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = """""".join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __SCREAMING_SNAKE_CASE : str = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __SCREAMING_SNAKE_CASE : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] __SCREAMING_SNAKE_CASE : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict=False , **lowerCAmelCase__ : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE : List[str] = """ """ + text return (text, kwargs)
112
1
"""simple docstring""" from math import ceil def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple ): lowercase_ : List[Any] = list(range(0 , __SCREAMING_SNAKE_CASE ) ) lowercase_ : List[Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check lowercase_ : Optional[int] = [] for i in device_map_blocks: if device_map_blocks.count(__SCREAMING_SNAKE_CASE ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__SCREAMING_SNAKE_CASE ) # Missing blocks lowercase_ : List[Any] = [i for i in blocks if i not in device_map_blocks] lowercase_ : Optional[int] = [i for i in device_map_blocks if i not in blocks] if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(__SCREAMING_SNAKE_CASE ) ) def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase_ : Optional[Any] = list(range(__SCREAMING_SNAKE_CASE ) ) lowercase_ : List[str] = int(ceil(n_layers / len(__SCREAMING_SNAKE_CASE ) ) ) lowercase_ : Optional[Any] = [layers[i : i + n_blocks] for i in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] return dict(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
321
"""simple docstring""" class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : int = set_counts lowercase_ : List[Any] = max(__UpperCamelCase ) lowercase_ : Union[str, Any] = len(__UpperCamelCase ) lowercase_ : Dict = [1] * num_sets lowercase_ : Optional[int] = list(range(__UpperCamelCase ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool: '''simple docstring''' lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase ) lowercase_ : int = self.get_parent(__UpperCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : Tuple = 0 lowercase_ : str = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : str = 0 lowercase_ : Tuple = src_parent lowercase_ : int = self.set_counts[src_parent] lowercase_ : str = max(self.max_set ,__UpperCamelCase ) return True def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
321
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any]=10 ) -> str: """simple docstring""" __lowerCamelCase = [] for _ in range(UpperCamelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any=10 ) -> Any: """simple docstring""" __lowerCamelCase = [] for step in range(UpperCamelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = os.path.join(UpperCamelCase__ , 'schedule.bin' ) torch.save(scheduler.state_dict() , UpperCamelCase__ ) __lowerCamelCase = torch.load(UpperCamelCase__ ) scheduler.load_state_dict(UpperCamelCase__ ) return lrs @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for a, b in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertAlmostEqual(lowerCamelCase__ , lowerCamelCase__ , delta=lowerCamelCase__ ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCamelCase__ ) __lowerCamelCase = torch.tensor([0.4, 0.2, -0.5] ) __lowerCamelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __lowerCamelCase = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): __lowerCamelCase = criterion(lowerCamelCase__ , lowerCamelCase__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCamelCase__ ) __lowerCamelCase = torch.tensor([0.4, 0.2, -0.5] ) __lowerCamelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __lowerCamelCase = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCamelCase__ , weight_decay=0.0 , relative_step=lowerCamelCase__ , scale_parameter=lowerCamelCase__ , warmup_init=lowerCamelCase__ , ) for _ in range(1_000 ): __lowerCamelCase = criterion(lowerCamelCase__ , lowerCamelCase__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = nn.Linear(50 , 50 ) if is_torch_available() else None snake_case_ = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None snake_case_ = 10 def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> Any: '''simple docstring''' self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for a, b in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertAlmostEqual(lowerCamelCase__ , lowerCamelCase__ , delta=lowerCamelCase__ , msg=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) __lowerCamelCase = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1e-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): __lowerCamelCase , __lowerCamelCase = data __lowerCamelCase = scheduler_func(self.optimizer , **lowerCamelCase__ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) __lowerCamelCase = unwrap_schedule(lowerCamelCase__ , self.num_steps ) self.assertListAlmostEqual( lowerCamelCase__ , lowerCamelCase__ , tol=1e-2 , msg=f"""failed for {scheduler_func} in normal scheduler""" , ) __lowerCamelCase = scheduler_func(self.optimizer , **lowerCamelCase__ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCamelCase__ ) # wrap to test picklability of the schedule __lowerCamelCase = unwrap_and_save_reload_schedule(lowerCamelCase__ , self.num_steps ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ , msg=f"""failed for {scheduler_func} in save and reload""" ) class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = fn def __call__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' return self.fn(*lowerCamelCase__ , **lowerCamelCase__ ) @classmethod def lowercase_ ( self , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = list(map(self , scheduler.lr_lambdas ) )
90
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: UpperCAmelCase : Optional[Any] = None try: import msvcrt except ImportError: UpperCAmelCase : List[Any] = None try: import fcntl except ImportError: UpperCAmelCase : int = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: UpperCAmelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ UpperCAmelCase : List[Any] = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] UpperCAmelCase : Tuple = '3.0.12' UpperCAmelCase : str = None def a__ ( ): """simple docstring""" global _logger __SCREAMING_SNAKE_CASE = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Any , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = lock_file return None def __str__( self : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = f'The file lock \'{self.lock_file}\' could not be acquired.' return temp class lowerCAmelCase__ : """simple docstring""" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : List[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = lock return None def __enter__( self : List[str] ) -> List[Any]: """simple docstring""" return self.lock def __exit__( self : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: """simple docstring""" self.lock.release() return None class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str=-1 , __SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __SCREAMING_SNAKE_CASE = self.hash_filename_if_too_long(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # The path to the lock file. __SCREAMING_SNAKE_CASE = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __SCREAMING_SNAKE_CASE = None # The default timeout value. __SCREAMING_SNAKE_CASE = timeout # We use this lock primarily for the lock counter. __SCREAMING_SNAKE_CASE = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __SCREAMING_SNAKE_CASE = 0 return None @property def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" return self._lock_file @property def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._timeout @timeout.setter def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = float(__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" raise NotImplementedError() def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" raise NotImplementedError() @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self._lock_file_fd is not None def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=0.05 ) -> Optional[Any]: """simple docstring""" if timeout is None: __SCREAMING_SNAKE_CASE = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __SCREAMING_SNAKE_CASE = id(self ) __SCREAMING_SNAKE_CASE = self._lock_file __SCREAMING_SNAKE_CASE = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'Attempting to acquire lock {lock_id} on {lock_filename}' ) self._acquire() if self.is_locked: logger().debug(f'Lock {lock_id} acquired on {lock_filename}' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'Timeout on acquiring lock {lock_id} on {lock_filename}' ) raise Timeout(self._lock_file ) else: logger().debug( f'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' ) time.sleep(__SCREAMING_SNAKE_CASE ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __SCREAMING_SNAKE_CASE = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> Dict: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __SCREAMING_SNAKE_CASE = id(self ) __SCREAMING_SNAKE_CASE = self._lock_file logger().debug(f'Attempting to release lock {lock_id} on {lock_filename}' ) self._release() __SCREAMING_SNAKE_CASE = 0 logger().debug(f'Lock {lock_id} released on {lock_filename}' ) return None def __enter__( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self.acquire() return self def __exit__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : str ) -> Union[str, Any]: """simple docstring""" self.release(force=__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = os.path.basename(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > max_length and max_length > 0: __SCREAMING_SNAKE_CASE = os.path.dirname(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = str(hash(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = filename[: max_length - len(__SCREAMING_SNAKE_CASE ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: return path class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict=-1 , __SCREAMING_SNAKE_CASE : Dict=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__SCREAMING_SNAKE_CASE , timeout=__SCREAMING_SNAKE_CASE , max_filename_length=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __SCREAMING_SNAKE_CASE = os.open(self._lock_file , __SCREAMING_SNAKE_CASE ) except OSError: pass else: try: msvcrt.locking(__SCREAMING_SNAKE_CASE , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = fd return None def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self._lock_file_fd __SCREAMING_SNAKE_CASE = None msvcrt.locking(__SCREAMING_SNAKE_CASE , msvcrt.LK_UNLCK , 1 ) os.close(__SCREAMING_SNAKE_CASE ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]=-1 , __SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = os.statvfs(os.path.dirname(__SCREAMING_SNAKE_CASE ) ).f_namemax super().__init__(__SCREAMING_SNAKE_CASE , timeout=__SCREAMING_SNAKE_CASE , max_filename_length=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = os.O_RDWR | os.O_CREAT | os.O_TRUNC __SCREAMING_SNAKE_CASE = os.open(self._lock_file , __SCREAMING_SNAKE_CASE ) try: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = fd return None def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self._lock_file_fd __SCREAMING_SNAKE_CASE = None fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN ) os.close(__SCREAMING_SNAKE_CASE ) return None class lowerCAmelCase__ ( a ): """simple docstring""" def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __SCREAMING_SNAKE_CASE = os.open(self._lock_file , __SCREAMING_SNAKE_CASE ) except OSError: pass else: __SCREAMING_SNAKE_CASE = fd return None def UpperCAmelCase__ ( self : int ) -> Optional[int]: """simple docstring""" os.close(self._lock_file_fd ) __SCREAMING_SNAKE_CASE = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None UpperCAmelCase : Dict = None if msvcrt: UpperCAmelCase : Optional[int] = WindowsFileLock elif fcntl: UpperCAmelCase : Optional[Any] = UnixFileLock else: UpperCAmelCase : int = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
267
0
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=13 ,_lowerCamelCase=30 ,_lowerCamelCase=2 ,_lowerCamelCase=3 ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=32 ,_lowerCamelCase=5 ,_lowerCamelCase=4 ,_lowerCamelCase=37 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=10 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=None ,) -> Dict: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' return ViTMSNConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = ViTMSNModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Tuple: '''simple docstring''' __lowercase = self.type_sequence_label_size __lowercase = ViTMSNForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ,labels=_lowerCamelCase ) print('''Pixel and labels shape: {pixel_values.shape}, {labels.shape}''' ) print('''Labels: {labels}''' ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = ViTMSNForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Dict = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () a : Dict = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) a : Optional[int] = False a : str = False a : Optional[Any] = False a : List[Any] = False def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = ViTMSNModelTester(self ) __lowercase = ConfigTester(self ,config_class=_lowerCamelCase ,has_text_modality=_lowerCamelCase ,hidden_size=37 ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMSN does not use inputs_embeds''' ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase ,nn.Linear ) ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCamelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = ViTMSNModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _lowerCAmelCase ( ): __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained('''facebook/vit-msn-small''' ) if is_vision_available() else None @slow def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(2 ) __lowercase = ViTMSNForImageClassification.from_pretrained('''facebook/vit-msn-small''' ).to(_lowerCamelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCamelCase ,return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCamelCase ) # verify the logits __lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_lowerCamelCase ) __lowercase = torch.tensor([-0.0_8_0_3, -0.4_4_5_4, -0.2_3_7_5] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_lowerCamelCase ,atol=1E-4 ) )
367
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : int = 6_0_0_8_5_1_4_7_5_1_4_3 ): try: __lowercase = int(lowerCamelCase_ ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) __lowercase = 1 __lowercase = 2 while i * i <= n: while n % i == 0: __lowercase = i n //= i i += 1 if n > 1: __lowercase = n return int(lowerCamelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
217
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : Dict ='Salesforce/blip-image-captioning-base' UpperCamelCase_ : List[str] =( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) UpperCamelCase_ : str ='image_captioner' UpperCamelCase_ : str =AutoModelForVisionaSeq UpperCamelCase_ : Optional[int] =['image'] UpperCamelCase_ : List[str] =['text'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[str]: requires_backends(self , ['''vision'''] ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: return self.pre_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: return self.model.generate(**SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: return self.pre_processor.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )[0].strip()
259
from __future__ import annotations from typing import Any def _A ( SCREAMING_SNAKE_CASE__ : list[Any] ): create_state_space_tree(SCREAMING_SNAKE_CASE__ , [] , 0 ) def _A ( SCREAMING_SNAKE_CASE__ : list[Any] , SCREAMING_SNAKE_CASE__ : list[Any] , SCREAMING_SNAKE_CASE__ : int ): if index == len(SCREAMING_SNAKE_CASE__ ): print(SCREAMING_SNAKE_CASE__ ) return create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __snake_case = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
259
1
import os def __UpperCamelCase ( lowerCAmelCase__ : str = "input.txt" ): with open(os.path.join(os.path.dirname(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) as input_file: __a : Any = [ [int(lowerCAmelCase__ ) for element in line.split(''',''' )] for line in input_file.readlines() ] __a : List[str] = len(lowerCAmelCase__ ) __a : Optional[Any] = len(matrix[0] ) __a : Dict = [[-1 for _ in range(lowerCAmelCase__ )] for _ in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ): __a : List[Any] = matrix[i][0] for j in range(1 , lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): __a : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowerCAmelCase__ ): __a : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a : Dict = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"""{solution() = }""")
368
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase__ ='bert-base-cased' lowercase__ ='google/pegasus-xsum' lowercase__ =[' Sam ate lunch today.', 'Sams lunch ingredients.'] lowercase__ =['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] lowercase__ ='patrickvonplaten/t5-tiny-random' lowercase__ ='sshleifer/bart-tiny-random' lowercase__ ='sshleifer/tiny-mbart' lowercase__ ='sshleifer/tiny-marian-en-de' def __UpperCamelCase ( lowerCAmelCase__ : Path , lowerCAmelCase__ : list ): __a : List[Any] = '''\n'''.join(lowerCAmelCase__ ) Path(lowerCAmelCase__ ).open('''w''' ).writelines(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : int ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(lowerCAmelCase__ , f"{split}.source" ) , lowerCAmelCase__ ) _dump_articles(os.path.join(lowerCAmelCase__ , f"{split}.target" ) , lowerCAmelCase__ ) return tmp_dir class UpperCamelCase__ ( __lowercase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def lowerCAmelCase (self : int , snake_case_ : int ): __a : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ ) __a : Optional[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __a : Union[str, Any] = max(len(tokenizer.encode(snake_case_ ) ) for a in ARTICLES ) __a : str = max(len(tokenizer.encode(snake_case_ ) ) for a in SUMMARIES ) __a : str = 4 __a : Dict = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __a , __a : Any = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. __a : List[Any] = SeqaSeqDataset( snake_case_ , data_dir=snake_case_ , type_path='''train''' , max_source_length=snake_case_ , max_target_length=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ , ) __a : Dict = DataLoader(snake_case_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(snake_case_ , snake_case_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __a : Dict = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def lowerCAmelCase (self : Optional[Any] , snake_case_ : str ): __a : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case_ ) __a : str = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __a : Any = max(len(tokenizer.encode(snake_case_ ) ) for a in ARTICLES ) __a : Any = max(len(tokenizer.encode(snake_case_ ) ) for a in SUMMARIES ) __a : Dict = 4 __a : Optional[int] = LegacySeqaSeqDataset( snake_case_ , data_dir=snake_case_ , type_path='''train''' , max_source_length=2_0 , max_target_length=snake_case_ , ) __a : Optional[Any] = DataLoader(snake_case_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def lowerCAmelCase (self : List[str] ): __a : int = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) __a : Any = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __a : Optional[int] = tmp_dir.joinpath('''train.source''' ).open().readlines() __a : List[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(snake_case_ , snake_case_ , 1_2_8 , snake_case_ ) __a : Optional[Any] = {x.name for x in tmp_dir.iterdir()} __a : Union[str, Any] = {x.name for x in save_dir.iterdir()} __a : str = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(snake_case_ ) < len(snake_case_ ) assert len(snake_case_ ) == 1 assert len(packed_examples[0] ) == sum(len(snake_case_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def lowerCAmelCase (self : Any ): if not FAIRSEQ_AVAILABLE: return __a , __a , __a : Any = self._get_dataset(max_len=6_4 ) __a : int = 6_4 __a : List[str] = ds.make_dynamic_sampler(snake_case_ , required_batch_size_multiple=snake_case_ ) __a : List[str] = [len(snake_case_ ) for x in batch_sampler] assert len(set(snake_case_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(snake_case_ ) == len(snake_case_ ) # no dropped or added examples __a : Union[str, Any] = DataLoader(snake_case_ , batch_sampler=snake_case_ , collate_fn=ds.collate_fn , num_workers=2 ) __a : Tuple = [] __a : Union[str, Any] = [] for batch in data_loader: __a : Any = batch['''input_ids'''].shape __a : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __a : Optional[Any] = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(snake_case_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(snake_case_ ) assert num_src_per_batch[0] == max(snake_case_ ) if failures: raise AssertionError(f"too many tokens in {len(snake_case_ )} batches" ) def lowerCAmelCase (self : int ): __a , __a , __a : Optional[int] = self._get_dataset(max_len=5_1_2 ) __a : Union[str, Any] = 2 __a : str = ds.make_sortish_sampler(snake_case_ , shuffle=snake_case_ ) __a : Tuple = DataLoader(snake_case_ , batch_size=snake_case_ , collate_fn=ds.collate_fn , num_workers=2 ) __a : Tuple = DataLoader(snake_case_ , batch_size=snake_case_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=snake_case_ ) __a : Optional[int] = tokenizer.pad_token_id def count_pad_tokens(snake_case_ : Union[str, Any] , snake_case_ : List[str]="input_ids" ): return [batch[k].eq(snake_case_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(snake_case_ , k='''labels''' ) ) < sum(count_pad_tokens(snake_case_ , k='''labels''' ) ) assert sum(count_pad_tokens(snake_case_ ) ) < sum(count_pad_tokens(snake_case_ ) ) assert len(snake_case_ ) == len(snake_case_ ) def lowerCAmelCase (self : int , snake_case_ : int=1_0_0_0 , snake_case_ : Optional[Any]=1_2_8 ): if os.getenv('''USE_REAL_DATA''' , snake_case_ ): __a : Optional[int] = '''examples/seq2seq/wmt_en_ro''' __a : List[Any] = max_len * 2 * 6_4 if not Path(snake_case_ ).joinpath('''train.len''' ).exists(): save_len_file(snake_case_ , snake_case_ ) else: __a : int = '''examples/seq2seq/test_data/wmt_en_ro''' __a : List[str] = max_len * 4 save_len_file(snake_case_ , snake_case_ ) __a : str = AutoTokenizer.from_pretrained(snake_case_ ) __a : Optional[int] = SeqaSeqDataset( snake_case_ , data_dir=snake_case_ , type_path='''train''' , max_source_length=snake_case_ , max_target_length=snake_case_ , n_obs=snake_case_ , ) return ds, max_tokens, tokenizer def lowerCAmelCase (self : List[str] ): __a , __a , __a : str = self._get_dataset() __a : Optional[Any] = set(DistributedSortishSampler(snake_case_ , 2_5_6 , num_replicas=2 , rank=0 , add_extra_examples=snake_case_ ) ) __a : Tuple = set(DistributedSortishSampler(snake_case_ , 2_5_6 , num_replicas=2 , rank=1 , add_extra_examples=snake_case_ ) ) assert idsa.intersection(snake_case_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def lowerCAmelCase (self : str , snake_case_ : Union[str, Any] ): __a : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case_ , use_fast=snake_case_ ) if tok_name == MBART_TINY: __a : Any = SeqaSeqDataset( snake_case_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) __a : Tuple = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __a : Optional[Any] = SeqaSeqDataset( snake_case_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) __a : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(snake_case_ ) == 1 if tok_name == BART_TINY else len(snake_case_ ) == 0
90
0
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : int , a__ : int , a__ : int , a__ : int , a__ : Dict=0.0 , a__ : Optional[int] = None , a__ : str = "geglu" , a__ : Optional[int] = None , a__ : bool = False , a__ : bool = False , a__ : bool = False , a__ : bool = False , a__ : bool = True , a__ : str = "layer_norm" , a__ : bool = False , ): """simple docstring""" super().__init__() __snake_case = only_cross_attention __snake_case = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' __snake_case = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" f""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __snake_case = AdaLayerNorm(a__ , a__ ) elif self.use_ada_layer_norm_zero: __snake_case = AdaLayerNormZero(a__ , a__ ) else: __snake_case = nn.LayerNorm(a__ , elementwise_affine=a__ ) __snake_case = Attention( query_dim=a__ , heads=a__ , dim_head=a__ , dropout=a__ , bias=a__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=a__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __snake_case = ( AdaLayerNorm(a__ , a__ ) if self.use_ada_layer_norm else nn.LayerNorm(a__ , elementwise_affine=a__ ) ) __snake_case = Attention( query_dim=a__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=a__ , dim_head=a__ , dropout=a__ , bias=a__ , upcast_attention=a__ , ) # is self-attn if encoder_hidden_states is none else: __snake_case = None __snake_case = None # 3. Feed-forward __snake_case = nn.LayerNorm(a__ , elementwise_affine=a__ ) __snake_case = FeedForward(a__ , dropout=a__ , activation_fn=a__ , final_dropout=a__ ) # let chunk size default to None __snake_case = None __snake_case = 0 def a (self : int , a__ : Optional[int] , a__ : int ): """simple docstring""" __snake_case = chunk_size __snake_case = dim def a (self : Dict , a__ : torch.FloatTensor , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[torch.LongTensor] = None , a__ : Dict[str, Any] = None , a__ : Optional[torch.LongTensor] = None , ): """simple docstring""" if self.use_ada_layer_norm: __snake_case = self.norma(a__ , a__ ) elif self.use_ada_layer_norm_zero: __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = self.norma( a__ , a__ , a__ , hidden_dtype=hidden_states.dtype ) else: __snake_case = self.norma(a__ ) __snake_case = cross_attention_kwargs if cross_attention_kwargs is not None else {} __snake_case = self.attna( a__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=a__ , **a__ , ) if self.use_ada_layer_norm_zero: __snake_case = gate_msa.unsqueeze(1 ) * attn_output __snake_case = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __snake_case = ( self.norma(a__ , a__ ) if self.use_ada_layer_norm else self.norma(a__ ) ) __snake_case = self.attna( a__ , encoder_hidden_states=a__ , attention_mask=a__ , **a__ , ) __snake_case = attn_output + hidden_states # 3. Feed-forward __snake_case = self.norma(a__ ) if self.use_ada_layer_norm_zero: __snake_case = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) __snake_case = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __snake_case = torch.cat( [self.ff(a__ ) for hid_slice in norm_hidden_states.chunk(a__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __snake_case = self.ff(a__ ) if self.use_ada_layer_norm_zero: __snake_case = gate_mlp.unsqueeze(1 ) * ff_output __snake_case = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : Any , a__ : int , a__ : Optional[int] = None , a__ : int = 4 , a__ : float = 0.0 , a__ : str = "geglu" , a__ : bool = False , ): """simple docstring""" super().__init__() __snake_case = int(dim * mult ) __snake_case = dim_out if dim_out is not None else dim if activation_fn == "gelu": __snake_case = GELU(a__ , a__ ) if activation_fn == "gelu-approximate": __snake_case = GELU(a__ , a__ , approximate='''tanh''' ) elif activation_fn == "geglu": __snake_case = GEGLU(a__ , a__ ) elif activation_fn == "geglu-approximate": __snake_case = ApproximateGELU(a__ , a__ ) __snake_case = nn.ModuleList([] ) # project in self.net.append(a__ ) # project dropout self.net.append(nn.Dropout(a__ ) ) # project out self.net.append(nn.Linear(a__ , a__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(a__ ) ) def a (self : Union[str, Any] , a__ : Optional[int] ): """simple docstring""" for module in self.net: __snake_case = module(a__ ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : Tuple , a__ : int , a__ : int , a__ : str = "none" ): """simple docstring""" super().__init__() __snake_case = nn.Linear(a__ , a__ ) __snake_case = approximate def a (self : Any , a__ : str ): """simple docstring""" if gate.device.type != "mps": return F.gelu(a__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def a (self : Any , a__ : List[str] ): """simple docstring""" __snake_case = self.proj(a__ ) __snake_case = self.gelu(a__ ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : Optional[int] , a__ : int , a__ : int ): """simple docstring""" super().__init__() __snake_case = nn.Linear(a__ , dim_out * 2 ) def a (self : Dict , a__ : Optional[int] ): """simple docstring""" if gate.device.type != "mps": return F.gelu(a__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def a (self : str , a__ : List[Any] ): """simple docstring""" __snake_case , __snake_case = self.proj(a__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(a__ ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : Dict , a__ : int , a__ : int ): """simple docstring""" super().__init__() __snake_case = nn.Linear(a__ , a__ ) def a (self : str , a__ : Tuple ): """simple docstring""" __snake_case = self.proj(a__ ) return x * torch.sigmoid(1.7_0_2 * x ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : Dict , a__ : Optional[Any] , a__ : Union[str, Any] ): """simple docstring""" super().__init__() __snake_case = nn.Embedding(a__ , a__ ) __snake_case = nn.SiLU() __snake_case = nn.Linear(a__ , embedding_dim * 2 ) __snake_case = nn.LayerNorm(a__ , elementwise_affine=a__ ) def a (self : Any , a__ : Optional[int] , a__ : Union[str, Any] ): """simple docstring""" __snake_case = self.linear(self.silu(self.emb(a__ ) ) ) __snake_case , __snake_case = torch.chunk(a__ , 2 ) __snake_case = self.norm(a__ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : Dict , a__ : Dict , a__ : str ): """simple docstring""" super().__init__() __snake_case = CombinedTimestepLabelEmbeddings(a__ , a__ ) __snake_case = nn.SiLU() __snake_case = nn.Linear(a__ , 6 * embedding_dim , bias=a__ ) __snake_case = nn.LayerNorm(a__ , elementwise_affine=a__ , eps=1E-6 ) def a (self : Optional[Any] , a__ : List[Any] , a__ : Union[str, Any] , a__ : Optional[Any] , a__ : Union[str, Any]=None ): """simple docstring""" __snake_case = self.linear(self.silu(self.emb(a__ , a__ , hidden_dtype=a__ ) ) ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = emb.chunk(6 , dim=1 ) __snake_case = self.norm(a__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : Optional[int] , a__ : int , a__ : int , a__ : int , a__ : Optional[str] = None , a__ : float = 1E-5 ): """simple docstring""" super().__init__() __snake_case = num_groups __snake_case = eps if act_fn is None: __snake_case = None else: __snake_case = get_activation(a__ ) __snake_case = nn.Linear(a__ , out_dim * 2 ) def a (self : List[str] , a__ : Dict , a__ : List[str] ): """simple docstring""" if self.act: __snake_case = self.act(a__ ) __snake_case = self.linear(a__ ) __snake_case = emb[:, :, None, None] __snake_case , __snake_case = emb.chunk(2 , dim=1 ) __snake_case = F.group_norm(a__ , self.num_groups , eps=self.eps ) __snake_case = x * (1 + scale) + shift return x
24
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
184
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _UpperCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): UpperCAmelCase = line.strip() if line: UpperCAmelCase = line.split() UpperCAmelCase = line_number UpperCAmelCase = words[0] UpperCAmelCase = value return result def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" for attribute in key.split(""".""" ): UpperCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): UpperCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] UpperCAmelCase = "param" if weight_type is not None and weight_type != "param": UpperCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): UpperCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase = shape_pointer.shape # let's reduce dimension UpperCAmelCase = value[0] else: UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase = value elif weight_type == "weight_g": UpperCAmelCase = value elif weight_type == "weight_v": UpperCAmelCase = value elif weight_type == "bias": UpperCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): UpperCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase = value else: UpperCAmelCase = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): UpperCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] UpperCAmelCase = "param" if weight_type is not None and weight_type != "param": UpperCAmelCase = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase = ".".join([key, hf_param_name] ) else: UpperCAmelCase = key UpperCAmelCase = value if "lm_head" in full_key else value[0] _UpperCamelCase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def _a ( _snake_case , _snake_case , _snake_case=None , _snake_case=None ): """simple docstring""" UpperCAmelCase = False for key, mapped_key in MAPPING.items(): UpperCAmelCase = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCAmelCase = True if "*" in mapped_key: UpperCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2] UpperCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: UpperCAmelCase = "weight_g" elif "weight_v" in name: UpperCAmelCase = "weight_v" elif "bias" in name: UpperCAmelCase = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase = "weight" else: UpperCAmelCase = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = fairseq_model.state_dict() UpperCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase = True else: UpperCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase = name.split(""".""" ) UpperCAmelCase = int(items[0] ) UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def _a ( _snake_case , _snake_case , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case=False ): """simple docstring""" if config_path is not None: UpperCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: UpperCAmelCase = WavaVecaConfig() if is_seq_class: UpperCAmelCase = read_txt_into_dict(__lowerCamelCase ) UpperCAmelCase = idalabel UpperCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase ) UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: UpperCAmelCase = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase = target_dict.pad_index UpperCAmelCase = target_dict.bos_index UpperCAmelCase = target_dict.eos_index UpperCAmelCase = len(target_dict.symbols ) UpperCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) UpperCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase = 0 UpperCAmelCase = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) UpperCAmelCase = True if config.feat_extract_norm == "layer" else False UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) UpperCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) UpperCAmelCase = WavaVecaForCTC(__lowerCamelCase ) else: UpperCAmelCase = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: UpperCAmelCase = argparse.Namespace(task="""audio_pretraining""" ) UpperCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase ) UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) UpperCAmelCase = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
351
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _UpperCamelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } _UpperCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def _a ( _snake_case , _snake_case=False ): """simple docstring""" UpperCAmelCase , UpperCAmelCase = create_model( """HTSAT-tiny""" , """roberta""" , _snake_case , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=_snake_case , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = {} UpperCAmelCase = R""".*sequential.(\d+).*""" UpperCAmelCase = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase = key.replace(_snake_case , _snake_case ) if re.match(_snake_case , _snake_case ): # replace sequential layers with list UpperCAmelCase = re.match(_snake_case , _snake_case ).group(1 ) UpperCAmelCase = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(_snake_case )//3}.linear.''' ) elif re.match(_snake_case , _snake_case ): UpperCAmelCase = int(re.match(_snake_case , _snake_case ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase = 1 if projecton_layer == 0 else 2 UpperCAmelCase = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase = value UpperCAmelCase = mixed_qkv.size(0 ) // 3 UpperCAmelCase = mixed_qkv[:qkv_dim] UpperCAmelCase = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase = query_layer UpperCAmelCase = key_layer UpperCAmelCase = value_layer else: UpperCAmelCase = value return model_state_dict def _a ( _snake_case , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" UpperCAmelCase , UpperCAmelCase = init_clap(_snake_case , enable_fusion=_snake_case ) clap_model.eval() UpperCAmelCase = clap_model.state_dict() UpperCAmelCase = rename_state_dict(_snake_case ) UpperCAmelCase = ClapConfig() UpperCAmelCase = enable_fusion UpperCAmelCase = ClapModel(_snake_case ) # ignore the spectrogram embedding layer model.load_state_dict(_snake_case , strict=_snake_case ) model.save_pretrained(_snake_case ) transformers_config.save_pretrained(_snake_case ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") _UpperCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
234
0
'''simple docstring''' from math import ceil def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Tuple: UpperCamelCase = list(range(0 , __UpperCamelCase ) ) UpperCamelCase = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check UpperCamelCase = [] for i in device_map_blocks: if device_map_blocks.count(__UpperCamelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__UpperCamelCase ) # Missing blocks UpperCamelCase = [i for i in blocks if i not in device_map_blocks] UpperCamelCase = [i for i in device_map_blocks if i not in blocks] if len(__UpperCamelCase ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(__UpperCamelCase ) ) if len(__UpperCamelCase ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(__UpperCamelCase ) ) if len(__UpperCamelCase ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(__UpperCamelCase ) ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> List[Any]: UpperCamelCase = list(range(__UpperCamelCase ) ) UpperCamelCase = int(ceil(n_layers / len(__UpperCamelCase ) ) ) UpperCamelCase = [layers[i : i + n_blocks] for i in range(0 , __UpperCamelCase , __UpperCamelCase )] return dict(zip(__UpperCamelCase , __UpperCamelCase ) )
321
'''simple docstring''' def lowercase__ ( __UpperCamelCase )-> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 UpperCamelCase = 1 UpperCamelCase = 1 while repunit: UpperCamelCase = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowercase__ ( __UpperCamelCase = 1000000 )-> int: UpperCamelCase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__UpperCamelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'{solution() = }')
321
1
import re def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(lowercase__ , lowercase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('''+918827897895'''))
362
import argparse import copy def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} with open(_A ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: SCREAMING_SNAKE_CASE__ = [] _list.append([line.split()[1], line.split()[2]] ) SCREAMING_SNAKE_CASE__ = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: SCREAMING_SNAKE_CASE__ = [] _list.append([line.split()[0], line.split()[2]] ) SCREAMING_SNAKE_CASE__ = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' with open(_A ) as f: SCREAMING_SNAKE_CASE__ = f.read(1 ) SCREAMING_SNAKE_CASE__ = start_node SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = start_node SCREAMING_SNAKE_CASE__ = 0 while visiting not in first_solution: SCREAMING_SNAKE_CASE__ = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_A ) and k[0] not in first_solution: SCREAMING_SNAKE_CASE__ = k[1] SCREAMING_SNAKE_CASE__ = k[0] first_solution.append(_A ) SCREAMING_SNAKE_CASE__ = distance_of_first_solution + int(_A ) SCREAMING_SNAKE_CASE__ = best_node first_solution.append(_A ) SCREAMING_SNAKE_CASE__ = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 SCREAMING_SNAKE_CASE__ = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for n in solution[1:-1]: SCREAMING_SNAKE_CASE__ = solution.index(_A ) for kn in solution[1:-1]: SCREAMING_SNAKE_CASE__ = solution.index(_A ) if n == kn: continue SCREAMING_SNAKE_CASE__ = copy.deepcopy(_A ) SCREAMING_SNAKE_CASE__ = kn SCREAMING_SNAKE_CASE__ = n SCREAMING_SNAKE_CASE__ = 0 for k in _tmp[:-1]: SCREAMING_SNAKE_CASE__ = _tmp[_tmp.index(_A ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: SCREAMING_SNAKE_CASE__ = distance + int(i[1] ) _tmp.append(_A ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) SCREAMING_SNAKE_CASE__ = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _A : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def UpperCAmelCase_ ( _A , _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = first_solution SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = distance_of_first_solution SCREAMING_SNAKE_CASE__ = solution while count <= iters: SCREAMING_SNAKE_CASE__ = find_neighborhood(_A , _A ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = neighborhood[index_of_best_solution] SCREAMING_SNAKE_CASE__ = len(_A ) - 1 SCREAMING_SNAKE_CASE__ = False while not found: SCREAMING_SNAKE_CASE__ = 0 while i < len(_A ): if best_solution[i] != solution[i]: SCREAMING_SNAKE_CASE__ = best_solution[i] SCREAMING_SNAKE_CASE__ = solution[i] break SCREAMING_SNAKE_CASE__ = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = best_solution[:-1] SCREAMING_SNAKE_CASE__ = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: SCREAMING_SNAKE_CASE__ = cost SCREAMING_SNAKE_CASE__ = solution else: SCREAMING_SNAKE_CASE__ = index_of_best_solution + 1 SCREAMING_SNAKE_CASE__ = neighborhood[index_of_best_solution] if len(_A ) >= size: tabu_list.pop(0 ) SCREAMING_SNAKE_CASE__ = count + 1 return best_solution_ever, best_cost def UpperCAmelCase_ ( _A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = generate_neighbours(args.File ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = generate_first_solution( args.File , _A ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = tabu_search( _A , _A , _A , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
218
0